freebsd-nq/sys/contrib/octeon-sdk/cvmx-usb.c
Juli Mallett cea2b8b915 Update the port of FreeBSD to Cavium Octeon to use the Cavium Simple Executive
library:
o) Increase inline unit / large function growth limits for MIPS to accommodate
   the needs of the Simple Executive, which uses a shocking amount of inlining.
o) Remove TARGET_OCTEON and use CPU_CNMIPS to do things required by cnMIPS and
   the Octeon SoC.
o) Add OCTEON_VENDOR_LANNER to use Lanner's allocation of vendor-specific
   board numbers, specifically to support the MR320.
o) Add OCTEON_BOARD_CAPK_0100ND to hard-wire configuration for the CAPK-0100nd,
   which improperly uses an evaluation board's board number and breaks board
   detection at runtime.  This board is sold by Portwell as the CAM-0100.
o) Add support for the RTC available on some Octeon boards.
o) Add support for the Octeon PCI bus.  Note that rman_[sg]et_virtual for IO
   ports can not work unless building for n64.
o) Clean up the CompactFlash driver to use Simple Executive macros and
   structures where possible (it would be advisable to use the Simple Executive
   API to set the PIO mode, too, but that is not done presently.)  Also use
   structures from FreeBSD's ATA layer rather than structures copied from
   Linux.
o) Print available Octeon SoC features on boot.
o) Add support for the Octeon timecounter.
o) Use the Simple Executive's routines rather than local copies for doing reads
   and writes to 64-bit addresses and use its macros for various device
   addresses rather than using local copies.
o) Rename octeon_board_real to octeon_is_simulation to reduce differences with
   Cavium-provided code originally written for Linux.  Also make it use the
   same simplified test that the Simple Executive and Linux both use rather
   than our complex one.
o) Add support for the Octeon CIU, which is the main interrupt unit, as a bus
   to use normal interrupt allocation and setup routines.
o) Use the Simple Executive's bootmem facility to allocate physical memory for
   the kernel, rather than assuming we know which addresses we can steal.
   NB: This may reduce the amount of RAM the kernel reports you as having if
       you are leaving large temporary allocations made by U-Boot allocated
       when starting FreeBSD.
o) Add a port of the Cavium-provided Ethernet driver for Linux.  This changes
   Ethernet interface naming from rgmxN to octeN.  The new driver has vast
   improvements over the old one, both in performance and functionality, but
   does still have some features which have not been ported entirely and there
   may be unimplemented code that can be hit in everyday use.  I will make
   every effort to correct those as they are reported.
o) Support loading the kernel on non-contiguous cores.
o) Add very conservative support for harvesting randomness from the Octeon
   random number device.
o) Turn SMP on by default.
o) Clean up the style of the Octeon kernel configurations a little and make
   them compile with -march=octeon.
o) Add support for the Lanner MR320 and the CAPK-0100nd to the Simple
   Executive.
o) Modify the Simple Executive to build on FreeBSD and to build without
   executive-config.h or cvmx-config.h.  In the future we may want to
   revert part of these changes and supply executive-config.h and
   cvmx-config.h and access to the options contained in those files via
   kernel configuration files.
o) Modify the Simple Executive USB routines to support getting and setting
   of the USB PID.
2010-07-20 19:25:11 +00:00

3668 lines
152 KiB
C
Raw Blame History

/***********************license start***************
* Copyright (c) 2003-2008 Cavium Networks (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* * Neither the name of Cavium Networks nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS
* OR WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH
* RESPECT TO THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY
* REPRESENTATION OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT
* DEFECTS, AND CAVIUM SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES
* OF TITLE, MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR
* PURPOSE, LACK OF VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET
* POSSESSION OR CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT
* OF USE OR PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
*
*
* For any questions regarding licensing please contact marketing@caviumnetworks.com
*
***********************license end**************************************/
/**
* @file
*
* "cvmx-usb.c" defines a set of low level USB functions to help
* developers create Octeon USB drivers for various operating
* systems. These functions provide a generic API to the Octeon
* USB blocks, hiding the internal hardware specific
* operations.
*
* <hr>$Revision: 32636 $<hr>
*/
#include "cvmx.h"
#include "cvmx-sysinfo.h"
#include "cvmx-usb.h"
#include "cvmx-helper.h"
#include "cvmx-helper-board.h"
#include "cvmx-csr-db.h"
#include "cvmx-swap.h"
#define MAX_RETRIES 3 /* Maximum number of times to retry failed transactions */
#define MAX_PIPES 32 /* Maximum number of pipes that can be open at once */
#define MAX_TRANSACTIONS 256 /* Maximum number of outstanding transactions across all pipes */
#define MAX_CHANNELS 8 /* Maximum number of hardware channels supported by the USB block */
#define MAX_USB_ADDRESS 127 /* The highest valid USB device address */
#define MAX_USB_ENDPOINT 15 /* The highest valid USB endpoint number */
#define MAX_USB_HUB_PORT 15 /* The highest valid port number on a hub */
#define ALLOW_CSR_DECODES 0 /* CSR decoding when CVMX_USB_INITIALIZE_FLAGS_DEBUG_CSRS is set
enlarges the code a lot. This define overrides the ability to do CSR
decoding since it isn't necessary 99% of the time. Change this to a
one if you need CSR decoding */
/* These defines disable the normal read and write csr. This is so I can add
extra debug stuff to the usb specific version and I won't use the normal
version by mistake */
#define cvmx_read_csr use_cvmx_usb_read_csr64_instead_of_cvmx_read_csr
#define cvmx_write_csr use_cvmx_usb_write_csr64_instead_of_cvmx_write_csr
typedef enum
{
__CVMX_USB_TRANSACTION_FLAGS_IN_USE = 1<<16,
} cvmx_usb_transaction_flags_t;
/**
* Logical transactions may take numerous low level
* transactions, especially when splits are concerned. This
* enum represents all of the possible stages a transaction can
* be in. Note that split completes are always even. This is so
* the NAK handler can backup to the previous low level
* transaction with a simple clearing of bit 0.
*/
typedef enum
{
CVMX_USB_STAGE_NON_CONTROL,
CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE,
CVMX_USB_STAGE_SETUP,
CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE,
CVMX_USB_STAGE_DATA,
CVMX_USB_STAGE_DATA_SPLIT_COMPLETE,
CVMX_USB_STAGE_STATUS,
CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE,
} cvmx_usb_stage_t;
/**
* This structure describes each pending USB transaction
* regardless of type. These are linked together to form a list
* of pending requests for a pipe.
*/
typedef struct cvmx_usb_transaction
{
struct cvmx_usb_transaction *prev; /**< Transaction before this one in the pipe */
struct cvmx_usb_transaction *next; /**< Transaction after this one in the pipe */
cvmx_usb_transfer_t type; /**< Type of transaction, duplicated of the pipe */
cvmx_usb_transaction_flags_t flags; /**< State flags for this transaction */
uint64_t buffer; /**< User's physical buffer address to read/write */
int buffer_length; /**< Size of the user's buffer in bytes */
uint64_t control_header; /**< For control transactions, physical address of the 8 byte standard header */
int iso_start_frame; /**< For ISO transactions, the starting frame number */
int iso_number_packets; /**< For ISO transactions, the number of packets in the request */
cvmx_usb_iso_packet_t *iso_packets; /**< For ISO transactions, the sub packets in the request */
int xfersize;
int pktcnt;
int retries;
int actual_bytes; /**< Actual bytes transfer for this transaction */
cvmx_usb_stage_t stage; /**< For control transactions, the current stage */
cvmx_usb_callback_func_t callback; /**< User's callback function when complete */
void *callback_data; /**< User's data */
} cvmx_usb_transaction_t;
/**
* A pipe represents a virtual connection between Octeon and some
* USB device. It contains a list of pending request to the device.
*/
typedef struct cvmx_usb_pipe
{
struct cvmx_usb_pipe *prev; /**< Pipe before this one in the list */
struct cvmx_usb_pipe *next; /**< Pipe after this one in the list */
cvmx_usb_transaction_t *head; /**< The first pending transaction */
cvmx_usb_transaction_t *tail; /**< The last pending transaction */
uint64_t interval; /**< For periodic pipes, the interval between packets in cycles */
uint64_t next_tx_cycle; /**< The next cycle this pipe is allowed to transmit on */
cvmx_usb_pipe_flags_t flags; /**< State flags for this pipe */
cvmx_usb_speed_t device_speed; /**< Speed of device connected to this pipe */
cvmx_usb_transfer_t transfer_type; /**< Type of transaction supported by this pipe */
cvmx_usb_direction_t transfer_dir; /**< IN or OUT. Ignored for Control */
int multi_count; /**< Max packet in a row for the device */
uint16_t max_packet; /**< The device's maximum packet size in bytes */
uint8_t device_addr; /**< USB device address at other end of pipe */
uint8_t endpoint_num; /**< USB endpoint number at other end of pipe */
uint8_t hub_device_addr; /**< Hub address this device is connected to */
uint8_t hub_port; /**< Hub port this device is connected to */
uint8_t pid_toggle; /**< This toggles between 0/1 on every packet send to track the data pid needed */
uint8_t channel; /**< Hardware DMA channel for this pipe */
int8_t split_sc_frame; /**< The low order bits of the frame number the split complete should be sent on */
} cvmx_usb_pipe_t;
typedef struct
{
cvmx_usb_pipe_t *head; /**< Head of the list, or NULL if empty */
cvmx_usb_pipe_t *tail; /**< Tail if the list, or NULL if empty */
} cvmx_usb_pipe_list_t;
/**
* The state of the USB block is stored in this structure
*/
typedef struct
{
int init_flags; /**< Flags passed to initialize */
int index; /**< Which USB block this is for */
int idle_hardware_channels; /**< Bit set for every idle hardware channel */
int active_transactions; /**< Number of active transactions across all pipes */
cvmx_usbcx_hprt_t usbcx_hprt; /**< Stored port status so we don't need to read a CSR to determine splits */
cvmx_usb_pipe_t *pipe_for_channel[MAX_CHANNELS]; /**< Map channels to pipes */
cvmx_usb_transaction_t *free_transaction_head; /**< List of free transactions head */
cvmx_usb_transaction_t *free_transaction_tail; /**< List of free transactions tail */
cvmx_usb_pipe_t pipe[MAX_PIPES]; /**< Storage for pipes */
cvmx_usb_transaction_t transaction[MAX_TRANSACTIONS]; /**< Storage for transactions */
cvmx_usb_callback_func_t callback[__CVMX_USB_CALLBACK_END]; /**< User global callbacks */
void *callback_data[__CVMX_USB_CALLBACK_END]; /**< User data for each callback */
int indent; /**< Used by debug output to indent functions */
cvmx_usb_port_status_t port_status; /**< Last port status used for change notification */
cvmx_usb_pipe_list_t free_pipes; /**< List of all pipes that are currently closed */
cvmx_usb_pipe_list_t idle_pipes; /**< List of open pipes that have no transactions */
cvmx_usb_pipe_list_t active_pipes[4]; /**< Active pipes indexed by transfer type */
} cvmx_usb_internal_state_t;
/* This macro logs out whenever a function is called if debugging is on */
#define CVMX_USB_LOG_CALLED() \
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CALLS)) \
cvmx_dprintf("%*s%s: called\n", 2*usb->indent++, "", __FUNCTION__);
/* This macro logs out each function parameter if debugging is on */
#define CVMX_USB_LOG_PARAM(format, param) \
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CALLS)) \
cvmx_dprintf("%*s%s: param %s = " format "\n", 2*usb->indent, "", __FUNCTION__, #param, param);
/* This macro logs out when a function returns a value */
#define CVMX_USB_RETURN(v) \
do { \
__typeof(v) r = v; \
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CALLS)) \
cvmx_dprintf("%*s%s: returned %s(%d)\n", 2*--usb->indent, "", __FUNCTION__, #v, r); \
return r; \
} while (0);
/* This macro logs out when a function doesn't return a value */
#define CVMX_USB_RETURN_NOTHING() \
do { \
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CALLS)) \
cvmx_dprintf("%*s%s: returned\n", 2*--usb->indent, "", __FUNCTION__); \
return; \
} while (0);
/* This macro spins on a field waiting for it to reach a value */
#define CVMX_WAIT_FOR_FIELD32(address, type, field, op, value, timeout_usec)\
({int result; \
do { \
uint64_t done = cvmx_get_cycle() + (uint64_t)timeout_usec * \
cvmx_sysinfo_get()->cpu_clock_hz / 1000000; \
type c; \
while (1) \
{ \
c.u32 = __cvmx_usb_read_csr32(usb, address); \
if (c.s.field op (value)) { \
result = 0; \
break; \
} else if (cvmx_get_cycle() > done) { \
result = -1; \
break; \
} else \
cvmx_wait(100); \
} \
} while (0); \
result;})
/* This macro logically sets a single field in a CSR. It does the sequence
read, modify, and write */
#define USB_SET_FIELD32(address, type, field, value)\
do { \
type c; \
c.u32 = __cvmx_usb_read_csr32(usb, address);\
c.s.field = value; \
__cvmx_usb_write_csr32(usb, address, c.u32);\
} while (0)
/**
* @INTERNAL
* Read a USB 32bit CSR. It performs the necessary address swizzle
* for 32bit CSRs and logs the value in a readable format if
* debugging is on.
*
* @param usb USB block this access is for
* @param address 64bit address to read
*
* @return Result of the read
*/
static inline uint32_t __cvmx_usb_read_csr32(cvmx_usb_internal_state_t *usb,
uint64_t address)
{
uint32_t result = cvmx_read64_uint32(address ^ 4);
#if ALLOW_CSR_DECODES
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CSRS))
{
cvmx_dprintf("Read: ");
cvmx_csr_db_decode(cvmx_get_proc_id(), address, result);
}
#endif
return result;
}
/**
* @INTERNAL
* Write a USB 32bit CSR. It performs the necessary address
* swizzle for 32bit CSRs and logs the value in a readable format
* if debugging is on.
*
* @param usb USB block this access is for
* @param address 64bit address to write
* @param value Value to write
*/
static inline void __cvmx_usb_write_csr32(cvmx_usb_internal_state_t *usb,
uint64_t address, uint32_t value)
{
#if ALLOW_CSR_DECODES
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CSRS))
{
cvmx_dprintf("Write: ");
cvmx_csr_db_decode(cvmx_get_proc_id(), address, value);
}
#endif
cvmx_write64_uint32(address ^ 4, value);
}
/**
* @INTERNAL
* Read a USB 64bit CSR. It logs the value in a readable format if
* debugging is on.
*
* @param usb USB block this access is for
* @param address 64bit address to read
*
* @return Result of the read
*/
static inline uint64_t __cvmx_usb_read_csr64(cvmx_usb_internal_state_t *usb,
uint64_t address)
{
uint64_t result = cvmx_read64_uint64(address);
#if ALLOW_CSR_DECODES
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CSRS))
{
cvmx_dprintf("Read: ");
cvmx_csr_db_decode(cvmx_get_proc_id(), address, result);
}
#endif
return result;
}
/**
* @INTERNAL
* Write a USB 64bit CSR. It logs the value in a readable format
* if debugging is on.
*
* @param usb USB block this access is for
* @param address 64bit address to write
* @param value Value to write
*/
static inline void __cvmx_usb_write_csr64(cvmx_usb_internal_state_t *usb,
uint64_t address, uint64_t value)
{
#if ALLOW_CSR_DECODES
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CSRS))
{
cvmx_dprintf("Write: ");
cvmx_csr_db_decode(cvmx_get_proc_id(), address, value);
}
#endif
cvmx_write64_uint64(address, value);
}
/**
* @INTERNAL
* Uitility function to convert complete codes into strings
*
* @param complete_code
* Code to convert
*
* @return Human readable string
*/
static const char *__cvmx_usb_complete_to_string(cvmx_usb_complete_t complete_code)
{
switch (complete_code)
{
case CVMX_USB_COMPLETE_SUCCESS: return "SUCCESS";
case CVMX_USB_COMPLETE_SHORT: return "SHORT";
case CVMX_USB_COMPLETE_CANCEL: return "CANCEL";
case CVMX_USB_COMPLETE_ERROR: return "ERROR";
case CVMX_USB_COMPLETE_STALL: return "STALL";
case CVMX_USB_COMPLETE_XACTERR: return "XACTERR";
case CVMX_USB_COMPLETE_DATATGLERR: return "DATATGLERR";
case CVMX_USB_COMPLETE_BABBLEERR: return "BABBLEERR";
case CVMX_USB_COMPLETE_FRAMEERR: return "FRAMEERR";
}
return "Update __cvmx_usb_complete_to_string";
}
/**
* @INTERNAL
* Return non zero if this pipe connects to a non HIGH speed
* device through a high speed hub.
