freebsd-nq/sys/dev/mana/gdma_main.c
Wei Hu 1833cf1373 Mana: move mana polling from EQ to CQ
-Each CQ start task queue to poll when completion happens.
    This means every rx and tx queue has its own cleanup task
    thread to poll the completion.
    - Arm EQ everytime no matter it is mana or hwc. CQ arming
    depends on the budget.
    - Fix a warning in mana_poll_tx_cq() when cqe_read is 0.
    - Move cqe_poll from EQ to CQ struct.
    - Support EQ sharing up to 8 vPorts.
    - Ease linkdown message from mana_info to mana_dbg.

Tested by:	whu
MFC after:	2 weeks
Sponsored by:	Microsoft
2021-10-26 12:25:22 +00:00

1865 lines
43 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2021 Microsoft Corp.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/smp.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <sys/time.h>
#include <sys/eventhandler.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/in_cksum.h>
#include <net/if.h>
#include <net/if_var.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include "gdma_util.h"
#include "mana.h"
static mana_vendor_id_t mana_id_table[] = {
{ PCI_VENDOR_ID_MICROSOFT, PCI_DEV_ID_MANA_VF},
/* Last entry */
{ 0, 0}
};
static inline uint32_t
mana_gd_r32(struct gdma_context *g, uint64_t offset)
{
uint32_t v = bus_space_read_4(g->gd_bus.bar0_t,
g->gd_bus.bar0_h, offset);
rmb();
return (v);
}
#if defined(__amd64__)
static inline uint64_t
mana_gd_r64(struct gdma_context *g, uint64_t offset)
{
uint64_t v = bus_space_read_8(g->gd_bus.bar0_t,
g->gd_bus.bar0_h, offset);
rmb();
return (v);
}
#else
static inline uint64_t
mana_gd_r64(struct gdma_context *g, uint64_t offset)
{
uint64_t v;
uint32_t *vp = (uint32_t *)&v;
*vp = mana_gd_r32(g, offset);
*(vp + 1) = mana_gd_r32(g, offset + 4);
rmb();
return (v);
}
#endif
static int
mana_gd_query_max_resources(device_t dev)
{
struct gdma_context *gc = device_get_softc(dev);
struct gdma_query_max_resources_resp resp = {};
struct gdma_general_req req = {};
int err;
mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_MAX_RESOURCES,
sizeof(req), sizeof(resp));
err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
if (err || resp.hdr.status) {
device_printf(gc->dev,
"Failed to query resource info: %d, 0x%x\n",
err, resp.hdr.status);
return err ? err : EPROTO;
}
mana_dbg(NULL, "max_msix %u, max_eq %u, max_cq %u, "
"max_sq %u, max_rq %u\n",
resp.max_msix, resp.max_eq, resp.max_cq,
resp.max_sq, resp.max_rq);
if (gc->num_msix_usable > resp.max_msix)
gc->num_msix_usable = resp.max_msix;
if (gc->num_msix_usable <= 1)
return ENOSPC;
gc->max_num_queues = mp_ncpus;
if (gc->max_num_queues > MANA_MAX_NUM_QUEUES)
gc->max_num_queues = MANA_MAX_NUM_QUEUES;
if (gc->max_num_queues > resp.max_eq)
gc->max_num_queues = resp.max_eq;
if (gc->max_num_queues > resp.max_cq)
gc->max_num_queues = resp.max_cq;
if (gc->max_num_queues > resp.max_sq)
gc->max_num_queues = resp.max_sq;
if (gc->max_num_queues > resp.max_rq)
gc->max_num_queues = resp.max_rq;
return 0;
}
static int
mana_gd_detect_devices(device_t dev)
{
struct gdma_context *gc = device_get_softc(dev);
struct gdma_list_devices_resp resp = {};
struct gdma_general_req req = {};
struct gdma_dev_id gd_dev;
uint32_t i, max_num_devs;
uint16_t dev_type;
int err;
mana_gd_init_req_hdr(&req.hdr, GDMA_LIST_DEVICES, sizeof(req),
sizeof(resp));
err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
if (err || resp.hdr.status) {
device_printf(gc->dev,
"Failed to detect devices: %d, 0x%x\n", err,
resp.hdr.status);
return err ? err : EPROTO;
}
max_num_devs = min_t(uint32_t, MAX_NUM_GDMA_DEVICES, resp.num_of_devs);
for (i = 0; i < max_num_devs; i++) {
gd_dev = resp.devs[i];
dev_type = gd_dev.type;
mana_dbg(NULL, "gdma dev %d, type %u\n",
i, dev_type);
/* HWC is already detected in mana_hwc_create_channel(). */
if (dev_type == GDMA_DEVICE_HWC)
continue;
if (dev_type == GDMA_DEVICE_MANA) {
gc->mana.gdma_context = gc;
gc->mana.dev_id = gd_dev;
}
}
return gc->mana.dev_id.type == 0 ? ENODEV : 0;
}
int
mana_gd_send_request(struct gdma_context *gc, uint32_t req_len,
const void *req, uint32_t resp_len, void *resp)
{
struct hw_channel_context *hwc = gc->hwc.driver_data;
return mana_hwc_send_request(hwc, req_len, req, resp_len, resp);
}
void
mana_gd_dma_map_paddr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *paddr = arg;
if (error)
return;
KASSERT(nseg == 1, ("too many segments %d!", nseg));
*paddr = segs->ds_addr;
}
int
mana_gd_alloc_memory(struct gdma_context *gc, unsigned int length,
struct gdma_mem_info *gmi)
{
bus_addr_t dma_handle;
void *buf;
int err;
if (!gc || !gmi)
return EINVAL;
if (length < PAGE_SIZE || (length != roundup_pow_of_two(length)))
return EINVAL;
err = bus_dma_tag_create(bus_get_dma_tag(gc->dev), /* parent */
PAGE_SIZE, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
length, /* maxsize */
1, /* nsegments */
length, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockfuncarg*/
&gmi->dma_tag);
if (err) {
device_printf(gc->dev,
"failed to create dma tag, err: %d\n", err);
return (err);
}
/*
* Must have BUS_DMA_ZERO flag to clear the dma memory.
* Otherwise the queue overflow detection mechanism does
* not work.
