ce18aebde4
in vm_pageout_object_deactivate_pages(). o Apply some style fixes to vm_pageout_object_deactivate_pages().
1532 lines
40 KiB
C
1532 lines
40 KiB
C
/*
|
|
* Copyright (c) 1991 Regents of the University of California.
|
|
* All rights reserved.
|
|
* Copyright (c) 1994 John S. Dyson
|
|
* All rights reserved.
|
|
* Copyright (c) 1994 David Greenman
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91
|
|
*
|
|
*
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*
|
|
* The proverbial page-out daemon.
|
|
*/
|
|
|
|
#include "opt_vm.h"
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_pager.h>
|
|
#include <vm/swap_pager.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/uma.h>
|
|
|
|
#include <machine/mutex.h>
|
|
|
|
/*
|
|
* System initialization
|
|
*/
|
|
|
|
/* the kernel process "vm_pageout"*/
|
|
static void vm_pageout(void);
|
|
static int vm_pageout_clean(vm_page_t);
|
|
static void vm_pageout_scan(int pass);
|
|
static int vm_pageout_free_page_calc(vm_size_t count);
|
|
struct proc *pageproc;
|
|
|
|
static struct kproc_desc page_kp = {
|
|
"pagedaemon",
|
|
vm_pageout,
|
|
&pageproc
|
|
};
|
|
SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
|
|
|
|
#if !defined(NO_SWAPPING)
|
|
/* the kernel process "vm_daemon"*/
|
|
static void vm_daemon(void);
|
|
static struct proc *vmproc;
|
|
|
|
static struct kproc_desc vm_kp = {
|
|
"vmdaemon",
|
|
vm_daemon,
|
|
&vmproc
|
|
};
|
|
SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
|
|
#endif
|
|
|
|
|
|
int vm_pages_needed=0; /* Event on which pageout daemon sleeps */
|
|
int vm_pageout_deficit=0; /* Estimated number of pages deficit */
|
|
int vm_pageout_pages_needed=0; /* flag saying that the pageout daemon needs pages */
|
|
|
|
#if !defined(NO_SWAPPING)
|
|
static int vm_pageout_req_swapout; /* XXX */
|
|
static int vm_daemon_needed;
|
|
#endif
|
|
extern int vm_swap_size;
|
|
static int vm_max_launder = 32;
|
|
static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
|
|
static int vm_pageout_full_stats_interval = 0;
|
|
static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
|
|
static int defer_swap_pageouts=0;
|
|
static int disable_swap_pageouts=0;
|
|
|
|
#if defined(NO_SWAPPING)
|
|
static int vm_swap_enabled=0;
|
|
static int vm_swap_idle_enabled=0;
|
|
#else
|
|
static int vm_swap_enabled=1;
|
|
static int vm_swap_idle_enabled=0;
|
|
#endif
|
|
|
|
SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
|
|
CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, max_launder,
|
|
CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
|
|
CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
|
|
CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
|
|
CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
|
|
CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
|
|
|
|
#if defined(NO_SWAPPING)
|
|
SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
|
|
CTLFLAG_RD, &vm_swap_enabled, 0, "");
|
|
SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
|
|
CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
|
|
#else
|
|
SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
|
|
CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
|
|
SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
|
|
CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
|
|
#endif
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
|
|
CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
|
|
|
|
SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
|
|
CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
|
|
|
|
static int pageout_lock_miss;
|
|
SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
|
|
CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
|
|
|
|
#define VM_PAGEOUT_PAGE_COUNT 16
|
|
int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
|
|
|
|
int vm_page_max_wired; /* XXX max # of wired pages system-wide */
|
|
|
|
#if !defined(NO_SWAPPING)
|
|
typedef void freeer_fcn_t(vm_map_t, vm_object_t, vm_pindex_t, int);
|
|
static void vm_pageout_map_deactivate_pages(vm_map_t, vm_pindex_t);
|
|
static freeer_fcn_t vm_pageout_object_deactivate_pages;
|
|
static void vm_req_vmdaemon(void);
|
|
#endif
|
|
static void vm_pageout_page_stats(void);
|
|
|
|
/*
|
|
* vm_pageout_clean:
|
|
*
|
|
* Clean the page and remove it from the laundry.
|
|
*
|
|
* We set the busy bit to cause potential page faults on this page to
|
|
* block. Note the careful timing, however, the busy bit isn't set till
|
|
* late and we cannot do anything that will mess with the page.
|
|
*/
|
|
static int
|
|
vm_pageout_clean(m)
|
|
vm_page_t m;
|
|
{
|
|
vm_object_t object;
|
|
vm_page_t mc[2*vm_pageout_page_count];
|
|
int pageout_count;
|
|
int ib, is, page_base;
|
|
vm_pindex_t pindex = m->pindex;
|
|
|
|
GIANT_REQUIRED;
|
|
|
|
object = m->object;
|
|
|
|
/*
|
|
* It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
|
|
* with the new swapper, but we could have serious problems paging
|
|
* out other object types if there is insufficient memory.
