freebsd-nq/stand/i386/zfsboot/zfsboot.c
2017-11-14 23:02:19 +00:00

1152 lines
26 KiB
C

/*-
* Copyright (c) 1998 Robert Nordier
* All rights reserved.
*
* Redistribution and use in source and binary forms are freely
* permitted provided that the above copyright notice and this
* paragraph and the following disclaimer are duplicated in all
* such forms.
*
* This software is provided "AS IS" and without any express or
* implied warranties, including, without limitation, the implied
* warranties of merchantability and fitness for a particular
* purpose.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/errno.h>
#include <sys/diskmbr.h>
#ifdef GPT
#include <sys/gpt.h>
#endif
#include <sys/reboot.h>
#include <sys/queue.h>
#include <machine/bootinfo.h>
#include <machine/elf.h>
#include <machine/pc/bios.h>
#include <stdarg.h>
#include <stddef.h>
#include <a.out.h>
#include <btxv86.h>
#include "lib.h"
#include "rbx.h"
#include "drv.h"
#include "edd.h"
#include "util.h"
#include "cons.h"
#include "bootargs.h"
#include "paths.h"
#include "libzfs.h"
#define ARGS 0x900
#define NOPT 14
#define NDEV 3
#define BIOS_NUMDRIVES 0x475
#define DRV_HARD 0x80
#define DRV_MASK 0x7f
#define TYPE_AD 0
#define TYPE_DA 1
#define TYPE_MAXHARD TYPE_DA
#define TYPE_FD 2
#define DEV_GELIBOOT_BSIZE 4096
extern uint32_t _end;
#ifdef GPT
static const uuid_t freebsd_zfs_uuid = GPT_ENT_TYPE_FREEBSD_ZFS;
#endif
static const char optstr[NOPT] = "DhaCcdgmnpqrsv"; /* Also 'P', 'S' */
static const unsigned char flags[NOPT] = {
RBX_DUAL,
RBX_SERIAL,
RBX_ASKNAME,
RBX_CDROM,
RBX_CONFIG,
RBX_KDB,
RBX_GDB,
RBX_MUTE,
RBX_NOINTR,
RBX_PAUSE,
RBX_QUIET,
RBX_DFLTROOT,
RBX_SINGLE,
RBX_VERBOSE
};
uint32_t opts;
static const unsigned char dev_maj[NDEV] = {30, 4, 2};
static char cmd[512];
static char cmddup[512];
static char kname[1024];
static char rootname[256];
static int comspeed = SIOSPD;
static struct bootinfo bootinfo;
static uint32_t bootdev;
static struct zfs_boot_args zfsargs;
static struct zfsmount zfsmount;
vm_offset_t high_heap_base;
uint32_t bios_basemem, bios_extmem, high_heap_size;
static struct bios_smap smap;
/*
* The minimum amount of memory to reserve in bios_extmem for the heap.
*/
#define HEAP_MIN (64 * 1024 * 1024)
static char *heap_next;
static char *heap_end;
/* Buffers that must not span a 64k boundary. */
#define READ_BUF_SIZE 8192
struct dmadat {
char rdbuf[READ_BUF_SIZE]; /* for reading large things */
char secbuf[READ_BUF_SIZE]; /* for MBR/disklabel */
};
static struct dmadat *dmadat;
void exit(int);
void reboot(void);
static void load(void);
static int parse_cmd(void);
static void bios_getmem(void);
void *malloc(size_t n);
void free(void *ptr);
int main(void);
void *
malloc(size_t n)
{
char *p = heap_next;
if (p + n > heap_end) {
printf("malloc failure\n");
for (;;)
;
/* NOTREACHED */
return (0);
}
heap_next += n;
return (p);
}
void
free(void *ptr)
{
return;
}
static char *
strdup(const char *s)
{
char *p = malloc(strlen(s) + 1);
strcpy(p, s);
return (p);
}
#ifdef LOADER_GELI_SUPPORT
#include "geliboot.c"
static char gelipw[GELI_PW_MAXLEN];
static struct keybuf *gelibuf;
#endif
#include "zfsimpl.c"
/*
* Read from a dnode (which must be from a ZPL filesystem).