*/
err = bus_dmamem_alloc(gmi->dma_tag, &buf,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &gmi->dma_map);
if (err) {
device_printf(gc->dev,
"failed to alloc dma mem, err: %d\n", err);
bus_dma_tag_destroy(gmi->dma_tag);
return (err);
}
err = bus_dmamap_load(gmi->dma_tag, gmi->dma_map, buf,
length, mana_gd_dma_map_paddr, &dma_handle, BUS_DMA_NOWAIT);
if (err) {
device_printf(gc->dev,
"failed to load dma mem, err: %d\n", err);
bus_dmamem_free(gmi->dma_tag, buf, gmi->dma_map);
bus_dma_tag_destroy(gmi->dma_tag);
return (err);
}
gmi->dev = gc->dev;
gmi->dma_handle = dma_handle;
gmi->virt_addr = buf;
gmi->length = length;
return 0;
}
void
mana_gd_free_memory(struct gdma_mem_info *gmi)
{
bus_dmamap_unload(gmi->dma_tag, gmi->dma_map);
bus_dmamem_free(gmi->dma_tag, gmi->virt_addr, gmi->dma_map);
bus_dma_tag_destroy(gmi->dma_tag);
}
static int
mana_gd_create_hw_eq(struct gdma_context *gc,
struct gdma_queue *queue)
{
struct gdma_create_queue_resp resp = {};
struct gdma_create_queue_req req = {};
int err;
if (queue->type != GDMA_EQ)
return EINVAL;
mana_gd_init_req_hdr(&req.hdr, GDMA_CREATE_QUEUE,
sizeof(req), sizeof(resp));
req.hdr.dev_id = queue->gdma_dev->dev_id;
req.type = queue->type;
req.pdid = queue->gdma_dev->pdid;
req.doolbell_id = queue->gdma_dev->doorbell;
req.gdma_region = queue->mem_info.gdma_region;
req.queue_size = queue->queue_size;
req.log2_throttle_limit = queue->eq.log2_throttle_limit;
req.eq_pci_msix_index = queue->eq.msix_index;
err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
if (err || resp.hdr.status) {
device_printf(gc->dev,
"Failed to create queue: %d, 0x%x\n",
err, resp.hdr.status);
return err ? err : EPROTO;
}
queue->id = resp.queue_index;
queue->eq.disable_needed = true;
queue->mem_info.gdma_region = GDMA_INVALID_DMA_REGION;
return 0;
}
static
int mana_gd_disable_queue(struct gdma_queue *queue)
{
struct gdma_context *gc = queue->gdma_dev->gdma_context;
struct gdma_disable_queue_req req = {};
struct gdma_general_resp resp = {};
int err;
if (queue->type != GDMA_EQ)
mana_warn(NULL, "Not event queue type 0x%x\n",
queue->type);
mana_gd_init_req_hdr(&req.hdr, GDMA_DISABLE_QUEUE,
sizeof(req), sizeof(resp));
req.hdr.dev_id = queue->gdma_dev->dev_id;
req.type = queue->type;
req.queue_index = queue->id;
req.alloc_res_id_on_creation = 1;
err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
if (err || resp.hdr.status) {
device_printf(gc->dev,
"Failed to disable queue: %d, 0x%x\n", err,
resp.hdr.status);
return err ? err : EPROTO;
}
return 0;
}
#define DOORBELL_OFFSET_SQ 0x0
#define DOORBELL_OFFSET_RQ 0x400
#define DOORBELL_OFFSET_CQ 0x800
#define DOORBELL_OFFSET_EQ 0xFF8
static void
mana_gd_ring_doorbell(struct gdma_context *gc, uint32_t db_index,
enum gdma_queue_type q_type, uint32_t qid,
uint32_t tail_ptr, uint8_t num_req)
{
union gdma_doorbell_entry e = {};
void __iomem *addr;
addr = (char *)gc->db_page_base + gc->db_page_size * db_index;
switch (q_type) {
case GDMA_EQ:
e.eq.id = qid;
e.eq.tail_ptr = tail_ptr;
e.eq.arm = num_req;
addr = (char *)addr + DOORBELL_OFFSET_EQ;
break;
case GDMA_CQ:
e.cq.id = qid;
e.cq.tail_ptr = tail_ptr;
e.cq.arm = num_req;
addr = (char *)addr + DOORBELL_OFFSET_CQ;
break;
case GDMA_RQ:
e.rq.id = qid;
e.rq.tail_ptr = tail_ptr;
e.rq.wqe_cnt = num_req;
addr = (char *)addr + DOORBELL_OFFSET_RQ;
break;
case GDMA_SQ:
e.sq.id = qid;
e.sq.tail_ptr = tail_ptr;
addr = (char *)addr + DOORBELL_OFFSET_SQ;
break;
default:
mana_warn(NULL, "Invalid queue type 0x%x\n", q_type);
return;
}
/* Ensure all writes are done before ring doorbell */
wmb();
#if defined(__amd64__)
writeq(addr, e.as_uint64);
#else
uint32_t *p = (uint32_t *)&e.as_uint64;
writel(addr, *p);
writel((char *)addr + 4, *(p + 1));
#endif
}
void
mana_gd_wq_ring_doorbell(struct gdma_context *gc, struct gdma_queue *queue)
{
mana_gd_ring_doorbell(gc, queue->gdma_dev->doorbell, queue->type,
queue->id, queue->head * GDMA_WQE_BU_SIZE, 1);
}
void
mana_gd_ring_cq(struct gdma_queue *cq, uint8_t arm_bit)
{
struct gdma_context *gc = cq->gdma_dev->gdma_context;
uint32_t num_cqe = cq->queue_size / GDMA_CQE_SIZE;
uint32_t head = cq->head % (num_cqe << GDMA_CQE_OWNER_BITS);
mana_gd_ring_doorbell(gc, cq->gdma_dev->doorbell, cq->type, cq->id,
head, arm_bit);
}
static void
mana_gd_process_eqe(struct gdma_queue *eq)
{
uint32_t head = eq->head % (eq->queue_size / GDMA_EQE_SIZE);
struct gdma_context *gc = eq->gdma_dev->gdma_context;
struct gdma_eqe *eq_eqe_ptr = eq->queue_mem_ptr;
union gdma_eqe_info eqe_info;
enum gdma_eqe_type type;
struct gdma_event event;
struct gdma_queue *cq;
struct gdma_eqe *eqe;
uint32_t cq_id;
eqe = &eq_eqe_ptr[head];
eqe_info.as_uint32 = eqe->eqe_info;
type = eqe_info.type;
switch (type) {
case GDMA_EQE_COMPLETION:
cq_id = eqe->details[0] & 0xFFFFFF;
if (cq_id >= gc->max_num_cqs) {
mana_warn(NULL,
"failed: cq_id %u > max_num_cqs %u\n",
cq_id, gc->max_num_cqs);
break;
}
cq = gc->cq_table[cq_id];
if (!cq || cq->type != GDMA_CQ || cq->id != cq_id) {
mana_warn(NULL,
"failed: invalid cq_id %u\n", cq_id);
break;
}
if (cq->cq.callback)
cq->cq.callback(cq->cq.context, cq);
break;
case GDMA_EQE_TEST_EVENT:
gc->test_event_eq_id = eq->id;
mana_dbg(NULL,
"EQE TEST EVENT received for EQ %u\n", eq->id);
complete(&gc->eq_test_event);
break;
case GDMA_EQE_HWC_INIT_EQ_ID_DB:
case GDMA_EQE_HWC_INIT_DATA:
case GDMA_EQE_HWC_INIT_DONE:
