freebsd-nq/sys/contrib/octeon-sdk/cvmx-bootmem.c
Juli Mallett 219d14fe5f Import the Cavium Simple Executive from the Cavium Octeon SDK. The Simple
Executive is a library that can be used by standalone applications and kernels
to abstract access to Octeon SoC and board-specific hardware and facilities.
The FreeBSD port to Octeon will be updated to use this where possible.
2010-07-20 07:19:43 +00:00

953 lines
35 KiB
C

/***********************license start***************
* Copyright (c) 2003-2008 Cavium Networks (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* * Neither the name of Cavium Networks nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS
* OR WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH
* RESPECT TO THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY
* REPRESENTATION OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT
* DEFECTS, AND CAVIUM SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES
* OF TITLE, MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR
* PURPOSE, LACK OF VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET
* POSSESSION OR CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT
* OF USE OR PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
*
*
* For any questions regarding licensing please contact marketing@caviumnetworks.com
*
***********************license end**************************************/
/**
* @file
* Simple allocate only memory allocator. Used to allocate memory at application
* start time.
*
* <hr>$Revision: 41586 $<hr>
*
*/
#include "cvmx.h"
#include "cvmx-spinlock.h"
#include "cvmx-bootmem.h"
//#define DEBUG
#undef MAX
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#undef MIN
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#define ALIGN_ADDR_UP(addr, align) (((addr) + (~(align))) & (align))
static CVMX_SHARED cvmx_bootmem_desc_t *cvmx_bootmem_desc = NULL;
/* See header file for descriptions of functions */
/* Wrapper functions are provided for reading/writing the size and next block
** values as these may not be directly addressible (in 32 bit applications, for instance.)
*/
/* Offsets of data elements in bootmem list, must match cvmx_bootmem_block_header_t */
#define NEXT_OFFSET 0
#define SIZE_OFFSET 8
static void cvmx_bootmem_phy_set_size(uint64_t addr, uint64_t size)
{
cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size);
}
static void cvmx_bootmem_phy_set_next(uint64_t addr, uint64_t next)
{
cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next);
}
static uint64_t cvmx_bootmem_phy_get_size(uint64_t addr)
{
return(cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63)));
}
static uint64_t cvmx_bootmem_phy_get_next(uint64_t addr)
{
return(cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63)));
}
/* This functions takes an address range and adjusts it as necessary to
** match the ABI that is currently being used. This is required to ensure
** that bootmem_alloc* functions only return valid pointers for 32 bit ABIs */
static int __cvmx_validate_mem_range(uint64_t *min_addr_ptr, uint64_t *max_addr_ptr)
{
#if defined(__linux__) && defined(CVMX_ABI_N32)
{
extern uint64_t linux_mem32_min;
extern uint64_t linux_mem32_max;
/* For 32 bit Linux apps, we need to restrict the allocations to the range
** of memory configured for access from userspace. Also, we need to add mappings
** for the data structures that we access.*/
/* Narrow range requests to be bounded by the 32 bit limits. octeon_phy_mem_block_alloc()
** will reject inconsistent req_size/range requests, so we don't repeat those checks here.
** If max unspecified, set to 32 bit maximum. */
*min_addr_ptr = MIN(MAX(*min_addr_ptr, linux_mem32_min), linux_mem32_max);
if (!*max_addr_ptr)
*max_addr_ptr = linux_mem32_max;
else
*max_addr_ptr = MAX(MIN(*max_addr_ptr, linux_mem32_max), linux_mem32_min);
}
#elif defined(CVMX_ABI_N32)
{
uint32_t max_phys = 0x0FFFFFFF; /* Max physical address when 1-1 mappings not used */
#if CVMX_USE_1_TO_1_TLB_MAPPINGS
max_phys = 0x7FFFFFFF;
#endif
/* We are are running standalone simple executive, so we need to limit the range
** that we allocate from */
/* Narrow range requests to be bounded by the 32 bit limits. octeon_phy_mem_block_alloc()