*/
static int
zfs_read(spa_t *spa, const dnode_phys_t *dnode, off_t *offp, void *start, size_t size)
{
const znode_phys_t *zp = (const znode_phys_t *) dnode->dn_bonus;
size_t n;
int rc;
n = size;
if (*offp + n > zp->zp_size)
n = zp->zp_size - *offp;
rc = dnode_read(spa, dnode, *offp, start, n);
if (rc)
return (-1);
*offp += n;
return (n);
}
/*
* Current ZFS pool
*/
static spa_t *spa;
static spa_t *primary_spa;
static vdev_t *primary_vdev;
/*
* A wrapper for dskread that doesn't have to worry about whether the
* buffer pointer crosses a 64k boundary.
*/
static int
vdev_read(vdev_t *vdev, void *priv, off_t off, void *buf, size_t bytes)
{
char *p;
daddr_t lba, alignlba;
off_t diff;
unsigned int nb, alignnb;
struct dsk *dsk = (struct dsk *) priv;
if ((off & (DEV_BSIZE - 1)) || (bytes & (DEV_BSIZE - 1)))
return -1;
p = buf;
lba = off / DEV_BSIZE;
lba += dsk->start;
/*
* Align reads to 4k else 4k sector GELIs will not decrypt.
* Round LBA down to nearest multiple of DEV_GELIBOOT_BSIZE bytes.
*/
alignlba = rounddown2(off, DEV_GELIBOOT_BSIZE) / DEV_BSIZE;
/*
* The read must be aligned to DEV_GELIBOOT_BSIZE bytes relative to the
* start of the GELI partition, not the start of the actual disk.
*/
alignlba += dsk->start;
diff = (lba - alignlba) * DEV_BSIZE;
while (bytes > 0) {
nb = bytes / DEV_BSIZE;
/*
* Ensure that the read size plus the leading offset does not
* exceed the size of the read buffer.
*/
if (nb > (READ_BUF_SIZE - diff) / DEV_BSIZE)
nb = (READ_BUF_SIZE - diff) / DEV_BSIZE;
/*
* Round the number of blocks to read up to the nearest multiple
* of DEV_GELIBOOT_BSIZE.
*/
alignnb = roundup2(nb * DEV_BSIZE + diff, DEV_GELIBOOT_BSIZE)
/ DEV_BSIZE;
if (drvread(dsk, dmadat->rdbuf, alignlba, alignnb))
return -1;
#ifdef LOADER_GELI_SUPPORT
/* decrypt */
if (is_geli(dsk) == 0) {
if (geli_read(dsk, ((alignlba - dsk->start) *
DEV_BSIZE), dmadat->rdbuf, alignnb * DEV_BSIZE))
return (-1);
}
#endif
memcpy(p, dmadat->rdbuf + diff, nb * DEV_BSIZE);
p += nb * DEV_BSIZE;
lba += nb;
alignlba += alignnb;
bytes -= nb * DEV_BSIZE;
/* Don't need the leading offset after the first block. */
diff = 0;
}
return 0;
}
static int
vdev_write(vdev_t *vdev, void *priv, off_t off, void *buf, size_t bytes)
{
char *p;
daddr_t lba;
unsigned int nb;
struct dsk *dsk = (struct dsk *) priv;
if ((off & (DEV_BSIZE - 1)) || (bytes & (DEV_BSIZE - 1)))
return -1;
p = buf;
lba = off / DEV_BSIZE;
lba += dsk->start;
while (bytes > 0) {
nb = bytes / DEV_BSIZE;
if (nb > READ_BUF_SIZE / DEV_BSIZE)
nb = READ_BUF_SIZE / DEV_BSIZE;
memcpy(dmadat->rdbuf, p, nb * DEV_BSIZE);
if (drvwrite(dsk, dmadat->rdbuf, lba, nb))
return -1;
p += nb * DEV_BSIZE;
lba += nb;
bytes -= nb * DEV_BSIZE;
}
return 0;
}
static int
xfsread(const dnode_phys_t *dnode, off_t *offp, void *buf, size_t nbyte)
{
if ((size_t)zfs_read(spa, dnode, offp, buf, nbyte) != nbyte) {
printf("Invalid format\n");
return -1;
}
return 0;
}
/*
* Read Pad2 (formerly "Boot Block Header") area of the first
* vdev label of the given vdev.