if (!eq->eq.callback)
break;
event.type = type;
memcpy(&event.details, &eqe->details, GDMA_EVENT_DATA_SIZE);
eq->eq.callback(eq->eq.context, eq, &event);
break;
default:
break;
}
}
static void
mana_gd_process_eq_events(void *arg)
{
uint32_t owner_bits, new_bits, old_bits;
union gdma_eqe_info eqe_info;
struct gdma_eqe *eq_eqe_ptr;
struct gdma_queue *eq = arg;
struct gdma_context *gc;
uint32_t head, num_eqe;
struct gdma_eqe *eqe;
int i, j;
gc = eq->gdma_dev->gdma_context;
num_eqe = eq->queue_size / GDMA_EQE_SIZE;
eq_eqe_ptr = eq->queue_mem_ptr;
bus_dmamap_sync(eq->mem_info.dma_tag, eq->mem_info.dma_map,
BUS_DMASYNC_POSTREAD);
/* Process up to 5 EQEs at a time, and update the HW head. */
for (i = 0; i < 5; i++) {
eqe = &eq_eqe_ptr[eq->head % num_eqe];
eqe_info.as_uint32 = eqe->eqe_info;
owner_bits = eqe_info.owner_bits;
old_bits = (eq->head / num_eqe - 1) & GDMA_EQE_OWNER_MASK;
/* No more entries */
if (owner_bits == old_bits)
break;
new_bits = (eq->head / num_eqe) & GDMA_EQE_OWNER_MASK;
if (owner_bits != new_bits) {
/* Something wrong. Log for debugging purpose */
device_printf(gc->dev,
"EQ %d: overflow detected, "
"i = %d, eq->head = %u "
"got owner_bits = %u, new_bits = %u "
"eqe addr %p, eqe->eqe_info 0x%x, "
"eqe type = %x, reserved1 = %x, client_id = %x, "
"reserved2 = %x, owner_bits = %x\n",
eq->id, i, eq->head,
owner_bits, new_bits,
eqe, eqe->eqe_info,
eqe_info.type, eqe_info.reserved1,
eqe_info.client_id, eqe_info.reserved2,
eqe_info.owner_bits);
uint32_t *eqe_dump = (uint32_t *) eq_eqe_ptr;
for (j = 0; j < 20; j++) {
device_printf(gc->dev, "%p: %x\t%x\t%x\t%x\n",
&eqe_dump[j * 4], eqe_dump[j * 4], eqe_dump[j * 4 + 1],
eqe_dump[j * 4 + 2], eqe_dump[j * 4 + 3]);
}
break;
}
mana_gd_process_eqe(eq);
eq->head++;
}
bus_dmamap_sync(eq->mem_info.dma_tag, eq->mem_info.dma_map,
BUS_DMASYNC_PREREAD);
head = eq->head % (num_eqe << GDMA_EQE_OWNER_BITS);
mana_gd_ring_doorbell(gc, eq->gdma_dev->doorbell, eq->type, eq->id,
head, SET_ARM_BIT);
}
static int
mana_gd_register_irq(struct gdma_queue *queue,
const struct gdma_queue_spec *spec)
{
struct gdma_dev *gd = queue->gdma_dev;
struct gdma_irq_context *gic;
struct gdma_context *gc;
struct gdma_resource *r;
unsigned int msi_index;
int err;
gc = gd->gdma_context;
r = &gc->msix_resource;
mtx_lock_spin(&r->lock_spin);
msi_index = find_first_zero_bit(r->map, r->size);
if (msi_index >= r->size) {
err = ENOSPC;
} else {
bitmap_set(r->map, msi_index, 1);
queue->eq.msix_index = msi_index;
err = 0;
}
mtx_unlock_spin(&r->lock_spin);
if (err)
return err;
if (unlikely(msi_index >= gc->num_msix_usable)) {
device_printf(gc->dev,
"chose an invalid msix index %d, usable %d\n",
msi_index, gc->num_msix_usable);
return ENOSPC;
}
gic = &gc->irq_contexts[msi_index];
if (unlikely(gic->handler || gic->arg)) {
device_printf(gc->dev,
"interrupt handler or arg already assigned, "
"msix index: %d\n", msi_index);
}
gic->arg = queue;
gic->handler = mana_gd_process_eq_events;
mana_dbg(NULL, "registered msix index %d vector %d irq %ju\n",
msi_index, gic->msix_e.vector, rman_get_start(gic->res));
return 0;
}
static void
mana_gd_deregiser_irq(struct gdma_queue *queue)
{
struct gdma_dev *gd = queue->gdma_dev;
struct gdma_irq_context *gic;
struct gdma_context *gc;
struct gdma_resource *r;
unsigned int msix_index;
gc = gd->gdma_context;
r = &gc->msix_resource;
/* At most num_online_cpus() + 1 interrupts are used. */
msix_index = queue->eq.msix_index;
if (unlikely(msix_index >= gc->num_msix_usable))
return;
gic = &gc->irq_contexts[msix_index];
gic->handler = NULL;
gic->arg = NULL;
mtx_lock_spin(&r->lock_spin);
bitmap_clear(r->map, msix_index, 1);
mtx_unlock_spin(&r->lock_spin);
queue->eq.msix_index = INVALID_PCI_MSIX_INDEX;
mana_dbg(NULL, "deregistered msix index %d vector %d irq %ju\n",
msix_index, gic->msix_e.vector, rman_get_start(gic->res));
}
int
mana_gd_test_eq(struct gdma_context *gc, struct gdma_queue *eq)
{
struct gdma_generate_test_event_req req = {};
struct gdma_general_resp resp = {};
device_t dev = gc->dev;
int err;
sx_xlock(&gc->eq_test_event_sx);
init_completion(&gc->eq_test_event);
gc->test_event_eq_id = INVALID_QUEUE_ID;
mana_gd_init_req_hdr(&req.hdr, GDMA_GENERATE_TEST_EQE,
sizeof(req), sizeof(resp));
req.hdr.dev_id = eq->gdma_dev->dev_id;
req.queue_index = eq->id;
err = mana_gd_send_request(gc, sizeof(req), &req,
sizeof(resp), &resp);
if (err) {
device_printf(dev, "test_eq failed: %d\n", err);
goto out;
}
err = EPROTO;
if (resp.hdr.status) {
device_printf(dev, "test_eq failed: 0x%x\n",
resp.hdr.status);
goto out;
}
if (wait_for_completion_timeout(&gc->eq_test_event, 30 * hz)) {
device_printf(dev, "test_eq timed out on queue %d\n",
eq->id);
goto out;
}
if (eq->id != gc->test_event_eq_id) {
device_printf(dev,
"test_eq got an event on wrong queue %d (%d)\n",
gc->test_event_eq_id, eq->id);
goto out;
}
err = 0;
out:
sx_xunlock(&gc->eq_test_event_sx);
return err;
}
static void
mana_gd_destroy_eq(struct gdma_context *gc, bool flush_evenets,
struct gdma_queue *queue)
{
int err;
if (flush_evenets) {
err = mana_gd_test_eq(gc, queue);
if (err)
device_printf(gc->dev,
"Failed to flush EQ: %d\n", err);
}
mana_gd_deregiser_irq(queue);
if (queue->eq.disable_needed)
mana_gd_disable_queue(queue);
}
static int mana_gd_create_eq(struct gdma_dev *gd,
const struct gdma_queue_spec *spec,