** will reject inconsistent req_size/range requests, so we don't repeat those checks here.
** If max unspecified, set to 32 bit maximum. */
*min_addr_ptr = MIN(MAX(*min_addr_ptr, 0x0), max_phys);
if (!*max_addr_ptr)
*max_addr_ptr = max_phys;
else
*max_addr_ptr = MAX(MIN(*max_addr_ptr, max_phys), 0x0);
}
#endif
return 0;
}
void *cvmx_bootmem_alloc_range(uint64_t size, uint64_t alignment, uint64_t min_addr, uint64_t max_addr)
{
int64_t address;
__cvmx_validate_mem_range(&min_addr, &max_addr);
address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, 0);
if (address > 0)
return cvmx_phys_to_ptr(address);
else
return NULL;
}
void *cvmx_bootmem_alloc_address(uint64_t size, uint64_t address, uint64_t alignment)
{
return cvmx_bootmem_alloc_range(size, alignment, address, address + size);
}
void *cvmx_bootmem_alloc(uint64_t size, uint64_t alignment)
{
return cvmx_bootmem_alloc_range(size, alignment, 0, 0);
}
void *cvmx_bootmem_alloc_named_range(uint64_t size, uint64_t min_addr, uint64_t max_addr, uint64_t align, char *name)
{
int64_t addr;
__cvmx_validate_mem_range(&min_addr, &max_addr);
addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr, align, name, 0);
if (addr >= 0)
return cvmx_phys_to_ptr(addr);
else
return NULL;
}
void *cvmx_bootmem_alloc_named_address(uint64_t size, uint64_t address, char *name)
{
return(cvmx_bootmem_alloc_named_range(size, address, address + size, 0, name));
}
void *cvmx_bootmem_alloc_named(uint64_t size, uint64_t alignment, char *name)
{
return(cvmx_bootmem_alloc_named_range(size, 0, 0, alignment, name));
}
int cvmx_bootmem_free_named(char *name)
{
return(cvmx_bootmem_phy_named_block_free(name, 0));
}
cvmx_bootmem_named_block_desc_t * cvmx_bootmem_find_named_block(char *name)
{
return(cvmx_bootmem_phy_named_block_find(name, 0));
}
void cvmx_bootmem_print_named(void)
{
cvmx_bootmem_phy_named_block_print();
}
#if defined(__linux__) && defined(CVMX_ABI_N32)
cvmx_bootmem_named_block_desc_t *linux32_named_block_array_ptr;
#endif
int cvmx_bootmem_init(void *mem_desc_ptr)
{
/* Verify that the size of cvmx_spinlock_t meets our assumptions */
if (sizeof(cvmx_spinlock_t) != 4)
{
cvmx_dprintf("ERROR: Unexpected size of cvmx_spinlock_t\n");
return(-1);
}
/* Here we set the global pointer to the bootmem descriptor block. This pointer will
** be used directly, so we will set it up to be directly usable by the application.
** It is set up as follows for the various runtime/ABI combinations:
** Linux 64 bit: Set XKPHYS bit
** Linux 32 bit: use mmap to create mapping, use virtual address
** CVMX 64 bit: use physical address directly
** CVMX 32 bit: use physical address directly
** Note that the CVMX environment assumes the use of 1-1 TLB mappings so that the physical addresses
** can be used directly
*/
if (!cvmx_bootmem_desc)
{
#if defined(CVMX_BUILD_FOR_LINUX_USER) && defined(CVMX_ABI_N32)
void *base_ptr;
/* For 32 bit, we need to use mmap to create a mapping for the bootmem descriptor */
int dm_fd = open("/dev/mem", O_RDWR);
if (dm_fd < 0)
{
cvmx_dprintf("ERROR opening /dev/mem for boot descriptor mapping\n");
return(-1);
}
base_ptr = mmap(NULL,
sizeof(cvmx_bootmem_desc_t) + sysconf(_SC_PAGESIZE),
PROT_READ | PROT_WRITE,
MAP_SHARED,
dm_fd,
((off_t)mem_desc_ptr) & ~(sysconf(_SC_PAGESIZE) - 1));
if (MAP_FAILED == base_ptr)
{
cvmx_dprintf("Error mapping bootmem descriptor!\n");