*/
static int
vdev_read_pad2(vdev_t *vdev, char *buf, size_t size)
{
blkptr_t bp;
char *tmp = zap_scratch;
off_t off = offsetof(vdev_label_t, vl_pad2);
if (size > VDEV_PAD_SIZE)
size = VDEV_PAD_SIZE;
BP_ZERO(&bp);
BP_SET_LSIZE(&bp, VDEV_PAD_SIZE);
BP_SET_PSIZE(&bp, VDEV_PAD_SIZE);
BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
if (vdev_read_phys(vdev, &bp, tmp, off, 0))
return (EIO);
memcpy(buf, tmp, size);
return (0);
}
static int
vdev_clear_pad2(vdev_t *vdev)
{
char *zeroes = zap_scratch;
uint64_t *end;
off_t off = offsetof(vdev_label_t, vl_pad2);
memset(zeroes, 0, VDEV_PAD_SIZE);
end = (uint64_t *)(zeroes + VDEV_PAD_SIZE);
/* ZIO_CHECKSUM_LABEL magic and pre-calcualted checksum for all zeros */
end[-5] = 0x0210da7ab10c7a11;
end[-4] = 0x97f48f807f6e2a3f;
end[-3] = 0xaf909f1658aacefc;
end[-2] = 0xcbd1ea57ff6db48b;
end[-1] = 0x6ec692db0d465fab;
if (vdev_write(vdev, vdev->v_read_priv, off, zeroes, VDEV_PAD_SIZE))
return (EIO);
return (0);
}
static void
bios_getmem(void)
{
uint64_t size;
/* Parse system memory map */
v86.ebx = 0;
do {
v86.ctl = V86_FLAGS;
v86.addr = 0x15; /* int 0x15 function 0xe820*/
v86.eax = 0xe820;
v86.ecx = sizeof(struct bios_smap);
v86.edx = SMAP_SIG;
v86.es = VTOPSEG(&smap);
v86.edi = VTOPOFF(&smap);
v86int();
if (V86_CY(v86.efl) || (v86.eax != SMAP_SIG))
break;
/* look for a low-memory segment that's large enough */
if ((smap.type == SMAP_TYPE_MEMORY) && (smap.base == 0) &&
(smap.length >= (512 * 1024)))
bios_basemem = smap.length;
/* look for the first segment in 'extended' memory */
if ((smap.type == SMAP_TYPE_MEMORY) && (smap.base == 0x100000)) {
bios_extmem = smap.length;
}
/*
* Look for the largest segment in 'extended' memory beyond
* 1MB but below 4GB.
*/
if ((smap.type == SMAP_TYPE_MEMORY) && (smap.base > 0x100000) &&
(smap.base < 0x100000000ull)) {
size = smap.length;
/*
* If this segment crosses the 4GB boundary, truncate it.
*/
if (smap.base + size > 0x100000000ull)
size = 0x100000000ull - smap.base;
if (size > high_heap_size) {
high_heap_size = size;
high_heap_base = smap.base;
}
}
} while (v86.ebx != 0);
/* Fall back to the old compatibility function for base memory */
if (bios_basemem == 0) {
v86.ctl = 0;
v86.addr = 0x12; /* int 0x12 */
v86int();
bios_basemem = (v86.eax & 0xffff) * 1024;
}
/* Fall back through several compatibility functions for extended memory */
if (bios_extmem == 0) {
v86.ctl = V86_FLAGS;
v86.addr = 0x15; /* int 0x15 function 0xe801*/
v86.eax = 0xe801;
v86int();
if (!V86_CY(v86.efl)) {
bios_extmem = ((v86.ecx & 0xffff) + ((v86.edx & 0xffff) * 64)) * 1024;
}
}
if (bios_extmem == 0) {
v86.ctl = 0;
v86.addr = 0x15; /* int 0x15 function 0x88*/
v86.eax = 0x8800;
v86int();
bios_extmem = (v86.eax & 0xffff) * 1024;
}
/*
* If we have extended memory and did not find a suitable heap
* region in the SMAP, use the last 3MB of 'extended' memory as a
* high heap candidate.
*/
if (bios_extmem >= HEAP_MIN && high_heap_size < HEAP_MIN) {
high_heap_size = HEAP_MIN;
high_heap_base = bios_extmem + 0x100000 - HEAP_MIN;
}
}
/*
* Try to detect a device supported by the legacy int13 BIOS
*/
static int
int13probe(int drive)
{
v86.ctl = V86_FLAGS;
v86.addr = 0x13;
v86.eax = 0x800;
v86.edx = drive;
v86int();
if (!V86_CY(v86.efl) && /* carry clear */
((v86.edx & 0xff) != (drive & DRV_MASK))) { /* unit # OK */
if ((v86.ecx & 0x3f) == 0) { /* absurd sector size */
return(0); /* skip device */
}
return (1);
}
return(0);
}
/*
* We call this when we find a ZFS vdev - ZFS consumes the dsk
* structure so we must make a new one.