bool create_hwq, struct gdma_queue *queue)
{
struct gdma_context *gc = gd->gdma_context;
device_t dev = gc->dev;
uint32_t log2_num_entries;
int err;
queue->eq.msix_index = INVALID_PCI_MSIX_INDEX;
log2_num_entries = ilog2(queue->queue_size / GDMA_EQE_SIZE);
if (spec->eq.log2_throttle_limit > log2_num_entries) {
device_printf(dev,
"EQ throttling limit (%lu) > maximum EQE (%u)\n",
spec->eq.log2_throttle_limit, log2_num_entries);
return EINVAL;
}
err = mana_gd_register_irq(queue, spec);
if (err) {
device_printf(dev, "Failed to register irq: %d\n", err);
return err;
}
queue->eq.callback = spec->eq.callback;
queue->eq.context = spec->eq.context;
queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries);
queue->eq.log2_throttle_limit = spec->eq.log2_throttle_limit ?: 1;
if (create_hwq) {
err = mana_gd_create_hw_eq(gc, queue);
if (err)
goto out;
err = mana_gd_test_eq(gc, queue);
if (err)
goto out;
}
return 0;
out:
device_printf(dev, "Failed to create EQ: %d\n", err);
mana_gd_destroy_eq(gc, false, queue);
return err;
}
static void
mana_gd_create_cq(const struct gdma_queue_spec *spec,
struct gdma_queue *queue)
{
uint32_t log2_num_entries = ilog2(spec->queue_size / GDMA_CQE_SIZE);
queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries);
queue->cq.parent = spec->cq.parent_eq;
queue->cq.context = spec->cq.context;
queue->cq.callback = spec->cq.callback;
}
static void
mana_gd_destroy_cq(struct gdma_context *gc,
struct gdma_queue *queue)
{
uint32_t id = queue->id;
if (id >= gc->max_num_cqs)
return;
if (!gc->cq_table[id])
return;
gc->cq_table[id] = NULL;
}
int mana_gd_create_hwc_queue(struct gdma_dev *gd,
const struct gdma_queue_spec *spec,
struct gdma_queue **queue_ptr)
{
struct gdma_context *gc = gd->gdma_context;
struct gdma_mem_info *gmi;
struct gdma_queue *queue;
int err;
queue = malloc(sizeof(*queue), M_DEVBUF, M_WAITOK | M_ZERO);
if (!queue)
return ENOMEM;
gmi = &queue->mem_info;
err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
if (err)
goto free_q;
queue->head = 0;
queue->tail = 0;
queue->queue_mem_ptr = gmi->virt_addr;
queue->queue_size = spec->queue_size;
queue->monitor_avl_buf = spec->monitor_avl_buf;
queue->type = spec->type;
queue->gdma_dev = gd;
if (spec->type == GDMA_EQ)
err = mana_gd_create_eq(gd, spec, false, queue);
else if (spec->type == GDMA_CQ)
mana_gd_create_cq(spec, queue);
if (err)
goto out;
*queue_ptr = queue;
return 0;
out:
mana_gd_free_memory(gmi);
free_q:
free(queue, M_DEVBUF);
return err;
}
static void
mana_gd_destroy_dma_region(struct gdma_context *gc, uint64_t gdma_region)
{
struct gdma_destroy_dma_region_req req = {};
struct gdma_general_resp resp = {};
int err;
if (gdma_region == GDMA_INVALID_DMA_REGION)
return;
mana_gd_init_req_hdr(&req.hdr, GDMA_DESTROY_DMA_REGION, sizeof(req),
sizeof(resp));
req.gdma_region = gdma_region;
err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp),
&resp);
if (err || resp.hdr.status)
device_printf(gc->dev,
"Failed to destroy DMA region: %d, 0x%x\n",
err, resp.hdr.status);
}
static int
mana_gd_create_dma_region(struct gdma_dev *gd,
struct gdma_mem_info *gmi)
{
unsigned int num_page = gmi->length / PAGE_SIZE;
struct gdma_create_dma_region_req *req = NULL;
struct gdma_create_dma_region_resp resp = {};
struct gdma_context *gc = gd->gdma_context;
struct hw_channel_context *hwc;
uint32_t length = gmi->length;
uint32_t req_msg_size;
int err;
int i;
if (length < PAGE_SIZE || !is_power_of_2(length)) {
mana_err(NULL, "gmi size incorrect: %u\n", length);
return EINVAL;
}
if (offset_in_page((uint64_t)gmi->virt_addr) != 0) {
mana_err(NULL, "gmi not page aligned: %p\n",
gmi->virt_addr);
return EINVAL;
}
hwc = gc->hwc.driver_data;
req_msg_size = sizeof(*req) + num_page * sizeof(uint64_t);
if (req_msg_size > hwc->max_req_msg_size) {
mana_err(NULL, "req msg size too large: %u, %u\n",
req_msg_size, hwc->max_req_msg_size);
return EINVAL;
}
req = malloc(req_msg_size, M_DEVBUF, M_WAITOK | M_ZERO);
if (!req)
return ENOMEM;
mana_gd_init_req_hdr(&req->hdr, GDMA_CREATE_DMA_REGION,
req_msg_size, sizeof(resp));
req->length = length;
req->offset_in_page = 0;
req->gdma_page_type = GDMA_PAGE_TYPE_4K;
req->page_count = num_page;
req->page_addr_list_len = num_page;
for (i = 0; i < num_page; i++)
req->page_addr_list[i] = gmi->dma_handle + i * PAGE_SIZE;
err = mana_gd_send_request(gc, req_msg_size, req, sizeof(resp), &resp);
if (err)
goto out;
if (resp.hdr.status || resp.gdma_region == GDMA_INVALID_DMA_REGION) {
device_printf(gc->dev, "Failed to create DMA region: 0x%x\n",
resp.hdr.status);
err = EPROTO;
goto out;
}
gmi->gdma_region = resp.gdma_region;
out:
free(req, M_DEVBUF);
return err;
}
int
mana_gd_create_mana_eq(struct gdma_dev *gd,
const struct gdma_queue_spec *spec,
struct gdma_queue **queue_ptr)
{
struct gdma_context *gc = gd->gdma_context;
struct gdma_mem_info *gmi;
struct gdma_queue *queue;
int err;
if (spec->type != GDMA_EQ)
return EINVAL;
queue = malloc(sizeof(*queue), M_DEVBUF, M_WAITOK | M_ZERO);
if (!queue)
return ENOMEM;
gmi = &queue->mem_info;
err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
if (err)
goto free_q;
err = mana_gd_create_dma_region(gd, gmi);
if (err)
goto out;
queue->head = 0;
queue->tail = 0;
queue->queue_mem_ptr = gmi->virt_addr;
queue->queue_size = spec->queue_size;
queue->monitor_avl_buf = spec->monitor_avl_buf;
queue->type = spec->type;
