freebsd-nq/sys/dev/agp/agp.c
2002-07-21 04:07:26 +00:00

810 lines
18 KiB
C

/*-
* Copyright (c) 2000 Doug Rabson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include "opt_bus.h"
#include "opt_pci.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/ioccom.h>
#include <sys/agpio.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <pci/pcivar.h>
#include <pci/pcireg.h>
#include <pci/agppriv.h>
#include <pci/agpvar.h>
#include <pci/agpreg.h>
#include <vm/vm.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/pmap.h>
#include <machine/md_var.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
MODULE_VERSION(agp, 1);
MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
#define CDEV_MAJOR 148
/* agp_drv.c */
static d_open_t agp_open;
static d_close_t agp_close;
static d_ioctl_t agp_ioctl;
static d_mmap_t agp_mmap;
static struct cdevsw agp_cdevsw = {
/* open */ agp_open,
/* close */ agp_close,
/* read */ noread,
/* write */ nowrite,
/* ioctl */ agp_ioctl,
/* poll */ nopoll,
/* mmap */ agp_mmap,
/* strategy */ nostrategy,
/* name */ "agp",
/* maj */ CDEV_MAJOR,
/* dump */ nodump,
/* psize */ nopsize,
/* flags */ D_TTY,
};
static devclass_t agp_devclass;
#define KDEV2DEV(kdev) devclass_get_device(agp_devclass, minor(kdev))
/* Helper functions for implementing chipset mini drivers. */
void
agp_flush_cache()
{
#ifdef __i386__
wbinvd();
#endif
}
u_int8_t
agp_find_caps(device_t dev)
{
u_int32_t status;
u_int8_t ptr, next;
/*
* Check the CAP_LIST bit of the PCI status register first.
*/
status = pci_read_config(dev, PCIR_STATUS, 2);
if (!(status & 0x10))
return 0;
/*
* Traverse the capabilities list.
*/
for (ptr = pci_read_config(dev, AGP_CAPPTR, 1);
ptr != 0;
ptr = next) {
u_int32_t capid = pci_read_config(dev, ptr, 4);
next = AGP_CAPID_GET_NEXT_PTR(capid);
/*
* If this capability entry ID is 2, then we are done.
*/
if (AGP_CAPID_GET_CAP_ID(capid) == 2)
return ptr;
}
return 0;
}
/*
* Find an AGP display device (if any).
*/
static device_t
agp_find_display(void)
{
devclass_t pci = devclass_find("pci");
device_t bus, dev = 0;
device_t *kids;
int busnum, numkids, i;
for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
bus = devclass_get_device(pci, busnum);
if (!bus)
continue;
device_get_children(bus, &kids, &numkids);
for (i = 0; i < numkids; i++) {
dev = kids[i];
if (pci_get_class(dev) == PCIC_DISPLAY
&& pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
if (agp_find_caps(dev)) {
free(kids, M_TEMP);
return dev;
}
}
free(kids, M_TEMP);
}
return 0;
}
struct agp_gatt *
agp_alloc_gatt(device_t dev)
{
u_int32_t apsize = AGP_GET_APERTURE(dev);
u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
struct agp_gatt *gatt;
if (bootverbose)
device_printf(dev,
"allocating GATT for aperture of size %dM\n",
apsize / (1024*1024));
gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
if (!gatt)
return 0;
gatt->ag_entries = entries;
gatt->ag_virtual = contigmalloc(entries * sizeof(u_int32_t), M_AGP, 0,
0, ~0, PAGE_SIZE, 0);
if (!gatt->ag_virtual) {
if (bootverbose)
device_printf(dev, "contiguous allocation failed\n");
free(gatt, M_AGP);
return 0;
}
bzero(gatt->ag_virtual, entries * sizeof(u_int32_t));
gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
agp_flush_cache();
return gatt;
}
void
agp_free_gatt(struct agp_gatt *gatt)
{
contigfree(gatt->ag_virtual,
gatt->ag_entries * sizeof(u_int32_t), M_AGP);
free(gatt, M_AGP);
}
static int agp_max[][2] = {
{0, 0},
{32, 4},
{64, 28},
{128, 96},
{256, 204},
{512, 440},
{1024, 942},
{2048, 1920},
{4096, 3932}
};
#define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
int
agp_generic_attach(device_t dev)
{
struct agp_softc *sc = device_get_softc(dev);
int rid, memsize, i;
/*
* Find and map the aperture.