close(dm_fd);
return(-1);
}
/* Adjust pointer to point to bootmem_descriptor, rather than start of page it is in */
cvmx_bootmem_desc = (cvmx_bootmem_desc_t*)((char*)base_ptr + (((off_t)mem_desc_ptr) & (sysconf(_SC_PAGESIZE) - 1)));
/* Also setup mapping for named memory block desc. while we are at it. Here we must keep another
** pointer around, as the value in the bootmem descriptor is shared with other applications. */
base_ptr = mmap(NULL,
sizeof(cvmx_bootmem_named_block_desc_t) * cvmx_bootmem_desc->named_block_num_blocks + sysconf(_SC_PAGESIZE),
PROT_READ | PROT_WRITE,
MAP_SHARED,
dm_fd,
((off_t)cvmx_bootmem_desc->named_block_array_addr) & ~(sysconf(_SC_PAGESIZE) - 1));
close(dm_fd);
if (MAP_FAILED == base_ptr)
{
cvmx_dprintf("Error mapping named block descriptor!\n");
return(-1);
}
/* Adjust pointer to point to named block array, rather than start of page it is in */
linux32_named_block_array_ptr = (cvmx_bootmem_named_block_desc_t*)((char*)base_ptr + (((off_t)cvmx_bootmem_desc->named_block_array_addr) & (sysconf(_SC_PAGESIZE) - 1)));
#elif (defined(CVMX_BUILD_FOR_LINUX_KERNEL) || defined(CVMX_BUILD_FOR_LINUX_USER)) && defined(CVMX_ABI_64)
/* Set XKPHYS bit */
cvmx_bootmem_desc = cvmx_phys_to_ptr(CAST64(mem_desc_ptr));
#else
cvmx_bootmem_desc = (cvmx_bootmem_desc_t*)mem_desc_ptr;
#endif
}
return(0);
}
uint64_t cvmx_bootmem_available_mem(uint64_t min_block_size)
{
return(cvmx_bootmem_phy_available_mem(min_block_size));
}
/*********************************************************************
** The cvmx_bootmem_phy* functions below return 64 bit physical addresses,
** and expose more features that the cvmx_bootmem_functions above. These are
** required for full memory space access in 32 bit applications, as well as for
** using some advance features.
** Most applications should not need to use these.
**
**/
int64_t cvmx_bootmem_phy_alloc(uint64_t req_size, uint64_t address_min, uint64_t address_max, uint64_t alignment, uint32_t flags)
{
uint64_t head_addr;
uint64_t ent_addr;
uint64_t prev_addr = 0; /* points to previous list entry, NULL current entry is head of list */
uint64_t new_ent_addr = 0;
uint64_t desired_min_addr;
uint64_t alignment_mask = ~(alignment - 1);
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_alloc: req_size: 0x%llx, min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n",
(unsigned long long)req_size, (unsigned long long)address_min, (unsigned long long)address_max, (unsigned long long)alignment);
#endif
if (cvmx_bootmem_desc->major_version > 3)
{
cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: %p\n",
(int)cvmx_bootmem_desc->major_version, (int)cvmx_bootmem_desc->minor_version, cvmx_bootmem_desc);
goto error_out;
}
/* Do a variety of checks to validate the arguments. The allocator code will later assume
** that these checks have been made. We validate that the requested constraints are not
** self-contradictory before we look through the list of available memory
*/
/* 0 is not a valid req_size for this allocator */
if (!req_size)
goto error_out;
/* Round req_size up to mult of minimum alignment bytes */
req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) & ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
/* Convert !0 address_min and 0 address_max to special case of range that specifies an exact
