e3bcd07d83
New Samsung 980 SSDs report Namespace Preferred Write Alignment of 8 (4KB) and Namespace Preferred Write Granularity of 32 (16KB). My quick tests show that 16KB is a minimal sequential write size when the SSD reaches peak IOPS, so writing much less is very slow. But writing slightly less or slightly more does not change much, so it seems not so much a size granularity as minimum I/O size. Thinking about different stripesize consumers: - Partition alignment should be based on NPWA by definition. - ZFS ashift in part of forcing alignment of all I/Os should also be based on NPWA. In part of forcing size granularity, if really needed, it may be set to NPWG, but too big value can make ZFS too space-inefficient, and the 16KB is actually the biggest supported value there now. - ZFS recordsize/volblocksize could potentially be tuned up toward NPWG to work as I/O size granularity, but enabled compression makes it too fuzzy. And those are normally user-configurable things. - ZFS I/O aggregation code could definitely use Optimal Write Size value and may be NPWG, but we don't have fields in GEOM now to report the minimal and optimal I/O sizes, and even maximal is not reported outside GEOM DISK to be used by ZFS. MFC after: 1 week
633 lines
15 KiB
C
633 lines
15 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (C) 2012-2013 Intel Corporation
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/disk.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/ioccom.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/module.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/systm.h>
|
|
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <geom/geom.h>
|
|
|
|
#include "nvme_private.h"
|
|
|
|
static void nvme_bio_child_inbed(struct bio *parent, int bio_error);
|
|
static void nvme_bio_child_done(void *arg,
|
|
const struct nvme_completion *cpl);
|
|
static uint32_t nvme_get_num_segments(uint64_t addr, uint64_t size,
|
|
uint32_t alignment);
|
|
static void nvme_free_child_bios(int num_bios,
|
|
struct bio **child_bios);
|
|
static struct bio ** nvme_allocate_child_bios(int num_bios);
|
|
static struct bio ** nvme_construct_child_bios(struct bio *bp,
|
|
uint32_t alignment,
|
|
int *num_bios);
|
|
static int nvme_ns_split_bio(struct nvme_namespace *ns,
|
|
struct bio *bp,
|
|
uint32_t alignment);
|
|
|
|
static int
|
|
nvme_ns_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
|
|
struct thread *td)
|
|
{
|
|
struct nvme_namespace *ns;
|
|
struct nvme_controller *ctrlr;
|
|
struct nvme_pt_command *pt;
|
|
|
|
ns = cdev->si_drv1;
|
|
ctrlr = ns->ctrlr;
|
|
|
|
switch (cmd) {
|
|
case NVME_IO_TEST:
|
|
case NVME_BIO_TEST:
|
|
nvme_ns_test(ns, cmd, arg);
|
|
break;
|
|
case NVME_PASSTHROUGH_CMD:
|
|
pt = (struct nvme_pt_command *)arg;
|
|
return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, ns->id,
|
|
1 /* is_user_buffer */, 0 /* is_admin_cmd */));
|
|
case NVME_GET_NSID:
|
|
{
|
|
struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
|
|
strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
|
|
sizeof(gnsid->cdev));
|
|
gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0';
|
|
gnsid->nsid = ns->id;
|
|
break;
|
|
}
|
|
case DIOCGMEDIASIZE:
|
|
*(off_t *)arg = (off_t)nvme_ns_get_size(ns);
|
|
break;
|
|
case DIOCGSECTORSIZE:
|
|
*(u_int *)arg = nvme_ns_get_sector_size(ns);
|
|
break;
|
|
default:
|
|
return (ENOTTY);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
nvme_ns_open(struct cdev *dev __unused, int flags, int fmt __unused,
|
|
struct thread *td)
|
|
{
|
|
int error = 0;
|
|
|
|
if (flags & FWRITE)
|
|
error = securelevel_gt(td->td_ucred, 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
nvme_ns_close(struct cdev *dev __unused, int flags, int fmt __unused,
|
|
struct thread *td)
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
nvme_ns_strategy_done(void *arg, const struct nvme_completion *cpl)
|
|
{
|
|
struct bio *bp = arg;
|
|
|
|
/*
|
|
* TODO: add more extensive translation of NVMe status codes
|
|
* to different bio error codes (i.e. EIO, EINVAL, etc.)
