John Birrell b29602e4d8 * Get the maximum number of CPUs via a sysctl.
* Handle the different ioctl design.
* Support the freopen() changes.
* Use functions in FreeBSD's process library rather than the CDDL
  library that Solaris has which sits on top of their process file
  system and is therefore unsuitable for use on FreeBSD. The libproc
  API for FreeBSD is deliberately different to that on Solaris because
  Sun wouldn't release the libproc.h header under a BSD license.
2008-04-26 04:33:15 +00:00

998 lines
23 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#if defined(sun)
#include <sys/sysmacros.h>
#endif
#include <strings.h>
#include <unistd.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <ctype.h>
#if defined(sun)
#include <alloca.h>
#else
#include <sys/sysctl.h>
#endif
#include <assert.h>
#include <libgen.h>
#include <limits.h>
#include <dt_impl.h>
static const struct {
size_t dtps_offset;
size_t dtps_len;
} dtrace_probespecs[] = {
{ offsetof(dtrace_probedesc_t, dtpd_provider), DTRACE_PROVNAMELEN },
{ offsetof(dtrace_probedesc_t, dtpd_mod), DTRACE_MODNAMELEN },
{ offsetof(dtrace_probedesc_t, dtpd_func), DTRACE_FUNCNAMELEN },
{ offsetof(dtrace_probedesc_t, dtpd_name), DTRACE_NAMELEN }
};
int
dtrace_xstr2desc(dtrace_hdl_t *dtp, dtrace_probespec_t spec,
const char *s, int argc, char *const argv[], dtrace_probedesc_t *pdp)
{
size_t off, len, vlen;
const char *p, *q, *v;
char buf[32]; /* for id_t as %d (see below) */
if (spec < DTRACE_PROBESPEC_NONE || spec > DTRACE_PROBESPEC_NAME)
return (dt_set_errno(dtp, EINVAL));
bzero(pdp, sizeof (dtrace_probedesc_t));
p = s + strlen(s) - 1;
do {
for (len = 0; p >= s && *p != ':'; len++)
p--; /* move backward until we find a delimiter */
q = p + 1;
vlen = 0;
if ((v = strchr(q, '$')) != NULL && v < q + len) {
/*
* Set vlen to the length of the variable name and then
* reset len to the length of the text prior to '$'. If
* the name begins with a digit, interpret it using the
* the argv[] array. Otherwise we look in dt_macros.
* For the moment, all dt_macros variables are of type
* id_t (see dtrace_update() for more details on that).
*/
vlen = (size_t)(q + len - v);
len = (size_t)(v - q);
/*
* If the variable string begins with $$, skip past the
* leading dollar sign since $ and $$ are equivalent
* macro reference operators in a probe description.
*/
if (vlen > 2 && v[1] == '$') {
vlen--;
v++;
}
if (isdigit(v[1])) {
char *end;
long i;
errno = 0;
i = strtol(v + 1, &end, 10);
if (i < 0 || i >= argc ||
errno != 0 || end != v + vlen)
return (dt_set_errno(dtp, EDT_BADSPCV));
v = argv[i];
vlen = strlen(v);
if (yypcb != NULL && yypcb->pcb_sargv == argv)
yypcb->pcb_sflagv[i] |= DT_IDFLG_REF;
} else if (vlen > 1) {
char *vstr = alloca(vlen);
dt_ident_t *idp;
(void) strncpy(vstr, v + 1, vlen - 1);
vstr[vlen - 1] = '\0';
idp = dt_idhash_lookup(dtp->dt_macros, vstr);
if (idp == NULL)
return (dt_set_errno(dtp, EDT_BADSPCV));
v = buf;
vlen = snprintf(buf, 32, "%d", idp->di_id);
} else
return (dt_set_errno(dtp, EDT_BADSPCV));
}
if (spec == DTRACE_PROBESPEC_NONE)
return (dt_set_errno(dtp, EDT_BADSPEC));
if (len + vlen >= dtrace_probespecs[spec].dtps_len)
return (dt_set_errno(dtp, ENAMETOOLONG));
off = dtrace_probespecs[spec--].dtps_offset;
