freebsd-nq/sys/dev/ichiic/ig4_iic.c
Oleksandr Tymoshenko 627e5af85a [ig4] style(9) clean-up
Submitted by:	Rajesh Kumar <rajfbsd@gmail.com>
Approved by:	re (gjb, kib)
2018-10-04 19:54:47 +00:00

800 lines
20 KiB
C

/*
* Copyright (c) 2014 The DragonFly Project. All rights reserved.
*
* This code is derived from software contributed to The DragonFly Project
* by Matthew Dillon <dillon@backplane.com> and was subsequently ported
* to FreeBSD by Michael Gmelin <freebsd@grem.de>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name of The DragonFly Project nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific, prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Intel fourth generation mobile cpus integrated I2C device.
*
* See ig4_reg.h for datasheet reference and notes.
* See ig4_var.h for locking semantics.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/errno.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sx.h>
#include <sys/syslog.h>
#include <sys/bus.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/iicbus/iicbus.h>
#include <dev/iicbus/iiconf.h>
#include <dev/ichiic/ig4_reg.h>
#include <dev/ichiic/ig4_var.h>
#define TRANS_NORMAL 1
#define TRANS_PCALL 2
#define TRANS_BLOCK 3
static void ig4iic_start(void *xdev);
static void ig4iic_intr(void *cookie);
static void ig4iic_dump(ig4iic_softc_t *sc);
static int ig4_dump;
SYSCTL_INT(_debug, OID_AUTO, ig4_dump, CTLFLAG_RW,
&ig4_dump, 0, "Dump controller registers");
/*
* Low-level inline support functions
*/
static __inline void
reg_write(ig4iic_softc_t *sc, uint32_t reg, uint32_t value)
{
bus_write_4(sc->regs_res, reg, value);
bus_barrier(sc->regs_res, reg, 4, BUS_SPACE_BARRIER_WRITE);
}
static __inline uint32_t
reg_read(ig4iic_softc_t *sc, uint32_t reg)
{
uint32_t value;
bus_barrier(sc->regs_res, reg, 4, BUS_SPACE_BARRIER_READ);
value = bus_read_4(sc->regs_res, reg);
return (value);
}
/*
* Enable or disable the controller and wait for the controller to acknowledge
* the state change.
*/
static int
set_controller(ig4iic_softc_t *sc, uint32_t ctl)
{
int retry;
int error;
uint32_t v;
/*
* When the controller is enabled, interrupt on STOP detect
* or receive character ready and clear pending interrupts.
*/
if (ctl & IG4_I2C_ENABLE) {
reg_write(sc, IG4_REG_INTR_MASK, IG4_INTR_STOP_DET |
IG4_INTR_RX_FULL);
reg_read(sc, IG4_REG_CLR_INTR);
} else
reg_write(sc, IG4_REG_INTR_MASK, 0);
reg_write(sc, IG4_REG_I2C_EN, ctl);
error = IIC_ETIMEOUT;
for (retry = 100; retry > 0; --retry) {
v = reg_read(sc, IG4_REG_ENABLE_STATUS);
if (((v ^ ctl) & IG4_I2C_ENABLE) == 0) {
error = 0;
break;
}
if (cold)
DELAY(1000);
else
mtx_sleep(sc, &sc->io_lock, 0, "i2cslv", 1);
}
return (error);
}
/*
* Wait up to 25ms for the requested status using a 25uS polling loop.
*/
static int
wait_status(ig4iic_softc_t *sc, uint32_t status)
{
uint32_t v;
int error;
int txlvl = -1;
u_int count_us = 0;
u_int limit_us = 25000; /* 25ms */
error = IIC_ETIMEOUT;
for (;;) {
/*
* Check requested status
*/
v = reg_read(sc, IG4_REG_I2C_STA);
if (v & status) {
error = 0;
break;
}
/*
* When waiting for receive data break-out if the interrupt
* loaded data into the FIFO.
*/
if (status & IG4_STATUS_RX_NOTEMPTY) {
if (sc->rpos != sc->rnext) {
error = 0;
break;
}
}
/*
* When waiting for the transmit FIFO to become empty,
* reset the timeout if we see a change in the transmit
* FIFO level as progress is being made.
