freebsd-nq/sys/dev/aic7xxx/aic79xx_pci.c
Justin T. Gibbs 4164174aff aic79xx.c:
aic79xx.seq:
	Convert the COMPLETE_DMA_SCB list to an "stailq".  This allows us to
	safely keep the SCB that is currently being DMA'ed back the host on
	the head of the list while processing completions off of the bus.  The
	newly completed SCBs are appended to the tail of the queue.   In the
	past, we just dequeued the SCB that was in flight from the list, but
	this could result in a lost completion should the host perform certain
	types of error recovery that must cancel all in-flight SCB DMA operations.

	Switch from using a 16bit completion entry, holding just the tag and the
	completion valid bit, to a 64bit completion entry that also contains a
	"status packet valid" indicator.  This solves two problems:
	  o The SCB DMA engine on at least Rev B. silicon does not properly deal
	    with a PCI disconnect that occurs at a non-64bit aligned offset in the
	    chips "source buffer".  When the transfer is resumed, the DMA engine
	    continues at the correct offset, but may wrap to the head of the buffer
	    causing duplicate completions to be reported to the host.  By using a
	    completion buffer in host memory that is 64bit aligned and using 64bit
	    completion entries, such disconnects should only occur at aligned addresses.
	    This assumes that the host bridge will only disconnect on cache-line
	    boundaries and that cache-lines are multpiles of 64bits.

	  o By embedding the status information in the completion entry we can avoid
	    an extra memory reference to the HSCB for commands that complete without
	    error.

	Use the comparison of a "host freeze count" and a "sequencer freeze count"
	to allow the host to process most SCBs that complete with non-zero status
	without having to clear critical sections.  Instead the host can just pause the
	sequencer, performs any necessary cleanup in the waiting for selection list,
	increments its freeze count on the controller, and unpauses.  This is only
	possible because the sequencer defers completions of SCBs with bad status
	until after all pending selections have completed.  The sequencer then avoids
	referencing any data structures the host may touch during completion of the
	SCB until the freeze counts match.

aic79xx.c:
	Change the strategy for allocating our sentinal HSCB for the QINFIFO.  In
	the past, this allocation was tacked onto the QOUTFIFO allocation.  Now that
	the qoutfifo has grown to accomodate larger completion entries, the old
	approach will result in a 64byte allocation that costs an extra page of
	coherent memory.  We now do this extra allocation via ahd_alloc_scbs()
	where the "unused space" can be used to allocate "normal" HSCBs.

	In our packetized busfree handler, use the ENSELO bit to differentiate
	between packetized and non-packetized unexpected busfree events that
	occur just after selection, but before the sequencer has had the oportunity
	to service the selection.

	When cleaning out the waiting for selection list, use the SCSI mode
	instead of the command channel mode.  The SCB pointer in the command
	channel mode may be referenced by the SCB dma engine even while the
	sequencer is paused, whereas the SCSI mode SCB pointer is only accessed
	by the sequencer.

	Print the "complete on qfreeze" sequencer SCB completion list in
	ahd_dump_card_state().  This list holds all SCB completions that are deferred
	until a pending select-out qfreeze event has taken effect.

aic79xx.h:
	Add definitions and structures to handle the new SCB completion scheme.

	Add a controller flag that indicates if the controller is in HostRAID
	mode.

aic79xx.reg:
	Remove macros used for toggling from one data fifo mode to the other.
	They have not been in use for some time.

	Add scratch ram fields for our new qfreeze count scheme, converting
	the complete dma list into an "stailq", and providing for the "complete
	on qfreeze" SCB completion list.  Some other fields were moved to retain
	proper field alignment (alignment >= field size in bytes).

aic79xx.seq:
	Add code to our idle loop to:
	  o Process deferred completions once a qfreeze event has taken full
	    effect.
	  o Thaw the queue once the sequencer and host qfreeze counts match.

	Generate 64bit completion entries passing the SCB_SGPTR field as the
	"good status" indicator.  The first bit in this field is only set if
	we have a valid status packet to send to the host.

	Convert the COMPLETE_DMA_SCB list to an "stailq".

	When using "setjmp" to register an idle loop handler, do not combine
	the "ret" with the block move to pop the stack address in the same
	instruction.  At least on the A, this results in a return to the setjmp
	caller, not to the new address at the top of the stack.  Since we want
	the latter (we want the newly registered handler to only be invoked from
	the idle loop), we must use a separate ret instruction.

	Add a few missing critical sections.

	Close a race condition that can occur on Rev A. silicon.  If both FIFOs
	happen to be allocated before the sequencer has a chance to service the
	FIFO that was allocated first, we must take special care to service the
	FIFO that is not active on the SCSI bus first.  This guarantees that a
	FIFO will be freed to handle any snapshot requests for the FIFO that is
	still on the bus.  Chosing the incorrect FIFO will result in deadlock.

	Update comments.

aic79xx_inline.h
	Correct the offset calculation for the syncing of our qoutfifo.