*/
rid = AGP_APBASE;
sc->as_aperture = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
0, ~0, 1, RF_ACTIVE);
if (!sc->as_aperture)
return ENOMEM;
/*
* Work out an upper bound for agp memory allocation. This
* uses a heurisitc table from the Linux driver.
*/
memsize = ptoa(Maxmem) >> 20;
for (i = 0; i < agp_max_size; i++) {
if (memsize <= agp_max[i][0])
break;
}
if (i == agp_max_size) i = agp_max_size - 1;
sc->as_maxmem = agp_max[i][1] << 20U;
/*
* The lock is used to prevent re-entry to
* agp_generic_bind_memory() since that function can sleep.
*/
lockinit(&sc->as_lock, PZERO|PCATCH, "agplk", 0, 0);
/*
* Initialise stuff for the userland device.
*/
agp_devclass = devclass_find("agp");
TAILQ_INIT(&sc->as_memory);
sc->as_nextid = 1;
sc->as_devnode = make_dev(&agp_cdevsw,
device_get_unit(dev),
UID_ROOT,
GID_WHEEL,
0600,
"agpgart");
return 0;
}
int
agp_generic_detach(device_t dev)
{
struct agp_softc *sc = device_get_softc(dev);
bus_release_resource(dev, SYS_RES_MEMORY, AGP_APBASE, sc->as_aperture);
lockmgr(&sc->as_lock, LK_DRAIN, 0, curthread);
lockdestroy(&sc->as_lock);
destroy_dev(sc->as_devnode);
agp_flush_cache();
return 0;
}
int
agp_generic_enable(device_t dev, u_int32_t mode)
{
device_t mdev = agp_find_display();
u_int32_t tstatus, mstatus;
u_int32_t command;
int rq, sba, fw, rate;;
if (!mdev) {
AGP_DPF("can't find display\n");
return ENXIO;
}
tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
/* Set RQ to the min of mode, tstatus and mstatus */
rq = AGP_MODE_GET_RQ(mode);
if (AGP_MODE_GET_RQ(tstatus) < rq)
rq = AGP_MODE_GET_RQ(tstatus);
if (AGP_MODE_GET_RQ(mstatus) < rq)
rq = AGP_MODE_GET_RQ(mstatus);
/* Set SBA if all three can deal with SBA */
sba = (AGP_MODE_GET_SBA(tstatus)
& AGP_MODE_GET_SBA(mstatus)
& AGP_MODE_GET_SBA(mode));
/* Similar for FW */
fw = (AGP_MODE_GET_FW(tstatus)
& AGP_MODE_GET_FW(mstatus)
& AGP_MODE_GET_FW(mode));
/* Figure out the max rate */
rate = (AGP_MODE_GET_RATE(tstatus)
& AGP_MODE_GET_RATE(mstatus)
& AGP_MODE_GET_RATE(mode));
if (rate & AGP_MODE_RATE_4x)
rate = AGP_MODE_RATE_4x;
else if (rate & AGP_MODE_RATE_2x)
rate = AGP_MODE_RATE_2x;
else
rate = AGP_MODE_RATE_1x;
/* Construct the new mode word and tell the hardware */
command = AGP_MODE_SET_RQ(0, rq);
command = AGP_MODE_SET_SBA(command, sba);
command = AGP_MODE_SET_FW(command, fw);
command = AGP_MODE_SET_RATE(command, rate);
command = AGP_MODE_SET_AGP(command, 1);
pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
return 0;
}
struct agp_memory *
agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
{
struct agp_softc *sc = device_get_softc(dev);
struct agp_memory *mem;
if ((size & (AGP_PAGE_SIZE - 1)) != 0)
return 0;
if (sc->as_allocated + size > sc->as_maxmem)
return 0;
if (type != 0) {
printf("agp_generic_alloc_memory: unsupported type %d\n",
type);
return 0;
}
mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