*/
if (status & IG4_STATUS_TX_EMPTY) {
v = reg_read(sc, IG4_REG_TXFLR) & IG4_FIFOLVL_MASK;
if (txlvl != v) {
txlvl = v;
count_us = 0;
}
}
/*
* Stop if we've run out of time.
*/
if (count_us >= limit_us)
break;
/*
* When waiting for receive data let the interrupt do its
* work, otherwise poll with the lock held.
*/
if (status & IG4_STATUS_RX_NOTEMPTY) {
mtx_sleep(sc, &sc->io_lock, 0, "i2cwait",
(hz + 99) / 100); /* sleep up to 10ms */
count_us += 10000;
} else {
DELAY(25);
count_us += 25;
}
}
return (error);
}
/*
* Read I2C data. The data might have already been read by
* the interrupt code, otherwise it is sitting in the data
* register.
*/
static uint8_t
data_read(ig4iic_softc_t *sc)
{
uint8_t c;
if (sc->rpos == sc->rnext) {
c = (uint8_t)reg_read(sc, IG4_REG_DATA_CMD);
} else {
c = sc->rbuf[sc->rpos & IG4_RBUFMASK];
++sc->rpos;
}
return (c);
}
/*
* Set the slave address. The controller must be disabled when
* changing the address.
*
* This operation does not issue anything to the I2C bus but sets
* the target address for when the controller later issues a START.
*/
static void
set_slave_addr(ig4iic_softc_t *sc, uint8_t slave)
{
uint32_t tar;
uint32_t ctl;
int use_10bit;
use_10bit = 0;
if (sc->slave_valid && sc->last_slave == slave &&
sc->use_10bit == use_10bit) {
return;
}
sc->use_10bit = use_10bit;
/*
* Wait for TXFIFO to drain before disabling the controller.
*
* If a write message has not been completed it's really a
* programming error, but for now in that case issue an extra
* byte + STOP.
*
* If a read message has not been completed it's also a programming
* error, for now just ignore it.
*/
wait_status(sc, IG4_STATUS_TX_NOTFULL);
if (sc->write_started) {
reg_write(sc, IG4_REG_DATA_CMD, IG4_DATA_STOP);
sc->write_started = 0;
}
if (sc->read_started)
sc->read_started = 0;
wait_status(sc, IG4_STATUS_TX_EMPTY);
set_controller(sc, 0);
ctl = reg_read(sc, IG4_REG_CTL);
ctl &= ~IG4_CTL_10BIT;
ctl |= IG4_CTL_RESTARTEN;
tar = slave;
if (sc->use_10bit) {
tar |= IG4_TAR_10BIT;
ctl |= IG4_CTL_10BIT;
}
reg_write(sc, IG4_REG_CTL, ctl);
reg_write(sc, IG4_REG_TAR_ADD, tar);
set_controller(sc, IG4_I2C_ENABLE);
sc->slave_valid = 1;
sc->last_slave = slave;
}
/*
* IICBUS API FUNCTIONS
*/
static int
ig4iic_xfer_start(ig4iic_softc_t *sc, uint16_t slave)
{
set_slave_addr(sc, slave >> 1);
return (0);
}
static int
ig4iic_read(ig4iic_softc_t *sc, uint8_t *buf, uint16_t len,
bool repeated_start, bool stop)
{
uint32_t cmd;
uint16_t i;
int error;
if (len == 0)
return (0);
cmd = IG4_DATA_COMMAND_RD;
cmd |= repeated_start ? IG4_DATA_RESTART : 0;
cmd |= stop && len == 1 ? IG4_DATA_STOP : 0;
/* Issue request for the first byte (could be last as well). */
reg_write(sc, IG4_REG_DATA_CMD, cmd);
for (i = 0; i < len; i++) {
/*
* Maintain a pipeline by queueing the allowance for the next
* read before waiting for the current read.