|
|
*/
|
|
if (nvme_completion_is_error(cpl)) {
|
|
bp->bio_error = EIO;
|
|
bp->bio_flags |= BIO_ERROR;
|
|
bp->bio_resid = bp->bio_bcount;
|
|
} else
|
|
bp->bio_resid = 0;
|
|
|
|
biodone(bp);
|
|
}
|
|
|
|
static void
|
|
nvme_ns_strategy(struct bio *bp)
|
|
{
|
|
struct nvme_namespace *ns;
|
|
int err;
|
|
|
|
ns = bp->bio_dev->si_drv1;
|
|
err = nvme_ns_bio_process(ns, bp, nvme_ns_strategy_done);
|
|
|
|
if (err) {
|
|
bp->bio_error = err;
|
|
bp->bio_flags |= BIO_ERROR;
|
|
bp->bio_resid = bp->bio_bcount;
|
|
biodone(bp);
|
|
}
|
|
|
|
}
|
|
|
|
static struct cdevsw nvme_ns_cdevsw = {
|
|
.d_version = D_VERSION,
|
|
.d_flags = D_DISK,
|
|
.d_read = physread,
|
|
.d_write = physwrite,
|
|
.d_open = nvme_ns_open,
|
|
.d_close = nvme_ns_close,
|
|
.d_strategy = nvme_ns_strategy,
|
|
.d_ioctl = nvme_ns_ioctl
|
|
};
|
|
|
|
uint32_t
|
|
nvme_ns_get_max_io_xfer_size(struct nvme_namespace *ns)
|
|
{
|
|
return ns->ctrlr->max_xfer_size;
|
|
}
|
|
|
|
uint32_t
|
|
nvme_ns_get_sector_size(struct nvme_namespace *ns)
|
|
{
|
|
uint8_t flbas_fmt, lbads;
|
|
|
|
flbas_fmt = (ns->data.flbas >> NVME_NS_DATA_FLBAS_FORMAT_SHIFT) &
|
|
NVME_NS_DATA_FLBAS_FORMAT_MASK;
|
|
lbads = (ns->data.lbaf[flbas_fmt] >> NVME_NS_DATA_LBAF_LBADS_SHIFT) &
|
|
NVME_NS_DATA_LBAF_LBADS_MASK;
|
|
|
|
return (1 << lbads);
|
|
}
|
|
|
|
uint64_t
|
|
nvme_ns_get_num_sectors(struct nvme_namespace *ns)
|
|
{
|
|
return (ns->data.nsze);
|
|
}
|
|
|
|
uint64_t
|
|
nvme_ns_get_size(struct nvme_namespace *ns)
|
|
{
|
|
return (nvme_ns_get_num_sectors(ns) * nvme_ns_get_sector_size(ns));
|
|
}
|
|
|
|
uint32_t
|
|
nvme_ns_get_flags(struct nvme_namespace *ns)
|
|
{
|
|
return (ns->flags);
|
|
}
|
|
|
|
const char *
|
|
nvme_ns_get_serial_number(struct nvme_namespace *ns)
|
|
{
|
|
return ((const char *)ns->ctrlr->cdata.sn);
|
|
}
|
|
|
|
const char *
|
|
nvme_ns_get_model_number(struct nvme_namespace *ns)
|
|
{
|
|
return ((const char *)ns->ctrlr->cdata.mn);
|
|
}
|
|
|
|
const struct nvme_namespace_data *
|
|
nvme_ns_get_data(struct nvme_namespace *ns)
|
|
{
|
|
|
|
return (&ns->data);
|
|
}
|
|
|
|
uint32_t
|
|
nvme_ns_get_stripesize(struct nvme_namespace *ns)
|
|
{
|
|
uint32_t ss;
|
|
|
|
if (((ns->data.nsfeat >> NVME_NS_DATA_NSFEAT_NPVALID_SHIFT) &
|
|
NVME_NS_DATA_NSFEAT_NPVALID_MASK) != 0) {
|
|
ss = nvme_ns_get_sector_size(ns);
|
|
if (ns->data.npwa != 0)
|
|
return ((ns->data.npwa + 1) * ss);
|
|
else if (ns->data.npwg != 0)
|
|
return ((ns->data.npwg + 1) * ss);
|
|
}
|
|