mem->am_id = sc->as_nextid++;
mem->am_size = size;
mem->am_type = 0;
mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size)));
mem->am_physical = 0;
mem->am_offset = 0;
mem->am_is_bound = 0;
TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
sc->as_allocated += size;
return mem;
}
int
agp_generic_free_memory(device_t dev, struct agp_memory *mem)
{
struct agp_softc *sc = device_get_softc(dev);
if (mem->am_is_bound)
return EBUSY;
sc->as_allocated -= mem->am_size;
TAILQ_REMOVE(&sc->as_memory, mem, am_link);
vm_object_deallocate(mem->am_obj);
free(mem, M_AGP);
return 0;
}
int
agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
vm_offset_t offset)
{
struct agp_softc *sc = device_get_softc(dev);
vm_offset_t i, j, k;
vm_page_t m;
int error;
lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curthread);
if (mem->am_is_bound) {
device_printf(dev, "memory already bound\n");
return EINVAL;
}
if (offset < 0
|| (offset & (AGP_PAGE_SIZE - 1)) != 0
|| offset + mem->am_size > AGP_GET_APERTURE(dev)) {
device_printf(dev, "binding memory at bad offset %#x\n",
(int) offset);
return EINVAL;
}
/*
* Bind the individual pages and flush the chipset's
* TLB.
*
* XXX Presumably, this needs to be the pci address on alpha
* (i.e. use alpha_XXX_dmamap()). I don't have access to any
* alpha AGP hardware to check.
*/
for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
/*
* Find a page from the object and wire it
* down. This page will be mapped using one or more
* entries in the GATT (assuming that PAGE_SIZE >=
* AGP_PAGE_SIZE. If this is the first call to bind,
* the pages will be allocated and zeroed.
*/
m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
VM_ALLOC_ZERO | VM_ALLOC_RETRY);
if ((m->flags & PG_ZERO) == 0)
vm_page_zero_fill(m);
AGP_DPF("found page pa=%#x\n", VM_PAGE_TO_PHYS(m));
vm_page_lock_queues();
vm_page_wire(m);
vm_page_unlock_queues();
/*
* Install entries in the GATT, making sure that if
* AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
* aligned to PAGE_SIZE, we don't modify too many GATT
* entries.
*/
for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
j += AGP_PAGE_SIZE) {
vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
AGP_DPF("binding offset %#x to pa %#x\n",
offset + i + j, pa);
error = AGP_BIND_PAGE(dev, offset + i + j, pa);
if (error) {
/*
* Bail out. Reverse all the mappings
* and unwire the pages.
*/
vm_page_wakeup(m);
for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
AGP_UNBIND_PAGE(dev, offset + k);
for (k = 0; k <= i; k += PAGE_SIZE) {
m = vm_page_lookup(mem->am_obj,
OFF_TO_IDX(k));
vm_page_lock_queues();
vm_page_unwire(m, 0);
vm_page_unlock_queues();
}
lockmgr(&sc->as_lock, LK_RELEASE, 0, curthread);
return error;
}
}
vm_page_wakeup(m);
}
/*
* Flush the cpu cache since we are providing a new mapping
* for these pages.
*/
agp_flush_cache();
/*
* Make sure the chipset gets the new mappings.