*/
cmd = IG4_DATA_COMMAND_RD;
if (i < len - 1) {
cmd = IG4_DATA_COMMAND_RD;
cmd |= stop && i == len - 2 ? IG4_DATA_STOP : 0;
reg_write(sc, IG4_REG_DATA_CMD, cmd);
}
error = wait_status(sc, IG4_STATUS_RX_NOTEMPTY);
if (error)
break;
buf[i] = data_read(sc);
}
(void)reg_read(sc, IG4_REG_TX_ABRT_SOURCE);
return (error);
}
static int
ig4iic_write(ig4iic_softc_t *sc, uint8_t *buf, uint16_t len,
bool repeated_start, bool stop)
{
uint32_t cmd;
uint16_t i;
int error;
if (len == 0)
return (0);
cmd = repeated_start ? IG4_DATA_RESTART : 0;
for (i = 0; i < len; i++) {
error = wait_status(sc, IG4_STATUS_TX_NOTFULL);
if (error)
break;
cmd |= buf[i];
cmd |= stop && i == len - 1 ? IG4_DATA_STOP : 0;
reg_write(sc, IG4_REG_DATA_CMD, cmd);
cmd = 0;
}
(void)reg_read(sc, IG4_REG_TX_ABRT_SOURCE);
return (error);
}
int
ig4iic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs)
{
ig4iic_softc_t *sc = device_get_softc(dev);
const char *reason = NULL;
uint32_t i;
int error;
int unit;
bool rpstart;
bool stop;
/*
* The hardware interface imposes limits on allowed I2C messages.
* It is not possible to explicitly send a start or stop.
* They are automatically sent (or not sent, depending on the
* configuration) when a data byte is transferred.
* For this reason it's impossible to send a message with no data
* at all (like an SMBus quick message).
* The start condition is automatically generated after the stop
* condition, so it's impossible to not have a start after a stop.
* The repeated start condition is automatically sent if a change
* of the transfer direction happens, so it's impossible to have
* a change of direction without a (repeated) start.
* The repeated start can be forced even without the change of
* direction.
* Changing the target slave address requires resetting the hardware
* state, so it's impossible to do that without the stop followed
* by the start.
*/
for (i = 0; i < nmsgs; i++) {
#if 0
if (i == 0 && (msgs[i].flags & IIC_M_NOSTART) != 0) {
reason = "first message without start";
break;
}
if (i == nmsgs - 1 && (msgs[i].flags & IIC_M_NOSTOP) != 0) {
reason = "last message without stop";
break;
}
#endif
if (msgs[i].len == 0) {
reason = "message with no data";
break;
}
if (i > 0) {
if ((msgs[i].flags & IIC_M_NOSTART) != 0 &&
(msgs[i - 1].flags & IIC_M_NOSTOP) == 0) {
reason = "stop not followed by start";
break;
}
if ((msgs[i - 1].flags & IIC_M_NOSTOP) != 0 &&
msgs[i].slave != msgs[i - 1].slave) {
reason = "change of slave without stop";
break;
}
if ((msgs[i].flags & IIC_M_NOSTART) != 0 &&
(msgs[i].flags & IIC_M_RD) !=
(msgs[i - 1].flags & IIC_M_RD)) {
reason = "change of direction without repeated"
" start";
break;
}
}
}
if (reason != NULL) {
if (bootverbose)
device_printf(dev, "%s\n", reason);
return (IIC_ENOTSUPP);
}
sx_xlock(&sc->call_lock);
mtx_lock(&sc->io_lock);
/* Debugging - dump registers. */
if (ig4_dump) {
unit = device_get_unit(dev);
if (ig4_dump & (1 << unit)) {
ig4_dump &= ~(1 << unit);
ig4iic_dump(sc);
}
}
/*
* Clear any previous abort condition that may have been holding
* the txfifo in reset.
*/
reg_read(sc, IG4_REG_CLR_TX_ABORT);
/*
* Clean out any previously received data.