** memory block to allocate. Do this before other checks and adjustments so that this tranformation will be validated */
if (address_min && !address_max)
address_max = address_min + req_size;
else if (!address_min && !address_max)
address_max = ~0ull; /* If no limits given, use max limits */
/* Enforce minimum alignment (this also keeps the minimum free block
** req_size the same as the alignment req_size */
if (alignment < CVMX_BOOTMEM_ALIGNMENT_SIZE)
{
alignment = CVMX_BOOTMEM_ALIGNMENT_SIZE;
}
alignment_mask = ~(alignment - 1);
/* Adjust address minimum based on requested alignment (round up to meet alignment). Do this here so we can
** reject impossible requests up front. (NOP for address_min == 0) */
if (alignment)
address_min = (address_min + (alignment - 1)) & ~(alignment - 1);
/* Reject inconsistent args. We have adjusted these, so this may fail due to our internal changes
** even if this check would pass for the values the user supplied. */
if (req_size > address_max - address_min)
goto error_out;
/* Walk through the list entries - first fit found is returned */
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
head_addr = cvmx_bootmem_desc->head_addr;
ent_addr = head_addr;
while (ent_addr)
{
uint64_t usable_base, usable_max;
uint64_t ent_size = cvmx_bootmem_phy_get_size(ent_addr);
if (cvmx_bootmem_phy_get_next(ent_addr) && ent_addr > cvmx_bootmem_phy_get_next(ent_addr))
{
cvmx_dprintf("Internal bootmem_alloc() error: ent: 0x%llx, next: 0x%llx\n",
(unsigned long long)ent_addr, (unsigned long long)cvmx_bootmem_phy_get_next(ent_addr));
goto error_out;
}
/* Determine if this is an entry that can satisify the request */
/* Check to make sure entry is large enough to satisfy request */
usable_base = ALIGN_ADDR_UP(MAX(address_min, ent_addr), alignment_mask);
usable_max = MIN(address_max, ent_addr + ent_size);
/* We should be able to allocate block at address usable_base */
desired_min_addr = usable_base;
/* Determine if request can be satisfied from the current entry */
if ((((ent_addr + ent_size) > usable_base && ent_addr < address_max))
&& req_size <= usable_max - usable_base)
{
/* We have found an entry that has room to satisfy the request, so allocate it from this entry */
/* If end CVMX_BOOTMEM_FLAG_END_ALLOC set, then allocate from the end of this block
** rather than the beginning */
if (flags & CVMX_BOOTMEM_FLAG_END_ALLOC)
{
desired_min_addr = usable_max - req_size;
/* Align desired address down to required alignment */
desired_min_addr &= alignment_mask;
}
/* Match at start of entry */
if (desired_min_addr == ent_addr)
{
if (req_size < ent_size)
{
/* big enough to create a new block from top portion of block */
new_ent_addr = ent_addr + req_size;
cvmx_bootmem_phy_set_next(new_ent_addr, cvmx_bootmem_phy_get_next(ent_addr));
cvmx_bootmem_phy_set_size(new_ent_addr, ent_size - req_size);
/* Adjust next pointer as following code uses this */
cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
}
/* adjust prev ptr or head to remove this entry from list */
if (prev_addr)
{
cvmx_bootmem_phy_set_next(prev_addr, cvmx_bootmem_phy_get_next(ent_addr));
}
else
{
/* head of list being returned, so update head ptr */
cvmx_bootmem_desc->head_addr = cvmx_bootmem_phy_get_next(ent_addr);
}
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
return(desired_min_addr);