return (ns->boundary);
|
|
}
|
|
|
|
static void
|
|
nvme_ns_bio_done(void *arg, const struct nvme_completion *status)
|
|
{
|
|
struct bio *bp = arg;
|
|
nvme_cb_fn_t bp_cb_fn;
|
|
|
|
bp_cb_fn = bp->bio_driver1;
|
|
|
|
if (bp->bio_driver2)
|
|
free(bp->bio_driver2, M_NVME);
|
|
|
|
if (nvme_completion_is_error(status)) {
|
|
bp->bio_flags |= BIO_ERROR;
|
|
if (bp->bio_error == 0)
|
|
bp->bio_error = EIO;
|
|
}
|
|
|
|
if ((bp->bio_flags & BIO_ERROR) == 0)
|
|
bp->bio_resid = 0;
|
|
else
|
|
bp->bio_resid = bp->bio_bcount;
|
|
|
|
bp_cb_fn(bp, status);
|
|
}
|
|
|
|
static void
|
|
nvme_bio_child_inbed(struct bio *parent, int bio_error)
|
|
{
|
|
struct nvme_completion parent_cpl;
|
|
int children, inbed;
|
|
|
|
if (bio_error != 0) {
|
|
parent->bio_flags |= BIO_ERROR;
|
|
parent->bio_error = bio_error;
|
|
}
|
|
|
|
/*
|
|
* atomic_fetchadd will return value before adding 1, so we still
|
|
* must add 1 to get the updated inbed number. Save bio_children
|
|
* before incrementing to guard against race conditions when
|
|
* two children bios complete on different queues.
|
|
*/
|
|
children = atomic_load_acq_int(&parent->bio_children);
|
|
inbed = atomic_fetchadd_int(&parent->bio_inbed, 1) + 1;
|
|
if (inbed == children) {
|
|
bzero(&parent_cpl, sizeof(parent_cpl));
|
|
if (parent->bio_flags & BIO_ERROR) {
|
|
parent_cpl.status &= ~(NVME_STATUS_SC_MASK << NVME_STATUS_SC_SHIFT);
|
|
parent_cpl.status |= (NVME_SC_DATA_TRANSFER_ERROR) << NVME_STATUS_SC_SHIFT;
|
|
}
|
|
nvme_ns_bio_done(parent, &parent_cpl);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_bio_child_done(void *arg, const struct nvme_completion *cpl)
|
|
{
|
|
struct bio *child = arg;
|
|
struct bio *parent;
|
|
int bio_error;
|
|
|
|
parent = child->bio_parent;
|
|
g_destroy_bio(child);
|
|
bio_error = nvme_completion_is_error(cpl) ? EIO : 0;
|
|
nvme_bio_child_inbed(parent, bio_error);
|
|
}
|
|
|
|
static uint32_t
|
|
nvme_get_num_segments(uint64_t addr, uint64_t size, uint32_t align)
|
|
{
|
|
uint32_t num_segs, offset, remainder;
|
|
|
|
if (align == 0)
|
|
return (1);
|
|
|
|
KASSERT((align & (align - 1)) == 0, ("alignment not power of 2\n"));
|
|
|
|
num_segs = size / align;
|
|
remainder = size & (align - 1);
|
|
offset = addr & (align - 1);
|
|
if (remainder > 0 || offset > 0)
|
|
num_segs += 1 + (remainder + offset - 1) / align;
|
|
return (num_segs);
|
|
}
|
|
|
|
static void
|
|
nvme_free_child_bios(int num_bios, struct bio **child_bios)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < num_bios; i++) {