	Update ahd_check_cmdcmpltqueues() for the larger completion entries.

aic79xx_pci.c:
	Attach to HostRAID controllers by default.  In the future I may add a
	sysctl to modify the behavior, but since FreeBSD does not have any
	HostRAID drivers, failing to attach just results in more email and
	bug reports for the author.

MFC After: 1week
2004-02-04 16:38:38 +00:00

1022 lines
27 KiB
C

/*
* Product specific probe and attach routines for:
* aic7901 and aic7902 SCSI controllers
*
* Copyright (c) 1994-2001 Justin T. Gibbs.
* Copyright (c) 2000-2002 Adaptec Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* $Id: //depot/aic7xxx/aic7xxx/aic79xx_pci.c#86 $
*/
#ifdef __linux__
#include "aic79xx_osm.h"
#include "aic79xx_inline.h"
#else
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/aic7xxx/aic79xx_osm.h>
#include <dev/aic7xxx/aic79xx_inline.h>
#endif
static __inline uint64_t
ahd_compose_id(u_int device, u_int vendor, u_int subdevice, u_int subvendor)
{
uint64_t id;
id = subvendor
| (subdevice << 16)
| ((uint64_t)vendor << 32)
| ((uint64_t)device << 48);
return (id);
}
#define ID_ALL_MASK 0xFFFFFFFFFFFFFFFFull
#define ID_ALL_IROC_MASK 0xFF7FFFFFFFFFFFFFull
#define ID_DEV_VENDOR_MASK 0xFFFFFFFF00000000ull
#define ID_9005_GENERIC_MASK 0xFFF0FFFF00000000ull
#define ID_9005_GENERIC_IROC_MASK 0xFF70FFFF00000000ull
#define ID_AIC7901 0x800F9005FFFF9005ull
#define ID_AHA_29320A 0x8000900500609005ull
#define ID_AHA_29320ALP 0x8017900500449005ull
#define ID_AIC7901A 0x801E9005FFFF9005ull
#define ID_AHA_29320LP 0x8014900500449005ull
#define ID_AIC7902 0x801F9005FFFF9005ull
#define ID_AIC7902_B 0x801D9005FFFF9005ull
#define ID_AHA_39320 0x8010900500409005ull
#define ID_AHA_29320 0x8012900500429005ull
#define ID_AHA_29320B 0x8013900500439005ull
#define ID_AHA_39320_B 0x8015900500409005ull
#define ID_AHA_39320A 0x8016900500409005ull
#define ID_AHA_39320D 0x8011900500419005ull
#define ID_AHA_39320D_B 0x801C900500419005ull
#define ID_AHA_39320D_HP 0x8011900500AC0E11ull
#define ID_AHA_39320D_B_HP 0x801C900500AC0E11ull
#define ID_AIC7902_PCI_REV_A4 0x3
#define ID_AIC7902_PCI_REV_B0 0x10
#define SUBID_HP 0x0E11
#define DEVID_9005_HOSTRAID(id) ((id) & 0x80)
#define DEVID_9005_TYPE(id) ((id) & 0xF)
#define DEVID_9005_TYPE_HBA 0x0 /* Standard Card */
#define DEVID_9005_TYPE_HBA_2EXT 0x1 /* 2 External Ports */
#define DEVID_9005_TYPE_MB 0xF /* On Motherboard */
#define DEVID_9005_MFUNC(id) ((id) & 0x10)
#define DEVID_9005_PACKETIZED(id) ((id) & 0x8000)
#define SUBID_9005_TYPE(id) ((id) & 0xF)
#define SUBID_9005_TYPE_HBA 0x0 /* Standard Card */
#define SUBID_9005_TYPE_MB 0xF /* On Motherboard */
#define SUBID_9005_AUTOTERM(id) (((id) & 0x10) == 0)
#define SUBID_9005_LEGACYCONN_FUNC(id) ((id) & 0x20)
#define SUBID_9005_SEEPTYPE(id) ((id) & 0x0C0) >> 6)
#define SUBID_9005_SEEPTYPE_NONE 0x0
#define SUBID_9005_SEEPTYPE_4K 0x1
static ahd_device_setup_t ahd_aic7901_setup;
static ahd_device_setup_t ahd_aic7901A_setup;
static ahd_device_setup_t ahd_aic7902_setup;
static ahd_device_setup_t ahd_aic790X_setup;
struct ahd_pci_identity ahd_pci_ident_table [] =
{
/* aic7901 based controllers */
{
ID_AHA_29320A,
ID_ALL_MASK,
"Adaptec 29320A Ultra320 SCSI adapter",
ahd_aic7901_setup
},
{
ID_AHA_29320ALP,
ID_ALL_MASK,
"Adaptec 29320ALP Ultra320 SCSI adapter",
ahd_aic7901_setup
},
/* aic7901A based controllers */
{
ID_AHA_29320LP,
ID_ALL_MASK,
"Adaptec 29320LP Ultra320 SCSI adapter",
ahd_aic7901A_setup
},
/* aic7902 based controllers */
{
ID_AHA_29320,
ID_ALL_MASK,