*/
static struct dsk *
copy_dsk(struct dsk *dsk)
{
struct dsk *newdsk;
newdsk = malloc(sizeof(struct dsk));
*newdsk = *dsk;
return (newdsk);
}
/*
* Get disk size from eax=0x800 and 0x4800. We need to probe both
* because 0x4800 may not be available and we would like to get more
* or less correct disk size - if it is possible at all.
* Note we do not really want to touch drv.c because that code is shared
* with boot2 and we can not afford to grow that code.
*/
static uint64_t
drvsize_ext(struct dsk *dskp)
{
uint64_t size, tmp;
int cyl, hds, sec;
v86.ctl = V86_FLAGS;
v86.addr = 0x13;
v86.eax = 0x800;
v86.edx = dskp->drive;
v86int();
/* Don't error out if we get bad sector number, try EDD as well */
if (V86_CY(v86.efl) || /* carry set */
(v86.edx & 0xff) <= (unsigned)(dskp->drive & 0x7f)) /* unit # bad */
return (0);
cyl = ((v86.ecx & 0xc0) << 2) + ((v86.ecx & 0xff00) >> 8) + 1;
/* Convert max head # -> # of heads */
hds = ((v86.edx & 0xff00) >> 8) + 1;
sec = v86.ecx & 0x3f;
size = (uint64_t)cyl * hds * sec;
/* Determine if we can use EDD with this device. */
v86.ctl = V86_FLAGS;
v86.addr = 0x13;
v86.eax = 0x4100;
v86.edx = dskp->drive;
v86.ebx = 0x55aa;
v86int();
if (V86_CY(v86.efl) || /* carry set */
(v86.ebx & 0xffff) != 0xaa55 || /* signature */
(v86.ecx & EDD_INTERFACE_FIXED_DISK) == 0)
return (size);
tmp = drvsize(dskp);
if (tmp > size)
size = tmp;
return (size);
}
/*
* The "layered" ioctl to read disk/partition size. Unfortunately
* the zfsboot case is hardest, because we do not have full software
* stack available, so we need to do some manual work here.
*/
uint64_t
ldi_get_size(void *priv)
{
struct dsk *dskp = priv;
uint64_t size = dskp->size;
if (dskp->start == 0)
size = drvsize_ext(dskp);
return (size * DEV_BSIZE);
}
static void
probe_drive(struct dsk *dsk)
{
#ifdef GPT
struct gpt_hdr hdr;
struct gpt_ent *ent;
unsigned part, entries_per_sec;
daddr_t slba;
#endif
#if defined(GPT) || defined(LOADER_GELI_SUPPORT)
daddr_t elba;
#endif
struct dos_partition *dp;
char *sec;
unsigned i;
/*
* If we find a vdev on the whole disk, stop here.
*/
if (vdev_probe(vdev_read, dsk, NULL) == 0)
return;
#ifdef LOADER_GELI_SUPPORT
/*
* Taste the disk, if it is GELI encrypted, decrypt it and check to see if
* it is a usable vdev then. Otherwise dig
* out the partition table and probe each slice/partition
* in turn for a vdev or GELI encrypted vdev.
*/
elba = drvsize_ext(dsk);
if (elba > 0) {
elba--;
}
if (geli_taste(vdev_read, dsk, elba) == 0) {
if (geli_havekey(dsk) == 0 || geli_passphrase(&gelipw, dsk->unit,
':', 0, dsk) == 0) {
if (vdev_probe(vdev_read, dsk, NULL) == 0) {
return;
}
}
}
#endif /* LOADER_GELI_SUPPORT */
sec = dmadat->secbuf;
dsk->start = 0;
#ifdef GPT
/*
* First check for GPT.
*/
if (drvread(dsk, sec, 1, 1)) {
return;
}
memcpy(&hdr, sec, sizeof(hdr));
if (memcmp(hdr.hdr_sig, GPT_HDR_SIG, sizeof(hdr.hdr_sig)) != 0 ||
hdr.hdr_lba_self != 1 || hdr.hdr_revision < 0x00010000 ||
hdr.hdr_entsz < sizeof(*ent) || DEV_BSIZE % hdr.hdr_entsz != 0) {
goto trymbr;
}
/*
* Probe all GPT partitions for the presence of ZFS pools. We
* return the spa_t for the first we find (if requested). This
* will have the effect of booting from the first pool on the
* disk.