queue->gdma_dev = gd;
err = mana_gd_create_eq(gd, spec, true, queue);
if (err)
goto out;
*queue_ptr = queue;
return 0;
out:
mana_gd_free_memory(gmi);
free_q:
free(queue, M_DEVBUF);
return err;
}
int mana_gd_create_mana_wq_cq(struct gdma_dev *gd,
const struct gdma_queue_spec *spec,
struct gdma_queue **queue_ptr)
{
struct gdma_context *gc = gd->gdma_context;
struct gdma_mem_info *gmi;
struct gdma_queue *queue;
int err;
if (spec->type != GDMA_CQ && spec->type != GDMA_SQ &&
spec->type != GDMA_RQ)
return EINVAL;
queue = malloc(sizeof(*queue), M_DEVBUF, M_WAITOK | M_ZERO);
if (!queue)
return ENOMEM;
gmi = &queue->mem_info;
err = mana_gd_alloc_memory(gc, spec->queue_size, gmi);
if (err)
goto free_q;
err = mana_gd_create_dma_region(gd, gmi);
if (err)
goto out;
queue->head = 0;
queue->tail = 0;
queue->queue_mem_ptr = gmi->virt_addr;
queue->queue_size = spec->queue_size;
queue->monitor_avl_buf = spec->monitor_avl_buf;
queue->type = spec->type;
queue->gdma_dev = gd;
if (spec->type == GDMA_CQ)
mana_gd_create_cq(spec, queue);
*queue_ptr = queue;
return 0;
out:
mana_gd_free_memory(gmi);
free_q:
free(queue, M_DEVBUF);
return err;
}
void
mana_gd_destroy_queue(struct gdma_context *gc, struct gdma_queue *queue)
{
struct gdma_mem_info *gmi = &queue->mem_info;
switch (queue->type) {
case GDMA_EQ:
mana_gd_destroy_eq(gc, queue->eq.disable_needed, queue);
break;
case GDMA_CQ:
mana_gd_destroy_cq(gc, queue);
break;
case GDMA_RQ:
break;
case GDMA_SQ:
break;
default:
device_printf(gc->dev,
"Can't destroy unknown queue: type = %d\n",
queue->type);
return;
}
mana_gd_destroy_dma_region(gc, gmi->gdma_region);
mana_gd_free_memory(gmi);
free(queue, M_DEVBUF);
}
int
mana_gd_verify_vf_version(device_t dev)
{
struct gdma_context *gc = device_get_softc(dev);
struct gdma_verify_ver_resp resp = {};
struct gdma_verify_ver_req req = {};
int err;
mana_gd_init_req_hdr(&req.hdr, GDMA_VERIFY_VF_DRIVER_VERSION,
sizeof(req), sizeof(resp));
req.protocol_ver_min = GDMA_PROTOCOL_FIRST;
req.protocol_ver_max = GDMA_PROTOCOL_LAST;
err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
if (err || resp.hdr.status) {
device_printf(gc->dev,
"VfVerifyVersionOutput: %d, status=0x%x\n",
err, resp.hdr.status);
return err ? err : EPROTO;
}
return 0;
}
int
mana_gd_register_device(struct gdma_dev *gd)
{
struct gdma_context *gc = gd->gdma_context;
struct gdma_register_device_resp resp = {};
struct gdma_general_req req = {};
int err;
gd->pdid = INVALID_PDID;
gd->doorbell = INVALID_DOORBELL;
gd->gpa_mkey = INVALID_MEM_KEY;
mana_gd_init_req_hdr(&req.hdr, GDMA_REGISTER_DEVICE, sizeof(req),
sizeof(resp));
req.hdr.dev_id = gd->dev_id;
err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
if (err || resp.hdr.status) {
device_printf(gc->dev,
"gdma_register_device_resp failed: %d, 0x%x\n",
err, resp.hdr.status);
return err ? err : -EPROTO;
}
gd->pdid = resp.pdid;
gd->gpa_mkey = resp.gpa_mkey;
gd->doorbell = resp.db_id;
mana_dbg(NULL, "mana device pdid %u, gpa_mkey %u, doorbell %u \n",
gd->pdid, gd->gpa_mkey, gd->doorbell);
return 0;
}
int
mana_gd_deregister_device(struct gdma_dev *gd)
{
struct gdma_context *gc = gd->gdma_context;
struct gdma_general_resp resp = {};
struct gdma_general_req req = {};
int err;
if (gd->pdid == INVALID_PDID)
return EINVAL;
mana_gd_init_req_hdr(&req.hdr, GDMA_DEREGISTER_DEVICE, sizeof(req),
sizeof(resp));
req.hdr.dev_id = gd->dev_id;
err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp);
if (err || resp.hdr.status) {
device_printf(gc->dev,
"Failed to deregister device: %d, 0x%x\n",
err, resp.hdr.status);
if (!err)
err = EPROTO;
}
gd->pdid = INVALID_PDID;
gd->doorbell = INVALID_DOORBELL;
gd->gpa_mkey = INVALID_MEM_KEY;
return err;
}
uint32_t
mana_gd_wq_avail_space(struct gdma_queue *wq)
{
uint32_t used_space = (wq->head - wq->tail) * GDMA_WQE_BU_SIZE;
uint32_t wq_size = wq->queue_size;
if (used_space > wq_size) {
mana_warn(NULL, "failed: used space %u > queue size %u\n",
used_space, wq_size);
}
return wq_size - used_space;
}
uint8_t *
mana_gd_get_wqe_ptr(const struct gdma_queue *wq, uint32_t wqe_offset)
{
uint32_t offset =
(wqe_offset * GDMA_WQE_BU_SIZE) & (wq->queue_size - 1);
if ((offset + GDMA_WQE_BU_SIZE) > wq->queue_size) {
mana_warn(NULL, "failed: write end out of queue bound %u, "
"queue size %u\n",
offset + GDMA_WQE_BU_SIZE, wq->queue_size);
}
return (uint8_t *)wq->queue_mem_ptr + offset;
}
static uint32_t
mana_gd_write_client_oob(const struct gdma_wqe_request *wqe_req,
enum gdma_queue_type q_type,
uint32_t client_oob_size, uint32_t sgl_data_size,
uint8_t *wqe_ptr)
{
bool oob_in_sgl = !!(wqe_req->flags & GDMA_WR_OOB_IN_SGL);
bool pad_data = !!(wqe_req->flags & GDMA_WR_PAD_BY_SGE0);
struct gdma_wqe *header = (struct gdma_wqe *)wqe_ptr;
uint8_t *ptr;
memset(header, 0, sizeof(struct gdma_wqe));
header->num_sge = wqe_req->num_sge;
header->inline_oob_size_div4 = client_oob_size / sizeof(uint32_t);
if (oob_in_sgl) {
if (!pad_data || wqe_req->num_sge < 2) {
mana_warn(NULL, "no pad_data or num_sge < 2\n");
}
header->client_oob_in_sgl = 1;
if (pad_data)
header->last_vbytes = wqe_req->sgl[0].size;
}
if (q_type == GDMA_SQ)
header->client_data_unit = wqe_req->client_data_unit;
/*
* The size of gdma_wqe + client_oob_size must be less than or equal
* to one Basic Unit (i.e. 32 bytes), so the pointer can't go beyond
* the queue memory buffer boundary.