"Adaptec 29320 Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_29320B,
ID_ALL_MASK,
"Adaptec 29320B Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_39320,
ID_ALL_MASK,
"Adaptec 39320 Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_39320_B,
ID_ALL_MASK,
"Adaptec 39320 Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_39320A,
ID_ALL_MASK,
"Adaptec 39320A Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_39320D,
ID_ALL_MASK,
"Adaptec 39320D Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_39320D_HP,
ID_ALL_MASK,
"Adaptec (HP OEM) 39320D Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_39320D_B,
ID_ALL_MASK,
"Adaptec 39320D Ultra320 SCSI adapter",
ahd_aic7902_setup
},
{
ID_AHA_39320D_B_HP,
ID_ALL_MASK,
"Adaptec (HP OEM) 39320D Ultra320 SCSI adapter",
ahd_aic7902_setup
},
/* Generic chip probes for devices we don't know 'exactly' */
{
ID_AIC7901 & ID_9005_GENERIC_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec AIC7901 Ultra320 SCSI adapter",
ahd_aic7901_setup
},
{
ID_AIC7901A & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec AIC7901A Ultra320 SCSI adapter",
ahd_aic7901A_setup
},
{
ID_AIC7902 & ID_9005_GENERIC_MASK,
ID_9005_GENERIC_MASK,
"Adaptec AIC7902 Ultra320 SCSI adapter",
ahd_aic7902_setup
}
};
const u_int ahd_num_pci_devs = NUM_ELEMENTS(ahd_pci_ident_table);
#define DEVCONFIG 0x40
#define PCIXINITPAT 0x0000E000ul
#define PCIXINIT_PCI33_66 0x0000E000ul
#define PCIXINIT_PCIX50_66 0x0000C000ul
#define PCIXINIT_PCIX66_100 0x0000A000ul
#define PCIXINIT_PCIX100_133 0x00008000ul
#define PCI_BUS_MODES_INDEX(devconfig) \
(((devconfig) & PCIXINITPAT) >> 13)
static const char *pci_bus_modes[] =
{
"PCI bus mode unknown",
"PCI bus mode unknown",
"PCI bus mode unknown",
"PCI bus mode unknown",
"PCI-X 101-133Mhz",
"PCI-X 67-100Mhz",
"PCI-X 50-66Mhz",
"PCI 33 or 66Mhz"
};
#define TESTMODE 0x00000800ul
#define IRDY_RST 0x00000200ul
#define FRAME_RST 0x00000100ul
#define PCI64BIT 0x00000080ul
#define MRDCEN 0x00000040ul
#define ENDIANSEL 0x00000020ul
#define MIXQWENDIANEN 0x00000008ul
#define DACEN 0x00000004ul
#define STPWLEVEL 0x00000002ul
#define QWENDIANSEL 0x00000001ul
#define DEVCONFIG1 0x44
#define PREQDIS 0x01
#define CSIZE_LATTIME 0x0c
#define CACHESIZE 0x000000fful
#define LATTIME 0x0000ff00ul
static int ahd_check_extport(struct ahd_softc *ahd);
static void ahd_configure_termination(struct ahd_softc *ahd,
u_int adapter_control);
static void ahd_pci_split_intr(struct ahd_softc *ahd, u_int intstat);
struct ahd_pci_identity *
ahd_find_pci_device(aic_dev_softc_t pci)
{
uint64_t full_id;
uint16_t device;
uint16_t vendor;
uint16_t subdevice;
uint16_t subvendor;
struct ahd_pci_identity *entry;
u_int i;
vendor = aic_pci_read_config(pci, PCIR_DEVVENDOR, /*bytes*/2);
device = aic_pci_read_config(pci, PCIR_DEVICE, /*bytes*/2);
subvendor = aic_pci_read_config(pci, PCIR_SUBVEND_0, /*bytes*/2);
subdevice = aic_pci_read_config(pci, PCIR_SUBDEV_0, /*bytes*/2);
full_id = ahd_compose_id(device,
vendor,
subdevice,
subvendor);
/*
* If we are configured to attach to HostRAID
* controllers, mask out the IROC/HostRAID bit
* in the
*/
if (ahd_attach_to_HostRAID_controllers)
full_id &= ID_ALL_IROC_MASK;
for (i = 0; i < ahd_num_pci_devs; i++) {
entry = &ahd_pci_ident_table[i];
if (entry->full_id == (full_id & entry->id_mask)) {
/* Honor exclusion entries. */
if (entry->name == NULL)
return (NULL);
return (entry);
}
}
return (NULL);
}
int
ahd_pci_config(struct ahd_softc *ahd, struct ahd_pci_identity *entry)
{
struct scb_data *shared_scb_data;
u_long l;