*
* If no vdev is found, GELI decrypting the device and try again
*/
entries_per_sec = DEV_BSIZE / hdr.hdr_entsz;
slba = hdr.hdr_lba_table;
elba = slba + hdr.hdr_entries / entries_per_sec;
while (slba < elba) {
dsk->start = 0;
if (drvread(dsk, sec, slba, 1))
return;
for (part = 0; part < entries_per_sec; part++) {
ent = (struct gpt_ent *)(sec + part * hdr.hdr_entsz);
if (memcmp(&ent->ent_type, &freebsd_zfs_uuid,
sizeof(uuid_t)) == 0) {
dsk->start = ent->ent_lba_start;
dsk->size = ent->ent_lba_end - ent->ent_lba_start + 1;
dsk->slice = part + 1;
dsk->part = 255;
if (vdev_probe(vdev_read, dsk, NULL) == 0) {
/*
* This slice had a vdev. We need a new dsk
* structure now since the vdev now owns this one.
*/
dsk = copy_dsk(dsk);
}
#ifdef LOADER_GELI_SUPPORT
else if (geli_taste(vdev_read, dsk, ent->ent_lba_end -
ent->ent_lba_start) == 0) {
if (geli_havekey(dsk) == 0 || geli_passphrase(&gelipw,
dsk->unit, 'p', dsk->slice, dsk) == 0) {
/*
* This slice has GELI, check it for ZFS.
*/
if (vdev_probe(vdev_read, dsk, NULL) == 0) {
/*
* This slice had a vdev. We need a new dsk
* structure now since the vdev now owns this one.
*/
dsk = copy_dsk(dsk);
}
break;
}
}
#endif /* LOADER_GELI_SUPPORT */
}
}
slba++;
}
return;
trymbr:
#endif /* GPT */
if (drvread(dsk, sec, DOSBBSECTOR, 1))
return;
dp = (void *)(sec + DOSPARTOFF);
for (i = 0; i < NDOSPART; i++) {
if (!dp[i].dp_typ)
continue;
dsk->start = dp[i].dp_start;
dsk->size = dp[i].dp_size;
dsk->slice = i + 1;
if (vdev_probe(vdev_read, dsk, NULL) == 0) {
dsk = copy_dsk(dsk);
}
#ifdef LOADER_GELI_SUPPORT
else if (geli_taste(vdev_read, dsk, dp[i].dp_size -
dp[i].dp_start) == 0) {
if (geli_havekey(dsk) == 0 || geli_passphrase(&gelipw, dsk->unit,
's', i, dsk) == 0) {
/*
* This slice has GELI, check it for ZFS.
*/
if (vdev_probe(vdev_read, dsk, NULL) == 0) {
/*
* This slice had a vdev. We need a new dsk
* structure now since the vdev now owns this one.
*/
dsk = copy_dsk(dsk);
}
break;
}
}
#endif /* LOADER_GELI_SUPPORT */
}
}
int
main(void)
{
dnode_phys_t dn;
off_t off;
struct dsk *dsk;
int autoboot, i;
int nextboot;
int rc;
dmadat = (void *)(roundup2(__base + (int32_t)&_end, 0x10000) - __base);
bios_getmem();
if (high_heap_size > 0) {
heap_end = PTOV(high_heap_base + high_heap_size);
heap_next = PTOV(high_heap_base);
} else {
heap_next = (char *)dmadat + sizeof(*dmadat);
heap_end = (char *)PTOV(bios_basemem);
}
dsk = malloc(sizeof(struct dsk));
dsk->drive = *(uint8_t *)PTOV(ARGS);
dsk->type = dsk->drive & DRV_HARD ? TYPE_AD : TYPE_FD;
dsk->unit = dsk->drive & DRV_MASK;
dsk->slice = *(uint8_t *)PTOV(ARGS + 1) + 1;
dsk->part = 0;
dsk->start = 0;
dsk->size = 0;
bootinfo.bi_version = BOOTINFO_VERSION;
bootinfo.bi_size = sizeof(bootinfo);
bootinfo.bi_basemem = bios_basemem / 1024;
bootinfo.bi_extmem = bios_extmem / 1024;
bootinfo.bi_memsizes_valid++;
bootinfo.bi_bios_dev = dsk->drive;
bootdev = MAKEBOOTDEV(dev_maj[dsk->type],
dsk->slice, dsk->unit, dsk->part);
/* Process configuration file */
autoboot = 1;
#ifdef LOADER_GELI_SUPPORT
geli_init();
#endif
zfs_init();
/*
* Probe the boot drive first - we will try to boot from whatever
* pool we find on that drive.