}
/* block returned doesn't start at beginning of entry, so we know
** that we will be splitting a block off the front of this one. Create a new block
** from the beginning, add to list, and go to top of loop again.
**
** create new block from high portion of block, so that top block
** starts at desired addr
**/
new_ent_addr = desired_min_addr;
cvmx_bootmem_phy_set_next(new_ent_addr, cvmx_bootmem_phy_get_next(ent_addr));
cvmx_bootmem_phy_set_size(new_ent_addr, cvmx_bootmem_phy_get_size(ent_addr) - (desired_min_addr - ent_addr));
cvmx_bootmem_phy_set_size(ent_addr, desired_min_addr - ent_addr);
cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
/* Loop again to handle actual alloc from new block */
}
prev_addr = ent_addr;
ent_addr = cvmx_bootmem_phy_get_next(ent_addr);
}
error_out:
/* We didn't find anything, so return error */
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
return(-1);
}
int __cvmx_bootmem_phy_free(uint64_t phy_addr, uint64_t size, uint32_t flags)
{
uint64_t cur_addr;
uint64_t prev_addr = 0; /* zero is invalid */
int retval = 0;
#ifdef DEBUG
cvmx_dprintf("__cvmx_bootmem_phy_free addr: 0x%llx, size: 0x%llx\n", (unsigned long long)phy_addr, (unsigned long long)size);
#endif
if (cvmx_bootmem_desc->major_version > 3)
{
cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: %p\n",
(int)cvmx_bootmem_desc->major_version, (int)cvmx_bootmem_desc->minor_version, cvmx_bootmem_desc);
return(0);
}
/* 0 is not a valid size for this allocator */
if (!size)
return(0);
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
cur_addr = cvmx_bootmem_desc->head_addr;
if (cur_addr == 0 || phy_addr < cur_addr)
{
/* add at front of list - special case with changing head ptr */
if (cur_addr && phy_addr + size > cur_addr)
goto bootmem_free_done; /* error, overlapping section */
else if (phy_addr + size == cur_addr)
{
/* Add to front of existing first block */
cvmx_bootmem_phy_set_next(phy_addr, cvmx_bootmem_phy_get_next(cur_addr));
cvmx_bootmem_phy_set_size(phy_addr, cvmx_bootmem_phy_get_size(cur_addr) + size);
cvmx_bootmem_desc->head_addr = phy_addr;
}
else
{
/* New block before first block */
cvmx_bootmem_phy_set_next(phy_addr, cur_addr); /* OK if cur_addr is 0 */
cvmx_bootmem_phy_set_size(phy_addr, size);
cvmx_bootmem_desc->head_addr = phy_addr;
}
retval = 1;
goto bootmem_free_done;
}
/* Find place in list to add block */
while (cur_addr && phy_addr > cur_addr)
{
prev_addr = cur_addr;
cur_addr = cvmx_bootmem_phy_get_next(cur_addr);
}
if (!cur_addr)
{
/* We have reached the end of the list, add on to end, checking
** to see if we need to combine with last block
**/
if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr)
{
cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(prev_addr) + size);
}
else
{
cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
cvmx_bootmem_phy_set_size(phy_addr, size);
cvmx_bootmem_phy_set_next(phy_addr, 0);
}
retval = 1;
goto bootmem_free_done;
}
else
{
/* insert between prev and cur nodes, checking for merge with either/both */
if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr)
{
/* Merge with previous */
cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(prev_addr) + size);
if (phy_addr + size == cur_addr)
{
/* Also merge with current */
cvmx_bootmem_phy_set_size(prev_addr, cvmx_bootmem_phy_get_size(cur_addr) + cvmx_bootmem_phy_get_size(prev_addr));
cvmx_bootmem_phy_set_next(prev_addr, cvmx_bootmem_phy_get_next(cur_addr));
}
retval = 1;
goto bootmem_free_done;
}
else if (phy_addr + size == cur_addr)
{
/* Merge with current */
cvmx_bootmem_phy_set_size(phy_addr, cvmx_bootmem_phy_get_size(cur_addr) + size);
cvmx_bootmem_phy_set_next(phy_addr, cvmx_bootmem_phy_get_next(cur_addr));
cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
retval = 1;
goto bootmem_free_done;
}
/* It is a standalone block, add in between prev and cur */
cvmx_bootmem_phy_set_size(phy_addr, size);
cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
}
retval = 1;
bootmem_free_done:
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
return(retval);
}
void cvmx_bootmem_phy_list_print(void)
{
uint64_t addr;
addr = cvmx_bootmem_desc->head_addr;
cvmx_dprintf("\n\n\nPrinting bootmem block list, descriptor: %p, head is 0x%llx\n",
cvmx_bootmem_desc, (unsigned long long)addr);
cvmx_dprintf("Descriptor version: %d.%d\n", (int)cvmx_bootmem_desc->major_version, (int)cvmx_bootmem_desc->minor_version);
if (cvmx_bootmem_desc->major_version > 3)
{
cvmx_dprintf("Warning: Bootmem descriptor version is newer than expected\n");
}
if (!addr)
{
cvmx_dprintf("mem list is empty!\n");
}
while (addr)
{
cvmx_dprintf("Block address: 0x%08qx, size: 0x%08qx, next: 0x%08qx\n",
(unsigned long long)addr,
(unsigned long long)cvmx_bootmem_phy_get_size(addr),