bcopy(q, (char *)pdp + off, len);
bcopy(v, (char *)pdp + off + len, vlen);
} while (--p >= s);
pdp->dtpd_id = DTRACE_IDNONE;
return (0);
}
int
dtrace_str2desc(dtrace_hdl_t *dtp, dtrace_probespec_t spec,
const char *s, dtrace_probedesc_t *pdp)
{
return (dtrace_xstr2desc(dtp, spec, s, 0, NULL, pdp));
}
int
dtrace_id2desc(dtrace_hdl_t *dtp, dtrace_id_t id, dtrace_probedesc_t *pdp)
{
bzero(pdp, sizeof (dtrace_probedesc_t));
pdp->dtpd_id = id;
if (dt_ioctl(dtp, DTRACEIOC_PROBES, pdp) == -1 ||
pdp->dtpd_id != id)
return (dt_set_errno(dtp, EDT_BADID));
return (0);
}
char *
dtrace_desc2str(const dtrace_probedesc_t *pdp, char *buf, size_t len)
{
if (pdp->dtpd_id == 0) {
(void) snprintf(buf, len, "%s:%s:%s:%s", pdp->dtpd_provider,
pdp->dtpd_mod, pdp->dtpd_func, pdp->dtpd_name);
} else
(void) snprintf(buf, len, "%u", pdp->dtpd_id);
return (buf);
}
char *
dtrace_attr2str(dtrace_attribute_t attr, char *buf, size_t len)
{
const char *name = dtrace_stability_name(attr.dtat_name);
const char *data = dtrace_stability_name(attr.dtat_data);
const char *class = dtrace_class_name(attr.dtat_class);
if (name == NULL || data == NULL || class == NULL)
return (NULL); /* one or more invalid attributes */
(void) snprintf(buf, len, "%s/%s/%s", name, data, class);
return (buf);
}
static char *
dt_getstrattr(char *p, char **qp)
{
char *q;
if (*p == '\0')
return (NULL);
if ((q = strchr(p, '/')) == NULL)
q = p + strlen(p);
else
*q++ = '\0';
*qp = q;
return (p);
}
int
dtrace_str2attr(const char *str, dtrace_attribute_t *attr)
{
dtrace_stability_t s;
dtrace_class_t c;
char *p, *q;
if (str == NULL || attr == NULL)
return (-1); /* invalid function arguments */
*attr = _dtrace_maxattr;
p = alloca(strlen(str) + 1);
(void) strcpy(p, str);
if ((p = dt_getstrattr(p, &q)) == NULL)
return (0);
for (s = 0; s <= DTRACE_STABILITY_MAX; s++) {
if (strcasecmp(p, dtrace_stability_name(s)) == 0) {
attr->dtat_name = s;
break;
}
}
if (s > DTRACE_STABILITY_MAX)
return (-1);
if ((p = dt_getstrattr(q, &q)) == NULL)
return (0);
for (s = 0; s <= DTRACE_STABILITY_MAX; s++) {
if (strcasecmp(p, dtrace_stability_name(s)) == 0) {
attr->dtat_data = s;
break;
}
}
if (s > DTRACE_STABILITY_MAX)
return (-1);
if ((p = dt_getstrattr(q, &q)) == NULL)
return (0);
for (c = 0; c <= DTRACE_CLASS_MAX; c++) {
if (strcasecmp(p, dtrace_class_name(c)) == 0) {
attr->dtat_class = c;
break;
}
}
if (c > DTRACE_CLASS_MAX || (p = dt_getstrattr(q, &q)) != NULL)
return (-1);
return (0);
}
const char *
dtrace_stability_name(dtrace_stability_t s)
{
switch (s) {
case DTRACE_STABILITY_INTERNAL: return ("Internal");
case DTRACE_STABILITY_PRIVATE: return ("Private");
case DTRACE_STABILITY_OBSOLETE: return ("Obsolete");
case DTRACE_STABILITY_EXTERNAL: return ("External");
case DTRACE_STABILITY_UNSTABLE: return ("Unstable");
case DTRACE_STABILITY_EVOLVING: return ("Evolving");
case DTRACE_STABILITY_STABLE: return ("Stable");
case DTRACE_STABILITY_STANDARD: return ("Standard");
default: return (NULL);
}
}
const char *
dtrace_class_name(dtrace_class_t c)
{
switch (c) {
case DTRACE_CLASS_UNKNOWN: return ("Unknown");
case DTRACE_CLASS_CPU: return ("CPU");
case DTRACE_CLASS_PLATFORM: return ("Platform");
case DTRACE_CLASS_GROUP: return ("Group");
case DTRACE_CLASS_ISA: return ("ISA");