u_int command;
uint32_t devconfig;
uint16_t device;
uint16_t subvendor;
int error;
shared_scb_data = NULL;
ahd->description = entry->name;
/*
* Record if this is a HostRAID board.
*/
device = aic_pci_read_config(ahd->dev_softc,
PCIR_DEVICE, /*bytes*/2);
if (DEVID_9005_HOSTRAID(device))
ahd->flags |= AHD_HOSTRAID_BOARD;
/*
* Record if this is an HP board.
*/
subvendor = aic_pci_read_config(ahd->dev_softc,
PCIR_SUBVEND_0, /*bytes*/2);
if (subvendor == SUBID_HP)
ahd->flags |= AHD_HP_BOARD;
error = entry->setup(ahd);
if (error != 0)
return (error);
devconfig = aic_pci_read_config(ahd->dev_softc, DEVCONFIG, /*bytes*/4);
if ((devconfig & PCIXINITPAT) == PCIXINIT_PCI33_66) {
ahd->chip |= AHD_PCI;
/* Disable PCIX workarounds when running in PCI mode. */
ahd->bugs &= ~AHD_PCIX_BUG_MASK;
} else {
ahd->chip |= AHD_PCIX;
}
ahd->bus_description = pci_bus_modes[PCI_BUS_MODES_INDEX(devconfig)];
aic_power_state_change(ahd, AIC_POWER_STATE_D0);
error = ahd_pci_map_registers(ahd);
if (error != 0)
return (error);
/*
* If we need to support high memory, enable dual
* address cycles. This bit must be set to enable
* high address bit generation even if we are on a
* 64bit bus (PCI64BIT set in devconfig).
*/
if ((ahd->flags & (AHD_39BIT_ADDRESSING|AHD_64BIT_ADDRESSING)) != 0) {
uint32_t devconfig;
if (bootverbose)
printf("%s: Enabling 39Bit Addressing\n",
ahd_name(ahd));
devconfig = aic_pci_read_config(ahd->dev_softc,
DEVCONFIG, /*bytes*/4);
devconfig |= DACEN;
aic_pci_write_config(ahd->dev_softc, DEVCONFIG,
devconfig, /*bytes*/4);
}
/* Ensure busmastering is enabled */
command = aic_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
command |= PCIM_CMD_BUSMASTEREN;
aic_pci_write_config(ahd->dev_softc, PCIR_COMMAND, command, /*bytes*/2);
error = ahd_softc_init(ahd);
if (error != 0)
return (error);
ahd->bus_intr = ahd_pci_intr;
error = ahd_reset(ahd, /*reinit*/FALSE);
if (error != 0)
return (ENXIO);
ahd->pci_cachesize =
aic_pci_read_config(ahd->dev_softc, CSIZE_LATTIME,
/*bytes*/1) & CACHESIZE;
ahd->pci_cachesize *= 4;
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
/* See if we have a SEEPROM and perform auto-term */
error = ahd_check_extport(ahd);
if (error != 0)
return (error);
/* Core initialization */
error = ahd_init(ahd);
if (error != 0)
return (error);
/*
* Allow interrupts now that we are completely setup.
*/
error = ahd_pci_map_int(ahd);
if (error != 0)
return (error);
ahd_list_lock(&l);
/*
* Link this softc in with all other ahd instances.
*/
ahd_softc_insert(ahd);
ahd_list_unlock(&l);
return (0);
}
/*
* Perform some simple tests that should catch situations where
* our registers are invalidly mapped.
*/
int
ahd_pci_test_register_access(struct ahd_softc *ahd)
{
uint32_t cmd;
u_int targpcistat;
u_int pci_status1;
int error;
uint8_t hcntrl;
error = EIO;
/*
* Enable PCI error interrupt status, but suppress NMIs
* generated by SERR raised due to target aborts.
*/
cmd = aic_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
aic_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
cmd & ~PCIM_CMD_SERRESPEN, /*bytes*/2);
/*
* First a simple test to see if any
* registers can be read. Reading
* HCNTRL has no side effects and has
* at least one bit that is guaranteed to
* be zero so it is a good register to
* use for this test.
*/
hcntrl = ahd_inb(ahd, HCNTRL);
if (hcntrl == 0xFF)
goto fail;
/*
* Next create a situation where write combining
* or read prefetching could be initiated by the
* CPU or host bridge. Our device does not support