(unsigned long long)cvmx_bootmem_phy_get_next(addr));
addr = cvmx_bootmem_phy_get_next(addr);
}
cvmx_dprintf("\n\n");
}
uint64_t cvmx_bootmem_phy_available_mem(uint64_t min_block_size)
{
uint64_t addr;
uint64_t available_mem = 0;
cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
addr = cvmx_bootmem_desc->head_addr;
while (addr)
{
if (cvmx_bootmem_phy_get_size(addr) >= min_block_size)
available_mem += cvmx_bootmem_phy_get_size(addr);
addr = cvmx_bootmem_phy_get_next(addr);
}
cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
return(available_mem);
}
cvmx_bootmem_named_block_desc_t * cvmx_bootmem_phy_named_block_find(char *name, uint32_t flags)
{
unsigned int i;
cvmx_bootmem_named_block_desc_t *named_block_array_ptr;
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_named_block_find: %s\n", name);
#endif
/* Lock the structure to make sure that it is not being changed while we are
** examining it.
*/
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
#if defined(__linux__) && !defined(CONFIG_OCTEON_U_BOOT)
#ifdef CVMX_ABI_N32
/* Need to use mmapped named block pointer in 32 bit linux apps */
extern cvmx_bootmem_named_block_desc_t *linux32_named_block_array_ptr;
named_block_array_ptr = linux32_named_block_array_ptr;
#else
/* Use XKPHYS for 64 bit linux */
named_block_array_ptr = (cvmx_bootmem_named_block_desc_t *)cvmx_phys_to_ptr(cvmx_bootmem_desc->named_block_array_addr);
#endif
#else
/* Simple executive case. (and u-boot)
** This could be in the low 1 meg of memory that is not 1-1 mapped, so we need use XKPHYS/KSEG0 addressing for it */
named_block_array_ptr = CASTPTR(cvmx_bootmem_named_block_desc_t, CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0,cvmx_bootmem_desc->named_block_array_addr));
#endif
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_named_block_find: named_block_array_ptr: %p\n", named_block_array_ptr);
#endif
if (cvmx_bootmem_desc->major_version == 3)
{
for (i = 0; i < cvmx_bootmem_desc->named_block_num_blocks; i++)
{
if ((name && named_block_array_ptr[i].size && !strncmp(name, named_block_array_ptr[i].name, cvmx_bootmem_desc->named_block_name_len - 1))
|| (!name && !named_block_array_ptr[i].size))
{
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
return(&(named_block_array_ptr[i]));
}
}
}
else
{
cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: %p\n",
(int)cvmx_bootmem_desc->major_version, (int)cvmx_bootmem_desc->minor_version, cvmx_bootmem_desc);
}
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
return(NULL);
}
int cvmx_bootmem_phy_named_block_free(char *name, uint32_t flags)
{
cvmx_bootmem_named_block_desc_t *named_block_ptr;
if (cvmx_bootmem_desc->major_version != 3)
{
cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: %p\n",
(int)cvmx_bootmem_desc->major_version, (int)cvmx_bootmem_desc->minor_version, cvmx_bootmem_desc);
return(0);
}
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s\n", name);
#endif
/* Take lock here, as name lookup/block free/name free need to be atomic */
cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
named_block_ptr = cvmx_bootmem_phy_named_block_find(name, CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (named_block_ptr)
{
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s, base: 0x%llx, size: 0x%llx\n", name, (unsigned long long)named_block_ptr->base_addr, (unsigned long long)named_block_ptr->size);
#endif
__cvmx_bootmem_phy_free(named_block_ptr->base_addr, named_block_ptr->size, CVMX_BOOTMEM_FLAG_NO_LOCKING);
named_block_ptr->size = 0;
/* Set size to zero to indicate block not used. */
}
cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
return(!!named_block_ptr); /* 0 on failure, 1 on success */
}
int64_t cvmx_bootmem_phy_named_block_alloc(uint64_t size, uint64_t min_addr, uint64_t max_addr, uint64_t alignment, char *name, uint32_t flags)
{
int64_t addr_allocated;
cvmx_bootmem_named_block_desc_t *named_block_desc_ptr;
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_named_block_alloc: size: 0x%llx, min: 0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n",
(unsigned long long)size,
(unsigned long long)min_addr,
(unsigned long long)max_addr,
(unsigned long long)alignment,
name);
#endif
if (cvmx_bootmem_desc->major_version != 3)
{
cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: %p\n",
(int)cvmx_bootmem_desc->major_version, (int)cvmx_bootmem_desc->minor_version, cvmx_bootmem_desc);
return(-1);
}
/* Take lock here, as name lookup/block alloc/name add need to be atomic */
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
/* Get pointer to first available named block descriptor */
named_block_desc_ptr = cvmx_bootmem_phy_named_block_find(NULL, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