case DTRACE_CLASS_COMMON: return ("Common");
default: return (NULL);
}
}
dtrace_attribute_t
dt_attr_min(dtrace_attribute_t a1, dtrace_attribute_t a2)
{
dtrace_attribute_t am;
am.dtat_name = MIN(a1.dtat_name, a2.dtat_name);
am.dtat_data = MIN(a1.dtat_data, a2.dtat_data);
am.dtat_class = MIN(a1.dtat_class, a2.dtat_class);
return (am);
}
dtrace_attribute_t
dt_attr_max(dtrace_attribute_t a1, dtrace_attribute_t a2)
{
dtrace_attribute_t am;
am.dtat_name = MAX(a1.dtat_name, a2.dtat_name);
am.dtat_data = MAX(a1.dtat_data, a2.dtat_data);
am.dtat_class = MAX(a1.dtat_class, a2.dtat_class);
return (am);
}
/*
* Compare two attributes and return an integer value in the following ranges:
*
* <0 if any of a1's attributes are less than a2's attributes
* =0 if all of a1's attributes are equal to a2's attributes
* >0 if all of a1's attributes are greater than or equal to a2's attributes
*
* To implement this function efficiently, we subtract a2's attributes from
* a1's to obtain a negative result if an a1 attribute is less than its a2
* counterpart. We then OR the intermediate results together, relying on the
* twos-complement property that if any result is negative, the bitwise union
* will also be negative since the highest bit will be set in the result.
*/
int
dt_attr_cmp(dtrace_attribute_t a1, dtrace_attribute_t a2)
{
return (((int)a1.dtat_name - a2.dtat_name) |
((int)a1.dtat_data - a2.dtat_data) |
((int)a1.dtat_class - a2.dtat_class));
}
char *
dt_attr_str(dtrace_attribute_t a, char *buf, size_t len)
{
static const char stability[] = "ipoxuesS";
static const char class[] = "uCpgIc";
if (a.dtat_name < sizeof (stability) &&
a.dtat_data < sizeof (stability) && a.dtat_class < sizeof (class)) {
(void) snprintf(buf, len, "[%c/%c/%c]", stability[a.dtat_name],
stability[a.dtat_data], class[a.dtat_class]);
} else {
(void) snprintf(buf, len, "[%u/%u/%u]",
a.dtat_name, a.dtat_data, a.dtat_class);
}
return (buf);
}
char *
dt_version_num2str(dt_version_t v, char *buf, size_t len)
{
uint_t M = DT_VERSION_MAJOR(v);
uint_t m = DT_VERSION_MINOR(v);
uint_t u = DT_VERSION_MICRO(v);
if (u == 0)
(void) snprintf(buf, len, "%u.%u", M, m);
else
(void) snprintf(buf, len, "%u.%u.%u", M, m, u);
return (buf);
}
int
dt_version_str2num(const char *s, dt_version_t *vp)
{
int i = 0, n[3] = { 0, 0, 0 };
char c;
while ((c = *s++) != '\0') {
if (isdigit(c))
n[i] = n[i] * 10 + c - '0';
else if (c != '.' || i++ >= sizeof (n) / sizeof (n[0]) - 1)
return (-1);
}
if (n[0] > DT_VERSION_MAJMAX ||
n[1] > DT_VERSION_MINMAX ||
n[2] > DT_VERSION_MICMAX)
return (-1);
if (vp != NULL)
*vp = DT_VERSION_NUMBER(n[0], n[1], n[2]);
return (0);
}
int
dt_version_defined(dt_version_t v)
{
int i;
for (i = 0; _dtrace_versions[i] != 0; i++) {
if (_dtrace_versions[i] == v)
return (1);
}
return (0);
}
char *
dt_cpp_add_arg(dtrace_hdl_t *dtp, const char *str)
{
char *arg;
if (dtp->dt_cpp_argc == dtp->dt_cpp_args) {
int olds = dtp->dt_cpp_args;
int news = olds * 2;
char **argv = realloc(dtp->dt_cpp_argv, sizeof (char *) * news);
if (argv == NULL)
return (NULL);
bzero(&argv[olds], sizeof (char *) * olds);
dtp->dt_cpp_argv = argv;
dtp->dt_cpp_args = news;
}
if ((arg = strdup(str)) == NULL)
return (NULL);
assert(dtp->dt_cpp_argc < dtp->dt_cpp_args);