|
|
*
|
|
* Unfortunately, checking free memory here is far too late, so the
|
|
* check has been moved up a procedural level.
|
|
*/
|
|
|
|
/*
|
|
* Don't mess with the page if it's busy, held, or special
|
|
*/
|
|
if ((m->hold_count != 0) ||
|
|
((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
|
|
return 0;
|
|
}
|
|
|
|
mc[vm_pageout_page_count] = m;
|
|
pageout_count = 1;
|
|
page_base = vm_pageout_page_count;
|
|
ib = 1;
|
|
is = 1;
|
|
|
|
/*
|
|
* Scan object for clusterable pages.
|
|
*
|
|
* We can cluster ONLY if: ->> the page is NOT
|
|
* clean, wired, busy, held, or mapped into a
|
|
* buffer, and one of the following:
|
|
* 1) The page is inactive, or a seldom used
|
|
* active page.
|
|
* -or-
|
|
* 2) we force the issue.
|
|
*
|
|
* During heavy mmap/modification loads the pageout
|
|
* daemon can really fragment the underlying file
|
|
* due to flushing pages out of order and not trying
|
|
* align the clusters (which leave sporatic out-of-order
|
|
* holes). To solve this problem we do the reverse scan
|
|
* first and attempt to align our cluster, then do a
|
|
* forward scan if room remains.
|
|
*/
|
|
more:
|
|
while (ib && pageout_count < vm_pageout_page_count) {
|
|
vm_page_t p;
|
|
|
|
if (ib > pindex) {
|
|
ib = 0;
|
|
break;
|
|
}
|
|
|
|
if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
|
|
ib = 0;
|
|
break;
|
|
}
|
|
if (((p->queue - p->pc) == PQ_CACHE) ||
|
|
(p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
|
|
ib = 0;
|
|
break;
|
|
}
|
|
vm_page_test_dirty(p);
|
|
if ((p->dirty & p->valid) == 0 ||
|
|
p->queue != PQ_INACTIVE ||
|
|
p->wire_count != 0 || /* may be held by buf cache */
|
|
p->hold_count != 0) { /* may be undergoing I/O */
|
|
ib = 0;
|
|
break;
|
|
}
|
|
mc[--page_base] = p;
|
|
++pageout_count;
|
|
++ib;
|
|
/*
|
|
* alignment boundry, stop here and switch directions. Do
|
|
* not clear ib.
|
|
*/
|
|
if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
|
|
break;
|
|
}
|
|
|
|
while (pageout_count < vm_pageout_page_count &&
|
|
pindex + is < object->size) {
|
|
vm_page_t p;
|
|
|
|
if ((p = vm_page_lookup(object, pindex + is)) == NULL)
|
|
break;
|
|
if (((p->queue - p->pc) == PQ_CACHE) ||
|
|
(p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
|
|
break;
|
|
}
|
|
vm_page_test_dirty(p);
|
|
if ((p->dirty & p->valid) == 0 ||
|
|
p->queue != PQ_INACTIVE ||
|
|
p->wire_count != 0 || /* may be held by buf cache */
|
|
p->hold_count != 0) { /* may be undergoing I/O */
|
|
break;
|
|
}
|
|
mc[page_base + pageout_count] = p;
|
|
++pageout_count;
|
|
++is;
|
|
}
|
|
|
|
/*
|
|
* If we exhausted our forward scan, continue with the reverse scan
|
|
* when possible, even past a page boundry. This catches boundry
|
|
* conditions.
|
|
*/
|
|
if (ib && pageout_count < vm_pageout_page_count)
|
|
goto more;
|
|
|
|
/*
|
|
* we allow reads during pageouts...
|
|
*/
|
|
return vm_pageout_flush(&mc[page_base], pageout_count, 0);
|
|
}
|
|
|
|
/*
|
|
* vm_pageout_flush() - launder the given pages
|
|
*
|
|
* The given pages are laundered. Note that we setup for the start of
|
|
* I/O ( i.e. busy the page ), mark it read-only, and bump the object
|
|
* reference count all in here rather then in the parent. If we want
|
|
* the parent to do more sophisticated things we may have to change
|
|
* the ordering.
|
|
*/
|
|
int
|
|
vm_pageout_flush(mc, count, flags)
|
|
vm_page_t *mc;
|
|
int count;
|
|
int flags;
|
|
{
|
|
vm_object_t object;
|
|
int pageout_status[count];
|
|
int numpagedout = 0;
|
|
int i;
|
|
|
|
GIANT_REQUIRED;
|
|
/*
|
|
* Initiate I/O. Bump the vm_page_t->busy counter and
|
|
* mark the pages read-only.
|
|
*
|
|
* We do not have to fixup the clean/dirty bits here... we can
|
|
* allow the pager to do it after the I/O completes.
|
|
*
|
|
* NOTE! mc[i]->dirty may be partial or fragmented due to an
|
|
* edge case with file fragments.