/* Check to see if name already in use, return error if name
** not available or no more room for blocks.
*/
if (cvmx_bootmem_phy_named_block_find(name, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING) || !named_block_desc_ptr)
{
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
return(-1);
}
/* Round size up to mult of minimum alignment bytes
** We need the actual size allocated to allow for blocks to be coallesced
** when they are freed. The alloc routine does the same rounding up
** on all allocations. */
size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) & ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (addr_allocated >= 0)
{
named_block_desc_ptr->base_addr = addr_allocated;
named_block_desc_ptr->size = size;
strncpy(named_block_desc_ptr->name, name, cvmx_bootmem_desc->named_block_name_len);
named_block_desc_ptr->name[cvmx_bootmem_desc->named_block_name_len - 1] = 0;
}
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
return(addr_allocated);
}
void cvmx_bootmem_phy_named_block_print(void)
{
unsigned int i;
int printed = 0;
#if defined(__linux__) && !defined(CONFIG_OCTEON_U_BOOT)
#ifdef CVMX_ABI_N32
/* Need to use mmapped named block pointer in 32 bit linux apps */
extern cvmx_bootmem_named_block_desc_t *linux32_named_block_array_ptr;
cvmx_bootmem_named_block_desc_t *named_block_array_ptr = linux32_named_block_array_ptr;
#else
/* Use XKPHYS for 64 bit linux */
cvmx_bootmem_named_block_desc_t *named_block_array_ptr = (cvmx_bootmem_named_block_desc_t *)cvmx_phys_to_ptr(cvmx_bootmem_desc->named_block_array_addr);
#endif
#else
/* Simple executive case. (and u-boot)
** This could be in the low 1 meg of memory that is not 1-1 mapped, so we need use XKPHYS/KSEG0 addressing for it */
cvmx_bootmem_named_block_desc_t *named_block_array_ptr = CASTPTR(cvmx_bootmem_named_block_desc_t, CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0,cvmx_bootmem_desc->named_block_array_addr));
#endif
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_named_block_print, desc addr: %p\n", cvmx_bootmem_desc);
#endif
if (cvmx_bootmem_desc->major_version != 3)
{
cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: %p\n",
(int)cvmx_bootmem_desc->major_version, (int)cvmx_bootmem_desc->minor_version, cvmx_bootmem_desc);
return;
}
cvmx_dprintf("List of currently allocated named bootmem blocks:\n");
for (i = 0; i < cvmx_bootmem_desc->named_block_num_blocks; i++)
{
if (named_block_array_ptr[i].size)
{
printed++;
cvmx_dprintf("Name: %s, address: 0x%08qx, size: 0x%08qx, index: %d\n",
named_block_array_ptr[i].name,
(unsigned long long)named_block_array_ptr[i].base_addr,
(unsigned long long)named_block_array_ptr[i].size,
i);
}
}
if (!printed)
{
cvmx_dprintf("No named bootmem blocks exist.\n");
}
}
/* Real physical addresses of memory regions */
#define OCTEON_DDR0_BASE (0x0ULL)
#define OCTEON_DDR0_SIZE (0x010000000ULL)
#define OCTEON_DDR1_BASE (0x410000000ULL)
#define OCTEON_DDR1_SIZE (0x010000000ULL)
#define OCTEON_DDR2_BASE (0x020000000ULL)
#define OCTEON_DDR2_SIZE (0x3e0000000ULL)