dtp->dt_cpp_argv[dtp->dt_cpp_argc++] = arg;
return (arg);
}
char *
dt_cpp_pop_arg(dtrace_hdl_t *dtp)
{
char *arg;
if (dtp->dt_cpp_argc <= 1)
return (NULL); /* dt_cpp_argv[0] cannot be popped */
arg = dtp->dt_cpp_argv[--dtp->dt_cpp_argc];
dtp->dt_cpp_argv[dtp->dt_cpp_argc] = NULL;
return (arg);
}
/*PRINTFLIKE1*/
void
dt_dprintf(const char *format, ...)
{
if (_dtrace_debug) {
va_list alist;
va_start(alist, format);
(void) fputs("libdtrace DEBUG: ", stderr);
(void) vfprintf(stderr, format, alist);
va_end(alist);
}
}
int
#if defined(sun)
dt_ioctl(dtrace_hdl_t *dtp, int val, void *arg)
#else
dt_ioctl(dtrace_hdl_t *dtp, u_long val, void *arg)
#endif
{
const dtrace_vector_t *v = dtp->dt_vector;
#if !defined(sun)
/* Avoid sign extension. */
val &= 0xffffffff;
#endif
if (v != NULL)
return (v->dtv_ioctl(dtp->dt_varg, val, arg));
if (dtp->dt_fd >= 0)
return (ioctl(dtp->dt_fd, val, arg));
errno = EBADF;
return (-1);
}
int
dt_status(dtrace_hdl_t *dtp, processorid_t cpu)
{
const dtrace_vector_t *v = dtp->dt_vector;
if (v == NULL) {
#if defined(sun)
return (p_online(cpu, P_STATUS));
#else
int maxid = 0;
size_t len = sizeof(maxid);
if (sysctlbyname("kern.smp.maxid", &maxid, &len, NULL, 0) != 0)
return (cpu == 0 ? 1 : -1);
else
return (cpu <= maxid ? 1 : -1);
#endif
}
return (v->dtv_status(dtp->dt_varg, cpu));
}
long
dt_sysconf(dtrace_hdl_t *dtp, int name)
{
const dtrace_vector_t *v = dtp->dt_vector;
if (v == NULL)
return (sysconf(name));
return (v->dtv_sysconf(dtp->dt_varg, name));
}
/*
* Wrapper around write(2) to handle partial writes. For maximum safety of
* output files and proper error reporting, we continuing writing in the
* face of partial writes until write(2) fails or 'buf' is completely written.
* We also record any errno in the specified dtrace_hdl_t as well as 'errno'.
*/
ssize_t
dt_write(dtrace_hdl_t *dtp, int fd, const void *buf, size_t n)
{
ssize_t resid = n;
ssize_t len;
while (resid != 0) {
if ((len = write(fd, buf, resid)) <= 0)
break;
resid -= len;
buf = (char *)buf + len;
}
if (resid == n && n != 0)
return (dt_set_errno(dtp, errno));
return (n - resid);
}
/*
* This function handles all output from libdtrace, as well as the
* dtrace_sprintf() case. If we're here due to dtrace_sprintf(), then
* dt_sprintf_buflen will be non-zero; in this case, we sprintf into the
* specified buffer and return. Otherwise, if output is buffered (denoted by
* a NULL fp), we sprintf the desired output into the buffered buffer
* (expanding the buffer if required). If we don't satisfy either of these
* conditions (that is, if we are to actually generate output), then we call
* fprintf with the specified fp. In this case, we need to deal with one of
* the more annoying peculiarities of libc's printf routines: any failed
* write persistently sets an error flag inside the FILE causing every
* subsequent write to fail, but only the caller that initiated the error gets
* the errno. Since libdtrace clients often intercept SIGINT, this case is
* particularly frustrating since we don't want the EINTR on one attempt to
* write to the output file to preclude later attempts to write. This
* function therefore does a clearerr() if any error occurred, and saves the
* errno for the caller inside the specified dtrace_hdl_t.