*
* @param usb USB block this access is for
* @param pipe Pipe to check
*
* @return Non zero if we need to do split transactions
*/
static inline int __cvmx_usb_pipe_needs_split(cvmx_usb_internal_state_t *usb, cvmx_usb_pipe_t *pipe)
{
return ((pipe->device_speed != CVMX_USB_SPEED_HIGH) && (usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH));
}
/**
* @INTERNAL
* Trivial utility function to return the correct PID for a pipe
*
* @param pipe pipe to check
*
* @return PID for pipe
*/
static inline int __cvmx_usb_get_data_pid(cvmx_usb_pipe_t *pipe)
{
if (pipe->pid_toggle)
return 2; /* Data1 */
else
return 0; /* Data0 */
}
/**
* Return the number of USB ports supported by this Octeon
* chip. If the chip doesn't support USB, or is not supported
* by this API, a zero will be returned. Most Octeon chips
* support one usb port, but some support two ports.
* cvmx_usb_initialize() must be called on independent
* cvmx_usb_state_t structures.
*
* This utilizes cvmx_helper_board_usb_get_num_ports()
* to get any board specific variatons.
*
* @return Number of port, zero if usb isn't supported
*/
int cvmx_usb_get_num_ports(void)
{
int arch_ports = 0;
if (OCTEON_IS_MODEL(OCTEON_CN52XX))
arch_ports = 2;
else if (OCTEON_IS_MODEL(OCTEON_CN31XX))
arch_ports = 0; /* This chip has USB but it doesn't support DMA */
else if (OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX))
arch_ports = 0;
else
arch_ports = 1;
return __cvmx_helper_board_usb_get_num_ports(arch_ports);
}
/**
* @INTERNAL
* Allocate a usb transaction for use
*
* @param usb USB device state populated by
* cvmx_usb_initialize().
*
* @return Transaction or NULL
*/
static inline cvmx_usb_transaction_t *__cvmx_usb_alloc_transaction(cvmx_usb_internal_state_t *usb)
{
cvmx_usb_transaction_t *t;
t = usb->free_transaction_head;
if (t)
{
usb->free_transaction_head = t->next;
if (!usb->free_transaction_head)
usb->free_transaction_tail = NULL;
}
else if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
cvmx_dprintf("%s: Failed to allocate a transaction\n", __FUNCTION__);
if (t)
{
memset(t, 0, sizeof(*t));
t->flags = __CVMX_USB_TRANSACTION_FLAGS_IN_USE;
}
return t;
}
/**
* @INTERNAL
* Free a usb transaction
*
* @param usb USB device state populated by
* cvmx_usb_initialize().
* @param transaction
* Transaction to free
*/
static inline void __cvmx_usb_free_transaction(cvmx_usb_internal_state_t *usb,
cvmx_usb_transaction_t *transaction)
{
transaction->flags = 0;
transaction->prev = NULL;
transaction->next = NULL;
if (usb->free_transaction_tail)
usb->free_transaction_tail->next = transaction;
else
usb->free_transaction_head = transaction;
usb->free_transaction_tail = transaction;
}
/**
* @INTERNAL
* Add a pipe to the tail of a list
* @param list List to add pipe to
* @param pipe Pipe to add
*/
static inline void __cvmx_usb_append_pipe(cvmx_usb_pipe_list_t *list, cvmx_usb_pipe_t *pipe)
{
pipe->next = NULL;
pipe->prev = list->tail;
if (list->tail)
list->tail->next = pipe;
else
list->head = pipe;
list->tail = pipe;
}
/**
* @INTERNAL
* Remove a pipe from a list
* @param list List to remove pipe from
* @param pipe Pipe to remove
*/
static inline void __cvmx_usb_remove_pipe(cvmx_usb_pipe_list_t *list, cvmx_usb_pipe_t *pipe)
{
if (list->head == pipe)
{
list->head = pipe->next;
pipe->next = NULL;
if (list->head)
list->head->prev = NULL;
else
list->tail = NULL;
}
else if (list->tail == pipe)
{
list->tail = pipe->prev;
list->tail->next = NULL;
pipe->prev = NULL;
}
else
{
pipe->prev->next = pipe->next;
pipe->next->prev = pipe->prev;
pipe->prev = NULL;
pipe->next = NULL;
}
}
/**
* @INTERNAL
* Perfrom USB device mode initialization after a reset completes.
* This should be called after USBC0/1_GINTSTS[USBRESET] and
* coresponds to section 22.6.1.1, "Initialization on USB Reset",
* in the manual.
*
* @param usb USB device state populated by
* cvmx_usb_initialize().
*
* @return CVMX_USB_SUCCESS or a negative error code defined in
* cvmx_usb_status_t.
*/
static cvmx_usb_status_t __cvmx_usb_device_reset_complete(cvmx_usb_internal_state_t *usb)
{
cvmx_usbcx_ghwcfg3_t usbcx_ghwcfg3;
int i;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", usb);
/* 1. Set USBC0/1_DOEPCTLn[SNAK] = 1 (for all OUT endpoints, n = 0-4). */
for (i=0; i<5; i++)
{
USB_SET_FIELD32(CVMX_USBCX_DOEPCTLX(i, usb->index),
cvmx_usbcx_doepctlx_t, snak, 1);
}
/* 2. Unmask the following interrupt bits:
USBC0/1_DAINTMSK[INEPMSK] = 1 (control 0 IN endpoint)
USBC0/1_DAINTMSK[OUTEPMSK] = 1 (control 0 OUT endpoint)
USBC0/1_DOEPMSK[SETUPMSK] = 1
USBC0/1_DOEPMSK[XFERCOMPLMSK] = 1
USBC0/1_DIEPMSK[XFERCOMPLMSK] = 1
USBC0/1_DIEPMSK[TIMEOUTMSK] = 1 */
USB_SET_FIELD32(CVMX_USBCX_DAINTMSK(usb->index), cvmx_usbcx_daintmsk_t,
inepmsk, 1);
USB_SET_FIELD32(CVMX_USBCX_DAINTMSK(usb->index), cvmx_usbcx_daintmsk_t,
outepmsk, 1);
USB_SET_FIELD32(CVMX_USBCX_DOEPMSK(usb->index), cvmx_usbcx_doepmsk_t,
setupmsk, 1);
USB_SET_FIELD32(CVMX_USBCX_DOEPMSK(usb->index), cvmx_usbcx_doepmsk_t,
xfercomplmsk, 1);
USB_SET_FIELD32(CVMX_USBCX_DIEPMSK(usb->index), cvmx_usbcx_diepmsk_t,
xfercomplmsk, 1);
USB_SET_FIELD32(CVMX_USBCX_DIEPMSK(usb->index), cvmx_usbcx_diepmsk_t,
timeoutmsk, 1);
/* 3. To transmit or receive data, the device must initialize more
registers as specified in Section 22.6.1.7 */
/* Nothing needed */
/* 4. Set up the data FIFO RAM for each of the FIFOs:
Program USBC0/1_GRXFSIZ to be able to receive control OUT data and
SETUP data. This must equal at least one maximum packet size of
control endpoint 0 + 2 Dwords (for the status of the control OUT
data packet) + 10 Dwords (for SETUP packets).
Program USBC0/1_GNPTXFSIZ to be able to transmit control IN data. This
must equal at least one maximum packet size of control endpoint 0. */
/* Read the HWCFG3 register so we know how much space is in the FIFO */
usbcx_ghwcfg3.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_GHWCFG3(usb->index));
{
cvmx_usbcx_gnptxfsiz_t gnptxfsiz;
int fifo_space = usbcx_ghwcfg3.s.dfifodepth;
int i;
/* Start at the top of the FIFO and assign space for each periodic
fifo */
for (i=4;i>0;i--)
{
cvmx_usbcx_dptxfsizx_t siz;
siz.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_DPTXFSIZX(i, usb->index));
fifo_space -= siz.s.dptxfsize;
siz.s.dptxfstaddr = fifo_space;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_DPTXFSIZX(i, usb->index), siz.u32);
}
/* Assign half the leftover space to the non periodic tx fifo */
gnptxfsiz.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index));
gnptxfsiz.s.nptxfdep = fifo_space / 2;
fifo_space -= gnptxfsiz.s.nptxfdep;
gnptxfsiz.s.nptxfstaddr = fifo_space;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), gnptxfsiz.u32);
/* Assign the remain space to the RX fifo */
USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz_t,
rxfdep, fifo_space);
}
/* 5. Program the following fields in the endpoint-specific registers for
control OUT endpoint 0 to receive a SETUP packet
USBC0/1_DOEPTSIZ0[SUPCNT] = 0x3 (to receive up to three back-to-back
SETUP packets)
In DMA mode, USBC0/1_DOEPDMA0 register with a memory address to
store any SETUP packets received */
USB_SET_FIELD32(CVMX_USBCX_DOEPTSIZX(0, usb->index),
cvmx_usbcx_doeptsizx_t, mc, 3);
// FIXME
/* At this point, all initialization required to receive SETUP packets is
done. */
CVMX_USB_RETURN(CVMX_USB_SUCCESS);
}
/**
* Initialize a USB port for use. This must be called before any
* other access to the Octeon USB port is made. The port starts
* off in the disabled state.
*
* @param state Pointer to an empty cvmx_usb_state_t structure
* that will be populated by the initialize call.
* This structure is then passed to all other USB
* functions.
* @param usb_port_number
* Which Octeon USB port to initialize.
* @param flags Flags to control hardware initialization. See
* cvmx_usb_initialize_flags_t for the flag
* definitions. Some flags are mandatory.
*
* @return CVMX_USB_SUCCESS or a negative error code defined in
* cvmx_usb_status_t.
*/
cvmx_usb_status_t cvmx_usb_initialize(cvmx_usb_state_t *state,
int usb_port_number,
cvmx_usb_initialize_flags_t flags)
{
cvmx_usbnx_clk_ctl_t usbn_clk_ctl;
cvmx_usbnx_usbp_ctl_status_t usbn_usbp_ctl_status;
cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
usb->init_flags = flags;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", state);
CVMX_USB_LOG_PARAM("%d", usb_port_number);
CVMX_USB_LOG_PARAM("0x%x", flags);
/* Make sure that state is large enough to store the internal state */
if (sizeof(*state) < sizeof(*usb))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
/* At first allow 0-1 for the usb port number */
if ((usb_port_number < 0) || (usb_port_number > 1))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
/* For all chips except 52XX there is only one port */
if (!OCTEON_IS_MODEL(OCTEON_CN52XX) && (usb_port_number > 0))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
/* Try to determine clock type automatically */
if ((flags & (CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI |
CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND)) == 0)
{
if (__cvmx_helper_board_usb_get_clock_type() == USB_CLOCK_TYPE_CRYSTAL_12)
flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI; /* Only 12 MHZ crystals are supported */
else
flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND;
}
if (flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND)
{
/* Check for auto ref clock frequency */
if (!(flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK))
switch (__cvmx_helper_board_usb_get_clock_type())
{
case USB_CLOCK_TYPE_REF_12:
flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ;
break;
case USB_CLOCK_TYPE_REF_24:
flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ;
break;
case USB_CLOCK_TYPE_REF_48:
flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ;
break;
default:
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
break;
}
}
memset(usb, 0, sizeof(usb));
usb->init_flags = flags;
/* Initialize the USB state structure */
{
int i;
usb->index = usb_port_number;
/* Initialize the transaction double linked list */
usb->free_transaction_head = NULL;
usb->free_transaction_tail = NULL;
for (i=0; i<MAX_TRANSACTIONS; i++)
__cvmx_usb_free_transaction(usb, usb->transaction + i);
for (i=0; i<MAX_PIPES; i++)
__cvmx_usb_append_pipe(&usb->free_pipes, usb->pipe + i);
}
/* Power On Reset and PHY Initialization */
/* 1. Wait for DCOK to assert (nothing to do) */
/* 2a. Write USBN0/1_CLK_CTL[POR] = 1 and
USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0 */
usbn_clk_ctl.u64 = __cvmx_usb_read_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index));
usbn_clk_ctl.s.por = 1;
usbn_clk_ctl.s.hrst = 0;
usbn_clk_ctl.s.prst = 0;
usbn_clk_ctl.s.hclk_rst = 0;
usbn_clk_ctl.s.enable = 0;
/* 2b. Select the USB reference clock/crystal parameters by writing
appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON] */
if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND)
{
/* The USB port uses 12/24/48MHz 2.5V board clock
source at USB_XO. USB_XI should be tied to GND.
Most Octeon evaluation boards require this setting */
if (OCTEON_IS_MODEL(OCTEON_CN3XXX))
{
usbn_clk_ctl.cn31xx.p_rclk = 1; /* From CN31XX,CN30XX manual */
usbn_clk_ctl.cn31xx.p_xenbn = 0;
}
else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN50XX))
usbn_clk_ctl.cn56xx.p_rtype = 2; /* From CN56XX,CN50XX manual */
else
usbn_clk_ctl.cn52xx.p_rtype = 1; /* From CN52XX manual */
switch (flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK)
{
case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:
usbn_clk_ctl.s.p_c_sel = 0;
break;
case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:
usbn_clk_ctl.s.p_c_sel = 1;
break;
case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:
usbn_clk_ctl.s.p_c_sel = 2;
break;
}
}
else
{
/* The USB port uses a 12MHz crystal as clock source
at USB_XO and USB_XI */
if (OCTEON_IS_MODEL(OCTEON_CN3XXX))
{
usbn_clk_ctl.cn31xx.p_rclk = 1; /* From CN31XX,CN30XX manual */
usbn_clk_ctl.cn31xx.p_xenbn = 1;
}
else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN50XX))
usbn_clk_ctl.cn56xx.p_rtype = 0; /* From CN56XX,CN50XX manual */
else
usbn_clk_ctl.cn52xx.p_rtype = 0; /* From CN52XX manual */
usbn_clk_ctl.s.p_c_sel = 0;
}
/* 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and
setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down such
that USB is as close as possible to 125Mhz */
{
int divisor = (cvmx_sysinfo_get()->cpu_clock_hz+125000000-1)/125000000;
if (divisor < 4) /* Lower than 4 doesn't seem to work properly */
divisor = 4;
usbn_clk_ctl.s.divide = divisor;
usbn_clk_ctl.s.divide2 = 0;
}
__cvmx_usb_write_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index),
usbn_clk_ctl.u64);
/* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */
usbn_clk_ctl.s.hclk_rst = 1;
__cvmx_usb_write_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index),
usbn_clk_ctl.u64);
/* 2e. Wait 64 core-clock cycles for HCLK to stabilize */
cvmx_wait(64);
/* 3. Program the power-on reset field in the USBN clock-control register:
USBN_CLK_CTL[POR] = 0 */
usbn_clk_ctl.s.por = 0;
__cvmx_usb_write_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index),
usbn_clk_ctl.u64);
/* 4. Wait 1 ms for PHY clock to start */
cvmx_wait_usec(1000);
/* 5. Program the Reset input from automatic test equipment field in the
USBP control and status register: USBN_USBP_CTL_STATUS[ATE_RESET] = 1 */
usbn_usbp_ctl_status.u64 = __cvmx_usb_read_csr64(usb, CVMX_USBNX_USBP_CTL_STATUS(usb->index));
usbn_usbp_ctl_status.s.ate_reset = 1;
__cvmx_usb_write_csr64(usb, CVMX_USBNX_USBP_CTL_STATUS(usb->index),
usbn_usbp_ctl_status.u64);
/* 6. Wait 10 cycles */
cvmx_wait(10);
/* 7. Clear ATE_RESET field in the USBN clock-control register:
USBN_USBP_CTL_STATUS[ATE_RESET] = 0 */
usbn_usbp_ctl_status.s.ate_reset = 0;
__cvmx_usb_write_csr64(usb, CVMX_USBNX_USBP_CTL_STATUS(usb->index),
usbn_usbp_ctl_status.u64);
/* 8. Program the PHY reset field in the USBN clock-control register:
USBN_CLK_CTL[PRST] = 1 */
usbn_clk_ctl.s.prst = 1;
__cvmx_usb_write_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index),
usbn_clk_ctl.u64);
/* 9. Program the USBP control and status register to select host or
device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for
device */
if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE)
{
usbn_usbp_ctl_status.s.hst_mode = 1;
usbn_usbp_ctl_status.s.dm_pulld = 0;
usbn_usbp_ctl_status.s.dp_pulld = 0;
}
else
{
usbn_usbp_ctl_status.s.hst_mode = 0;
}
__cvmx_usb_write_csr64(usb, CVMX_USBNX_USBP_CTL_STATUS(usb->index),
usbn_usbp_ctl_status.u64);
/* 10. Wait 1 <20>s */
cvmx_wait_usec(1);
/* 11. Program the hreset_n field in the USBN clock-control register:
USBN_CLK_CTL[HRST] = 1 */
usbn_clk_ctl.s.hrst = 1;
__cvmx_usb_write_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index),
usbn_clk_ctl.u64);
/* 12. Proceed to USB core initialization */
usbn_clk_ctl.s.enable = 1;
__cvmx_usb_write_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index),
usbn_clk_ctl.u64);
cvmx_wait_usec(1);
/* USB Core Initialization */
/* 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to
determine USB core configuration parameters. */
/* Nothing needed */
/* 2. Program the following fields in the global AHB configuration
register (USBC_GAHBCFG)
DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode
Burst length, USBC_GAHBCFG[HBSTLEN] = 0
Nonperiodic TxFIFO empty level (slave mode only),
USBC_GAHBCFG[NPTXFEMPLVL]
Periodic TxFIFO empty level (slave mode only),
USBC_GAHBCFG[PTXFEMPLVL]
Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1 */
{
cvmx_usbcx_gahbcfg_t usbcx_gahbcfg;
usbcx_gahbcfg.u32 = 0;
usbcx_gahbcfg.s.dmaen = !OCTEON_IS_MODEL(OCTEON_CN31XX);
/* If we are using DMA, start off with 8 idle channels. Without
DMA we emulate a single channel */
if (usbcx_gahbcfg.s.dmaen)
usb->idle_hardware_channels = 0xff;
else
usb->idle_hardware_channels = 0x1;
usbcx_gahbcfg.s.hbstlen = 0;
usbcx_gahbcfg.s.nptxfemplvl = 1;
usbcx_gahbcfg.s.ptxfemplvl = 1;
usbcx_gahbcfg.s.glblintrmsk = 1;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index),
usbcx_gahbcfg.u32);
}
/* 3. Program the following fields in USBC_GUSBCFG register.
HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0
ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0
USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5
PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0 */
{
cvmx_usbcx_gusbcfg_t usbcx_gusbcfg;
usbcx_gusbcfg.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index));
usbcx_gusbcfg.s.toutcal = 0;
usbcx_gusbcfg.s.ddrsel = 0;
usbcx_gusbcfg.s.usbtrdtim = 0x5;
usbcx_gusbcfg.s.phylpwrclksel = 0;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index),
usbcx_gusbcfg.u32);
}
/* 4. The software must unmask the following bits in the USBC_GINTMSK
register.
OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1
Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1 */
{
cvmx_usbcx_gintmsk_t usbcx_gintmsk;
cvmx_usbcx_hcintmskx_t usbc_hcintmsk;
cvmx_usbcx_haintmsk_t usbc_haintmsk;
int channel;
usbcx_gintmsk.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_GINTMSK(usb->index));
usbcx_gintmsk.s.otgintmsk = 1;
usbcx_gintmsk.s.modemismsk = 1;
usbcx_gintmsk.s.hchintmsk = 1;
usbcx_gintmsk.s.sofmsk = 0;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index),
usbcx_gintmsk.u32);
/* Enable the channel halt interrupt */
usbc_hcintmsk.u32 = 0;
usbc_hcintmsk.s.chhltdmsk = 1;
for (channel=0; channel<8; channel++)
if (usb->idle_hardware_channels & (1<<channel))
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), usbc_hcintmsk.u32);
/* Enable the channel interrupt to propagate */
usbc_haintmsk.u32 = 0;
usbc_haintmsk.s.haintmsk = usb->idle_hardware_channels;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index), usbc_haintmsk.u32);
}
if ((usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE) == 0)
{
/* Host Port Initialization */
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
cvmx_dprintf("%s: USB%d is in host mode\n", __FUNCTION__, usb->index);
/* 1. Program the host-port interrupt-mask field to unmask,
USBC_GINTMSK[PRTINT] = 1 */
USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), cvmx_usbcx_gintmsk_t,
prtintmsk, 1);
USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), cvmx_usbcx_gintmsk_t,
disconnintmsk, 1);
/* 2. Program the USBC_HCFG register to select full-speed host or
high-speed host. */
{
cvmx_usbcx_hcfg_t usbcx_hcfg;
usbcx_hcfg.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCFG(usb->index));
usbcx_hcfg.s.fslssupp = 0;
usbcx_hcfg.s.fslspclksel = 0;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCFG(usb->index), usbcx_hcfg.u32);
}
/* 3. Program the port power bit to drive VBUS on the USB,
USBC_HPRT[PRTPWR] = 1 */
USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt_t, prtpwr, 1);
/* Steps 4-15 from the manual are done later in the port enable */
}
else
{
/* Device Port Initialization */
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
cvmx_dprintf("%s: USB%d is in device mode\n", __FUNCTION__, usb->index);
/* 1. Program the following fields in the USBC0/1_DCFG register:
Device speed, USBC0/1_DCFG[DEVSPD] = 0 (high speed)
Non-zero-length status OUT handshake, USBC0/1_DCFG[NZSTSOUTHSHK]=0
Periodic frame interval (if periodic endpoints are supported),
USBC0/1_DCFG[PERFRINT] = 1 */
USB_SET_FIELD32(CVMX_USBCX_DCFG(usb->index), cvmx_usbcx_dcfg_t,
devspd, 0);
USB_SET_FIELD32(CVMX_USBCX_DCFG(usb->index), cvmx_usbcx_dcfg_t,
nzstsouthshk, 0);
USB_SET_FIELD32(CVMX_USBCX_DCFG(usb->index), cvmx_usbcx_dcfg_t,
perfrint, 1);
/* 2. Program the USBC0/1_GINTMSK register to unmask the following
interrupts:
USB Reset, USBC0/1_GINTMSK[USBRSTMSK] = 1
Enumeration done, USBC0/1_GINTMSK[ENUMDONEMSK] = 1
SOF, USBC0/1_GINTMSK[SOFMSK] = 1 */
USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), cvmx_usbcx_gintmsk_t,
usbrstmsk, 1);
USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), cvmx_usbcx_gintmsk_t,
enumdonemsk, 1);
USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), cvmx_usbcx_gintmsk_t,
sofmsk, 1);
/* 3. Wait for the USBC0/1_GINTSTS[USBRESET] interrupt, which
indicates a reset has been detected on the USB and lasts for
about 10 ms. On receiving this interrupt, the application must
perform the steps listed in Section 22.6.1.1, "Initialization on
USB Reset". */
/* Handled in cvmx_poll() usbc_gintsts.s.usbrst processing */
/* 4. Wait for the USBC0/1_GINTSTS[ENUMERATIONDONE] interrupt, which
indicates the end of reset on the USB. On receiving this interrupt,
the application must read the USBC0/1_DSTS register to determine
the enumeration speed and perform the steps listed in Section
22.6.1.2, "Initialization on Enumeration Completion". */
/* Handled in cvmx_poll() usbc_gintsts.s.enumdone processing */
}
CVMX_USB_RETURN(CVMX_USB_SUCCESS);
}
/**
* Shutdown a USB port after a call to cvmx_usb_initialize().
* The port should be disabled with all pipes closed when this
* function is called.
*
* @param state USB device state populated by
* cvmx_usb_initialize().
*
* @return CVMX_USB_SUCCESS or a negative error code defined in
* cvmx_usb_status_t.
*/
cvmx_usb_status_t cvmx_usb_shutdown(cvmx_usb_state_t *state)
{
cvmx_usbnx_clk_ctl_t usbn_clk_ctl;
cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", state);
/* Make sure all pipes are closed */
if (usb->idle_pipes.head ||
usb->active_pipes[CVMX_USB_TRANSFER_ISOCHRONOUS].head ||
usb->active_pipes[CVMX_USB_TRANSFER_INTERRUPT].head ||
usb->active_pipes[CVMX_USB_TRANSFER_CONTROL].head ||
usb->active_pipes[CVMX_USB_TRANSFER_BULK].head)
CVMX_USB_RETURN(CVMX_USB_BUSY);
/* Disable the clocks and put them in power on reset */
usbn_clk_ctl.u64 = __cvmx_usb_read_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index));
usbn_clk_ctl.s.enable = 1;
usbn_clk_ctl.s.por = 1;
usbn_clk_ctl.s.hclk_rst = 1;
usbn_clk_ctl.s.prst = 0;
usbn_clk_ctl.s.hrst = 0;
__cvmx_usb_write_csr64(usb, CVMX_USBNX_CLK_CTL(usb->index),
usbn_clk_ctl.u64);
CVMX_USB_RETURN(CVMX_USB_SUCCESS);
}
/**
* Enable a USB port. After this call succeeds, the USB port is
* online and servicing requests.
*
* @param state USB device state populated by
* cvmx_usb_initialize().
*
* @return CVMX_USB_SUCCESS or a negative error code defined in
* cvmx_usb_status_t.
*/
cvmx_usb_status_t cvmx_usb_enable(cvmx_usb_state_t *state)
{
cvmx_usbcx_ghwcfg3_t usbcx_ghwcfg3;
cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", state);
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
usb->usbcx_hprt.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
/* If the port is already enabled the just return. We don't need to do
anything */
if (usb->usbcx_hprt.s.prtena)
CVMX_USB_RETURN(CVMX_USB_SUCCESS);
/* If there is nothing plugged into the port then fail immediately */
if (!usb->usbcx_hprt.s.prtconnsts)
{
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
cvmx_dprintf("%s: USB%d Nothing plugged into the port\n", __FUNCTION__, usb->index);
CVMX_USB_RETURN(CVMX_USB_TIMEOUT);
}
/* Program the port reset bit to start the reset process */
USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt_t, prtrst, 1);
/* Wait at least 50ms (high speed), or 10ms (full speed) for the reset
process to complete. */
cvmx_wait_usec(50000);
/* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */
USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt_t, prtrst, 0);
/* Wait for the USBC_HPRT[PRTENA]. */
if (CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt_t,
prtena, ==, 1, 100000))
{
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
cvmx_dprintf("%s: Timeout waiting for the port to finish reset\n",
__FUNCTION__);
CVMX_USB_RETURN(CVMX_USB_TIMEOUT);
}
/* Read the port speed field to get the enumerated speed, USBC_HPRT[PRTSPD]. */
usb->usbcx_hprt.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
cvmx_dprintf("%s: USB%d is in %s speed mode\n", __FUNCTION__, usb->index,
(usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH) ? "high" :
(usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_FULL) ? "full" :
"low");
usbcx_ghwcfg3.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_GHWCFG3(usb->index));
/* 13. Program the USBC_GRXFSIZ register to select the size of the receive
FIFO (25%). */
USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz_t,
rxfdep, usbcx_ghwcfg3.s.dfifodepth / 4);
/* 14. Program the USBC_GNPTXFSIZ register to select the size and the
start address of the non- periodic transmit FIFO for nonperiodic
transactions (50%). */
{
cvmx_usbcx_gnptxfsiz_t siz;
siz.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index));
siz.s.nptxfdep = usbcx_ghwcfg3.s.dfifodepth / 2;
siz.s.nptxfstaddr = usbcx_ghwcfg3.s.dfifodepth / 4;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), siz.u32);
}
/* 15. Program the USBC_HPTXFSIZ register to select the size and start
address of the periodic transmit FIFO for periodic transactions (25%). */
{
cvmx_usbcx_hptxfsiz_t siz;
siz.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index));
siz.s.ptxfsize = usbcx_ghwcfg3.s.dfifodepth / 4;
siz.s.ptxfstaddr = 3 * usbcx_ghwcfg3.s.dfifodepth / 4;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index), siz.u32);
}
/* Flush all FIFOs */
USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), cvmx_usbcx_grstctl_t, txfnum, 0x10);
USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), cvmx_usbcx_grstctl_t, txfflsh, 1);
CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), cvmx_usbcx_grstctl_t,
txfflsh, ==, 0, 100);
USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), cvmx_usbcx_grstctl_t, rxfflsh, 1);
CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), cvmx_usbcx_grstctl_t,
rxfflsh, ==, 0, 100);
CVMX_USB_RETURN(CVMX_USB_SUCCESS);
}
/**
* Disable a USB port. After this call the USB port will not
* generate data transfers and will not generate events.
* Transactions in process will fail and call their
* associated callbacks.
*
* @param state USB device state populated by
* cvmx_usb_initialize().
*
* @return CVMX_USB_SUCCESS or a negative error code defined in
* cvmx_usb_status_t.
*/
cvmx_usb_status_t cvmx_usb_disable(cvmx_usb_state_t *state)
{
cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", state);
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
/* Disable the port */
USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt_t, prtena, 1);
CVMX_USB_RETURN(CVMX_USB_SUCCESS);
}
/**
* Get the current state of the USB port. Use this call to
* determine if the usb port has anything connected, is enabled,
* or has some sort of error condition. The return value of this
* call has "changed" bits to signal of the value of some fields
* have changed between calls. These "changed" fields are based
* on the last call to cvmx_usb_set_status(). In order to clear
* them, you must update the status through cvmx_usb_set_status().
*
* @param state USB device state populated by
* cvmx_usb_initialize().
*
* @return Port status information
*/
cvmx_usb_port_status_t cvmx_usb_get_status(cvmx_usb_state_t *state)
{
cvmx_usbcx_hprt_t usbc_hprt;
cvmx_usb_port_status_t result;
cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
memset(&result, 0, sizeof(result));
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", state);
usbc_hprt.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
result.port_enabled = usbc_hprt.s.prtena;
result.port_over_current = usbc_hprt.s.prtovrcurract;
result.port_powered = usbc_hprt.s.prtpwr;
result.port_speed = usbc_hprt.s.prtspd;
result.connected = usbc_hprt.s.prtconnsts;
result.connect_change = (result.connected != usb->port_status.connected);
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CALLS))
cvmx_dprintf("%*s%s: returned port enabled=%d, over_current=%d, powered=%d, speed=%d, connected=%d, connect_change=%d\n",
2*(--usb->indent), "", __FUNCTION__,
result.port_enabled,
result.port_over_current,
result.port_powered,
result.port_speed,
result.connected,
result.connect_change);
return result;
}
/**
* Set the current state of the USB port. The status is used as
* a reference for the "changed" bits returned by
* cvmx_usb_get_status(). Other than serving as a reference, the
* status passed to this function is not used. No fields can be
* changed through this call.
*
* @param state USB device state populated by
* cvmx_usb_initialize().
* @param port_status
* Port status to set, most like returned by cvmx_usb_get_status()
*/
void cvmx_usb_set_status(cvmx_usb_state_t *state, cvmx_usb_port_status_t port_status)
{
cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", state);
usb->port_status = port_status;
CVMX_USB_RETURN_NOTHING();
}
/**
* @INTERNAL
* Convert a USB transaction into a handle
*
* @param usb USB device state populated by
* cvmx_usb_initialize().
* @param transaction
* Transaction to get handle for
*
* @return Handle
*/
static inline int __cvmx_usb_get_submit_handle(cvmx_usb_internal_state_t *usb,
cvmx_usb_transaction_t *transaction)
{
return ((unsigned long)transaction - (unsigned long)usb->transaction) /
sizeof(*transaction);
}
/**
* @INTERNAL
* Convert a USB pipe into a handle
*
* @param usb USB device state populated by
* cvmx_usb_initialize().
* @param pipe Pipe to get handle for
*
* @return Handle
*/
static inline int __cvmx_usb_get_pipe_handle(cvmx_usb_internal_state_t *usb,
cvmx_usb_pipe_t *pipe)
{
return ((unsigned long)pipe - (unsigned long)usb->pipe) / sizeof(*pipe);
}
/**
* Open a virtual pipe between the host and a USB device. A pipe
* must be opened before data can be transferred between a device
* and Octeon.
*
* @param state USB device state populated by
* cvmx_usb_initialize().
* @param flags Optional pipe flags defined in
* cvmx_usb_pipe_flags_t.
* @param device_addr
* USB device address to open the pipe to
* (0-127).
* @param endpoint_num
* USB endpoint number to open the pipe to
* (0-15).
* @param device_speed
* The speed of the device the pipe is going
* to. This must match the device's speed,
* which may be different than the port speed.
* @param max_packet The maximum packet length the device can
* transmit/receive (low speed=0-8, full
* speed=0-1023, high speed=0-1024). This value
* comes from the stadnard endpoint descriptor
* field wMaxPacketSize bits <10:0>.
* @param transfer_type
* The type of transfer this pipe is for.
* @param transfer_dir
* The direction the pipe is in. This is not
* used for control pipes.
* @param interval For ISOCHRONOUS and INTERRUPT transfers,
* this is how often the transfer is scheduled
* for. All other transfers should specify
* zero. The units are in frames (8000/sec at
* high speed, 1000/sec for full speed).