*/
if (sc->rpos != sc->rnext && bootverbose) {
device_printf(sc->dev, "discarding %d bytes of spurious data\n",
sc->rnext - sc->rpos);
}
sc->rpos = 0;
sc->rnext = 0;
rpstart = false;
error = 0;
for (i = 0; i < nmsgs; i++) {
if ((msgs[i].flags & IIC_M_NOSTART) == 0) {
error = ig4iic_xfer_start(sc, msgs[i].slave);
} else {
if (!sc->slave_valid ||
(msgs[i].slave >> 1) != sc->last_slave) {
device_printf(dev, "start condition suppressed"
"but slave address is not set up");
error = EINVAL;
break;
}
rpstart = false;
}
if (error != 0)
break;
stop = (msgs[i].flags & IIC_M_NOSTOP) == 0;
if (msgs[i].flags & IIC_M_RD)
error = ig4iic_read(sc, msgs[i].buf, msgs[i].len,
rpstart, stop);
else
error = ig4iic_write(sc, msgs[i].buf, msgs[i].len,
rpstart, stop);
if (error != 0)
break;
rpstart = !stop;
}
mtx_unlock(&sc->io_lock);
sx_unlock(&sc->call_lock);
return (error);
}
int
ig4iic_reset(device_t dev, u_char speed, u_char addr, u_char *oldaddr)
{
ig4iic_softc_t *sc = device_get_softc(dev);
sx_xlock(&sc->call_lock);
mtx_lock(&sc->io_lock);
/* TODO handle speed configuration? */
if (oldaddr != NULL)
*oldaddr = sc->last_slave << 1;
set_slave_addr(sc, addr >> 1);
if (addr == IIC_UNKNOWN)
sc->slave_valid = false;
mtx_unlock(&sc->io_lock);
sx_unlock(&sc->call_lock);
return (0);
}
/*
* Called from ig4iic_pci_attach/detach()
*/
int
ig4iic_attach(ig4iic_softc_t *sc)
{
int error;
uint32_t v;
mtx_init(&sc->io_lock, "IG4 I/O lock", NULL, MTX_DEF);
sx_init(&sc->call_lock, "IG4 call lock");
v = reg_read(sc, IG4_REG_DEVIDLE_CTRL);
if (sc->version == IG4_SKYLAKE && (v & IG4_RESTORE_REQUIRED) ) {
reg_write(sc, IG4_REG_DEVIDLE_CTRL, IG4_DEVICE_IDLE | IG4_RESTORE_REQUIRED);
reg_write(sc, IG4_REG_DEVIDLE_CTRL, 0);
reg_write(sc, IG4_REG_RESETS_SKL, IG4_RESETS_ASSERT_SKL);
reg_write(sc, IG4_REG_RESETS_SKL, IG4_RESETS_DEASSERT_SKL);
DELAY(1000);
}
if (sc->version == IG4_ATOM)
v = reg_read(sc, IG4_REG_COMP_TYPE);
if (sc->version == IG4_HASWELL || sc->version == IG4_ATOM) {
v = reg_read(sc, IG4_REG_COMP_PARAM1);
v = reg_read(sc, IG4_REG_GENERAL);
/*
* The content of IG4_REG_GENERAL is different for each
* controller version.
*/
if (sc->version == IG4_HASWELL &&
(v & IG4_GENERAL_SWMODE) == 0) {
v |= IG4_GENERAL_SWMODE;
reg_write(sc, IG4_REG_GENERAL, v);
v = reg_read(sc, IG4_REG_GENERAL);
}
}
if (sc->version == IG4_HASWELL) {
v = reg_read(sc, IG4_REG_SW_LTR_VALUE);
v = reg_read(sc, IG4_REG_AUTO_LTR_VALUE);
} else if (sc->version == IG4_SKYLAKE) {
v = reg_read(sc, IG4_REG_ACTIVE_LTR_VALUE);
v = reg_read(sc, IG4_REG_IDLE_LTR_VALUE);
}
if (sc->version == IG4_HASWELL || sc->version == IG4_ATOM) {
v = reg_read(sc, IG4_REG_COMP_VER);
if (v < IG4_COMP_MIN_VER) {
error = ENXIO;
goto done;
}
}
v = reg_read(sc, IG4_REG_SS_SCL_HCNT);
v = reg_read(sc, IG4_REG_SS_SCL_LCNT);
v = reg_read(sc, IG4_REG_FS_SCL_HCNT);
v = reg_read(sc, IG4_REG_FS_SCL_LCNT);
v = reg_read(sc, IG4_REG_SDA_HOLD);
v = reg_read(sc, IG4_REG_SS_SCL_HCNT);
reg_write(sc, IG4_REG_FS_SCL_HCNT, v);
v = reg_read(sc, IG4_REG_SS_SCL_LCNT);
reg_write(sc, IG4_REG_FS_SCL_LCNT, v);
/*
* Program based on a 25000 Hz clock. This is a bit of a
* hack (obviously). The defaults are 400 and 470 for standard
* and 60 and 130 for fast. The defaults for standard fail
* utterly (presumably cause an abort) because the clock time
* is ~18.8ms by default. This brings it down to ~4ms (for now).