*/
ptr = wqe_ptr + sizeof(header);
if (wqe_req->inline_oob_data && wqe_req->inline_oob_size > 0) {
memcpy(ptr, wqe_req->inline_oob_data, wqe_req->inline_oob_size);
if (client_oob_size > wqe_req->inline_oob_size)
memset(ptr + wqe_req->inline_oob_size, 0,
client_oob_size - wqe_req->inline_oob_size);
}
return sizeof(header) + client_oob_size;
}
static void
mana_gd_write_sgl(struct gdma_queue *wq, uint8_t *wqe_ptr,
const struct gdma_wqe_request *wqe_req)
{
uint32_t sgl_size = sizeof(struct gdma_sge) * wqe_req->num_sge;
const uint8_t *address = (uint8_t *)wqe_req->sgl;
uint8_t *base_ptr, *end_ptr;
uint32_t size_to_end;
base_ptr = wq->queue_mem_ptr;
end_ptr = base_ptr + wq->queue_size;
size_to_end = (uint32_t)(end_ptr - wqe_ptr);
if (size_to_end < sgl_size) {
memcpy(wqe_ptr, address, size_to_end);
wqe_ptr = base_ptr;
address += size_to_end;
sgl_size -= size_to_end;
}
memcpy(wqe_ptr, address, sgl_size);
}
int
mana_gd_post_work_request(struct gdma_queue *wq,
const struct gdma_wqe_request *wqe_req,
struct gdma_posted_wqe_info *wqe_info)
{
uint32_t client_oob_size = wqe_req->inline_oob_size;
struct gdma_context *gc;
uint32_t sgl_data_size;
uint32_t max_wqe_size;
uint32_t wqe_size;
uint8_t *wqe_ptr;
if (wqe_req->num_sge == 0)
return EINVAL;
if (wq->type == GDMA_RQ) {
if (client_oob_size != 0)
return EINVAL;
client_oob_size = INLINE_OOB_SMALL_SIZE;
max_wqe_size = GDMA_MAX_RQE_SIZE;
} else {
if (client_oob_size != INLINE_OOB_SMALL_SIZE &&
client_oob_size != INLINE_OOB_LARGE_SIZE)
return EINVAL;
max_wqe_size = GDMA_MAX_SQE_SIZE;
}
sgl_data_size = sizeof(struct gdma_sge) * wqe_req->num_sge;
wqe_size = ALIGN(sizeof(struct gdma_wqe) + client_oob_size +
sgl_data_size, GDMA_WQE_BU_SIZE);
if (wqe_size > max_wqe_size)
return EINVAL;
if (wq->monitor_avl_buf && wqe_size > mana_gd_wq_avail_space(wq)) {
gc = wq->gdma_dev->gdma_context;
device_printf(gc->dev, "unsuccessful flow control!\n");
return ENOSPC;
}
if (wqe_info)
wqe_info->wqe_size_in_bu = wqe_size / GDMA_WQE_BU_SIZE;
wqe_ptr = mana_gd_get_wqe_ptr(wq, wq->head);
wqe_ptr += mana_gd_write_client_oob(wqe_req, wq->type, client_oob_size,
sgl_data_size, wqe_ptr);
if (wqe_ptr >= (uint8_t *)wq->queue_mem_ptr + wq->queue_size)
wqe_ptr -= wq->queue_size;
mana_gd_write_sgl(wq, wqe_ptr, wqe_req);
wq->head += wqe_size / GDMA_WQE_BU_SIZE;
bus_dmamap_sync(wq->mem_info.dma_tag, wq->mem_info.dma_map,
BUS_DMASYNC_PREWRITE);
return 0;
}
int
mana_gd_post_and_ring(struct gdma_queue *queue,
const struct gdma_wqe_request *wqe_req,
struct gdma_posted_wqe_info *wqe_info)
{
struct gdma_context *gc = queue->gdma_dev->gdma_context;
int err;
err = mana_gd_post_work_request(queue, wqe_req, wqe_info);
if (err)
return err;
mana_gd_wq_ring_doorbell(gc, queue);
return 0;
}
static int
mana_gd_read_cqe(struct gdma_queue *cq, struct gdma_comp *comp)
{
unsigned int num_cqe = cq->queue_size / sizeof(struct gdma_cqe);
struct gdma_cqe *cq_cqe = cq->queue_mem_ptr;
uint32_t owner_bits, new_bits, old_bits;
struct gdma_cqe *cqe;
cqe = &cq_cqe[cq->head % num_cqe];
owner_bits = cqe->cqe_info.owner_bits;
old_bits = (cq->head / num_cqe - 1) & GDMA_CQE_OWNER_MASK;
/* Return 0 if no more entries. */
if (owner_bits == old_bits)
return 0;
new_bits = (cq->head / num_cqe) & GDMA_CQE_OWNER_MASK;
/* Return -1 if overflow detected. */
if (owner_bits != new_bits)
return -1;
comp->wq_num = cqe->cqe_info.wq_num;
comp->is_sq = cqe->cqe_info.is_sq;
memcpy(comp->cqe_data, cqe->cqe_data, GDMA_COMP_DATA_SIZE);
return 1;
}
int
mana_gd_poll_cq(struct gdma_queue *cq, struct gdma_comp *comp, int num_cqe)
{
int cqe_idx;
int ret;
bus_dmamap_sync(cq->mem_info.dma_tag, cq->mem_info.dma_map,
BUS_DMASYNC_POSTREAD);
for (cqe_idx = 0; cqe_idx < num_cqe; cqe_idx++) {
ret = mana_gd_read_cqe(cq, &comp[cqe_idx]);
if (ret < 0) {
cq->head -= cqe_idx;
return ret;
}
if (ret == 0)
break;
cq->head++;
}
return cqe_idx;
}
static void
mana_gd_intr(void *arg)
{
struct gdma_irq_context *gic = arg;
if (gic->handler) {
gic->handler(gic->arg);
}
}
int
mana_gd_alloc_res_map(uint32_t res_avail,
struct gdma_resource *r, const char *lock_name)
{
int n = howmany(res_avail, BITS_PER_LONG);
r->map =