*/
/*PRINTFLIKE3*/
int
dt_printf(dtrace_hdl_t *dtp, FILE *fp, const char *format, ...)
{
va_list ap;
int n;
#if !defined(sun)
/*
* On FreeBSD, check if output is currently being re-directed
* to another file. If so, output to that file instead of the
* one the caller has specified.
*/
if (dtp->dt_freopen_fp != NULL)
fp = dtp->dt_freopen_fp;
#endif
va_start(ap, format);
if (dtp->dt_sprintf_buflen != 0) {
int len;
char *buf;
assert(dtp->dt_sprintf_buf != NULL);
buf = &dtp->dt_sprintf_buf[len = strlen(dtp->dt_sprintf_buf)];
len = dtp->dt_sprintf_buflen - len;
assert(len >= 0);
if ((n = vsnprintf(buf, len, format, ap)) < 0)
n = dt_set_errno(dtp, errno);
va_end(ap);
return (n);
}
if (fp == NULL) {
int needed, rval;
size_t avail;
/*
* It's not legal to use buffered ouput if there is not a
* handler for buffered output.
*/
if (dtp->dt_bufhdlr == NULL) {
va_end(ap);
return (dt_set_errno(dtp, EDT_NOBUFFERED));
}
if (dtp->dt_buffered_buf == NULL) {
assert(dtp->dt_buffered_size == 0);
dtp->dt_buffered_size = 1;
dtp->dt_buffered_buf = malloc(dtp->dt_buffered_size);
if (dtp->dt_buffered_buf == NULL) {
va_end(ap);
return (dt_set_errno(dtp, EDT_NOMEM));
}
dtp->dt_buffered_offs = 0;
dtp->dt_buffered_buf[0] = '\0';
}
if ((needed = vsnprintf(NULL, 0, format, ap)) < 0) {
rval = dt_set_errno(dtp, errno);
va_end(ap);
return (rval);
}
if (needed == 0) {
va_end(ap);
return (0);
}
for (;;) {
char *newbuf;
assert(dtp->dt_buffered_offs < dtp->dt_buffered_size);
avail = dtp->dt_buffered_size - dtp->dt_buffered_offs;
if (needed + 1 < avail)
break;
if ((newbuf = realloc(dtp->dt_buffered_buf,
dtp->dt_buffered_size << 1)) == NULL) {
va_end(ap);
return (dt_set_errno(dtp, EDT_NOMEM));
}
dtp->dt_buffered_buf = newbuf;
dtp->dt_buffered_size <<= 1;
}
if (vsnprintf(&dtp->dt_buffered_buf[dtp->dt_buffered_offs],
avail, format, ap) < 0) {
rval = dt_set_errno(dtp, errno);
va_end(ap);
return (rval);
}
dtp->dt_buffered_offs += needed;
assert(dtp->dt_buffered_buf[dtp->dt_buffered_offs] == '\0');
return (0);
}
n = vfprintf(fp, format, ap);
fflush(fp);
va_end(ap);
if (n < 0) {
clearerr(fp);
return (dt_set_errno(dtp, errno));
}
return (n);
}
int
dt_buffered_flush(dtrace_hdl_t *dtp, dtrace_probedata_t *pdata,
const dtrace_recdesc_t *rec, const dtrace_aggdata_t *agg, uint32_t flags)
{
dtrace_bufdata_t data;
if (dtp->dt_buffered_offs == 0)
return (0);
data.dtbda_handle = dtp;
data.dtbda_buffered = dtp->dt_buffered_buf;
data.dtbda_probe = pdata;
data.dtbda_recdesc = rec;
data.dtbda_aggdata = agg;