|
|
if (child_bios[i] != NULL)
|
|
g_destroy_bio(child_bios[i]);
|
|
}
|
|
|
|
free(child_bios, M_NVME);
|
|
}
|
|
|
|
static struct bio **
|
|
nvme_allocate_child_bios(int num_bios)
|
|
{
|
|
struct bio **child_bios;
|
|
int err = 0, i;
|
|
|
|
child_bios = malloc(num_bios * sizeof(struct bio *), M_NVME, M_NOWAIT);
|
|
if (child_bios == NULL)
|
|
return (NULL);
|
|
|
|
for (i = 0; i < num_bios; i++) {
|
|
child_bios[i] = g_new_bio();
|
|
if (child_bios[i] == NULL)
|
|
err = ENOMEM;
|
|
}
|
|
|
|
if (err == ENOMEM) {
|
|
nvme_free_child_bios(num_bios, child_bios);
|
|
return (NULL);
|
|
}
|
|
|
|
return (child_bios);
|
|
}
|
|
|
|
static struct bio **
|
|
nvme_construct_child_bios(struct bio *bp, uint32_t alignment, int *num_bios)
|
|
{
|
|
struct bio **child_bios;
|
|
struct bio *child;
|
|
uint64_t cur_offset;
|
|
caddr_t data;
|
|
uint32_t rem_bcount;
|
|
int i;
|
|
struct vm_page **ma;
|
|
uint32_t ma_offset;
|
|
|
|
*num_bios = nvme_get_num_segments(bp->bio_offset, bp->bio_bcount,
|
|
alignment);
|
|
child_bios = nvme_allocate_child_bios(*num_bios);
|
|
if (child_bios == NULL)
|
|
return (NULL);
|
|
|
|
bp->bio_children = *num_bios;
|
|
bp->bio_inbed = 0;
|
|
cur_offset = bp->bio_offset;
|
|
rem_bcount = bp->bio_bcount;
|
|
data = bp->bio_data;
|
|
ma_offset = bp->bio_ma_offset;
|
|
ma = bp->bio_ma;
|
|
|
|
for (i = 0; i < *num_bios; i++) {
|
|
child = child_bios[i];
|
|
child->bio_parent = bp;
|
|
child->bio_cmd = bp->bio_cmd;
|
|
child->bio_offset = cur_offset;
|
|
child->bio_bcount = min(rem_bcount,
|
|
alignment - (cur_offset & (alignment - 1)));
|
|
child->bio_flags = bp->bio_flags;
|
|
if (bp->bio_flags & BIO_UNMAPPED) {
|
|
child->bio_ma_offset = ma_offset;
|
|
child->bio_ma = ma;
|
|
child->bio_ma_n =
|
|
nvme_get_num_segments(child->bio_ma_offset,
|
|
child->bio_bcount, PAGE_SIZE);
|
|
ma_offset = (ma_offset + child->bio_bcount) &
|
|
PAGE_MASK;
|
|
ma += child->bio_ma_n;
|
|
if (ma_offset != 0)
|
|
ma -= 1;
|
|
} else {
|
|
child->bio_data = data;
|
|
data += child->bio_bcount;
|
|
}
|
|
cur_offset += child->bio_bcount;
|
|
rem_bcount -= child->bio_bcount;
|
|
}
|
|
|
|
return (child_bios);
|
|
}
|
|
|
|
static int
|
|
nvme_ns_split_bio(struct nvme_namespace *ns, struct bio *bp,
|
|
uint32_t alignment)
|
|
{
|
|
struct bio *child;
|
|
struct bio **child_bios;
|
|
int err, i, num_bios;
|
|
|
|
child_bios = nvme_construct_child_bios(bp, alignment, &num_bios);
|
|
if (child_bios == NULL)