malloc(n * sizeof(unsigned long), M_DEVBUF, M_WAITOK | M_ZERO);
if (!r->map)
return ENOMEM;
r->size = res_avail;
mtx_init(&r->lock_spin, lock_name, NULL, MTX_SPIN);
mana_dbg(NULL,
"total res %u, total number of unsigned longs %u\n",
r->size, n);
return (0);
}
void
mana_gd_free_res_map(struct gdma_resource *r)
{
if (!r || !r->map)
return;
free(r->map, M_DEVBUF);
r->map = NULL;
r->size = 0;
}
static void
mana_gd_init_registers(struct gdma_context *gc)
{
uint64_t bar0_va = rman_get_bushandle(gc->bar0);
gc->db_page_size = mana_gd_r32(gc, GDMA_REG_DB_PAGE_SIZE) & 0xFFFF;
gc->db_page_base =
(void *) (bar0_va + mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET));
gc->shm_base =
(void *) (bar0_va + mana_gd_r64(gc, GDMA_REG_SHM_OFFSET));
mana_dbg(NULL, "db_page_size 0x%xx, db_page_base %p,"
" shm_base %p\n",
gc->db_page_size, gc->db_page_base, gc->shm_base);
}
static struct resource *
mana_gd_alloc_bar(device_t dev, int bar)
{
struct resource *res = NULL;
struct pci_map *pm;
int rid, type;
if (bar < 0 || bar > PCIR_MAX_BAR_0)
goto alloc_bar_out;
pm = pci_find_bar(dev, PCIR_BAR(bar));
if (!pm)
goto alloc_bar_out;
if (PCI_BAR_IO(pm->pm_value))
type = SYS_RES_IOPORT;
else
type = SYS_RES_MEMORY;
if (type < 0)
goto alloc_bar_out;
rid = PCIR_BAR(bar);
res = bus_alloc_resource_any(dev, type, &rid, RF_ACTIVE);
#if defined(__amd64__)
if (res)
mana_dbg(NULL, "bar %d: rid 0x%x, type 0x%jx,"
" handle 0x%jx\n",
bar, rid, res->r_bustag, res->r_bushandle);
#endif
alloc_bar_out:
return (res);
}
static void
mana_gd_free_pci_res(struct gdma_context *gc)
{
if (!gc || gc->dev)
return;
if (gc->bar0 != NULL) {
bus_release_resource(gc->dev, SYS_RES_MEMORY,
PCIR_BAR(GDMA_BAR0), gc->bar0);
}
if (gc->msix != NULL) {
bus_release_resource(gc->dev, SYS_RES_MEMORY,
gc->msix_rid, gc->msix);
}
}
static int
mana_gd_setup_irqs(device_t dev)
{
unsigned int max_queues_per_port = mp_ncpus;
struct gdma_context *gc = device_get_softc(dev);
struct gdma_irq_context *gic;
unsigned int max_irqs;
int nvec;
int rc, rcc, i;
if (max_queues_per_port > MANA_MAX_NUM_QUEUES)
max_queues_per_port = MANA_MAX_NUM_QUEUES;
/* Need 1 interrupt for the Hardware communication Channel (HWC) */
max_irqs = max_queues_per_port + 1;
nvec = max_irqs;
rc = pci_alloc_msix(dev, &nvec);
if (unlikely(rc != 0)) {
device_printf(dev,
"Failed to allocate MSIX, vectors %d, error: %d\n",
nvec, rc);
rc = ENOSPC;
goto err_setup_irq_alloc;
}
if (nvec != max_irqs) {
if (nvec == 1) {
device_printf(dev,
"Not enough number of MSI-x allocated: %d\n",
nvec);
rc = ENOSPC;
goto err_setup_irq_release;
}
device_printf(dev, "Allocated only %d MSI-x (%d requested)\n",
nvec, max_irqs);
}
gc->irq_contexts = malloc(nvec * sizeof(struct gdma_irq_context),
M_DEVBUF, M_WAITOK | M_ZERO);
if (!gc->irq_contexts) {
rc = ENOMEM;
goto err_setup_irq_release;
}
for (i = 0; i < nvec; i++) {
gic = &gc->irq_contexts[i];
gic->msix_e.entry = i;
/* Vector starts from 1. */
gic->msix_e.vector = i + 1;
gic->handler = NULL;
gic->arg = NULL;
gic->res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&gic->msix_e.vector, RF_ACTIVE | RF_SHAREABLE);
if (unlikely(gic->res == NULL)) {
rc = ENOMEM;
device_printf(dev, "could not allocate resource "
"for irq vector %d\n", gic->msix_e.vector);
goto err_setup_irq;
}
rc = bus_setup_intr(dev, gic->res,
INTR_TYPE_NET | INTR_MPSAFE, NULL, mana_gd_intr,
gic, &gic->cookie);
if (unlikely(rc != 0)) {
device_printf(dev, "failed to register interrupt "
"handler for irq %ju vector %d: error %d\n",
rman_get_start(gic->res), gic->msix_e.vector, rc);
goto err_setup_irq;
}
gic->requested = true;
mana_dbg(NULL, "added msix vector %d irq %ju\n",
gic->msix_e.vector, rman_get_start(gic->res));
}
rc = mana_gd_alloc_res_map(nvec, &gc->msix_resource,
"gdma msix res lock");
if (rc != 0) {
device_printf(dev, "failed to allocate memory "
"for msix bitmap\n");
goto err_setup_irq;
}
gc->max_num_msix = nvec;
gc->num_msix_usable = nvec;
mana_dbg(NULL, "setup %d msix interrupts\n", nvec);
return (0);
err_setup_irq:
for (; i >= 0; i--) {
gic = &gc->irq_contexts[i];
rcc = 0;
/*
* If gic->requested is true, we need to free both intr and
* resources.