* either, so look for data corruption and/or flaged
* PCI errors. First pause without causing another
* chip reset.
*/
hcntrl &= ~CHIPRST;
ahd_outb(ahd, HCNTRL, hcntrl|PAUSE);
while (ahd_is_paused(ahd) == 0)
;
/* Clear any PCI errors that occurred before our driver attached. */
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
targpcistat = ahd_inb(ahd, TARGPCISTAT);
ahd_outb(ahd, TARGPCISTAT, targpcistat);
pci_status1 = aic_pci_read_config(ahd->dev_softc,
PCIR_STATUS + 1, /*bytes*/1);
aic_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
pci_status1, /*bytes*/1);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd_outb(ahd, CLRINT, CLRPCIINT);
ahd_outb(ahd, SEQCTL0, PERRORDIS);
ahd_outl(ahd, SRAM_BASE, 0x5aa555aa);
if (ahd_inl(ahd, SRAM_BASE) != 0x5aa555aa)
goto fail;
if ((ahd_inb(ahd, INTSTAT) & PCIINT) != 0) {
u_int targpcistat;
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
targpcistat = ahd_inb(ahd, TARGPCISTAT);
if ((targpcistat & STA) != 0)
goto fail;
}
error = 0;
fail:
if ((ahd_inb(ahd, INTSTAT) & PCIINT) != 0) {
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
targpcistat = ahd_inb(ahd, TARGPCISTAT);
/* Silently clear any latched errors. */
ahd_outb(ahd, TARGPCISTAT, targpcistat);
pci_status1 = aic_pci_read_config(ahd->dev_softc,
PCIR_STATUS + 1, /*bytes*/1);
aic_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
pci_status1, /*bytes*/1);
ahd_outb(ahd, CLRINT, CLRPCIINT);
}
ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS);
aic_pci_write_config(ahd->dev_softc, PCIR_COMMAND, cmd, /*bytes*/2);
return (error);
}
/*
* Check the external port logic for a serial eeprom
* and termination/cable detection contrls.
*/
static int
ahd_check_extport(struct ahd_softc *ahd)
{
struct vpd_config vpd;
struct seeprom_config *sc;
u_int adapter_control;
int have_seeprom;
int error;
sc = ahd->seep_config;
have_seeprom = ahd_acquire_seeprom(ahd);
if (have_seeprom) {
u_int start_addr;
/*
* Fetch VPD for this function and parse it.
*/
if (bootverbose)
printf("%s: Reading VPD from SEEPROM...",
ahd_name(ahd));
/* Address is always in units of 16bit words */
start_addr = ((2 * sizeof(*sc))
+ (sizeof(vpd) * (ahd->channel - 'A'))) / 2;
error = ahd_read_seeprom(ahd, (uint16_t *)&vpd,
start_addr, sizeof(vpd)/2,
/*bytestream*/TRUE);
if (error == 0)
error = ahd_parse_vpddata(ahd, &vpd);
if (bootverbose)
printf("%s: VPD parsing %s\n",
ahd_name(ahd),
error == 0 ? "successful" : "failed");
if (bootverbose)
printf("%s: Reading SEEPROM...", ahd_name(ahd));
/* Address is always in units of 16bit words */
start_addr = (sizeof(*sc) / 2) * (ahd->channel - 'A');
error = ahd_read_seeprom(ahd, (uint16_t *)sc,
start_addr, sizeof(*sc)/2,
/*bytestream*/FALSE);
if (error != 0) {
printf("Unable to read SEEPROM\n");
have_seeprom = 0;
} else {
have_seeprom = ahd_verify_cksum(sc);
if (bootverbose) {
if (have_seeprom == 0)
printf ("checksum error\n");
else
printf ("done.\n");
}
}
ahd_release_seeprom(ahd);
}
if (!have_seeprom) {
u_int nvram_scb;
/*
* Pull scratch ram settings and treat them as
* if they are the contents of an seeprom if
* the 'ADPT', 'BIOS', or 'ASPI' signature is found
* in SCB 0xFF. We manually compose the data as 16bit
* values to avoid endian issues.
*/
ahd_set_scbptr(ahd, 0xFF);
nvram_scb = ahd_inb_scbram(ahd, SCB_BASE + NVRAM_SCB_OFFSET);
if (nvram_scb != 0xFF
&& ((ahd_inb_scbram(ahd, SCB_BASE + 0) == 'A'
&& ahd_inb_scbram(ahd, SCB_BASE + 1) == 'D'
&& ahd_inb_scbram(ahd, SCB_BASE + 2) == 'P'
&& ahd_inb_scbram(ahd, SCB_BASE + 3) == 'T')