*/
probe_drive(dsk);
/*
* Probe the rest of the drives that the bios knows about. This
* will find any other available pools and it may fill in missing
* vdevs for the boot pool.
*/
#ifndef VIRTUALBOX
for (i = 0; i < *(unsigned char *)PTOV(BIOS_NUMDRIVES); i++)
#else
for (i = 0; i < MAXBDDEV; i++)
#endif
{
if ((i | DRV_HARD) == *(uint8_t *)PTOV(ARGS))
continue;
if (!int13probe(i | DRV_HARD))
break;
dsk = malloc(sizeof(struct dsk));
dsk->drive = i | DRV_HARD;
dsk->type = dsk->drive & TYPE_AD;
dsk->unit = i;
dsk->slice = 0;
dsk->part = 0;
dsk->start = 0;
dsk->size = 0;
probe_drive(dsk);
}
/*
* The first discovered pool, if any, is the pool.
*/
spa = spa_get_primary();
if (!spa) {
printf("%s: No ZFS pools located, can't boot\n", BOOTPROG);
for (;;)
;
}
primary_spa = spa;
primary_vdev = spa_get_primary_vdev(spa);
nextboot = 0;
rc = vdev_read_pad2(primary_vdev, cmd, sizeof(cmd));
if (vdev_clear_pad2(primary_vdev))
printf("failed to clear pad2 area of primary vdev\n");
if (rc == 0) {
if (*cmd) {
/*
* We could find an old-style ZFS Boot Block header here.
* Simply ignore it.
*/
if (*(uint64_t *)cmd != 0x2f5b007b10c) {
/*
* Note that parse() is destructive to cmd[] and we also want
* to honor RBX_QUIET option that could be present in cmd[].
*/
nextboot = 1;
memcpy(cmddup, cmd, sizeof(cmd));
if (parse_cmd()) {
printf("failed to parse pad2 area of primary vdev\n");
reboot();
}
if (!OPT_CHECK(RBX_QUIET))
printf("zfs nextboot: %s\n", cmddup);
}
/* Do not process this command twice */
*cmd = 0;
}
} else
printf("failed to read pad2 area of primary vdev\n");
/* Mount ZFS only if it's not already mounted via nextboot parsing. */
if (zfsmount.spa == NULL &&
(zfs_spa_init(spa) != 0 || zfs_mount(spa, 0, &zfsmount) != 0)) {
printf("%s: failed to mount default pool %s\n",
BOOTPROG, spa->spa_name);
autoboot = 0;
} else if (zfs_lookup(&zfsmount, PATH_CONFIG, &dn) == 0 ||
zfs_lookup(&zfsmount, PATH_DOTCONFIG, &dn) == 0) {
off = 0;
zfs_read(spa, &dn, &off, cmd, sizeof(cmd));
}
if (*cmd) {
/*
* Note that parse_cmd() is destructive to cmd[] and we also want
* to honor RBX_QUIET option that could be present in cmd[].
*/
memcpy(cmddup, cmd, sizeof(cmd));
if (parse_cmd())
autoboot = 0;
if (!OPT_CHECK(RBX_QUIET))
printf("%s: %s\n", PATH_CONFIG, cmddup);
/* Do not process this command twice */
*cmd = 0;
}
/* Do not risk waiting at the prompt forever. */
if (nextboot && !autoboot)
reboot();
/*
* Try to exec /boot/loader. If interrupted by a keypress,
* or in case of failure, try to load a kernel directly instead.