|
|
return (ENOMEM);
|
|
|
|
for (i = 0; i < num_bios; i++) {
|
|
child = child_bios[i];
|
|
err = nvme_ns_bio_process(ns, child, nvme_bio_child_done);
|
|
if (err != 0) {
|
|
nvme_bio_child_inbed(bp, err);
|
|
g_destroy_bio(child);
|
|
}
|
|
}
|
|
|
|
free(child_bios, M_NVME);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
nvme_ns_bio_process(struct nvme_namespace *ns, struct bio *bp,
|
|
nvme_cb_fn_t cb_fn)
|
|
{
|
|
struct nvme_dsm_range *dsm_range;
|
|
uint32_t num_bios;
|
|
int err;
|
|
|
|
bp->bio_driver1 = cb_fn;
|
|
|
|
if (ns->boundary > 0 &&
|
|
(bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE)) {
|
|
num_bios = nvme_get_num_segments(bp->bio_offset,
|
|
bp->bio_bcount, ns->boundary);
|
|
if (num_bios > 1)
|
|
return (nvme_ns_split_bio(ns, bp, ns->boundary));
|
|
}
|
|
|
|
switch (bp->bio_cmd) {
|
|
case BIO_READ:
|
|
err = nvme_ns_cmd_read_bio(ns, bp, nvme_ns_bio_done, bp);
|
|
break;
|
|
case BIO_WRITE:
|
|
err = nvme_ns_cmd_write_bio(ns, bp, nvme_ns_bio_done, bp);
|
|
break;
|
|
case BIO_FLUSH:
|
|
err = nvme_ns_cmd_flush(ns, nvme_ns_bio_done, bp);
|
|
break;
|
|
case BIO_DELETE:
|
|
dsm_range =
|
|
malloc(sizeof(struct nvme_dsm_range), M_NVME,
|
|
M_ZERO | M_NOWAIT);
|
|
if (!dsm_range) {
|
|
err = ENOMEM;
|
|
break;
|
|
}
|
|
dsm_range->length =
|
|
htole32(bp->bio_bcount/nvme_ns_get_sector_size(ns));
|
|
dsm_range->starting_lba =
|
|
htole64(bp->bio_offset/nvme_ns_get_sector_size(ns));
|
|
bp->bio_driver2 = dsm_range;
|
|
err = nvme_ns_cmd_deallocate(ns, dsm_range, 1,
|
|
nvme_ns_bio_done, bp);
|
|
if (err != 0)
|
|
free(dsm_range, M_NVME);
|
|
break;
|
|
default:
|
|
err = EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
nvme_ns_ioctl_process(struct nvme_namespace *ns, u_long cmd, caddr_t arg,
|
|
int flag, struct thread *td)
|
|
{
|
|
return (nvme_ns_ioctl(ns->cdev, cmd, arg, flag, td));
|
|
}
|
|
|
|
int
|
|
nvme_ns_construct(struct nvme_namespace *ns, uint32_t id,
|
|
struct nvme_controller *ctrlr)
|
|
{
|
|
struct make_dev_args md_args;
|
|
struct nvme_completion_poll_status status;
|
|
int res;
|
|
int unit;
|
|
uint8_t flbas_fmt;
|
|
uint8_t vwc_present;
|
|
|
|
ns->ctrlr = ctrlr;
|
|
ns->id = id;
|
|
|
|
/*
|
|
* Namespaces are reconstructed after a controller reset, so check
|
|
* to make sure we only call mtx_init once on each mtx.
|
|
*
|
|
* TODO: Move this somewhere where it gets called at controller
|
|
* construction time, which is not invoked as part of each
|
|
* controller reset.