|| (ahd_inb_scbram(ahd, SCB_BASE + 0) == 'B'
&& ahd_inb_scbram(ahd, SCB_BASE + 1) == 'I'
&& ahd_inb_scbram(ahd, SCB_BASE + 2) == 'O'
&& ahd_inb_scbram(ahd, SCB_BASE + 3) == 'S')
|| (ahd_inb_scbram(ahd, SCB_BASE + 0) == 'A'
&& ahd_inb_scbram(ahd, SCB_BASE + 1) == 'S'
&& ahd_inb_scbram(ahd, SCB_BASE + 2) == 'P'
&& ahd_inb_scbram(ahd, SCB_BASE + 3) == 'I'))) {
uint16_t *sc_data;
int i;
ahd_set_scbptr(ahd, nvram_scb);
sc_data = (uint16_t *)sc;
for (i = 0; i < 64; i += 2)
*sc_data++ = ahd_inw_scbram(ahd, SCB_BASE+i);
have_seeprom = ahd_verify_cksum(sc);
if (have_seeprom)
ahd->flags |= AHD_SCB_CONFIG_USED;
}
}
#if AHD_DEBUG
if (have_seeprom != 0
&& (ahd_debug & AHD_DUMP_SEEPROM) != 0) {
uint16_t *sc_data;
int i;
printf("%s: Seeprom Contents:", ahd_name(ahd));
sc_data = (uint16_t *)sc;
for (i = 0; i < (sizeof(*sc)); i += 2)
printf("\n\t0x%.4x", sc_data[i]);
printf("\n");
}
#endif
if (!have_seeprom) {
if (bootverbose)
printf("%s: No SEEPROM available.\n", ahd_name(ahd));
ahd->flags |= AHD_USEDEFAULTS;
error = ahd_default_config(ahd);
adapter_control = CFAUTOTERM|CFSEAUTOTERM;
free(ahd->seep_config, M_DEVBUF);
ahd->seep_config = NULL;
} else {
error = ahd_parse_cfgdata(ahd, sc);
adapter_control = sc->adapter_control;
}
if (error != 0)
return (error);
ahd_configure_termination(ahd, adapter_control);
return (0);
}
static void
ahd_configure_termination(struct ahd_softc *ahd, u_int adapter_control)
{
int error;
u_int sxfrctl1;
uint8_t termctl;
uint32_t devconfig;
devconfig = aic_pci_read_config(ahd->dev_softc, DEVCONFIG, /*bytes*/4);
devconfig &= ~STPWLEVEL;
if ((ahd->flags & AHD_STPWLEVEL_A) != 0)
devconfig |= STPWLEVEL;
if (bootverbose)
printf("%s: STPWLEVEL is %s\n",
ahd_name(ahd), (devconfig & STPWLEVEL) ? "on" : "off");
aic_pci_write_config(ahd->dev_softc, DEVCONFIG, devconfig, /*bytes*/4);
/* Make sure current sensing is off. */
if ((ahd->flags & AHD_CURRENT_SENSING) != 0) {
(void)ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0);
}
/*
* Read to sense. Write to set.
*/
error = ahd_read_flexport(ahd, FLXADDR_TERMCTL, &termctl);
if ((adapter_control & CFAUTOTERM) == 0) {
if (bootverbose)
printf("%s: Manual Primary Termination\n",
ahd_name(ahd));
termctl &= ~(FLX_TERMCTL_ENPRILOW|FLX_TERMCTL_ENPRIHIGH);
if ((adapter_control & CFSTERM) != 0)
termctl |= FLX_TERMCTL_ENPRILOW;
if ((adapter_control & CFWSTERM) != 0)
termctl |= FLX_TERMCTL_ENPRIHIGH;
} else if (error != 0) {
printf("%s: Primary Auto-Term Sensing failed! "
"Using Defaults.\n", ahd_name(ahd));
termctl = FLX_TERMCTL_ENPRILOW|FLX_TERMCTL_ENPRIHIGH;
}
if ((adapter_control & CFSEAUTOTERM) == 0) {
if (bootverbose)
printf("%s: Manual Secondary Termination\n",
ahd_name(ahd));
termctl &= ~(FLX_TERMCTL_ENSECLOW|FLX_TERMCTL_ENSECHIGH);
if ((adapter_control & CFSELOWTERM) != 0)
termctl |= FLX_TERMCTL_ENSECLOW;
if ((adapter_control & CFSEHIGHTERM) != 0)
termctl |= FLX_TERMCTL_ENSECHIGH;
} else if (error != 0) {
printf("%s: Secondary Auto-Term Sensing failed! "
"Using Defaults.\n", ahd_name(ahd));
termctl |= FLX_TERMCTL_ENSECLOW|FLX_TERMCTL_ENSECHIGH;
}
/*
* Now set the termination based on what we found.
*/
sxfrctl1 = ahd_inb(ahd, SXFRCTL1) & ~STPWEN;
ahd->flags &= ~AHD_TERM_ENB_A;
if ((termctl & FLX_TERMCTL_ENPRILOW) != 0) {
ahd->flags |= AHD_TERM_ENB_A;
sxfrctl1 |= STPWEN;
}
/* Must set the latch once in order to be effective. */
ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
ahd_outb(ahd, SXFRCTL1, sxfrctl1);
error = ahd_write_flexport(ahd, FLXADDR_TERMCTL, termctl);
if (error != 0) {