*/
if (autoboot && !*kname) {
memcpy(kname, PATH_LOADER_ZFS, sizeof(PATH_LOADER_ZFS));
if (!keyhit(3)) {
load();
memcpy(kname, PATH_KERNEL, sizeof(PATH_KERNEL));
}
}
/* Present the user with the boot2 prompt. */
for (;;) {
if (!autoboot || !OPT_CHECK(RBX_QUIET)) {
printf("\nFreeBSD/x86 boot\n");
if (zfs_rlookup(spa, zfsmount.rootobj, rootname) != 0)
printf("Default: %s/<0x%llx>:%s\n"
"boot: ",
spa->spa_name, zfsmount.rootobj, kname);
else if (rootname[0] != '\0')
printf("Default: %s/%s:%s\n"
"boot: ",
spa->spa_name, rootname, kname);
else
printf("Default: %s:%s\n"
"boot: ",
spa->spa_name, kname);
}
if (ioctrl & IO_SERIAL)
sio_flush();
if (!autoboot || keyhit(5))
getstr(cmd, sizeof(cmd));
else if (!autoboot || !OPT_CHECK(RBX_QUIET))
putchar('\n');
autoboot = 0;
if (parse_cmd())
putchar('\a');
else
load();
}
}
/* XXX - Needed for btxld to link the boot2 binary; do not remove. */
void
exit(int x)
{
__exit(x);
}
void
reboot(void)
{
__exit(0);
}
static void
load(void)
{
union {
struct exec ex;
Elf32_Ehdr eh;
} hdr;
static Elf32_Phdr ep[2];
static Elf32_Shdr es[2];
caddr_t p;
dnode_phys_t dn;
off_t off;
uint32_t addr, x;
int fmt, i, j;
if (zfs_lookup(&zfsmount, kname, &dn)) {
printf("\nCan't find %s\n", kname);
return;
}
off = 0;
if (xfsread(&dn, &off, &hdr, sizeof(hdr)))
return;
if (N_GETMAGIC(hdr.ex) == ZMAGIC)
fmt = 0;
else if (IS_ELF(hdr.eh))
fmt = 1;
else {
printf("Invalid %s\n", "format");
return;
}
if (fmt == 0) {
addr = hdr.ex.a_entry & 0xffffff;
p = PTOV(addr);
off = PAGE_SIZE;
if (xfsread(&dn, &off, p, hdr.ex.a_text))
return;
p += roundup2(hdr.ex.a_text, PAGE_SIZE);
if (xfsread(&dn, &off, p, hdr.ex.a_data))
return;
p += hdr.ex.a_data + roundup2(hdr.ex.a_bss, PAGE_SIZE);
bootinfo.bi_symtab = VTOP(p);
memcpy(p, &hdr.ex.a_syms, sizeof(hdr.ex.a_syms));
p += sizeof(hdr.ex.a_syms);
if (hdr.ex.a_syms) {
if (xfsread(&dn, &off, p, hdr.ex.a_syms))
return;
p += hdr.ex.a_syms;
if (xfsread(&dn, &off, p, sizeof(int)))
return;
x = *(uint32_t *)p;
p += sizeof(int);
x -= sizeof(int);
if (xfsread(&dn, &off, p, x))
return;
p += x;
}
} else {
off = hdr.eh.e_phoff;
for (j = i = 0; i < hdr.eh.e_phnum && j < 2; i++) {
if (xfsread(&dn, &off, ep + j, sizeof(ep[0])))
return;
if (ep[j].p_type == PT_LOAD)
j++;
}
for (i = 0; i < 2; i++) {
p = PTOV(ep[i].p_paddr & 0xffffff);
off = ep[i].p_offset;
if (xfsread(&dn, &off, p, ep[i].p_filesz))
return;
}
p += roundup2(ep[1].p_memsz, PAGE_SIZE);
bootinfo.bi_symtab = VTOP(p);
if (hdr.eh.e_shnum == hdr.eh.e_shstrndx + 3) {
off = hdr.eh.e_shoff + sizeof(es[0]) *
(hdr.eh.e_shstrndx + 1);
if (xfsread(&dn, &off, &es, sizeof(es)))
return;
for (i = 0; i < 2; i++) {
memcpy(p, &es[i].sh_size, sizeof(es[i].sh_size));
p += sizeof(es[i].sh_size);
off = es[i].sh_offset;
if (xfsread(&dn, &off, p, es[i].sh_size))
return;
p += es[i].sh_size;
}
}
addr = hdr.eh.e_entry & 0xffffff;
}
bootinfo.bi_esymtab = VTOP(p);
bootinfo.bi_kernelname = VTOP(kname);
zfsargs.size = sizeof(zfsargs);