* @param multi_count
* For high speed devices, this is the maximum
* allowed number of packet per microframe.
* Specify zero for non high speed devices. This
* value comes from the stadnard endpoint descriptor
* field wMaxPacketSize bits <12:11>.
* @param hub_device_addr
* Hub device address this device is connected
* to. Devices connected directly to Octeon
* use zero. This is only used when the device
* is full/low speed behind a high speed hub.
* The address will be of the high speed hub,
* not and full speed hubs after it.
* @param hub_port Which port on the hub the device is
* connected. Use zero for devices connected
* directly to Octeon. Like hub_device_addr,
* this is only used for full/low speed
* devices behind a high speed hub.
*
* @return A non negative value is a pipe handle. Negative
* values are failure codes from cvmx_usb_status_t.
*/
int cvmx_usb_open_pipe(cvmx_usb_state_t *state, cvmx_usb_pipe_flags_t flags,
int device_addr, int endpoint_num,
cvmx_usb_speed_t device_speed, int max_packet,
cvmx_usb_transfer_t transfer_type,
cvmx_usb_direction_t transfer_dir, int interval,
int multi_count, int hub_device_addr, int hub_port)
{
cvmx_usb_pipe_t *pipe;
cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", state);
CVMX_USB_LOG_PARAM("0x%x", flags);
CVMX_USB_LOG_PARAM("%d", device_addr);
CVMX_USB_LOG_PARAM("%d", endpoint_num);
CVMX_USB_LOG_PARAM("%d", device_speed);
CVMX_USB_LOG_PARAM("%d", max_packet);
CVMX_USB_LOG_PARAM("%d", transfer_type);
CVMX_USB_LOG_PARAM("%d", transfer_dir);
CVMX_USB_LOG_PARAM("%d", interval);
CVMX_USB_LOG_PARAM("%d", multi_count);
CVMX_USB_LOG_PARAM("%d", hub_device_addr);
CVMX_USB_LOG_PARAM("%d", hub_port);
if (cvmx_unlikely((device_addr < 0) || (device_addr > MAX_USB_ADDRESS)))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely((endpoint_num < 0) || (endpoint_num > MAX_USB_ENDPOINT)))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(device_speed > CVMX_USB_SPEED_LOW))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely((max_packet <= 0) || (max_packet > 1024)))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(transfer_type > CVMX_USB_TRANSFER_INTERRUPT))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely((transfer_dir != CVMX_USB_DIRECTION_OUT) &&
(transfer_dir != CVMX_USB_DIRECTION_IN)))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(interval < 0))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely((transfer_type == CVMX_USB_TRANSFER_CONTROL) && interval))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(multi_count < 0))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely((device_speed != CVMX_USB_SPEED_HIGH) &&
(multi_count != 0)))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely((hub_device_addr < 0) || (hub_device_addr > MAX_USB_ADDRESS)))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely((hub_port < 0) || (hub_port > MAX_USB_HUB_PORT)))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
/* Find a free pipe */
pipe = usb->free_pipes.head;
if (!pipe)
CVMX_USB_RETURN(CVMX_USB_NO_MEMORY);
__cvmx_usb_remove_pipe(&usb->free_pipes, pipe);
pipe->flags = flags | __CVMX_USB_PIPE_FLAGS_OPEN;
if ((device_speed == CVMX_USB_SPEED_HIGH) &&
(transfer_dir == CVMX_USB_DIRECTION_OUT) &&
(transfer_type == CVMX_USB_TRANSFER_BULK))
pipe->flags |= __CVMX_USB_PIPE_FLAGS_NEED_PING;
pipe->device_addr = device_addr;
pipe->endpoint_num = endpoint_num;
pipe->device_speed = device_speed;
pipe->max_packet = max_packet;
pipe->transfer_type = transfer_type;
pipe->transfer_dir = transfer_dir;
/* All pipes use interval to rate limit NAK processing. Force an interval
if one wasn't supplied */
if (!interval)
interval = 1;
if (device_speed == CVMX_USB_SPEED_HIGH)
pipe->interval = (uint64_t)interval * cvmx_sysinfo_get()->cpu_clock_hz / 8000;
else
pipe->interval = (uint64_t)interval * cvmx_sysinfo_get()->cpu_clock_hz / 1000;
pipe->multi_count = multi_count;
pipe->hub_device_addr = hub_device_addr;
pipe->hub_port = hub_port;
pipe->pid_toggle = 0;
pipe->next_tx_cycle = cvmx_read64_uint64(CVMX_IPD_CLK_COUNT) + pipe->interval;
pipe->split_sc_frame = -1;
__cvmx_usb_append_pipe(&usb->idle_pipes, pipe);
/* We don't need to tell the hardware about this pipe yet since
it doesn't have any submitted requests */
CVMX_USB_RETURN(__cvmx_usb_get_pipe_handle(usb, pipe));
}
/**
* @INTERNAL
* Perform channel specific setup for Control transactions. All
* the generic stuff will already have been done in
* __cvmx_usb_start_channel()
*
* @param usb USB device state populated by
* cvmx_usb_initialize().
* @param channel Channel to setup
* @param pipe Pipe for control transaction
*/
static void __cvmx_usb_start_channel_control(cvmx_usb_internal_state_t *usb,
int channel,
cvmx_usb_pipe_t *pipe)
{
cvmx_usb_transaction_t *transaction = pipe->head;
cvmx_usb_control_header_t *header = cvmx_phys_to_ptr(transaction->control_header);
int bytes_to_transfer = transaction->buffer_length - transaction->actual_bytes;
cvmx_usbcx_hctsizx_t usbc_hctsiz;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", usb);
CVMX_USB_LOG_PARAM("%d", channel);
CVMX_USB_LOG_PARAM("%p", pipe);
usbc_hctsiz.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index));
switch (transaction->stage)
{
case CVMX_USB_STAGE_NON_CONTROL:
case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
cvmx_dprintf("%s: ERROR - Non control stage\n", __FUNCTION__);
break;
case CVMX_USB_STAGE_SETUP:
usbc_hctsiz.s.pid = 3; /* Setup */
usbc_hctsiz.s.xfersize = sizeof(*header);
/* All Control operations start with a setup going OUT */
USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), cvmx_usbcx_hccharx_t, epdir, CVMX_USB_DIRECTION_OUT);
/* Setup send the control header instead of the buffer data. The
buffer data will be used in the next stage */
__cvmx_usb_write_csr64(usb, CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) + channel*8, transaction->control_header);
break;
case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
usbc_hctsiz.s.pid = 3; /* Setup */
usbc_hctsiz.s.xfersize = 0;
/* All Control operations start with a setup going OUT */
USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), cvmx_usbcx_hccharx_t, epdir, CVMX_USB_DIRECTION_OUT);
USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index), cvmx_usbcx_hcspltx_t, compsplt, 1);
break;
case CVMX_USB_STAGE_DATA:
usbc_hctsiz.s.pid = __cvmx_usb_get_data_pid(pipe);
if (__cvmx_usb_pipe_needs_split(usb, pipe))
{
usbc_hctsiz.s.xfersize = (header->s.request_type & 0x80) ? 0 : bytes_to_transfer;
if (usbc_hctsiz.s.xfersize > pipe->max_packet)
usbc_hctsiz.s.xfersize = pipe->max_packet;
}
else
usbc_hctsiz.s.xfersize = bytes_to_transfer;
USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
cvmx_usbcx_hccharx_t, epdir,
((header->s.request_type & 0x80) ?
CVMX_USB_DIRECTION_IN :
CVMX_USB_DIRECTION_OUT));
break;
case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
usbc_hctsiz.s.pid = __cvmx_usb_get_data_pid(pipe);
usbc_hctsiz.s.xfersize = (header->s.request_type & 0x80) ? bytes_to_transfer : 0;
USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
cvmx_usbcx_hccharx_t, epdir,
((header->s.request_type & 0x80) ?
CVMX_USB_DIRECTION_IN :
CVMX_USB_DIRECTION_OUT));
USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index), cvmx_usbcx_hcspltx_t, compsplt, 1);
break;
case CVMX_USB_STAGE_STATUS:
usbc_hctsiz.s.pid = __cvmx_usb_get_data_pid(pipe);
usbc_hctsiz.s.xfersize = 0;
USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), cvmx_usbcx_hccharx_t, epdir,
((header->s.request_type & 0x80) ?
CVMX_USB_DIRECTION_OUT :
CVMX_USB_DIRECTION_IN));
break;
case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
usbc_hctsiz.s.pid = __cvmx_usb_get_data_pid(pipe);
usbc_hctsiz.s.xfersize = 0;
USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), cvmx_usbcx_hccharx_t, epdir,
((header->s.request_type & 0x80) ?
CVMX_USB_DIRECTION_OUT :
CVMX_USB_DIRECTION_IN));
USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index), cvmx_usbcx_hcspltx_t, compsplt, 1);
break;
}
/* Set the number of packets needed for this transfer */
usbc_hctsiz.s.pktcnt = (usbc_hctsiz.s.xfersize + pipe->max_packet - 1) / pipe->max_packet;
if (!usbc_hctsiz.s.pktcnt)
usbc_hctsiz.s.pktcnt = 1;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index), usbc_hctsiz.u32);
CVMX_USB_RETURN_NOTHING();
}
/**
* @INTERNAL
* Start a channel to perform the pipe's head transaction
*
* @param usb USB device state populated by
* cvmx_usb_initialize().
* @param channel Channel to setup
* @param pipe Pipe to start
*/
static void __cvmx_usb_start_channel(cvmx_usb_internal_state_t *usb,
int channel,
cvmx_usb_pipe_t *pipe)
{
cvmx_usb_transaction_t *transaction = pipe->head;
cvmx_usbcx_hfnum_t usbc_hfnum;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", usb);
CVMX_USB_LOG_PARAM("%d", channel);
CVMX_USB_LOG_PARAM("%p", pipe);
if (cvmx_unlikely((usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_TRANSFERS) ||
(pipe->flags & CVMX_USB_PIPE_FLAGS_DEBUG_TRANSFERS)))
cvmx_dprintf("%s: Channel %d started. Pipe %d transaction %d stage %d\n",
__FUNCTION__, channel, __cvmx_usb_get_pipe_handle(usb, pipe),
__cvmx_usb_get_submit_handle(usb, transaction),
transaction->stage);
/* Make sure all writes to the DMA region get flushed */
CVMX_SYNCW;
/* Read the current frame number for use with split, INTERRUPT, and ISO
transactions */
usbc_hfnum.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
/* Attach the channel to the pipe */
usb->pipe_for_channel[channel] = pipe;
pipe->channel = channel;
pipe->flags |= __CVMX_USB_PIPE_FLAGS_SCHEDULED;
/* Mark this channel as in use */
usb->idle_hardware_channels &= ~(1<<channel);
/* Enable the channel interrupt bits */
{
cvmx_usbcx_hcintx_t usbc_hcint;
/* Clear all channel status bits */
usbc_hcint.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCINTX(channel, usb->index));
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTX(channel, usb->index), usbc_hcint.u32);
}
/* Setup the locations the DMA engines use */
{
uint64_t dma_address = transaction->buffer + transaction->actual_bytes;
if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
dma_address = transaction->buffer + transaction->iso_packets[0].offset + transaction->actual_bytes;
__cvmx_usb_write_csr64(usb, CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) + channel*8, dma_address);
__cvmx_usb_write_csr64(usb, CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel*8, dma_address);
}
/* Setup both the size of the transfer and the SPLIT characteristics */
{
cvmx_usbcx_hcspltx_t usbc_hcsplt = {.u32 = 0};
cvmx_usbcx_hctsizx_t usbc_hctsiz = {.u32 = 0};
int bytes_to_transfer = transaction->buffer_length - transaction->actual_bytes;
/* ISOCHRONOUS transactions store each individual transfer size in the
packet structure, not the global buffer_length */
if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
bytes_to_transfer = transaction->iso_packets[0].length - transaction->actual_bytes;
/* We need to do split transactions when we are talking to non high
speed devices that are behind a high speed hub */
if (__cvmx_usb_pipe_needs_split(usb, pipe))
{
/* On the start split phase (stage is even) record the frame number we
will need to send the split complete. We only store the lower two bits
since the time ahead can only be two frames */
if ((transaction->stage&1) == 0)
{
if (transaction->type == CVMX_USB_TRANSFER_BULK)
pipe->split_sc_frame = (usbc_hfnum.s.frnum + 1) & 0x7f;
else
pipe->split_sc_frame = (usbc_hfnum.s.frnum + 2) & 0x7f;
}
else
pipe->split_sc_frame = -1;
usbc_hcsplt.s.spltena = 1;
usbc_hcsplt.s.hubaddr = pipe->hub_device_addr;
usbc_hcsplt.s.prtaddr = pipe->hub_port;
usbc_hcsplt.s.compsplt = (transaction->stage == CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE);
/* SPLIT transactions can only ever transmit one data packet so
limit the transfer size to the max packet size */
if (bytes_to_transfer > pipe->max_packet)
bytes_to_transfer = pipe->max_packet;
/* ISOCHRONOUS OUT splits are unique in that they limit
data transfers to 188 byte chunks representing the
begin/middle/end of the data or all */
if (!usbc_hcsplt.s.compsplt &&
(pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
(pipe->transfer_type == CVMX_USB_TRANSFER_ISOCHRONOUS))
{
/* See if we've started this tranfer and sent data */
if (transaction->actual_bytes == 0)
{
/* Nothing sent yet, this is either a begin or the
entire payload */
if (bytes_to_transfer <= 188)
usbc_hcsplt.s.xactpos = 3; /* Entire payload in one go */
else
usbc_hcsplt.s.xactpos = 2; /* First part of payload */
}
else
{
/* Continuing the previous data, we must either be
in the middle or at the end */
if (bytes_to_transfer <= 188)
usbc_hcsplt.s.xactpos = 1; /* End of payload */
else
usbc_hcsplt.s.xactpos = 0; /* Middle of payload */
}
/* Again, the transfer size is limited to 188 bytes */
if (bytes_to_transfer > 188)
bytes_to_transfer = 188;
}
}
usbc_hctsiz.s.xfersize = bytes_to_transfer;
usbc_hctsiz.s.pktcnt = (bytes_to_transfer + pipe->max_packet - 1) / pipe->max_packet;
if (!usbc_hctsiz.s.pktcnt)
usbc_hctsiz.s.pktcnt = 1;
/* Update the DATA0/DATA1 toggle */
usbc_hctsiz.s.pid = __cvmx_usb_get_data_pid(pipe);
/* High speed pipes may need a hardware ping before they start */
if (pipe->flags & __CVMX_USB_PIPE_FLAGS_NEED_PING)
usbc_hctsiz.s.dopng = 1;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCSPLTX(channel, usb->index), usbc_hcsplt.u32);
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index), usbc_hctsiz.u32);
}
/* Setup the Host Channel Characteristics Register */
{
cvmx_usbcx_hccharx_t usbc_hcchar = {.u32 = 0};
/* Make all transfers start on the next frame and not this one. This
way the time we spend processing doesn't affect USB timing */
usbc_hcchar.s.oddfrm = !(usbc_hfnum.s.frnum&1);
/* Set the number of back to back packets allowed by this endpoint.
Split transactions interpret "ec" as the number of immediate
retries of failure. These retries happen too quickly, so we
disable these entirely for splits */
if (__cvmx_usb_pipe_needs_split(usb, pipe))
usbc_hcchar.s.ec = 1;
else if (pipe->multi_count < 1)
usbc_hcchar.s.ec = 1;
else if (pipe->multi_count > 3)
usbc_hcchar.s.ec = 3;
else
usbc_hcchar.s.ec = pipe->multi_count;
/* Set the rest of the endpoint specific settings */
usbc_hcchar.s.devaddr = pipe->device_addr;
usbc_hcchar.s.eptype = transaction->type;
usbc_hcchar.s.lspddev = (pipe->device_speed == CVMX_USB_SPEED_LOW);
usbc_hcchar.s.epdir = pipe->transfer_dir;
usbc_hcchar.s.epnum = pipe->endpoint_num;
usbc_hcchar.s.mps = pipe->max_packet;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCCHARX(channel, usb->index), usbc_hcchar.u32);
}
/* Do transaction type specific fixups as needed */
switch (transaction->type)
{
case CVMX_USB_TRANSFER_CONTROL:
__cvmx_usb_start_channel_control(usb, channel, pipe);
break;
case CVMX_USB_TRANSFER_BULK:
case CVMX_USB_TRANSFER_INTERRUPT:
break;
case CVMX_USB_TRANSFER_ISOCHRONOUS:
if (!__cvmx_usb_pipe_needs_split(usb, pipe))
{
/* ISO transactions require differnet PIDs depending on direction
and how many packets are needed */
if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)
{
if (pipe->multi_count < 2) /* Need DATA0 */
USB_SET_FIELD32(CVMX_USBCX_HCTSIZX(channel, usb->index), cvmx_usbcx_hctsizx_t, pid, 0);
else /* Need MDATA */
USB_SET_FIELD32(CVMX_USBCX_HCTSIZX(channel, usb->index), cvmx_usbcx_hctsizx_t, pid, 3);
}
}
break;
}
{
cvmx_usbcx_hctsizx_t usbc_hctsiz = {.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index))};
transaction->xfersize = usbc_hctsiz.s.xfersize;
transaction->pktcnt = usbc_hctsiz.s.pktcnt;
}
USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), cvmx_usbcx_hccharx_t, chena, 1);
CVMX_USB_RETURN_NOTHING();
}
/**
* @INTERNAL
* Find a pipe that is ready to be scheduled to hardware.