printf("%s: Unable to set termination settings!\n",
ahd_name(ahd));
} else if (bootverbose) {
printf("%s: Primary High byte termination %sabled\n",
ahd_name(ahd),
(termctl & FLX_TERMCTL_ENPRIHIGH) ? "En" : "Dis");
printf("%s: Primary Low byte termination %sabled\n",
ahd_name(ahd),
(termctl & FLX_TERMCTL_ENPRILOW) ? "En" : "Dis");
printf("%s: Secondary High byte termination %sabled\n",
ahd_name(ahd),
(termctl & FLX_TERMCTL_ENSECHIGH) ? "En" : "Dis");
printf("%s: Secondary Low byte termination %sabled\n",
ahd_name(ahd),
(termctl & FLX_TERMCTL_ENSECLOW) ? "En" : "Dis");
}
return;
}
#define DPE 0x80
#define SSE 0x40
#define RMA 0x20
#define RTA 0x10
#define STA 0x08
#define DPR 0x01
static const char *split_status_source[] =
{
"DFF0",
"DFF1",
"OVLY",
"CMC",
};
static const char *pci_status_source[] =
{
"DFF0",
"DFF1",
"SG",
"CMC",
"OVLY",
"NONE",
"MSI",
"TARG"
};
static const char *split_status_strings[] =
{
"%s: Received split response in %s.\n",
"%s: Received split completion error message in %s\n",
"%s: Receive overrun in %s\n",
"%s: Count not complete in %s\n",
"%s: Split completion data bucket in %s\n",
"%s: Split completion address error in %s\n",
"%s: Split completion byte count error in %s\n",
"%s: Signaled Target-abort to early terminate a split in %s\n"
};
static const char *pci_status_strings[] =
{
"%s: Data Parity Error has been reported via PERR# in %s\n",
"%s: Target initial wait state error in %s\n",
"%s: Split completion read data parity error in %s\n",
"%s: Split completion address attribute parity error in %s\n",
"%s: Received a Target Abort in %s\n",
"%s: Received a Master Abort in %s\n",
"%s: Signal System Error Detected in %s\n",
"%s: Address or Write Phase Parity Error Detected in %s.\n"
};
void
ahd_pci_intr(struct ahd_softc *ahd)
{
uint8_t pci_status[8];
ahd_mode_state saved_modes;
u_int pci_status1;
u_int intstat;
u_int i;
u_int reg;
intstat = ahd_inb(ahd, INTSTAT);
if ((intstat & SPLTINT) != 0)
ahd_pci_split_intr(ahd, intstat);
if ((intstat & PCIINT) == 0)
return;
printf("%s: PCI error Interrupt\n", ahd_name(ahd));
saved_modes = ahd_save_modes(ahd);
ahd_dump_card_state(ahd);
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
for (i = 0, reg = DF0PCISTAT; i < 8; i++, reg++) {
if (i == 5)
continue;
pci_status[i] = ahd_inb(ahd, reg);
/* Clear latched errors. So our interrupt deasserts. */
ahd_outb(ahd, reg, pci_status[i]);
}
for (i = 0; i < 8; i++) {
u_int bit;
if (i == 5)
continue;
for (bit = 0; bit < 8; bit++) {
if ((pci_status[i] & (0x1 << bit)) != 0) {
static const char *s;
s = pci_status_strings[bit];
if (i == 7/*TARG*/ && bit == 3)
s = "%s: Signaled Target Abort\n";
printf(s, ahd_name(ahd), pci_status_source[i]);
}
}
}
pci_status1 = aic_pci_read_config(ahd->dev_softc,
PCIR_STATUS + 1, /*bytes*/1);
aic_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
pci_status1, /*bytes*/1);
ahd_restore_modes(ahd, saved_modes);
ahd_outb(ahd, CLRINT, CLRPCIINT);
ahd_unpause(ahd);
}
static void
ahd_pci_split_intr(struct ahd_softc *ahd, u_int intstat)
{
uint8_t split_status[4];
uint8_t split_status1[4];
uint8_t sg_split_status[2];
uint8_t sg_split_status1[2];
ahd_mode_state saved_modes;
u_int i;
uint16_t pcix_status;
/*
* Check for splits in all modes. Modes 0 and 1
* additionally have SG engine splits to look at.
*/
pcix_status = aic_pci_read_config(ahd->dev_softc, PCIXR_STATUS,
/*bytes*/2);
printf("%s: PCI Split Interrupt - PCI-X status = 0x%x\n",
ahd_name(ahd), pcix_status);
saved_modes = ahd_save_modes(ahd);
for (i = 0; i < 4; i++) {