zfsargs.pool = zfsmount.spa->spa_guid;
zfsargs.root = zfsmount.rootobj;
zfsargs.primary_pool = primary_spa->spa_guid;
#ifdef LOADER_GELI_SUPPORT
explicit_bzero(gelipw, sizeof(gelipw));
gelibuf = malloc(sizeof(struct keybuf) + (GELI_MAX_KEYS * sizeof(struct keybuf_ent)));
geli_fill_keybuf(gelibuf);
zfsargs.notapw = '\0';
zfsargs.keybuf_sentinel = KEYBUF_SENTINEL;
zfsargs.keybuf = gelibuf;
#else
zfsargs.gelipw[0] = '\0';
#endif
if (primary_vdev != NULL)
zfsargs.primary_vdev = primary_vdev->v_guid;
else
printf("failed to detect primary vdev\n");
__exec((caddr_t)addr, RB_BOOTINFO | (opts & RBX_MASK),
bootdev,
KARGS_FLAGS_ZFS | KARGS_FLAGS_EXTARG,
(uint32_t) spa->spa_guid,
(uint32_t) (spa->spa_guid >> 32),
VTOP(&bootinfo),
zfsargs);
}
static int
zfs_mount_ds(char *dsname)
{
uint64_t newroot;
spa_t *newspa;
char *q;
q = strchr(dsname, '/');
if (q)
*q++ = '\0';
newspa = spa_find_by_name(dsname);
if (newspa == NULL) {
printf("\nCan't find ZFS pool %s\n", dsname);
return -1;
}
if (zfs_spa_init(newspa))
return -1;
newroot = 0;
if (q) {
if (zfs_lookup_dataset(newspa, q, &newroot)) {
printf("\nCan't find dataset %s in ZFS pool %s\n",
q, newspa->spa_name);
return -1;
}
}
if (zfs_mount(newspa, newroot, &zfsmount)) {
printf("\nCan't mount ZFS dataset\n");
return -1;
}
spa = newspa;
return (0);
}
static int
parse_cmd(void)
{
char *arg = cmd;
char *ep, *p, *q;
const char *cp;
int c, i, j;
while ((c = *arg++)) {
if (c == ' ' || c == '\t' || c == '\n')
continue;
for (p = arg; *p && *p != '\n' && *p != ' ' && *p != '\t'; p++);
ep = p;
if (*p)
*p++ = 0;
if (c == '-') {
while ((c = *arg++)) {
if (c == 'P') {
if (*(uint8_t *)PTOV(0x496) & 0x10) {
cp = "yes";
} else {
opts |= OPT_SET(RBX_DUAL) | OPT_SET(RBX_SERIAL);
cp = "no";
}
printf("Keyboard: %s\n", cp);
continue;
} else if (c == 'S') {
j = 0;
while ((unsigned int)(i = *arg++ - '0') <= 9)
j = j * 10 + i;
if (j > 0 && i == -'0') {
comspeed = j;
break;
}
/* Fall through to error below ('S' not in optstr[]). */
}
for (i = 0; c != optstr[i]; i++)
if (i == NOPT - 1)
return -1;
opts ^= OPT_SET(flags[i]);
}
ioctrl = OPT_CHECK(RBX_DUAL) ? (IO_SERIAL|IO_KEYBOARD) :
OPT_CHECK(RBX_SERIAL) ? IO_SERIAL : IO_KEYBOARD;
if (ioctrl & IO_SERIAL) {
if (sio_init(115200 / comspeed) != 0)
ioctrl &= ~IO_SERIAL;
}
} if (c == '?') {
dnode_phys_t dn;
if (zfs_lookup(&zfsmount, arg, &dn) == 0) {
zap_list(spa, &dn);
}
return -1;
} else {
arg--;
/*
* Report pool status if the comment is 'status'. Lets
* hope no-one wants to load /status as a kernel.
*/
if (!strcmp(arg, "status")) {
spa_all_status();
return -1;
}
/*
* If there is "zfs:" prefix simply ignore it.
*/
if (strncmp(arg, "zfs:", 4) == 0)
arg += 4;
/*
* If there is a colon, switch pools.
*/
q = strchr(arg, ':');
if (q) {
*q++ = '\0';
if (zfs_mount_ds(arg) != 0)
return -1;
arg = q;
}
if ((i = ep - arg)) {
if ((size_t)i >= sizeof(kname))
return -1;
memcpy(kname, arg, i + 1);
}
}
arg = p;
}
return 0;
}