*/
reg_write(sc, IG4_REG_SS_SCL_HCNT, 100);
reg_write(sc, IG4_REG_SS_SCL_LCNT, 125);
reg_write(sc, IG4_REG_FS_SCL_HCNT, 100);
reg_write(sc, IG4_REG_FS_SCL_LCNT, 125);
/*
* Use a threshold of 1 so we get interrupted on each character,
* allowing us to use mtx_sleep() in our poll code. Not perfect
* but this is better than using DELAY() for receiving data.
*
* See ig4_var.h for details on interrupt handler synchronization.
*/
reg_write(sc, IG4_REG_RX_TL, 1);
reg_write(sc, IG4_REG_CTL,
IG4_CTL_MASTER |
IG4_CTL_SLAVE_DISABLE |
IG4_CTL_RESTARTEN |
IG4_CTL_SPEED_STD);
sc->iicbus = device_add_child(sc->dev, "iicbus", -1);
if (sc->iicbus == NULL) {
device_printf(sc->dev, "iicbus driver not found\n");
error = ENXIO;
goto done;
}
#if 0
/*
* Don't do this, it blows up the PCI config
*/
if (sc->version == IG4_HASWELL || sc->version == IG4_ATOM) {
reg_write(sc, IG4_REG_RESETS_HSW, IG4_RESETS_ASSERT_HSW);
reg_write(sc, IG4_REG_RESETS_HSW, IG4_RESETS_DEASSERT_HSW);
} else if (sc->version = IG4_SKYLAKE) {
reg_write(sc, IG4_REG_RESETS_SKL, IG4_RESETS_ASSERT_SKL);
reg_write(sc, IG4_REG_RESETS_SKL, IG4_RESETS_DEASSERT_SKL);
}
#endif
mtx_lock(&sc->io_lock);
if (set_controller(sc, 0))
device_printf(sc->dev, "controller error during attach-1\n");
if (set_controller(sc, IG4_I2C_ENABLE))
device_printf(sc->dev, "controller error during attach-2\n");
mtx_unlock(&sc->io_lock);
error = bus_setup_intr(sc->dev, sc->intr_res, INTR_TYPE_MISC | INTR_MPSAFE,
NULL, ig4iic_intr, sc, &sc->intr_handle);
if (error) {
device_printf(sc->dev,
"Unable to setup irq: error %d\n", error);
}
sc->enum_hook.ich_func = ig4iic_start;
sc->enum_hook.ich_arg = sc->dev;
/*
* We have to wait until interrupts are enabled. I2C read and write
* only works if the interrupts are available.
*/
if (config_intrhook_establish(&sc->enum_hook) != 0)
error = ENOMEM;
else
error = 0;
done:
return (error);
}
void
ig4iic_start(void *xdev)
{
int error;
ig4iic_softc_t *sc;
device_t dev = (device_t)xdev;
sc = device_get_softc(dev);
config_intrhook_disestablish(&sc->enum_hook);
error = bus_generic_attach(sc->dev);
if (error) {
device_printf(sc->dev,
"failed to attach child: error %d\n", error);
}
}
int
ig4iic_detach(ig4iic_softc_t *sc)
{
int error;
if (device_is_attached(sc->dev)) {
error = bus_generic_detach(sc->dev);
if (error)
return (error);
}
if (sc->iicbus)
device_delete_child(sc->dev, sc->iicbus);
if (sc->intr_handle)
bus_teardown_intr(sc->dev, sc->intr_res, sc->intr_handle);
sx_xlock(&sc->call_lock);
mtx_lock(&sc->io_lock);
sc->iicbus = NULL;
sc->intr_handle = NULL;
reg_write(sc, IG4_REG_INTR_MASK, 0);
set_controller(sc, 0);
mtx_unlock(&sc->io_lock);
sx_xunlock(&sc->call_lock);
mtx_destroy(&sc->io_lock);
sx_destroy(&sc->call_lock);
return (0);
}
/*
* Interrupt Operation, see ig4_var.h for locking semantics.