ahd_set_modes(ahd, i, i);
split_status[i] = ahd_inb(ahd, DCHSPLTSTAT0);
split_status1[i] = ahd_inb(ahd, DCHSPLTSTAT1);
/* Clear latched errors. So our interrupt deasserts. */
ahd_outb(ahd, DCHSPLTSTAT0, split_status[i]);
ahd_outb(ahd, DCHSPLTSTAT1, split_status1[i]);
if (i > 1)
continue;
sg_split_status[i] = ahd_inb(ahd, SGSPLTSTAT0);
sg_split_status1[i] = ahd_inb(ahd, SGSPLTSTAT1);
/* Clear latched errors. So our interrupt deasserts. */
ahd_outb(ahd, SGSPLTSTAT0, sg_split_status[i]);
ahd_outb(ahd, SGSPLTSTAT1, sg_split_status1[i]);
}
for (i = 0; i < 4; i++) {
u_int bit;
for (bit = 0; bit < 8; bit++) {
if ((split_status[i] & (0x1 << bit)) != 0) {
static const char *s;
s = split_status_strings[bit];
printf(s, ahd_name(ahd),
split_status_source[i]);
}
if (i > 1)
continue;
if ((sg_split_status[i] & (0x1 << bit)) != 0) {
static const char *s;
s = split_status_strings[bit];
printf(s, ahd_name(ahd), "SG");
}
}
}
/*
* Clear PCI-X status bits.
*/
aic_pci_write_config(ahd->dev_softc, PCIXR_STATUS,
pcix_status, /*bytes*/2);
ahd_outb(ahd, CLRINT, CLRSPLTINT);
ahd_restore_modes(ahd, saved_modes);
}
static int
ahd_aic7901_setup(struct ahd_softc *ahd)
{
ahd->chip = AHD_AIC7901;
ahd->features = AHD_AIC7901_FE;
return (ahd_aic790X_setup(ahd));
}
static int
ahd_aic7901A_setup(struct ahd_softc *ahd)
{
ahd->chip = AHD_AIC7901A;
ahd->features = AHD_AIC7901A_FE;
return (ahd_aic790X_setup(ahd));
}
static int
ahd_aic7902_setup(struct ahd_softc *ahd)
{
ahd->chip = AHD_AIC7902;
ahd->features = AHD_AIC7902_FE;
return (ahd_aic790X_setup(ahd));
}
static int
ahd_aic790X_setup(struct ahd_softc *ahd)
{
aic_dev_softc_t pci;
u_int rev;
pci = ahd->dev_softc;
rev = aic_pci_read_config(pci, PCIR_REVID, /*bytes*/1);
if (rev < ID_AIC7902_PCI_REV_A4) {
printf("%s: Unable to attach to unsupported chip revision %d\n",
ahd_name(ahd), rev);
aic_pci_write_config(pci, PCIR_COMMAND, 0, /*bytes*/2);
return (ENXIO);
}
ahd->channel = aic_get_pci_function(pci) + 'A';
if (rev < ID_AIC7902_PCI_REV_B0) {
/*
* Enable A series workarounds.
*/
ahd->bugs |= AHD_SENT_SCB_UPDATE_BUG|AHD_ABORT_LQI_BUG
| AHD_PKT_BITBUCKET_BUG|AHD_LONG_SETIMO_BUG
| AHD_NLQICRC_DELAYED_BUG|AHD_SCSIRST_BUG
| AHD_LQO_ATNO_BUG|AHD_AUTOFLUSH_BUG
| AHD_CLRLQO_AUTOCLR_BUG|AHD_PCIX_MMAPIO_BUG
| AHD_PCIX_CHIPRST_BUG|AHD_PCIX_SCBRAM_RD_BUG
| AHD_PKTIZED_STATUS_BUG|AHD_PKT_LUN_BUG
| AHD_MDFF_WSCBPTR_BUG|AHD_REG_SLOW_SETTLE_BUG
| AHD_SET_MODE_BUG|AHD_BUSFREEREV_BUG
| AHD_NONPACKFIFO_BUG|AHD_PACED_NEGTABLE_BUG
| AHD_FAINT_LED_BUG;
/*
* IO Cell paramter setup.
*/
AHD_SET_PRECOMP(ahd, AHD_PRECOMP_CUTBACK_29);
if ((ahd->flags & AHD_HP_BOARD) == 0)
AHD_SET_SLEWRATE(ahd, AHD_SLEWRATE_DEF_REVA);
} else {
u_int devconfig1;
ahd->features |= AHD_RTI|AHD_NEW_IOCELL_OPTS
| AHD_NEW_DFCNTRL_OPTS|AHD_FAST_CDB_DELIVERY;
ahd->bugs |= AHD_LQOOVERRUN_BUG|AHD_EARLY_REQ_BUG;
/*
* Some issues have been resolved in the 7901B.
*/
if ((ahd->features & AHD_MULTI_FUNC) != 0)
ahd->bugs |= AHD_INTCOLLISION_BUG|AHD_ABORT_LQI_BUG;
/*
* IO Cell paramter setup.
*/
AHD_SET_PRECOMP(ahd, AHD_PRECOMP_CUTBACK_29);
AHD_SET_SLEWRATE(ahd, AHD_SLEWRATE_DEF_REVB);
AHD_SET_AMPLITUDE(ahd, AHD_AMPLITUDE_DEF);
/*
* Set the PREQDIS bit for H2B which disables some workaround
* that doesn't work on regular PCI busses.
* XXX - Find out exactly what this does from the hardware
* folks!
*/
devconfig1 = aic_pci_read_config(pci, DEVCONFIG1, /*bytes*/1);
aic_pci_write_config(pci, DEVCONFIG1,
devconfig1|PREQDIS, /*bytes*/1);
devconfig1 = aic_pci_read_config(pci, DEVCONFIG1, /*bytes*/1);
}
return (0);
}