*/
AGP_FLUSH_TLB(dev);
mem->am_offset = offset;
mem->am_is_bound = 1;
lockmgr(&sc->as_lock, LK_RELEASE, 0, curthread);
return 0;
}
int
agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
{
struct agp_softc *sc = device_get_softc(dev);
vm_page_t m;
int i;
lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0, curthread);
if (!mem->am_is_bound) {
device_printf(dev, "memory is not bound\n");
return EINVAL;
}
/*
* Unbind the individual pages and flush the chipset's
* TLB. Unwire the pages so they can be swapped.
*/
for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
AGP_UNBIND_PAGE(dev, mem->am_offset + i);
for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
m = vm_page_lookup(mem->am_obj, atop(i));
vm_page_lock_queues();
vm_page_unwire(m, 0);
vm_page_unlock_queues();
}
agp_flush_cache();
AGP_FLUSH_TLB(dev);
mem->am_offset = 0;
mem->am_is_bound = 0;
lockmgr(&sc->as_lock, LK_RELEASE, 0, curthread);
return 0;
}
/* Helper functions for implementing user/kernel api */
static int
agp_acquire_helper(device_t dev, enum agp_acquire_state state)
{
struct agp_softc *sc = device_get_softc(dev);
if (sc->as_state != AGP_ACQUIRE_FREE)
return EBUSY;
sc->as_state = state;
return 0;
}
static int
agp_release_helper(device_t dev, enum agp_acquire_state state)
{
struct agp_softc *sc = device_get_softc(dev);
if (sc->as_state == AGP_ACQUIRE_FREE)
return 0;
if (sc->as_state != state)
return EBUSY;
sc->as_state = AGP_ACQUIRE_FREE;
return 0;
}
static struct agp_memory *
agp_find_memory(device_t dev, int id)
{
struct agp_softc *sc = device_get_softc(dev);
struct agp_memory *mem;
AGP_DPF("searching for memory block %d\n", id);
TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
AGP_DPF("considering memory block %d\n", mem->am_id);
if (mem->am_id == id)
return mem;
}
return 0;
}
/* Implementation of the userland ioctl api */
static int
agp_info_user(device_t dev, agp_info *info)
{
struct agp_softc *sc = device_get_softc(dev);
bzero(info, sizeof *info);
info->bridge_id = pci_get_devid(dev);
info->agp_mode =
pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
info->aper_base = rman_get_start(sc->as_aperture);
info->aper_size = AGP_GET_APERTURE(dev) >> 20;
info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
return 0;
}
static int
agp_setup_user(device_t dev, agp_setup *setup)
{
return AGP_ENABLE(dev, setup->agp_mode);
}
static int
agp_allocate_user(device_t dev, agp_allocate *alloc)
{
struct agp_memory *mem;
mem = AGP_ALLOC_MEMORY(dev,
alloc->type,
alloc->pg_count << AGP_PAGE_SHIFT);
if (mem) {
alloc->key = mem->am_id;
alloc->physical = mem->am_physical;
return 0;
} else {
return ENOMEM;
}
}
static int
agp_deallocate_user(device_t dev, int id)
{
struct agp_memory *mem = agp_find_memory(dev, id);;
if (mem) {
AGP_FREE_MEMORY(dev, mem);
return 0;
} else {
return ENOENT;
}
}
static int
agp_bind_user(device_t dev, agp_bind *bind)
{
struct agp_memory *mem = agp_find_memory(dev, bind->key);
if (!mem)
return ENOENT;
return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
}
static int
agp_unbind_user(device_t dev, agp_unbind *unbind)
{
struct agp_memory *mem = agp_find_memory(dev, unbind->key);
if (!mem)
return ENOENT;
return AGP_UNBIND_MEMORY(dev, mem);
}
static int
agp_open(dev_t kdev, int oflags, int devtype, struct thread *td)
{
device_t dev = KDEV2DEV(kdev);
struct agp_softc *sc = device_get_softc(dev);