|
|
*/
|
|
if (!mtx_initialized(&ns->lock))
|
|
mtx_init(&ns->lock, "nvme ns lock", NULL, MTX_DEF);
|
|
|
|
status.done = 0;
|
|
nvme_ctrlr_cmd_identify_namespace(ctrlr, id, &ns->data,
|
|
nvme_completion_poll_cb, &status);
|
|
nvme_completion_poll(&status);
|
|
if (nvme_completion_is_error(&status.cpl)) {
|
|
nvme_printf(ctrlr, "nvme_identify_namespace failed\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
/* Convert data to host endian */
|
|
nvme_namespace_data_swapbytes(&ns->data);
|
|
|
|
/*
|
|
* If the size of is zero, chances are this isn't a valid
|
|
* namespace (eg one that's not been configured yet). The
|
|
* standard says the entire id will be zeros, so this is a
|
|
* cheap way to test for that.
|
|
*/
|
|
if (ns->data.nsze == 0)
|
|
return (ENXIO);
|
|
|
|
flbas_fmt = (ns->data.flbas >> NVME_NS_DATA_FLBAS_FORMAT_SHIFT) &
|
|
NVME_NS_DATA_FLBAS_FORMAT_MASK;
|
|
/*
|
|
* Note: format is a 0-based value, so > is appropriate here,
|
|
* not >=.
|
|
*/
|
|
if (flbas_fmt > ns->data.nlbaf) {
|
|
printf("lba format %d exceeds number supported (%d)\n",
|
|
flbas_fmt, ns->data.nlbaf + 1);
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Older Intel devices advertise in vendor specific space an alignment
|
|
* that improves performance. If present use for the stripe size. NVMe
|
|
* 1.3 standardized this as NOIOB, and newer Intel drives use that.
|
|
*/
|
|
switch (pci_get_devid(ctrlr->dev)) {
|
|
case 0x09538086: /* Intel DC PC3500 */
|
|
case 0x0a538086: /* Intel DC PC3520 */
|
|
case 0x0a548086: /* Intel DC PC4500 */
|
|
case 0x0a558086: /* Dell Intel P4600 */
|
|
if (ctrlr->cdata.vs[3] != 0)
|
|
ns->boundary =
|
|
(1 << ctrlr->cdata.vs[3]) * ctrlr->min_page_size;
|
|
else
|
|
ns->boundary = 0;
|
|
break;
|
|
default:
|
|
ns->boundary = ns->data.noiob * nvme_ns_get_sector_size(ns);
|
|
break;
|
|
}
|
|
|
|
if (nvme_ctrlr_has_dataset_mgmt(&ctrlr->cdata))
|
|
ns->flags |= NVME_NS_DEALLOCATE_SUPPORTED;
|
|
|
|
vwc_present = (ctrlr->cdata.vwc >> NVME_CTRLR_DATA_VWC_PRESENT_SHIFT) &
|
|
NVME_CTRLR_DATA_VWC_PRESENT_MASK;
|
|
if (vwc_present)
|
|
ns->flags |= NVME_NS_FLUSH_SUPPORTED;
|
|
|
|
/*
|
|
* cdev may have already been created, if we are reconstructing the
|
|
* namespace after a controller-level reset.
|
|
*/
|
|
if (ns->cdev != NULL)
|
|
return (0);
|
|
|
|
/*
|
|
* Namespace IDs start at 1, so we need to subtract 1 to create a
|
|
* correct unit number.
|
|
*/
|
|
unit = device_get_unit(ctrlr->dev) * NVME_MAX_NAMESPACES + ns->id - 1;
|
|
|
|
make_dev_args_init(&md_args);
|
|
md_args.mda_devsw = &nvme_ns_cdevsw;
|
|
md_args.mda_unit = unit;
|
|
md_args.mda_mode = 0600;
|
|
md_args.mda_si_drv1 = ns;
|
|
res = make_dev_s(&md_args, &ns->cdev, "nvme%dns%d",
|
|
device_get_unit(ctrlr->dev), ns->id);
|
|
if (res != 0)
|
|
return (ENXIO);
|
|
|
|
ns->cdev->si_flags |= SI_UNMAPPED;
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
nvme_ns_destruct(struct nvme_namespace *ns)
|
|
{
|
|
|
|
if (ns->cdev != NULL)
|
|
destroy_dev(ns->cdev);
|
|
}
|