*/
static void
ig4iic_intr(void *cookie)
{
ig4iic_softc_t *sc = cookie;
uint32_t status;
mtx_lock(&sc->io_lock);
/* reg_write(sc, IG4_REG_INTR_MASK, IG4_INTR_STOP_DET);*/
reg_read(sc, IG4_REG_CLR_INTR);
status = reg_read(sc, IG4_REG_I2C_STA);
while (status & IG4_STATUS_RX_NOTEMPTY) {
sc->rbuf[sc->rnext & IG4_RBUFMASK] =
(uint8_t)reg_read(sc, IG4_REG_DATA_CMD);
++sc->rnext;
status = reg_read(sc, IG4_REG_I2C_STA);
}
/*
* Workaround to trigger pending interrupt if IG4_REG_INTR_STAT
* is changed after clearing it
*/
if (sc->access_intr_mask != 0) {
status = reg_read(sc, IG4_REG_INTR_MASK);
if (status != 0) {
reg_write(sc, IG4_REG_INTR_MASK, 0);
reg_write(sc, IG4_REG_INTR_MASK, status);
}
}
wakeup(sc);
mtx_unlock(&sc->io_lock);
}
#define REGDUMP(sc, reg) \
device_printf(sc->dev, " %-23s %08x\n", #reg, reg_read(sc, reg))
static void
ig4iic_dump(ig4iic_softc_t *sc)
{
device_printf(sc->dev, "ig4iic register dump:\n");
REGDUMP(sc, IG4_REG_CTL);
REGDUMP(sc, IG4_REG_TAR_ADD);
REGDUMP(sc, IG4_REG_SS_SCL_HCNT);
REGDUMP(sc, IG4_REG_SS_SCL_LCNT);
REGDUMP(sc, IG4_REG_FS_SCL_HCNT);
REGDUMP(sc, IG4_REG_FS_SCL_LCNT);
REGDUMP(sc, IG4_REG_INTR_STAT);
REGDUMP(sc, IG4_REG_INTR_MASK);
REGDUMP(sc, IG4_REG_RAW_INTR_STAT);
REGDUMP(sc, IG4_REG_RX_TL);
REGDUMP(sc, IG4_REG_TX_TL);
REGDUMP(sc, IG4_REG_I2C_EN);
REGDUMP(sc, IG4_REG_I2C_STA);
REGDUMP(sc, IG4_REG_TXFLR);
REGDUMP(sc, IG4_REG_RXFLR);
REGDUMP(sc, IG4_REG_SDA_HOLD);
REGDUMP(sc, IG4_REG_TX_ABRT_SOURCE);
REGDUMP(sc, IG4_REG_SLV_DATA_NACK);
REGDUMP(sc, IG4_REG_DMA_CTRL);
REGDUMP(sc, IG4_REG_DMA_TDLR);
REGDUMP(sc, IG4_REG_DMA_RDLR);
REGDUMP(sc, IG4_REG_SDA_SETUP);
REGDUMP(sc, IG4_REG_ENABLE_STATUS);
if (sc->version == IG4_HASWELL || sc->version == IG4_ATOM) {
REGDUMP(sc, IG4_REG_COMP_PARAM1);
REGDUMP(sc, IG4_REG_COMP_VER);
}
if (sc->version == IG4_ATOM) {
REGDUMP(sc, IG4_REG_COMP_TYPE);
REGDUMP(sc, IG4_REG_CLK_PARMS);
}
if (sc->version == IG4_HASWELL || sc->version == IG4_ATOM) {
REGDUMP(sc, IG4_REG_RESETS_HSW);
REGDUMP(sc, IG4_REG_GENERAL);
} else if (sc->version == IG4_SKYLAKE) {
REGDUMP(sc, IG4_REG_RESETS_SKL);
}
if (sc->version == IG4_HASWELL) {
REGDUMP(sc, IG4_REG_SW_LTR_VALUE);
REGDUMP(sc, IG4_REG_AUTO_LTR_VALUE);
} else if (sc->version == IG4_SKYLAKE) {
REGDUMP(sc, IG4_REG_ACTIVE_LTR_VALUE);
REGDUMP(sc, IG4_REG_IDLE_LTR_VALUE);
}
}
#undef REGDUMP
DRIVER_MODULE(iicbus, ig4iic_acpi, iicbus_driver, iicbus_devclass, NULL, NULL);
DRIVER_MODULE(iicbus, ig4iic_pci, iicbus_driver, iicbus_devclass, NULL, NULL);