if (!sc->as_isopen) {
sc->as_isopen = 1;
device_busy(dev);
}
return 0;
}
static int
agp_close(dev_t kdev, int fflag, int devtype, struct thread *td)
{
device_t dev = KDEV2DEV(kdev);
struct agp_softc *sc = device_get_softc(dev);
struct agp_memory *mem;
/*
* Clear the GATT and force release on last close
*/
while ((mem = TAILQ_FIRST(&sc->as_memory)) != 0) {
if (mem->am_is_bound)
AGP_UNBIND_MEMORY(dev, mem);
AGP_FREE_MEMORY(dev, mem);
}
if (sc->as_state == AGP_ACQUIRE_USER)
agp_release_helper(dev, AGP_ACQUIRE_USER);
sc->as_isopen = 0;
device_unbusy(dev);
return 0;
}
static int
agp_ioctl(dev_t kdev, u_long cmd, caddr_t data, int fflag, struct thread *td)
{
device_t dev = KDEV2DEV(kdev);
switch (cmd) {
case AGPIOC_INFO:
return agp_info_user(dev, (agp_info *) data);
case AGPIOC_ACQUIRE:
return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
case AGPIOC_RELEASE:
return agp_release_helper(dev, AGP_ACQUIRE_USER);
case AGPIOC_SETUP:
return agp_setup_user(dev, (agp_setup *)data);
case AGPIOC_ALLOCATE:
return agp_allocate_user(dev, (agp_allocate *)data);
case AGPIOC_DEALLOCATE:
return agp_deallocate_user(dev, *(int *) data);
case AGPIOC_BIND:
return agp_bind_user(dev, (agp_bind *)data);
case AGPIOC_UNBIND:
return agp_unbind_user(dev, (agp_unbind *)data);
}
return EINVAL;
}
static int
agp_mmap(dev_t kdev, vm_offset_t offset, int prot)
{
device_t dev = KDEV2DEV(kdev);
struct agp_softc *sc = device_get_softc(dev);
if (offset > AGP_GET_APERTURE(dev))
return -1;
return atop(rman_get_start(sc->as_aperture) + offset);
}
/* Implementation of the kernel api */
device_t
agp_find_device()
{
if (!agp_devclass)
return 0;
return devclass_get_device(agp_devclass, 0);
}
enum agp_acquire_state
agp_state(device_t dev)
{
struct agp_softc *sc = device_get_softc(dev);
return sc->as_state;
}
void
agp_get_info(device_t dev, struct agp_info *info)
{
struct agp_softc *sc = device_get_softc(dev);
info->ai_mode =
pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
info->ai_aperture_base = rman_get_start(sc->as_aperture);
info->ai_aperture_size = rman_get_size(sc->as_aperture);
info->ai_aperture_va = (vm_offset_t) rman_get_virtual(sc->as_aperture);
info->ai_memory_allowed = sc->as_maxmem;
info->ai_memory_used = sc->as_allocated;
}
int
agp_acquire(device_t dev)
{
return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
}
int
agp_release(device_t dev)
{
return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
}
int
agp_enable(device_t dev, u_int32_t mode)
{
return AGP_ENABLE(dev, mode);
}
void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
{
return (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
}
void agp_free_memory(device_t dev, void *handle)
{
struct agp_memory *mem = (struct agp_memory *) handle;
AGP_FREE_MEMORY(dev, mem);
}
int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
{
struct agp_memory *mem = (struct agp_memory *) handle;
return AGP_BIND_MEMORY(dev, mem, offset);
}
int agp_unbind_memory(device_t dev, void *handle)
{
struct agp_memory *mem = (struct agp_memory *) handle;
return AGP_UNBIND_MEMORY(dev, mem);
}
void agp_memory_info(device_t dev, void *handle, struct
agp_memory_info *mi)
{
struct agp_memory *mem = (struct agp_memory *) handle;
mi->ami_size = mem->am_size;
mi->ami_physical = mem->am_physical;
mi->ami_offset = mem->am_offset;
mi->ami_is_bound = mem->am_is_bound;
}