*
* @param list Pipe list to search
* @param usbc_hfnum Current USB frame number
* @param current_cycle
* Cycle counter to use as a time reference.
*
* @return Pipe or NULL if none are ready
*/
static cvmx_usb_pipe_t *__cvmx_usb_find_ready_pipe(cvmx_usb_pipe_list_t *list, cvmx_usbcx_hfnum_t usbc_hfnum, uint64_t current_cycle)
{
cvmx_usb_pipe_t *pipe = list->head;
while (pipe)
{
if (!(pipe->flags & __CVMX_USB_PIPE_FLAGS_SCHEDULED) && pipe->head &&
(pipe->next_tx_cycle <= current_cycle) &&
((pipe->split_sc_frame == -1) || ((((int)usbc_hfnum.s.frnum - (int)pipe->split_sc_frame) & 0x7f) < 0x40)))
{
CVMX_PREFETCH(pipe, 128);
CVMX_PREFETCH(pipe->head, 0);
return pipe;
}
pipe = pipe->next;
}
return NULL;
}
/**
* @INTERNAL
* Called whenever a pipe might need to be scheduled to the
* hardware.
*
* @param usb USB device state populated by
* cvmx_usb_initialize().
* @param is_sof True if this schedule was called on a SOF interrupt.
*/
static void __cvmx_usb_schedule(cvmx_usb_internal_state_t *usb, int is_sof)
{
int channel;
cvmx_usb_pipe_t *pipe;
cvmx_usbcx_hfnum_t usbc_hfnum;
uint64_t current_cycle = cvmx_read64_uint64(CVMX_IPD_CLK_COUNT);
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", usb);
usbc_hfnum.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
while (usb->idle_hardware_channels)
{
/* Find an idle channel */
CVMX_CLZ(channel, usb->idle_hardware_channels);
channel = 31 - channel;
if (cvmx_unlikely(channel > 7))
{
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
cvmx_dprintf("%s: Idle hardware channels has a channel higher than 7. This is wrong\n", __FUNCTION__);
break;
}
/* Find a pipe needing service */
pipe = NULL;
if (is_sof)
{
/* Only process periodic pipes on SOF interrupts. This way we are
sure that the periodic data is sent in the beginning of the
frame */
pipe = __cvmx_usb_find_ready_pipe(usb->active_pipes + CVMX_USB_TRANSFER_ISOCHRONOUS, usbc_hfnum, current_cycle);
if (cvmx_likely(!pipe))
pipe = __cvmx_usb_find_ready_pipe(usb->active_pipes + CVMX_USB_TRANSFER_INTERRUPT, usbc_hfnum, current_cycle);
}
if (cvmx_likely(!pipe))
{
pipe = __cvmx_usb_find_ready_pipe(usb->active_pipes + CVMX_USB_TRANSFER_CONTROL, usbc_hfnum, current_cycle);
if (cvmx_likely(!pipe))
pipe = __cvmx_usb_find_ready_pipe(usb->active_pipes + CVMX_USB_TRANSFER_BULK, usbc_hfnum, current_cycle);
}
if (!pipe)
break;
CVMX_USB_LOG_PARAM("%d", channel);
CVMX_USB_LOG_PARAM("%p", pipe);
if (cvmx_unlikely((usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_TRANSFERS) ||
(pipe->flags & CVMX_USB_PIPE_FLAGS_DEBUG_TRANSFERS)))
{
cvmx_usb_transaction_t *transaction = pipe->head;
const cvmx_usb_control_header_t *header = (transaction->control_header) ? cvmx_phys_to_ptr(transaction->control_header) : NULL;
const char *dir = (pipe->transfer_dir == CVMX_USB_DIRECTION_IN) ? "IN" : "OUT";
const char *type;
switch (pipe->transfer_type)
{
case CVMX_USB_TRANSFER_CONTROL:
type = "SETUP";
dir = (header->s.request_type & 0x80) ? "IN" : "OUT";
break;
case CVMX_USB_TRANSFER_ISOCHRONOUS:
type = "ISOCHRONOUS";
break;
case CVMX_USB_TRANSFER_BULK:
type = "BULK";
break;
default: /* CVMX_USB_TRANSFER_INTERRUPT */
type = "INTERRUPT";
break;
}
cvmx_dprintf("%s: Starting pipe %d, transaction %d on channel %d. %s %s len=%d header=0x%llx\n",
__FUNCTION__, __cvmx_usb_get_pipe_handle(usb, pipe),
__cvmx_usb_get_submit_handle(usb, transaction),
channel, type, dir,
transaction->buffer_length,
(header) ? (unsigned long long)header->u64 : 0ull);
}
__cvmx_usb_start_channel(usb, channel, pipe);
}
CVMX_USB_RETURN_NOTHING();
}
/**
* @INTERNAL
* Call a user's callback for a specific reason.
*
* @param usb USB device state populated by
* cvmx_usb_initialize().
* @param pipe Pipe the callback is for or NULL
* @param transaction
* Transaction the callback is for or NULL
* @param reason Reason this callback is being called
* @param complete_code
* Completion code for the transaction, if any
*/
static void __cvmx_usb_perform_callback(cvmx_usb_internal_state_t *usb,
cvmx_usb_pipe_t *pipe,
cvmx_usb_transaction_t *transaction,
cvmx_usb_callback_t reason,
cvmx_usb_complete_t complete_code)
{
cvmx_usb_callback_func_t callback = usb->callback[reason];
void *user_data = usb->callback_data[reason];
int submit_handle = -1;
int pipe_handle = -1;
int bytes_transferred = 0;
if (pipe)
pipe_handle = __cvmx_usb_get_pipe_handle(usb, pipe);
if (transaction)
{
submit_handle = __cvmx_usb_get_submit_handle(usb, transaction);
bytes_transferred = transaction->actual_bytes;
/* Transactions are allowed to override the default callback */
if ((reason == CVMX_USB_CALLBACK_TRANSFER_COMPLETE) && transaction->callback)
{
callback = transaction->callback;
user_data = transaction->callback_data;
}
}
if (!callback)
return;
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CALLBACKS))
cvmx_dprintf("%*s%s: calling callback %p(usb=%p, complete_code=%s, "
"pipe_handle=%d, submit_handle=%d, bytes_transferred=%d, user_data=%p);\n",
2*usb->indent, "", __FUNCTION__, callback, usb,
__cvmx_usb_complete_to_string(complete_code),
pipe_handle, submit_handle, bytes_transferred, user_data);
callback((cvmx_usb_state_t *)usb, reason, complete_code, pipe_handle, submit_handle,
bytes_transferred, user_data);
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_CALLBACKS))
cvmx_dprintf("%*s%s: callback %p complete\n", 2*usb->indent, "",
__FUNCTION__, callback);
}
/**
* @INTERNAL
* Signal the completion of a transaction and free it. The
* transaction will be removed from the pipe transaction list.
*
* @param usb USB device state populated by
* cvmx_usb_initialize().
* @param pipe Pipe the transaction is on
* @param transaction
* Transaction that completed
* @param complete_code
* Completion code
*/
static void __cvmx_usb_perform_complete(cvmx_usb_internal_state_t * usb,
cvmx_usb_pipe_t *pipe,
cvmx_usb_transaction_t *transaction,
cvmx_usb_complete_t complete_code)
{
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", usb);
CVMX_USB_LOG_PARAM("%p", pipe);
CVMX_USB_LOG_PARAM("%p", transaction);
CVMX_USB_LOG_PARAM("%d", complete_code);
/* Isochronous transactions need extra processing as they might not be done
after a single data transfer */
if (cvmx_unlikely(transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS))
{
/* Update the number of bytes transfered in this ISO packet */
transaction->iso_packets[0].length = transaction->actual_bytes;
transaction->iso_packets[0].status = complete_code;
/* If there are more ISOs pending and we suceeded, schedule the next
one */
if ((transaction->iso_number_packets > 1) && (complete_code == CVMX_USB_COMPLETE_SUCCESS))
{
transaction->actual_bytes = 0; /* No bytes transfered for this packet as of yet */
transaction->iso_number_packets--; /* One less ISO waiting to transfer */
transaction->iso_packets++; /* Increment to the next location in our packet array */
transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
goto done;
}
}
/* Remove the transaction from the pipe list */
if (transaction->next)
transaction->next->prev = transaction->prev;
else
pipe->tail = transaction->prev;
if (transaction->prev)
transaction->prev->next = transaction->next;
else
pipe->head = transaction->next;
if (!pipe->head)
{
__cvmx_usb_remove_pipe(usb->active_pipes + pipe->transfer_type, pipe);
__cvmx_usb_append_pipe(&usb->idle_pipes, pipe);
}
__cvmx_usb_perform_callback(usb, pipe, transaction,
CVMX_USB_CALLBACK_TRANSFER_COMPLETE,
complete_code);
__cvmx_usb_free_transaction(usb, transaction);
/* Disable SOF interrupts if we don't have any pending transactions */
usb->active_transactions--;
if (usb->active_transactions == 0)
USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), cvmx_usbcx_gintmsk_t, sofmsk, 0);
done:
CVMX_USB_RETURN_NOTHING();
}
/**
* @INTERNAL
* Submit a usb transaction to a pipe. Called for all types
* of transactions.
*
* @param usb
* @param pipe_handle
* Which pipe to submit to. Will be validated in this function.
* @param type Transaction type
* @param flags Flags for the transaction
* @param buffer User buffer for the transaction
* @param buffer_length
* User buffer's length in bytes
* @param control_header
* For control transactions, the 8 byte standard header
* @param iso_start_frame
* For ISO transactiosn, the start frame
* @param iso_number_packets
* For ISO, the number of packet in the transaction.
* @param iso_packets
* A description of each ISO packet
* @param callback User callback to call when the transaction completes
* @param user_data User's data for the callback
*
* @return Submit handle or negative on failure. Matches the result
* in the external API.
*/
static int __cvmx_usb_submit_transaction(cvmx_usb_internal_state_t *usb,
int pipe_handle,
cvmx_usb_transfer_t type,
int flags,
uint64_t buffer,
int buffer_length,
uint64_t control_header,
int iso_start_frame,
int iso_number_packets,
cvmx_usb_iso_packet_t *iso_packets,
cvmx_usb_callback_func_t callback,
void *user_data)
{
int submit_handle;
cvmx_usb_transaction_t *transaction;
cvmx_usb_pipe_t *pipe = usb->pipe + pipe_handle;
CVMX_USB_LOG_CALLED();
if (cvmx_unlikely((pipe_handle < 0) || (pipe_handle >= MAX_PIPES)))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
/* Fail if the pipe isn't open */
if (cvmx_unlikely((pipe->flags & __CVMX_USB_PIPE_FLAGS_OPEN) == 0))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(pipe->transfer_type != type))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
transaction = __cvmx_usb_alloc_transaction(usb);
if (cvmx_unlikely(!transaction))
CVMX_USB_RETURN(CVMX_USB_NO_MEMORY);
/* Enable SOF interrupts now that we have pending transactions */
if (usb->active_transactions == 0)
USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), cvmx_usbcx_gintmsk_t, sofmsk, 1);
usb->active_transactions++;
transaction->type = type;
transaction->flags |= flags;
transaction->buffer = buffer;
transaction->buffer_length = buffer_length;
transaction->control_header = control_header;
transaction->iso_start_frame = iso_start_frame; // FIXME: This is not used, implement it
transaction->iso_number_packets = iso_number_packets;
transaction->iso_packets = iso_packets;
transaction->callback = callback;
transaction->callback_data = user_data;
if (transaction->type == CVMX_USB_TRANSFER_CONTROL)
transaction->stage = CVMX_USB_STAGE_SETUP;
else
transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
transaction->next = NULL;
if (pipe->tail)
{
transaction->prev = pipe->tail;
transaction->prev->next = transaction;
}
else
{
transaction->prev = NULL;
pipe->head = transaction;
__cvmx_usb_remove_pipe(&usb->idle_pipes, pipe);
__cvmx_usb_append_pipe(usb->active_pipes + pipe->transfer_type, pipe);
}
pipe->tail = transaction;
submit_handle = __cvmx_usb_get_submit_handle(usb, transaction);
/* We may need to schedule the pipe if this was the head of the pipe */
if (!transaction->prev)
__cvmx_usb_schedule(usb, 0);
CVMX_USB_RETURN(submit_handle);
}
/**
* Call to submit a USB Bulk transfer to a pipe.
*
* @param state USB device state populated by
* cvmx_usb_initialize().
* @param pipe_handle
* Handle to the pipe for the transfer.
* @param buffer Physical address of the data buffer in
* memory. Note that this is NOT A POINTER, but
* the full 64bit physical address of the
* buffer. This may be zero if buffer_length is
* zero.
* @param buffer_length
* Length of buffer in bytes.
* @param callback Function to call when this transaction
* completes. If the return value of this
* function isn't an error, then this function
* is guaranteed to be called when the
* transaction completes. If this parameter is
* NULL, then the generic callback registered
* through cvmx_usb_register_callback is
* called. If both are NULL, then there is no
* way to know when a transaction completes.
* @param user_data User supplied data returned when the
* callback is called. This is only used if
* callback in not NULL.
*
* @return A submitted transaction handle or negative on
* failure. Negative values are failure codes from
* cvmx_usb_status_t.
*/
int cvmx_usb_submit_bulk(cvmx_usb_state_t *state, int pipe_handle,
uint64_t buffer, int buffer_length,
cvmx_usb_callback_func_t callback,
void *user_data)
{
int submit_handle;
cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", state);
CVMX_USB_LOG_PARAM("%d", pipe_handle);
CVMX_USB_LOG_PARAM("0x%llx", (unsigned long long)buffer);
CVMX_USB_LOG_PARAM("%d", buffer_length);
/* Pipe handle checking is done later in a common place */
if (cvmx_unlikely(!buffer))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(buffer_length < 0))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
submit_handle = __cvmx_usb_submit_transaction(usb, pipe_handle,
CVMX_USB_TRANSFER_BULK,
0, /* flags */
buffer,
buffer_length,
0, /* control_header */
0, /* iso_start_frame */
0, /* iso_number_packets */
NULL, /* iso_packets */
callback,
user_data);
CVMX_USB_RETURN(submit_handle);
}
/**
* Call to submit a USB Interrupt transfer to a pipe.
*
* @param state USB device state populated by
* cvmx_usb_initialize().
* @param pipe_handle
* Handle to the pipe for the transfer.
* @param buffer Physical address of the data buffer in
* memory. Note that this is NOT A POINTER, but
* the full 64bit physical address of the
* buffer. This may be zero if buffer_length is
* zero.
* @param buffer_length
* Length of buffer in bytes.
* @param callback Function to call when this transaction
* completes. If the return value of this
* function isn't an error, then this function
* is guaranteed to be called when the
* transaction completes. If this parameter is
* NULL, then the generic callback registered
* through cvmx_usb_register_callback is
* called. If both are NULL, then there is no
* way to know when a transaction completes.
* @param user_data User supplied data returned when the
* callback is called. This is only used if
* callback in not NULL.
*
* @return A submitted transaction handle or negative on
* failure. Negative values are failure codes from
* cvmx_usb_status_t.
*/
int cvmx_usb_submit_interrupt(cvmx_usb_state_t *state, int pipe_handle,
uint64_t buffer, int buffer_length,
cvmx_usb_callback_func_t callback,
void *user_data)
{
int submit_handle;
cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", state);
CVMX_USB_LOG_PARAM("%d", pipe_handle);
CVMX_USB_LOG_PARAM("0x%llx", (unsigned long long)buffer);
CVMX_USB_LOG_PARAM("%d", buffer_length);
/* Pipe handle checking is done later in a common place */
if (cvmx_unlikely(!buffer))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(buffer_length < 0))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
submit_handle = __cvmx_usb_submit_transaction(usb, pipe_handle,
CVMX_USB_TRANSFER_INTERRUPT,
0, /* flags */
buffer,
buffer_length,
0, /* control_header */
0, /* iso_start_frame */
0, /* iso_number_packets */
NULL, /* iso_packets */
callback,
user_data);
CVMX_USB_RETURN(submit_handle);
}
/**
* Call to submit a USB Control transfer to a pipe.