data.dtbda_flags = flags;
if ((*dtp->dt_bufhdlr)(&data, dtp->dt_bufarg) == DTRACE_HANDLE_ABORT)
return (dt_set_errno(dtp, EDT_DIRABORT));
dtp->dt_buffered_offs = 0;
dtp->dt_buffered_buf[0] = '\0';
return (0);
}
void
dt_buffered_destroy(dtrace_hdl_t *dtp)
{
free(dtp->dt_buffered_buf);
dtp->dt_buffered_buf = NULL;
dtp->dt_buffered_offs = 0;
dtp->dt_buffered_size = 0;
}
void *
dt_zalloc(dtrace_hdl_t *dtp, size_t size)
{
void *data;
if (size > 16 * 1024 * 1024) {
(void) dt_set_errno(dtp, EDT_NOMEM);
return (NULL);
}
if ((data = malloc(size)) == NULL)
(void) dt_set_errno(dtp, EDT_NOMEM);
else
bzero(data, size);
return (data);
}
void *
dt_alloc(dtrace_hdl_t *dtp, size_t size)
{
void *data;
if (size > 16 * 1024 * 1024) {
(void) dt_set_errno(dtp, EDT_NOMEM);
return (NULL);
}
if ((data = malloc(size)) == NULL)
(void) dt_set_errno(dtp, EDT_NOMEM);
return (data);
}
void
dt_free(dtrace_hdl_t *dtp, void *data)
{
assert(dtp != NULL); /* ensure sane use of this interface */
free(data);
}
void
dt_difo_free(dtrace_hdl_t *dtp, dtrace_difo_t *dp)
{
if (dp == NULL)
return; /* simplify caller code */
dt_free(dtp, dp->dtdo_buf);
dt_free(dtp, dp->dtdo_inttab);
dt_free(dtp, dp->dtdo_strtab);
dt_free(dtp, dp->dtdo_vartab);
dt_free(dtp, dp->dtdo_kreltab);
dt_free(dtp, dp->dtdo_ureltab);
dt_free(dtp, dp->dtdo_xlmtab);
dt_free(dtp, dp);
}
/*
* dt_gmatch() is similar to gmatch(3GEN) and dtrace(7D) globbing, but also
* implements the behavior that an empty pattern matches any string.
*/
int
dt_gmatch(const char *s, const char *p)
{
return (p == NULL || *p == '\0' || gmatch(s, p));
}
char *
dt_basename(char *str)
{
char *last = strrchr(str, '/');
if (last == NULL)
return (str);
return (last + 1);
}
/*
* dt_popc() is a fast implementation of population count. The algorithm is
* from "Hacker's Delight" by Henry Warren, Jr with a 64-bit equivalent added.
*/
ulong_t
dt_popc(ulong_t x)
{
#ifdef _ILP32
x = x - ((x >> 1) & 0x55555555UL);
x = (x & 0x33333333UL) + ((x >> 2) & 0x33333333UL);
x = (x + (x >> 4)) & 0x0F0F0F0FUL;
x = x + (x >> 8);
x = x + (x >> 16);
return (x & 0x3F);
#endif
#ifdef _LP64
x = x - ((x >> 1) & 0x5555555555555555ULL);
x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
x = (x + (x >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
x = x + (x >> 8);
x = x + (x >> 16);
x = x + (x >> 32);
return (x & 0x7F);
#endif
}
/*
* dt_popcb() is a bitmap-based version of population count that returns the
* number of one bits in the specified bitmap 'bp' at bit positions below 'n'.