*/
if (gic->requested)
rcc = bus_teardown_intr(dev, gic->res, gic->cookie);
if (unlikely(rcc != 0))
device_printf(dev, "could not release "
"irq vector %d, error: %d\n",
gic->msix_e.vector, rcc);
rcc = 0;
if (gic->res != NULL) {
rcc = bus_release_resource(dev, SYS_RES_IRQ,
gic->msix_e.vector, gic->res);
}
if (unlikely(rcc != 0))
device_printf(dev, "dev has no parent while "
"releasing resource for irq vector %d\n",
gic->msix_e.vector);
gic->requested = false;
gic->res = NULL;
}
free(gc->irq_contexts, M_DEVBUF);
gc->irq_contexts = NULL;
err_setup_irq_release:
pci_release_msi(dev);
err_setup_irq_alloc:
return (rc);
}
static void
mana_gd_remove_irqs(device_t dev)
{
struct gdma_context *gc = device_get_softc(dev);
struct gdma_irq_context *gic;
int rc, i;
mana_gd_free_res_map(&gc->msix_resource);
for (i = 0; i < gc->max_num_msix; i++) {
gic = &gc->irq_contexts[i];
if (gic->requested) {
rc = bus_teardown_intr(dev, gic->res, gic->cookie);
if (unlikely(rc != 0)) {
device_printf(dev, "failed to tear down "
"irq vector %d, error: %d\n",
gic->msix_e.vector, rc);
}
gic->requested = false;
}
if (gic->res != NULL) {
rc = bus_release_resource(dev, SYS_RES_IRQ,
gic->msix_e.vector, gic->res);
if (unlikely(rc != 0)) {
device_printf(dev, "dev has no parent while "
"releasing resource for irq vector %d\n",
gic->msix_e.vector);
}
gic->res = NULL;
}
}
gc->max_num_msix = 0;
gc->num_msix_usable = 0;
free(gc->irq_contexts, M_DEVBUF);
gc->irq_contexts = NULL;
pci_release_msi(dev);
}
static int
mana_gd_probe(device_t dev)
{
mana_vendor_id_t *ent;
char adapter_name[60];
uint16_t pci_vendor_id = 0;
uint16_t pci_device_id = 0;
pci_vendor_id = pci_get_vendor(dev);
pci_device_id = pci_get_device(dev);
ent = mana_id_table;
while (ent->vendor_id != 0) {
if ((pci_vendor_id == ent->vendor_id) &&
(pci_device_id == ent->device_id)) {
mana_dbg(NULL, "vendor=%x device=%x\n",
pci_vendor_id, pci_device_id);
sprintf(adapter_name, DEVICE_DESC);
device_set_desc_copy(dev, adapter_name);
return (BUS_PROBE_DEFAULT);
}
ent++;
}
return (ENXIO);
}
/**
* mana_attach - Device Initialization Routine
* @dev: device information struct
*
* Returns 0 on success, otherwise on failure.
*
* mana_attach initializes a GDMA adapter identified by a device structure.
**/
static int
mana_gd_attach(device_t dev)
{
struct gdma_context *gc;
int msix_rid;
int rc;
gc = device_get_softc(dev);
gc->dev = dev;
pci_enable_io(dev, SYS_RES_IOPORT);
pci_enable_io(dev, SYS_RES_MEMORY);
pci_enable_busmaster(dev);
gc->bar0 = mana_gd_alloc_bar(dev, GDMA_BAR0);
if (unlikely(gc->bar0 == NULL)) {
device_printf(dev,
"unable to allocate bus resource for bar0!\n");
rc = ENOMEM;
goto err_disable_dev;
}
/* Store bar0 tage and handle for quick access */
gc->gd_bus.bar0_t = rman_get_bustag(gc->bar0);
gc->gd_bus.bar0_h = rman_get_bushandle(gc->bar0);
/* Map MSI-x vector table */
msix_rid = pci_msix_table_bar(dev);
mana_dbg(NULL, "msix_rid 0x%x\n", msix_rid);
gc->msix = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&msix_rid, RF_ACTIVE);
if (unlikely(gc->msix == NULL)) {
device_printf(dev,
"unable to allocate bus resource for msix!\n");
rc = ENOMEM;
goto err_free_pci_res;
}
gc->msix_rid = msix_rid;
if (unlikely(gc->gd_bus.bar0_h == 0)) {
device_printf(dev, "failed to map bar0!\n");
rc = ENXIO;
goto err_free_pci_res;
}
mana_gd_init_registers(gc);
mana_smc_init(&gc->shm_channel, gc->dev, gc->shm_base);
rc = mana_gd_setup_irqs(dev);
if (rc) {
goto err_free_pci_res;
}
sx_init(&gc->eq_test_event_sx, "gdma test event sx");
rc = mana_hwc_create_channel(gc);
if (rc) {
mana_dbg(NULL, "Failed to create hwc channel\n");
if (rc == EIO)
goto err_clean_up_gdma;
else
goto err_remove_irq;
}
rc = mana_gd_verify_vf_version(dev);
if (rc) {
mana_dbg(NULL, "Failed to verify vf\n");
goto err_clean_up_gdma;
}
rc = mana_gd_query_max_resources(dev);
if (rc) {
mana_dbg(NULL, "Failed to query max resources\n");
goto err_clean_up_gdma;
}
rc = mana_gd_detect_devices(dev);
if (rc) {
mana_dbg(NULL, "Failed to detect mana device\n");
goto err_clean_up_gdma;
}
rc = mana_probe(&gc->mana);
if (rc) {
mana_dbg(NULL, "Failed to probe mana device\n");
goto err_clean_up_gdma;
}
return (0);
err_clean_up_gdma:
mana_hwc_destroy_channel(gc);
if (gc->cq_table)
free(gc->cq_table, M_DEVBUF);
gc->cq_table = NULL;
err_remove_irq:
mana_gd_remove_irqs(dev);
err_free_pci_res:
mana_gd_free_pci_res(gc);
err_disable_dev:
pci_disable_busmaster(dev);
return(rc);
}
/**
* mana_detach - Device Removal Routine
* @pdev: device information struct
*
* mana_detach is called by the device subsystem to alert the driver
* that it should release a PCI device.
**/
static int
mana_gd_detach(device_t dev)
{
struct gdma_context *gc = device_get_softc(dev);
mana_remove(&gc->mana);
mana_hwc_destroy_channel(gc);
free(gc->cq_table, M_DEVBUF);
gc->cq_table = NULL;
mana_gd_remove_irqs(dev);
mana_gd_free_pci_res(gc);
pci_disable_busmaster(dev);
return (bus_generic_detach(dev));
}
/*********************************************************************
* FreeBSD Device Interface Entry Points
*********************************************************************/
static device_method_t mana_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, mana_gd_probe),
DEVMETHOD(device_attach, mana_gd_attach),
DEVMETHOD(device_detach, mana_gd_detach),
DEVMETHOD_END
};
static driver_t mana_driver = {
"mana", mana_methods, sizeof(struct gdma_context),
};
devclass_t mana_devclass;
DRIVER_MODULE(mana, pci, mana_driver, mana_devclass, 0, 0);
MODULE_PNP_INFO("U16:vendor;U16:device", pci, mana, mana_id_table,
nitems(mana_id_table) - 1);
MODULE_DEPEND(mana, pci, 1, 1, 1);
MODULE_DEPEND(mana, ether, 1, 1, 1);
/*********************************************************************/