*
* @param state USB device state populated by
* cvmx_usb_initialize().
* @param pipe_handle
* Handle to the pipe for the transfer.
* @param control_header
* USB 8 byte control header physical address.
* Note that this is NOT A POINTER, but the
* full 64bit physical address of the buffer.
* @param buffer Physical address of the data buffer in
* memory. Note that this is NOT A POINTER, but
* the full 64bit physical address of the
* buffer. This may be zero if buffer_length is
* zero.
* @param buffer_length
* Length of buffer in bytes.
* @param callback Function to call when this transaction
* completes. If the return value of this
* function isn't an error, then this function
* is guaranteed to be called when the
* transaction completes. If this parameter is
* NULL, then the generic callback registered
* through cvmx_usb_register_callback is
* called. If both are NULL, then there is no
* way to know when a transaction completes.
* @param user_data User supplied data returned when the
* callback is called. This is only used if
* callback in not NULL.
*
* @return A submitted transaction handle or negative on
* failure. Negative values are failure codes from
* cvmx_usb_status_t.
*/
int cvmx_usb_submit_control(cvmx_usb_state_t *state, int pipe_handle,
uint64_t control_header,
uint64_t buffer, int buffer_length,
cvmx_usb_callback_func_t callback,
void *user_data)
{
int submit_handle;
cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
cvmx_usb_control_header_t *header = cvmx_phys_to_ptr(control_header);
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", state);
CVMX_USB_LOG_PARAM("%d", pipe_handle);
CVMX_USB_LOG_PARAM("0x%llx", (unsigned long long)control_header);
CVMX_USB_LOG_PARAM("0x%llx", (unsigned long long)buffer);
CVMX_USB_LOG_PARAM("%d", buffer_length);
/* Pipe handle checking is done later in a common place */
if (cvmx_unlikely(!control_header))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
/* Some drivers send a buffer with a zero length. God only knows why */
if (cvmx_unlikely(buffer && (buffer_length < 0)))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(!buffer && (buffer_length != 0)))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
if ((header->s.request_type & 0x80) == 0)
buffer_length = cvmx_le16_to_cpu(header->s.length);
submit_handle = __cvmx_usb_submit_transaction(usb, pipe_handle,
CVMX_USB_TRANSFER_CONTROL,
0, /* flags */
buffer,
buffer_length,
control_header,
0, /* iso_start_frame */
0, /* iso_number_packets */
NULL, /* iso_packets */
callback,
user_data);
CVMX_USB_RETURN(submit_handle);
}
/**
* Call to submit a USB Isochronous transfer to a pipe.
*
* @param state USB device state populated by
* cvmx_usb_initialize().
* @param pipe_handle
* Handle to the pipe for the transfer.
* @param start_frame
* Number of frames into the future to schedule
* this transaction.
* @param flags Flags to control the transfer. See
* cvmx_usb_isochronous_flags_t for the flag
* definitions.
* @param number_packets
* Number of sequential packets to transfer.
* "packets" is a pointer to an array of this
* many packet structures.
* @param packets Description of each transfer packet as
* defined by cvmx_usb_iso_packet_t. The array
* pointed to here must stay valid until the
* complete callback is called.
* @param buffer Physical address of the data buffer in
* memory. Note that this is NOT A POINTER, but
* the full 64bit physical address of the
* buffer. This may be zero if buffer_length is
* zero.
* @param buffer_length
* Length of buffer in bytes.
* @param callback Function to call when this transaction
* completes. If the return value of this
* function isn't an error, then this function
* is guaranteed to be called when the
* transaction completes. If this parameter is
* NULL, then the generic callback registered
* through cvmx_usb_register_callback is
* called. If both are NULL, then there is no
* way to know when a transaction completes.
* @param user_data User supplied data returned when the
* callback is called. This is only used if
* callback in not NULL.
*
* @return A submitted transaction handle or negative on
* failure. Negative values are failure codes from
* cvmx_usb_status_t.
*/
int cvmx_usb_submit_isochronous(cvmx_usb_state_t *state, int pipe_handle,
int start_frame, int flags,
int number_packets,
cvmx_usb_iso_packet_t packets[],
uint64_t buffer, int buffer_length,
cvmx_usb_callback_func_t callback,
void *user_data)
{
int submit_handle;
cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", state);
CVMX_USB_LOG_PARAM("%d", pipe_handle);
CVMX_USB_LOG_PARAM("%d", start_frame);
CVMX_USB_LOG_PARAM("0x%x", flags);
CVMX_USB_LOG_PARAM("%d", number_packets);
CVMX_USB_LOG_PARAM("%p", packets);
CVMX_USB_LOG_PARAM("0x%llx", (unsigned long long)buffer);
CVMX_USB_LOG_PARAM("%d", buffer_length);
/* Pipe handle checking is done later in a common place */
if (cvmx_unlikely(start_frame < 0))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(flags & ~(CVMX_USB_ISOCHRONOUS_FLAGS_ALLOW_SHORT | CVMX_USB_ISOCHRONOUS_FLAGS_ASAP)))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(number_packets < 1))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(!packets))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(!buffer))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(buffer_length < 0))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
submit_handle = __cvmx_usb_submit_transaction(usb, pipe_handle,
CVMX_USB_TRANSFER_ISOCHRONOUS,
flags,
buffer,
buffer_length,
0, /* control_header */
start_frame,
number_packets,
packets,
callback,
user_data);
CVMX_USB_RETURN(submit_handle);
}
/**
* Cancel one outstanding request in a pipe. Canceling a request
* can fail if the transaction has already completed before cancel
* is called. Even after a successful cancel call, it may take
* a frame or two for the cvmx_usb_poll() function to call the
* associated callback.
*
* @param state USB device state populated by
* cvmx_usb_initialize().
* @param pipe_handle
* Pipe handle to cancel requests in.
* @param submit_handle
* Handle to transaction to cancel, returned by the submit function.
*
* @return CVMX_USB_SUCCESS or a negative error code defined in
* cvmx_usb_status_t.
*/
cvmx_usb_status_t cvmx_usb_cancel(cvmx_usb_state_t *state, int pipe_handle,
int submit_handle)
{
cvmx_usb_transaction_t *transaction;
cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
cvmx_usb_pipe_t *pipe = usb->pipe + pipe_handle;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", state);
CVMX_USB_LOG_PARAM("%d", pipe_handle);
CVMX_USB_LOG_PARAM("%d", submit_handle);
if (cvmx_unlikely((pipe_handle < 0) || (pipe_handle >= MAX_PIPES)))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely((submit_handle < 0) || (submit_handle >= MAX_TRANSACTIONS)))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
/* Fail if the pipe isn't open */
if (cvmx_unlikely((pipe->flags & __CVMX_USB_PIPE_FLAGS_OPEN) == 0))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
transaction = usb->transaction + submit_handle;
/* Fail if this transaction already completed */
if (cvmx_unlikely((transaction->flags & __CVMX_USB_TRANSACTION_FLAGS_IN_USE) == 0))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
/* If the transaction is the HEAD of the queue and scheduled. We need to
treat it special */
if ((pipe->head == transaction) &&
(pipe->flags & __CVMX_USB_PIPE_FLAGS_SCHEDULED))
{
cvmx_usbcx_hccharx_t usbc_hcchar;
usb->pipe_for_channel[pipe->channel] = NULL;
pipe->flags &= ~__CVMX_USB_PIPE_FLAGS_SCHEDULED;
CVMX_SYNCW;
usbc_hcchar.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCCHARX(pipe->channel, usb->index));
/* If the channel isn't enabled then the transaction already completed */
if (usbc_hcchar.s.chena)
{
usbc_hcchar.s.chdis = 1;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCCHARX(pipe->channel, usb->index), usbc_hcchar.u32);
}
}
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_CANCEL);
CVMX_USB_RETURN(CVMX_USB_SUCCESS);
}
/**
* Cancel all outstanding requests in a pipe. Logically all this
* does is call cvmx_usb_cancel() in a loop.
*
* @param state USB device state populated by
* cvmx_usb_initialize().
* @param pipe_handle
* Pipe handle to cancel requests in.
*
* @return CVMX_USB_SUCCESS or a negative error code defined in
* cvmx_usb_status_t.
*/
cvmx_usb_status_t cvmx_usb_cancel_all(cvmx_usb_state_t *state, int pipe_handle)
{
cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
cvmx_usb_pipe_t *pipe = usb->pipe + pipe_handle;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", state);
CVMX_USB_LOG_PARAM("%d", pipe_handle);
if (cvmx_unlikely((pipe_handle < 0) || (pipe_handle >= MAX_PIPES)))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
/* Fail if the pipe isn't open */
if (cvmx_unlikely((pipe->flags & __CVMX_USB_PIPE_FLAGS_OPEN) == 0))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
/* Simply loop through and attempt to cancel each transaction */
while (pipe->head)
{
cvmx_usb_status_t result = cvmx_usb_cancel(state, pipe_handle,
__cvmx_usb_get_submit_handle(usb, pipe->head));
if (cvmx_unlikely(result != CVMX_USB_SUCCESS))
CVMX_USB_RETURN(result);
}
CVMX_USB_RETURN(CVMX_USB_SUCCESS);
}
/**
* Close a pipe created with cvmx_usb_open_pipe().
*
* @param state USB device state populated by
* cvmx_usb_initialize().
* @param pipe_handle
* Pipe handle to close.
*
* @return CVMX_USB_SUCCESS or a negative error code defined in
* cvmx_usb_status_t. CVMX_USB_BUSY is returned if the
* pipe has outstanding transfers.
*/
cvmx_usb_status_t cvmx_usb_close_pipe(cvmx_usb_state_t *state, int pipe_handle)
{
cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
cvmx_usb_pipe_t *pipe = usb->pipe + pipe_handle;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", state);
CVMX_USB_LOG_PARAM("%d", pipe_handle);
if (cvmx_unlikely((pipe_handle < 0) || (pipe_handle >= MAX_PIPES)))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
/* Fail if the pipe isn't open */
if (cvmx_unlikely((pipe->flags & __CVMX_USB_PIPE_FLAGS_OPEN) == 0))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
/* Fail if the pipe has pending transactions */
if (cvmx_unlikely(pipe->head))
CVMX_USB_RETURN(CVMX_USB_BUSY);
pipe->flags = 0;
__cvmx_usb_remove_pipe(&usb->idle_pipes, pipe);
__cvmx_usb_append_pipe(&usb->free_pipes, pipe);
CVMX_USB_RETURN(CVMX_USB_SUCCESS);
}
/**
* Register a function to be called when various USB events occur.
*
* @param state USB device state populated by
* cvmx_usb_initialize().
* @param reason Which event to register for.
* @param callback Function to call when the event occurs.
* @param user_data User data parameter to the function.
*
* @return CVMX_USB_SUCCESS or a negative error code defined in
* cvmx_usb_status_t.
*/
cvmx_usb_status_t cvmx_usb_register_callback(cvmx_usb_state_t *state,
cvmx_usb_callback_t reason,
cvmx_usb_callback_func_t callback,
void *user_data)
{
cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", state);
CVMX_USB_LOG_PARAM("%d", reason);
CVMX_USB_LOG_PARAM("%p", callback);
CVMX_USB_LOG_PARAM("%p", user_data);
if (cvmx_unlikely(reason >= __CVMX_USB_CALLBACK_END))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(!callback))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
usb->callback[reason] = callback;
usb->callback_data[reason] = user_data;
CVMX_USB_RETURN(CVMX_USB_SUCCESS);
}
/**
* Get the current USB protocol level frame number. The frame
* number is always in the range of 0-0x7ff.
*
* @param state USB device state populated by
* cvmx_usb_initialize().