#define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
int64_t cvmx_bootmem_phy_mem_list_init(uint64_t mem_size, uint32_t low_reserved_bytes, cvmx_bootmem_desc_t *desc_buffer)
{
uint64_t cur_block_addr;
int64_t addr;
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_mem_list_init (arg desc ptr: %p, cvmx_bootmem_desc: %p)\n", desc_buffer, cvmx_bootmem_desc);
#endif
/* Descriptor buffer needs to be in 32 bit addressable space to be compatible with
** 32 bit applications */
if (!desc_buffer)
{
cvmx_dprintf("ERROR: no memory for cvmx_bootmem descriptor provided\n");
return 0;
}
if (mem_size > OCTEON_MAX_PHY_MEM_SIZE)
{
mem_size = OCTEON_MAX_PHY_MEM_SIZE;
cvmx_dprintf("ERROR: requested memory size too large, truncating to maximum size\n");
}
if (cvmx_bootmem_desc)
return 1;
/* Initialize cvmx pointer to descriptor */
cvmx_bootmem_init(desc_buffer);
/* Set up global pointer to start of list, exclude low 64k for exception vectors, space for global descriptor */
memset(cvmx_bootmem_desc, 0x0, sizeof(cvmx_bootmem_desc_t));
/* Set version of bootmem descriptor */
cvmx_bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
cvmx_bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
cur_block_addr = cvmx_bootmem_desc->head_addr = (OCTEON_DDR0_BASE + low_reserved_bytes);
cvmx_bootmem_desc->head_addr = 0;
if (mem_size <= OCTEON_DDR0_SIZE)
{
__cvmx_bootmem_phy_free(cur_block_addr, mem_size - low_reserved_bytes, 0);
goto frees_done;
}
__cvmx_bootmem_phy_free(cur_block_addr, OCTEON_DDR0_SIZE - low_reserved_bytes, 0);
mem_size -= OCTEON_DDR0_SIZE;
/* Add DDR2 block next if present */
if (mem_size > OCTEON_DDR1_SIZE)
{
__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE, mem_size - OCTEON_DDR1_SIZE, 0);
}
else
{
__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
}
frees_done:
/* Initialize the named block structure */
cvmx_bootmem_desc->named_block_name_len = CVMX_BOOTMEM_NAME_LEN;
cvmx_bootmem_desc->named_block_num_blocks = CVMX_BOOTMEM_NUM_NAMED_BLOCKS;
cvmx_bootmem_desc->named_block_array_addr = 0;
/* Allocate this near the top of the low 256 MBytes of memory */
addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS * sizeof(cvmx_bootmem_named_block_desc_t),0, 0x10000000, 0 ,CVMX_BOOTMEM_FLAG_END_ALLOC);
if (addr >= 0)
cvmx_bootmem_desc->named_block_array_addr = addr;
#ifdef DEBUG
cvmx_dprintf("cvmx_bootmem_phy_mem_list_init: named_block_array_addr: 0x%llx)\n", (unsigned long long)cvmx_bootmem_desc->named_block_array_addr);
#endif
if (!cvmx_bootmem_desc->named_block_array_addr)
{
cvmx_dprintf("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n");
return(0);
}
memset((void *)(unsigned long)cvmx_bootmem_desc->named_block_array_addr, 0x0, CVMX_BOOTMEM_NUM_NAMED_BLOCKS * sizeof(cvmx_bootmem_named_block_desc_t));
return(1);
}
void cvmx_bootmem_lock(void)
{
cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
}
void cvmx_bootmem_unlock(void)
{
cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
}
void *__cvmx_bootmem_internal_get_desc_ptr(void)
{
return(cvmx_bootmem_desc);
}