*/
ulong_t
dt_popcb(const ulong_t *bp, ulong_t n)
{
ulong_t maxb = n & BT_ULMASK;
ulong_t maxw = n >> BT_ULSHIFT;
ulong_t w, popc = 0;
if (n == 0)
return (0);
for (w = 0; w < maxw; w++)
popc += dt_popc(bp[w]);
return (popc + dt_popc(bp[maxw] & ((1UL << maxb) - 1)));
}
#if defined(sun)
struct _rwlock;
struct _lwp_mutex;
int
dt_rw_read_held(pthread_rwlock_t *lock)
{
extern int _rw_read_held(struct _rwlock *);
return (_rw_read_held((struct _rwlock *)lock));
}
int
dt_rw_write_held(pthread_rwlock_t *lock)
{
extern int _rw_write_held(struct _rwlock *);
return (_rw_write_held((struct _rwlock *)lock));
}
#endif
int
dt_mutex_held(pthread_mutex_t *lock)
{
#if defined(sun)
extern int _mutex_held(struct _lwp_mutex *);
return (_mutex_held((struct _lwp_mutex *)lock));
#else
return (1);
#endif
}
static int
dt_string2str(char *s, char *str, int nbytes)
{
int len = strlen(s);
if (nbytes == 0) {
/*
* Like snprintf(3C), we don't check the value of str if the
* number of bytes is 0.
*/
return (len);
}
if (nbytes <= len) {
(void) strncpy(str, s, nbytes - 1);
/*
* Like snprintf(3C) (and unlike strncpy(3C)), we guarantee
* that the string is null-terminated.
*/
str[nbytes - 1] = '\0';
} else {
(void) strcpy(str, s);
}
return (len);
}
int
dtrace_addr2str(dtrace_hdl_t *dtp, uint64_t addr, char *str, int nbytes)
{
dtrace_syminfo_t dts;
GElf_Sym sym;
size_t n = 20; /* for 0x%llx\0 */
char *s;
int err;
if ((err = dtrace_lookup_by_addr(dtp, addr, &sym, &dts)) == 0)
n += strlen(dts.dts_object) + strlen(dts.dts_name) + 2; /* +` */
s = alloca(n);
if (err == 0 && addr != sym.st_value) {
(void) snprintf(s, n, "%s`%s+0x%llx", dts.dts_object,
dts.dts_name, (u_longlong_t)addr - sym.st_value);
} else if (err == 0) {
(void) snprintf(s, n, "%s`%s",
dts.dts_object, dts.dts_name);
} else {
/*
* We'll repeat the lookup, but this time we'll specify a NULL
* GElf_Sym -- indicating that we're only interested in the
* containing module.
*/
if (dtrace_lookup_by_addr(dtp, addr, NULL, &dts) == 0) {
(void) snprintf(s, n, "%s`0x%llx", dts.dts_object,
(u_longlong_t)addr);
} else {
(void) snprintf(s, n, "0x%llx", (u_longlong_t)addr);
}
}
return (dt_string2str(s, str, nbytes));
}
int
dtrace_uaddr2str(dtrace_hdl_t *dtp, pid_t pid,
uint64_t addr, char *str, int nbytes)
{
char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
struct ps_prochandle *P = NULL;
GElf_Sym sym;
char *obj;
if (pid != 0)
P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
if (P == NULL) {
(void) snprintf(c, sizeof (c), "0x%llx", addr);
return (dt_string2str(c, str, nbytes));
}
dt_proc_lock(dtp, P);
#if defined(sun)
if (Plookup_by_addr(P, addr, name, sizeof (name), &sym) == 0) {
(void) Pobjname(P, addr, objname, sizeof (objname));
#else
if (proc_addr2sym(P, addr, name, sizeof (name), &sym) == 0) {
(void) proc_objname(P, addr, objname, sizeof (objname));
#endif
obj = dt_basename(objname);
if (addr > sym.st_value) {
(void) snprintf(c, sizeof (c), "%s`%s+0x%llx", obj,
name, (u_longlong_t)(addr - sym.st_value));
} else {
(void) snprintf(c, sizeof (c), "%s`%s", obj, name);
}
#if defined(sun)
} else if (Pobjname(P, addr, objname, sizeof (objname)) != 0) {
#else
} else if (proc_objname(P, addr, objname, sizeof (objname)) != 0) {
#endif
(void) snprintf(c, sizeof (c), "%s`0x%llx",
dt_basename(objname), addr);
} else {
(void) snprintf(c, sizeof (c), "0x%llx", addr);
}
dt_proc_unlock(dtp, P);
dt_proc_release(dtp, P);
return (dt_string2str(c, str, nbytes));
}