*
* @return USB frame number
*/
int cvmx_usb_get_frame_number(cvmx_usb_state_t *state)
{
int frame_number;
cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", state);
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE))
{
cvmx_usbcx_dsts_t usbc_dsts;
usbc_dsts.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_DSTS(usb->index));
frame_number = usbc_dsts.s.soffn;
}
else
{
cvmx_usbcx_hfnum_t usbc_hfnum;
usbc_hfnum.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
frame_number = usbc_hfnum.s.frnum;
}
CVMX_USB_RETURN(frame_number);
}
/**
* @INTERNAL
* Poll a channel for status
*
* @param usb USB device
* @param channel Channel to poll
*
* @return Zero on success
*/
static int __cvmx_usb_poll_channel(cvmx_usb_internal_state_t *usb, int channel)
{
cvmx_usbcx_hcintx_t usbc_hcint;
cvmx_usbcx_hctsizx_t usbc_hctsiz;
cvmx_usbcx_hccharx_t usbc_hcchar;
cvmx_usb_pipe_t *pipe;
cvmx_usb_transaction_t *transaction;
int bytes_this_transfer;
int bytes_in_last_packet;
int packets_processed;
int buffer_space_left;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", usb);
CVMX_USB_LOG_PARAM("%d", channel);
/* Read the interrupt status bits for the channel */
usbc_hcint.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCINTX(channel, usb->index));
/* We ignore any interrupts where the channel hasn't halted yet. These
should be impossible since we don't enable any interrupts except for
channel halted */
if (!usbc_hcint.s.chhltd)
CVMX_USB_RETURN(0);
/* Now that the channel has halted, clear all status bits before
processing. This way we don't have any race conditions caused by the
channel starting up and finishing before we clear the bits */
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTX(channel, usb->index), usbc_hcint.u32);
//cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_USBCX_HCINTX(channel, usb->index), usbc_hcint.u32);
usb->idle_hardware_channels |= (1<<channel);
/* Make sure this channel is tied to a valid pipe */
pipe = usb->pipe_for_channel[channel];
CVMX_PREFETCH(pipe, 0);
CVMX_PREFETCH(pipe, 128);
if (!pipe)
CVMX_USB_RETURN(0);
transaction = pipe->head;
CVMX_PREFETCH0(transaction);
/* Disconnect this pipe from the HW channel. Later the schedule function will
figure out which pipe needs to go */
usb->pipe_for_channel[channel] = NULL;
pipe->flags &= ~__CVMX_USB_PIPE_FLAGS_SCHEDULED;
/* Read the channel config info so we can figure out how much data
transfered */
usbc_hcchar.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCCHARX(channel, usb->index));
usbc_hctsiz.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index));
/* Calculating the number of bytes successfully transfered is dependent on
the transfer direction */
packets_processed = transaction->pktcnt - usbc_hctsiz.s.pktcnt;
if (usbc_hcchar.s.epdir)
{
/* IN transactions are easy. For every byte received the hardware
decrements xfersize. All we need to do is subtract the current
value of xfersize from its starting value and we know how many
bytes were written to the buffer */
bytes_this_transfer = transaction->xfersize - usbc_hctsiz.s.xfersize;
}
else
{
/* OUT transaction don't decrement xfersize. Instead pktcnt is
decremented on every successful packet send. The hardware does
this when it receives an ACK, or NYET. If it doesn't
receive one of these responses pktcnt doesn't change */
bytes_this_transfer = packets_processed * usbc_hcchar.s.mps;
/* The last packet may not be a full transfer if we didn't have
enough data */
if (bytes_this_transfer > transaction->xfersize)
bytes_this_transfer = transaction->xfersize;
}
/* Figure out how many bytes were in the last packet of the transfer */
if (packets_processed)
bytes_in_last_packet = bytes_this_transfer - (packets_processed-1) * usbc_hcchar.s.mps;
else
bytes_in_last_packet = bytes_this_transfer;
/* As a special case, setup transactions output the setup header, not
the user's data. For this reason we don't count setup data as bytes
transfered */
if ((transaction->stage == CVMX_USB_STAGE_SETUP) ||
(transaction->stage == CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE))
bytes_this_transfer = 0;
/* Optional debug output */
if (cvmx_unlikely((usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_TRANSFERS) ||
(pipe->flags & CVMX_USB_PIPE_FLAGS_DEBUG_TRANSFERS)))
cvmx_dprintf("%s: Channel %d halted. Pipe %d transaction %d stage %d bytes=%d\n",
__FUNCTION__, channel,
__cvmx_usb_get_pipe_handle(usb, pipe),
__cvmx_usb_get_submit_handle(usb, transaction),
transaction->stage, bytes_this_transfer);
/* Add the bytes transfered to the running total. It is important that
bytes_this_transfer doesn't count any data that needs to be
retransmitted */
transaction->actual_bytes += bytes_this_transfer;
if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
buffer_space_left = transaction->iso_packets[0].length - transaction->actual_bytes;
else
buffer_space_left = transaction->buffer_length - transaction->actual_bytes;
/* We need to remember the PID toggle state for the next transaction. The
hardware already updated it for the next transaction */
pipe->pid_toggle = !(usbc_hctsiz.s.pid == 0);
/* For high speed bulk out, assume the next transaction will need to do a
ping before proceeding. If this isn't true the ACK processing below
will clear this flag */
if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
(pipe->transfer_type == CVMX_USB_TRANSFER_BULK) &&
(pipe->transfer_dir == CVMX_USB_DIRECTION_OUT))
pipe->flags |= __CVMX_USB_PIPE_FLAGS_NEED_PING;
if (usbc_hcint.s.stall)
{
/* STALL as a response means this transaction cannot be completed
because the device can't process transactions. Tell the user. Any
data that was transfered will be counted on the actual bytes
transfered */
pipe->pid_toggle = 0;
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_STALL);
}
else if (0 && usbc_hcint.s.xfercompl)
{
/* XferCompl is only useful in non DMA mode */
}
else if (usbc_hcint.s.xacterr)
{
/* We know at least one packet worked if we get a ACK or NAK. Reset the retry counter */
if (usbc_hcint.s.nak || usbc_hcint.s.ack)
transaction->retries = 0;
transaction->retries++;
if (transaction->retries > MAX_RETRIES)
{
/* XactErr as a response means the device signaled something wrong with
the transfer. For example, PID toggle errors cause these */
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_XACTERR);
}
else
{
/* Rewind to the beginning of the transaction by anding off the
split complete bit */
transaction->stage &= ~1;
pipe->split_sc_frame = -1;
pipe->next_tx_cycle = cvmx_read64_uint64(CVMX_IPD_CLK_COUNT) + pipe->interval;
}
}
else if (0 && usbc_hcint.s.datatglerr)
{
/* The hardware automatically handles Data Toggle Errors for us */
}
else if (usbc_hcint.s.bblerr)
{
/* Babble Error (BblErr) */
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_BABBLEERR);
}
else if (usbc_hcint.s.frmovrun)
{
/* Frame Overrun (FrmOvrun) */
/* Rewind to the beginning of the transaction by anding off the
split complete bit */
transaction->stage &= ~1;
pipe->split_sc_frame = -1;
}
else if (usbc_hcint.s.nyet)
{
/* NYET as a response is only allowed in three cases: as a response to
a ping, as a response to a split transaction, and as a response to
a bulk out. The ping case is handled by hardware, so we only have
splits and bulk out */
if (!__cvmx_usb_pipe_needs_split(usb, pipe))
{
transaction->retries = 0;
/* If there is more data to go then we need to try again. Otherwise
this transaction is complete */
if ((buffer_space_left == 0) || (bytes_in_last_packet < pipe->max_packet))
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
}
else
{
/* Split transactions retry the split complete 4 times then rewind
to the start split and do the entire transactions again */
transaction->retries++;
if ((transaction->retries & 0x3) == 0)
{
/* Rewind to the beginning of the transaction by anding off the
split complete bit */
transaction->stage &= ~1;
pipe->split_sc_frame = -1;
}
}
}
else if (usbc_hcint.s.ack)
{
transaction->retries = 0;
/* The ACK bit can only be checked after the other error bits. This is
because a multi packet transfer may succeed in a number of packets
and then get a different response on the last packet. In this case
both ACK and the last response bit will be set. If none of the
other response bits is set, then the last packet must have been an
ACK */
/* Since we got an ACK, we know we don't need to do a ping on this
pipe */
pipe->flags &= ~__CVMX_USB_PIPE_FLAGS_NEED_PING;
switch (transaction->type)
{
case CVMX_USB_TRANSFER_CONTROL:
switch (transaction->stage)
{
case CVMX_USB_STAGE_NON_CONTROL:
case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
/* This should be impossible */
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_ERROR);
break;
case CVMX_USB_STAGE_SETUP:
pipe->pid_toggle = 1;
if (__cvmx_usb_pipe_needs_split(usb, pipe))
transaction->stage = CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE;
else
{
cvmx_usb_control_header_t *header = cvmx_phys_to_ptr(transaction->control_header);
if (header->s.length)
transaction->stage = CVMX_USB_STAGE_DATA;
else
transaction->stage = CVMX_USB_STAGE_STATUS;
}
break;
case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
{
cvmx_usb_control_header_t *header = cvmx_phys_to_ptr(transaction->control_header);
if (header->s.length)
transaction->stage = CVMX_USB_STAGE_DATA;
else
transaction->stage = CVMX_USB_STAGE_STATUS;
}
break;
case CVMX_USB_STAGE_DATA:
if (__cvmx_usb_pipe_needs_split(usb, pipe))
transaction->stage = CVMX_USB_STAGE_DATA_SPLIT_COMPLETE;
else if ((buffer_space_left == 0) || (bytes_in_last_packet < pipe->max_packet))
{
pipe->pid_toggle = 1;
transaction->stage = CVMX_USB_STAGE_STATUS;
}
break;
case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
if ((buffer_space_left == 0) || (bytes_in_last_packet < pipe->max_packet))
{
pipe->pid_toggle = 1;
transaction->stage = CVMX_USB_STAGE_STATUS;
}
else
{
transaction->stage = CVMX_USB_STAGE_DATA;
}
break;
case CVMX_USB_STAGE_STATUS:
if (__cvmx_usb_pipe_needs_split(usb, pipe))
transaction->stage = CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE;
else
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
break;
case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
break;
}
break;
case CVMX_USB_TRANSFER_BULK:
case CVMX_USB_TRANSFER_INTERRUPT:
/* The only time a bulk transfer isn't complete when
it finishes with an ACK is during a split transaction. For
splits we need to continue the transfer if more data is
needed */
if (__cvmx_usb_pipe_needs_split(usb, pipe))
{
if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL)
transaction->stage = CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
else
{
if (buffer_space_left && (bytes_in_last_packet == pipe->max_packet))
transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
else
{
if (transaction->type == CVMX_USB_TRANSFER_INTERRUPT)
pipe->next_tx_cycle += pipe->interval;
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
}
}
}
else
{
if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
(pipe->transfer_type == CVMX_USB_TRANSFER_BULK) &&
(pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
(usbc_hcint.s.nak))
pipe->flags |= __CVMX_USB_PIPE_FLAGS_NEED_PING;
if (!buffer_space_left || (bytes_in_last_packet < pipe->max_packet))
{
if (transaction->type == CVMX_USB_TRANSFER_INTERRUPT)
pipe->next_tx_cycle += pipe->interval;
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
}
}
break;
case CVMX_USB_TRANSFER_ISOCHRONOUS:
if (__cvmx_usb_pipe_needs_split(usb, pipe))
{
/* ISOCHRONOUS OUT splits don't require a complete split stage.
Instead they use a sequence of begin OUT splits to transfer
the data 188 bytes at a time. Once the transfer is complete,
the pipe sleeps until the next schedule interval */
if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)
{
pipe->next_tx_cycle += pipe->interval;
/* If no space left or this wasn't a max size packet then
this transfer is complete. Otherwise start it again
to send the next 188 bytes */
if (!buffer_space_left || (bytes_this_transfer < 188))
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
}
else
{
if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE)
{
/* We are in the incomming data phase. Keep getting
data until we run out of space or get a small
packet */
if ((buffer_space_left == 0) || (bytes_in_last_packet < pipe->max_packet))
{
pipe->next_tx_cycle += pipe->interval;
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
}
}
else
transaction->stage = CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
}
}
else
{
pipe->next_tx_cycle += pipe->interval;
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_SUCCESS);
}
break;
}
}
else if (usbc_hcint.s.nak)
{
uint64_t ipd_clk_count;
/* NAK as a response means the device couldn't accept the transaction,
but it should be retried in the future. Rewind to the beginning of
the transaction by anding off the split complete bit. Retry in the
next interval */
transaction->retries = 0;
transaction->stage &= ~1;
pipe->next_tx_cycle += pipe->interval;
ipd_clk_count = cvmx_read64_uint64(CVMX_IPD_CLK_COUNT);
if (pipe->next_tx_cycle < ipd_clk_count)
pipe->next_tx_cycle = ipd_clk_count + pipe->interval;
}
else
{
/* We get channel halted interrupts with no result bits sets when the
cable is unplugged */
__cvmx_usb_perform_complete(usb, pipe, transaction, CVMX_USB_COMPLETE_ERROR);
}
CVMX_USB_RETURN(0);
}
/**
* Poll a device mode endpoint for status
*
* @param usb USB device state populated by
* cvmx_usb_initialize().
* @param endpoint_num
* Endpoint to poll
*
* @return Zero on success
*/
static int __cvmx_usb_poll_endpoint(cvmx_usb_internal_state_t *usb, int endpoint_num)
{
cvmx_usbcx_diepintx_t usbc_diepint;
cvmx_usbcx_doepintx_t usbc_doepint;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", usb);
CVMX_USB_LOG_PARAM("%d", endpoint_num);
usbc_diepint.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_DIEPINTX(endpoint_num, usb->index));
__cvmx_usb_write_csr32(usb, CVMX_USBCX_DIEPINTX(endpoint_num, usb->index), usbc_diepint.u32);
//cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_USBCX_DIEPINTX(endpoint_num, usb->index), usbc_diepint.u32);
if (usbc_diepint.s.inepnakeff)
{
/* IN Endpoint NAK Effective (INEPNakEff)
Applies to periodic IN endpoints only.
Indicates that the IN endpoint NAK bit set by the application has
taken effect in the core. This bit can be cleared when the
application clears the IN endpoint NAK by writing to
DIEPCTLn.CNAK.
This interrupt indicates that the core has sampled the NAK bit
set (either by the application or by the core).
This interrupt does not necessarily mean that a NAK handshake
is sent on the USB. A STALL bit takes priority over a NAK bit. */
/* Nothing to do */
}
if (usbc_diepint.s.intknepmis)
{
/* IN Token Received with EP Mismatch (INTknEPMis)
Applies to non-periodic IN endpoints only.
Indicates that the data in the top of the non-periodic TxFIFO
belongs to an endpoint other than the one for which the IN
token was received. This interrupt is asserted on the endpoint
for which the IN token was received. */
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
cvmx_dprintf("%s: Endpoint %d mismatch\n", __FUNCTION__, endpoint_num);
}
if (usbc_diepint.s.intkntxfemp)
{
/* IN Token Received When TxFIFO is Empty (INTknTXFEmp)
Applies only to non-periodic IN endpoints.
Indicates that an IN token was received when the associated
TxFIFO (periodic/non-periodic) was empty. This interrupt is
asserted on the endpoint for which the IN token was received. */
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
cvmx_dprintf("%s: Received IN token on endpoint %d without data\n", __FUNCTION__, endpoint_num);
}
if (usbc_diepint.s.timeout)
{
/* Timeout Condition (TimeOUT)
Applies to non-isochronous IN endpoints only.
Indicates that the core has detected a timeout condition on the
USB for the last IN token on this endpoint. */
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
cvmx_dprintf("%s: Received timeout on endpoint %d\n", __FUNCTION__, endpoint_num);
}
if (usbc_diepint.s.ahberr)
{
/* AHB Error (AHBErr)
This is generated only in Internal DMA mode when there is an
AHB error during an AHB read/write. The application can read
the corresponding endpoint DMA address register to get the
error address. */
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
cvmx_dprintf("%s: AHB error on endpoint %d\n", __FUNCTION__, endpoint_num);
}
if (usbc_diepint.s.epdisbld)
{
/* Endpoint Disabled Interrupt (EPDisbld)
This bit indicates that the endpoint is disabled per the
application's request. */
/* Nothing to do */
}
if (usbc_diepint.s.xfercompl)
{
/* Transfer Completed Interrupt (XferCompl)
Indicates that the programmed transfer is complete on the AHB
as well as on the USB, for this endpoint. */
__cvmx_usb_perform_callback(usb, usb->pipe + endpoint_num, NULL,
CVMX_USB_CALLBACK_TRANSFER_COMPLETE,
CVMX_USB_COMPLETE_SUCCESS);
}
usbc_doepint.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_DOEPINTX(endpoint_num, usb->index));
__cvmx_usb_write_csr32(usb, CVMX_USBCX_DOEPINTX(endpoint_num, usb->index), usbc_doepint.u32);
//cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_USBCX_DOEPINTX(endpoint_num, usb->index), usbc_doepint.u32);
if (usbc_doepint.s.outtknepdis)
{
/* OUT Token Received When Endpoint Disabled (OUTTknEPdis)
Applies only to control OUT endpoints.
Indicates that an OUT token was received when the endpoint
was not yet enabled. This interrupt is asserted on the endpoint
for which the OUT token was received. */
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
cvmx_dprintf("%s: Received OUT token on disabled endpoint %d\n", __FUNCTION__, endpoint_num);
}
if (usbc_doepint.s.setup)
{
/* SETUP Phase Done (SetUp)
Applies to control OUT endpoints only.
Indicates that the SETUP phase for the control endpoint is
complete and no more back-to-back SETUP packets were
received for the current control transfer. On this interrupt, the
application can decode the received SETUP data packet. */
__cvmx_usb_perform_callback(usb, usb->pipe + endpoint_num, NULL,
CVMX_USB_CALLBACK_DEVICE_SETUP,
CVMX_USB_COMPLETE_SUCCESS);
}
if (usbc_doepint.s.ahberr)
{
/* AHB Error (AHBErr)
This is generated only in Internal DMA mode when there is an
AHB error during an AHB read/write. The application can read
the corresponding endpoint DMA address register to get the
error address. */
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
cvmx_dprintf("%s: AHB error on endpoint %d\n", __FUNCTION__, endpoint_num);
}
if (usbc_doepint.s.epdisbld)
{
/* Endpoint Disabled Interrupt (EPDisbld)
This bit indicates that the endpoint is disabled per the
application's request. */
/* Nothing to do */
}
if (usbc_doepint.s.xfercompl)
{
/* Transfer Completed Interrupt (XferCompl)
Indicates that the programmed transfer is complete on the AHB
as well as on the USB, for this endpoint. */
__cvmx_usb_perform_callback(usb, usb->pipe + endpoint_num, NULL,
CVMX_USB_CALLBACK_TRANSFER_COMPLETE,
CVMX_USB_COMPLETE_SUCCESS);
}
CVMX_USB_RETURN(0);
}
/**
* Poll the device mode endpoints for status
*
* @param usb USB device state populated by
* cvmx_usb_initialize().
*
* @return Zero on success
*/
static int __cvmx_usb_poll_endpoints(cvmx_usb_internal_state_t *usb)
{
cvmx_usbcx_daint_t usbc_daint;
int active_endpoints;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", usb);
usbc_daint.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_DAINT(usb->index));
active_endpoints = usbc_daint.s.inepint | usbc_daint.s.outepint;
while (active_endpoints)
{
int endpoint;
CVMX_CLZ(endpoint, active_endpoints);
endpoint = 31 - endpoint;
__cvmx_usb_poll_endpoint(usb, endpoint);
active_endpoints ^= 1<<endpoint;
}
CVMX_USB_RETURN(0);
}
/**
* Poll the USB block for status and call all needed callback
* handlers. This function is meant to be called in the interrupt
* handler for the USB controller. It can also be called
* periodically in a loop for non-interrupt based operation.
*
* @param state USB device state populated by
* cvmx_usb_initialize().
*
* @return CVMX_USB_SUCCESS or a negative error code defined in
* cvmx_usb_status_t.
*/
cvmx_usb_status_t cvmx_usb_poll(cvmx_usb_state_t *state)
{
cvmx_usbcx_gintsts_t usbc_gintsts;
cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
CVMX_PREFETCH(usb, 0);
CVMX_PREFETCH(usb, 1*128);
CVMX_PREFETCH(usb, 2*128);
CVMX_PREFETCH(usb, 3*128);
CVMX_PREFETCH(usb, 4*128);
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", state);
/* Read the pending interrupts */
usbc_gintsts.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_GINTSTS(usb->index));
if (usbc_gintsts.s.wkupint)
{
/* Resume/Remote Wakeup Detected Interrupt (WkUpInt)
In Device mode, this interrupt is asserted when a resume is
detected on the USB. In Host mode, this interrupt is asserted
when a remote wakeup is detected on the USB. */
/* Octeon doesn't support suspend / resume */
}
if (usbc_gintsts.s.sessreqint)
{
/* Session Request/New Session Detected Interrupt (SessReqInt)
In Host mode, this interrupt is asserted when a session request
is detected from the device. In Device mode, this interrupt is
asserted when the utmiotg_bvalid signal goes high. */
/* Octeon doesn't support OTG */
}
if (usbc_gintsts.s.disconnint || usbc_gintsts.s.prtint)
{
cvmx_usbcx_hprt_t usbc_hprt;
/* Disconnect Detected Interrupt (DisconnInt)
Asserted when a device disconnect is detected. */
/* Host Port Interrupt (PrtInt)
The core sets this bit to indicate a change in port status of one
of the O2P USB core ports in Host mode. The application must
read the Host Port Control and Status (HPRT) register to
determine the exact event that caused this interrupt. The
application must clear the appropriate status bit in the Host Port
Control and Status register to clear this bit. */
/* Call the user's port callback */
__cvmx_usb_perform_callback(usb, NULL, NULL,
CVMX_USB_CALLBACK_PORT_CHANGED,
CVMX_USB_COMPLETE_SUCCESS);
/* Clear the port change bits */
usbc_hprt.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
usbc_hprt.s.prtena = 0;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_HPRT(usb->index), usbc_hprt.u32);
}
if (usbc_gintsts.s.conidstschng)
{
/* Connector ID Status Change (ConIDStsChng)
The core sets this bit when there is a change in connector ID
status. */
/* The USB core currently doesn't support dynamically changing from
host to device mode */
}
if (usbc_gintsts.s.ptxfemp)
{
/* Periodic TxFIFO Empty (PTxFEmp)
Asserted when the Periodic Transmit FIFO is either half or
completely empty and there is space for at least one entry to be
written in the Periodic Request Queue. The half or completely
empty status is determined by the Periodic TxFIFO Empty Level
bit in the Core AHB Configuration register
(GAHBCFG.PTxFEmpLvl). */
/* In DMA mode we don't care */
}
if (usbc_gintsts.s.hchint)
{
/* Host Channels Interrupt (HChInt)
The core sets this bit to indicate that an interrupt is pending on
one of the channels of the core (in Host mode). The application
must read the Host All Channels Interrupt (HAINT) register to
determine the exact number of the channel on which the
interrupt occurred, and then read the corresponding Host
Channel-n Interrupt (HCINTn) register to determine the exact
cause of the interrupt. The application must clear the
appropriate status bit in the HCINTn register to clear this bit. */
cvmx_usbcx_haint_t usbc_haint;
usbc_haint.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_HAINT(usb->index));
while (usbc_haint.u32)
{
int channel;
CVMX_CLZ(channel, usbc_haint.u32);
channel = 31 - channel;
__cvmx_usb_poll_channel(usb, channel);
usbc_haint.u32 ^= 1<<channel;
}
}
if (usbc_gintsts.s.fetsusp)
{
/* Data Fetch Suspended (FetSusp)
This interrupt is valid only in DMA mode. This interrupt indicates
that the core has stopped fetching data for IN endpoints due to
the unavailability of TxFIFO space or Request Queue space.
This interrupt is used by the application for an endpoint
mismatch algorithm. */
// FIXME
}
if (usbc_gintsts.s.incomplp)
{
/* Incomplete Periodic Transfer (incomplP)
In Host mode, the core sets this interrupt bit when there are
incomplete periodic transactions still pending which are
scheduled for the current microframe.
Incomplete Isochronous OUT Transfer (incompISOOUT)
The Device mode, the core sets this interrupt to indicate that
there is at least one isochronous OUT endpoint on which the
transfer is not completed in the current microframe. This
interrupt is asserted along with the End of Periodic Frame
Interrupt (EOPF) bit in this register. */
// FIXME
}
if (usbc_gintsts.s.incompisoin)
{
/* Incomplete Isochronous IN Transfer (incompISOIN)
The core sets this interrupt to indicate that there is at least one
isochronous IN endpoint on which the transfer is not completed
in the current microframe. This interrupt is asserted along with
the End of Periodic Frame Interrupt (EOPF) bit in this register. */
// FIXME
}
if (usbc_gintsts.s.oepint)
{
/* OUT Endpoints Interrupt (OEPInt)
The core sets this bit to indicate that an interrupt is pending on
one of the OUT endpoints of the core (in Device mode). The
application must read the Device All Endpoints Interrupt
(DAINT) register to determine the exact number of the OUT
endpoint on which the interrupt occurred, and then read the
corresponding Device OUT Endpoint-n Interrupt (DOEPINTn)
register to determine the exact cause of the interrupt. The
application must clear the appropriate status bit in the
corresponding DOEPINTn register to clear this bit. */
__cvmx_usb_poll_endpoints(usb);
}
if (usbc_gintsts.s.iepint)
{
/* IN Endpoints Interrupt (IEPInt)
The core sets this bit to indicate that an interrupt is pending on
one of the IN endpoints of the core (in Device mode). The
application must read the Device All Endpoints Interrupt
(DAINT) register to determine the exact number of the IN
endpoint on which the interrupt occurred, and then read the
corresponding Device IN Endpoint-n Interrupt (DIEPINTn)
register to determine the exact cause of the interrupt. The
application must clear the appropriate status bit in the
corresponding DIEPINTn register to clear this bit. */
__cvmx_usb_poll_endpoints(usb);
}
if (usbc_gintsts.s.epmis)
{
/* Endpoint Mismatch Interrupt (EPMis)
Indicates that an IN token has been received for a non-periodic
endpoint, but the data for another endpoint is present in the top
of the Non-Periodic Transmit FIFO and the IN endpoint
mismatch count programmed by the application has expired. */
// FIXME
}
if (usbc_gintsts.s.eopf)
{
/* End of Periodic Frame Interrupt (EOPF)
Indicates that the period specified in the Periodic Frame Interval
field of the Device Configuration register (DCFG.PerFrInt) has
been reached in the current microframe. */
// FIXME
}
if (usbc_gintsts.s.isooutdrop)
{
/* Isochronous OUT Packet Dropped Interrupt (ISOOutDrop)
The core sets this bit when it fails to write an isochronous OUT
packet into the RxFIFO because the RxFIFO doesn't have
enough space to accommodate a maximum packet size packet
for the isochronous OUT endpoint. */
// FIXME
}
if (usbc_gintsts.s.enumdone)
{
/* Enumeration Done (EnumDone)
The core sets this bit to indicate that speed enumeration is
complete. The application must read the Device Status (DSTS)
register to obtain the enumerated speed. */
if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE)
{
cvmx_usbcx_dsts_t usbc_dsts;
usbc_dsts.u32 = __cvmx_usb_read_csr32(usb, CVMX_USBCX_DSTS(usb->index));
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
cvmx_dprintf("%s: USB%d Enumeration complete with %s speed\n",
__FUNCTION__, usb->index,
(usbc_dsts.s.enumspd == CVMX_USB_SPEED_HIGH) ? "high" :
(usbc_dsts.s.enumspd == CVMX_USB_SPEED_FULL) ? "full" :
"low");
USB_SET_FIELD32(CVMX_USBCX_DIEPCTLX(0, usb->index),
cvmx_usbcx_diepctlx_t, mps,
(usbc_dsts.s.enumspd == CVMX_USB_SPEED_LOW) ? 3 : 0);
USB_SET_FIELD32(CVMX_USBCX_DOEPCTLX(0, usb->index),
cvmx_usbcx_doepctlx_t, epena, 1);
}
}
if (usbc_gintsts.s.usbrst)
{
/* USB Reset (USBRst)
The core sets this bit to indicate that a reset is
detected on the USB. */
if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE)
{
if (cvmx_unlikely(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEBUG_INFO))
cvmx_dprintf("%s: USB%d Reset complete\n", __FUNCTION__, usb->index);
__cvmx_usb_device_reset_complete(usb);
}
}
if (usbc_gintsts.s.nptxfemp)
{
/* Non-Periodic TxFIFO Empty (NPTxFEmp)
This interrupt is asserted when the Non-Periodic TxFIFO is
either half or completely empty, and there is space for at least
one entry to be written to the Non-Periodic Transmit Request
Queue. The half or completely empty status is determined by
the Non-Periodic TxFIFO Empty Level bit in the Core AHB
Configuration register (GAHBCFG.NPTxFEmpLvl). */
/* In DMA mode this is handled by hardware */
}
if (usbc_gintsts.s.rxflvl)
{
/* RxFIFO Non-Empty (RxFLvl)
Indicates that there is at least one packet pending to be read
from the RxFIFO. */
/* In DMA mode this is handled by hardware */
}
if (usbc_gintsts.s.sof)
{
/* Start of (micro)Frame (Sof)
In Host mode, the core sets this bit to indicate that an SOF
(FS), micro-SOF (HS), or Keep-Alive (LS) is transmitted on the
USB. The application must write a 1 to this bit to clear the
interrupt.
In Device mode, in the core sets this bit to indicate that an SOF
token has been received on the USB. The application can read
the Device Status register to get the current (micro)frame
number. This interrupt is seen only when the core is operating
at either HS or FS. */
}
if (usbc_gintsts.s.otgint)
{
/* OTG Interrupt (OTGInt)
The core sets this bit to indicate an OTG protocol event. The
application must read the OTG Interrupt Status (GOTGINT)
register to determine the exact event that caused this interrupt.
The application must clear the appropriate status bit in the
GOTGINT register to clear this bit. */
/* Octeon doesn't support OTG, so ignore */
}
if (usbc_gintsts.s.modemis)
{
/* Mode Mismatch Interrupt (ModeMis)
The core sets this bit when the application is trying to access:
* A Host mode register, when the core is operating in Device
mode
* A Device mode register, when the core is operating in Host
mode
The register access is completed on the AHB with an OKAY
response, but is ignored by the core internally and doesn't
affect the operation of the core. */
/* Ignored for now */
}
__cvmx_usb_schedule(usb, usbc_gintsts.s.sof);
/* Clear the interrupts now that we know about them */
__cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index), usbc_gintsts.u32);
CVMX_USB_RETURN(CVMX_USB_SUCCESS);
}
/**
* Enable an endpoint for use in device mode. After this call
* transactions will be allowed over the endpoint. This must be
* called after every usb reset.
*
* @param state USB device state populated by
* cvmx_usb_initialize().
* @param endpoint_num
* The endpoint number to enable (0-4)
* @param transfer_type
* USB transfer type of this endpoint
* @param transfer_dir
* Direction of transfer relative to Octeon
* @param max_packet_size
* Maximum packet size support by this endpoint
* @param buffer Buffer to send/receive
* @param buffer_length
* Length of the buffer in bytes
*
* @return CVMX_USB_SUCCESS or a negative error code defined in
* cvmx_usb_status_t.
*/
cvmx_usb_status_t cvmx_usb_device_enable_endpoint(cvmx_usb_state_t *state,
int endpoint_num,
cvmx_usb_transfer_t transfer_type,
cvmx_usb_direction_t transfer_dir,
int max_packet_size,
uint64_t buffer,
int buffer_length)
{
cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", state);
CVMX_USB_LOG_PARAM("%d", endpoint_num);
CVMX_USB_LOG_PARAM("%d", transfer_type);
CVMX_USB_LOG_PARAM("%d", transfer_dir);
CVMX_USB_LOG_PARAM("%d", max_packet_size);
CVMX_USB_LOG_PARAM("0x%llx", (unsigned long long)buffer);
CVMX_USB_LOG_PARAM("%d", buffer_length);
if (cvmx_unlikely((endpoint_num < 0) || (endpoint_num > 4)))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(transfer_type > CVMX_USB_TRANSFER_INTERRUPT))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely((transfer_dir != CVMX_USB_DIRECTION_OUT) &&
(transfer_dir != CVMX_USB_DIRECTION_IN)))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely((max_packet_size < 0) || (max_packet_size > 512)))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(!buffer))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely(buffer_length < 0))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely((usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE) == 0))
CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
if (transfer_dir == CVMX_USB_DIRECTION_IN)
{
cvmx_usbcx_doepctlx_t usbc_doepctl;
cvmx_usbcx_doeptsizx_t usbc_doeptsiz;
/* Setup the locations the DMA engines use */
__cvmx_usb_write_csr64(usb, CVMX_USBNX_DMA0_INB_CHN0(usb->index) + endpoint_num*8, buffer);
usbc_doeptsiz.u32 = 0;
usbc_doeptsiz.s.mc = 1; // FIXME
usbc_doeptsiz.s.pktcnt = (buffer_length + max_packet_size - 1) / max_packet_size;
if (usbc_doeptsiz.s.pktcnt == 0)
usbc_doeptsiz.s.pktcnt = 1;
usbc_doeptsiz.s.xfersize = buffer_length;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_DOEPTSIZX(endpoint_num, usb->index), usbc_doeptsiz.u32);
usbc_doepctl.u32 = 0;
usbc_doepctl.s.epena = 1;
usbc_doepctl.s.setd1pid = 0; // FIXME
usbc_doepctl.s.setd0pid = 0; // FIXME
usbc_doepctl.s.cnak = 1;
usbc_doepctl.s.eptype = transfer_type;
usbc_doepctl.s.usbactep = 1;
usbc_doepctl.s.mps = max_packet_size;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_DOEPCTLX(endpoint_num, usb->index), usbc_doepctl.u32);
}
else
{
cvmx_usbcx_diepctlx_t usbc_diepctl;
cvmx_usbcx_dieptsizx_t usbc_dieptsiz;
/* Setup the locations the DMA engines use */
__cvmx_usb_write_csr64(usb, CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) + endpoint_num*8, buffer);
usbc_dieptsiz.u32 = 0;
usbc_dieptsiz.s.mc = 1; // FIXME
usbc_dieptsiz.s.pktcnt = (buffer_length + max_packet_size - 1) / max_packet_size;
if (usbc_dieptsiz.s.pktcnt == 0)
usbc_dieptsiz.s.pktcnt = 1;
usbc_dieptsiz.s.xfersize = buffer_length;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_DIEPTSIZX(endpoint_num, usb->index), usbc_dieptsiz.u32);
usbc_diepctl.u32 = 0;
usbc_diepctl.s.epena = 1;
usbc_diepctl.s.setd1pid = 0; // FIXME
usbc_diepctl.s.setd0pid = 0; // FIXME
usbc_diepctl.s.cnak = 1;
if ((transfer_type == CVMX_USB_TRANSFER_INTERRUPT) ||
(transfer_type == CVMX_USB_TRANSFER_ISOCHRONOUS))
usbc_diepctl.s.txfnum = endpoint_num; // FIXME
else
usbc_diepctl.s.txfnum = 0;
usbc_diepctl.s.eptype = transfer_type;
usbc_diepctl.s.usbactep = 1;
usbc_diepctl.s.nextep = endpoint_num - 1; // FIXME
usbc_diepctl.s.mps = max_packet_size;
__cvmx_usb_write_csr32(usb, CVMX_USBCX_DIEPCTLX(endpoint_num, usb->index), usbc_diepctl.u32);
}
CVMX_USB_RETURN(CVMX_USB_SUCCESS);
}
/**
* Disable an endpoint in device mode.
*
* @param state USB device state populated by
* cvmx_usb_initialize().
* @param endpoint_num
* The endpoint number to disable (0-4)
*
* @return CVMX_USB_SUCCESS or a negative error code defined in
* cvmx_usb_status_t.
*/
cvmx_usb_status_t cvmx_usb_device_disable_endpoint(cvmx_usb_state_t *state,
int endpoint_num)
{
cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
CVMX_USB_LOG_CALLED();
CVMX_USB_LOG_PARAM("%p", state);
CVMX_USB_LOG_PARAM("%d", endpoint_num);
if (cvmx_unlikely((endpoint_num < 0) || (endpoint_num > 4)))
CVMX_USB_RETURN(CVMX_USB_INVALID_PARAM);
if (cvmx_unlikely((usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_DEVICE_MODE) == 0))
CVMX_USB_RETURN(CVMX_USB_INCORRECT_MODE);
USB_SET_FIELD32(CVMX_USBCX_DOEPCTLX(endpoint_num, usb->index),
cvmx_usbcx_doepctlx_t, epdis, 1);
USB_SET_FIELD32(CVMX_USBCX_DIEPCTLX(endpoint_num, usb->index),
cvmx_usbcx_diepctlx_t, epdis, 1);
CVMX_USB_RETURN(CVMX_USB_SUCCESS);
}
extern void cvmx_usb_set_toggle(cvmx_usb_state_t *state, int endpoint_num, int toggle)
{
cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
cvmx_usb_pipe_t *pipe = usb->pipe + endpoint_num;
pipe->pid_toggle = !!toggle;
}
extern int cvmx_usb_get_toggle(cvmx_usb_state_t *state, int endpoint_num)
{
cvmx_usb_internal_state_t *usb = (cvmx_usb_internal_state_t*)state;
cvmx_usb_pipe_t *pipe = usb->pipe + endpoint_num;
if (pipe->pid_toggle)
return (1);
return (0);
}