|
|
*/
|
|
for (i = 0; i < count; i++) {
|
|
KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
|
|
vm_page_io_start(mc[i]);
|
|
vm_page_protect(mc[i], VM_PROT_READ);
|
|
}
|
|
|
|
object = mc[0]->object;
|
|
vm_object_pip_add(object, count);
|
|
|
|
vm_pager_put_pages(object, mc, count,
|
|
(flags | ((object == kernel_object) ? OBJPC_SYNC : 0)),
|
|
pageout_status);
|
|
|
|
vm_page_lock_queues();
|
|
for (i = 0; i < count; i++) {
|
|
vm_page_t mt = mc[i];
|
|
|
|
switch (pageout_status[i]) {
|
|
case VM_PAGER_OK:
|
|
numpagedout++;
|
|
break;
|
|
case VM_PAGER_PEND:
|
|
numpagedout++;
|
|
break;
|
|
case VM_PAGER_BAD:
|
|
/*
|
|
* Page outside of range of object. Right now we
|
|
* essentially lose the changes by pretending it
|
|
* worked.
|
|
*/
|
|
pmap_clear_modify(mt);
|
|
vm_page_undirty(mt);
|
|
break;
|
|
case VM_PAGER_ERROR:
|
|
case VM_PAGER_FAIL:
|
|
/*
|
|
* If page couldn't be paged out, then reactivate the
|
|
* page so it doesn't clog the inactive list. (We
|
|
* will try paging out it again later).
|
|
*/
|
|
vm_page_activate(mt);
|
|
break;
|
|
case VM_PAGER_AGAIN:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the operation is still going, leave the page busy to
|
|
* block all other accesses. Also, leave the paging in
|
|
* progress indicator set so that we don't attempt an object
|
|
* collapse.
|
|
*/
|
|
if (pageout_status[i] != VM_PAGER_PEND) {
|
|
vm_object_pip_wakeup(object);
|
|
vm_page_io_finish(mt);
|
|
if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
|
|
vm_page_protect(mt, VM_PROT_READ);
|
|
}
|
|
}
|
|
vm_page_unlock_queues();
|
|
return numpagedout;
|
|
}
|
|
|
|
#if !defined(NO_SWAPPING)
|
|
/*
|
|
* vm_pageout_object_deactivate_pages
|
|
*
|
|
* deactivate enough pages to satisfy the inactive target
|
|
* requirements or if vm_page_proc_limit is set, then
|
|
* deactivate all of the pages in the object and its
|
|
* backing_objects.
|
|
*
|
|
* The object and map must be locked.
|
|
*/
|
|
static void
|
|
vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
|
|
vm_map_t map;
|
|
vm_object_t object;
|
|
vm_pindex_t desired;
|
|
int map_remove_only;
|
|
{
|
|
vm_page_t p, next;
|
|
int actcount, rcount, remove_mode;
|
|
|
|
GIANT_REQUIRED;
|
|
if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
|
|
return;
|
|
|
|
while (object) {
|
|
if (pmap_resident_count(vm_map_pmap(map)) <= desired)
|
|
return;
|
|
if (object->paging_in_progress)
|
|
return;
|
|
|
|
remove_mode = map_remove_only;
|
|
if (object->shadow_count > 1)
|
|
remove_mode = 1;
|
|
/*
|
|
* scan the objects entire memory queue
|
|
*/
|
|
rcount = object->resident_page_count;
|
|
p = TAILQ_FIRST(&object->memq);
|
|
vm_page_lock_queues();
|
|
while (p && (rcount-- > 0)) {
|
|
if (pmap_resident_count(map->pmap) <= desired) {
|
|
vm_page_unlock_queues();
|
|
return;
|
|
}
|
|
next = TAILQ_NEXT(p, listq);
|
|
cnt.v_pdpages++;
|
|
if (p->wire_count != 0 ||
|
|
p->hold_count != 0 ||
|
|
p->busy != 0 ||
|
|
(p->flags & (PG_BUSY|PG_UNMANAGED)) ||
|
|
!pmap_page_exists_quick(vm_map_pmap(map), p)) {
|
|
p = next;
|
|
continue;
|
|
}
|
|
actcount = pmap_ts_referenced(p);
|
|
if (actcount) {
|
|
vm_page_flag_set(p, PG_REFERENCED);
|
|
} else if (p->flags & PG_REFERENCED) {
|
|
actcount = 1;
|
|
}
|
|
if ((p->queue != PQ_ACTIVE) &&
|
|
(p->flags & PG_REFERENCED)) {
|
|
vm_page_activate(p);
|
|
p->act_count += actcount;
|
|
vm_page_flag_clear(p, PG_REFERENCED);
|
|
} else if (p->queue == PQ_ACTIVE) {
|
|
if ((p->flags & PG_REFERENCED) == 0) {
|
|
p->act_count -= min(p->act_count, ACT_DECLINE);
|
|
if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
|
|
vm_page_protect(p, VM_PROT_NONE);
|
|
vm_page_deactivate(p);
|
|
} else {
|
|
vm_pageq_requeue(p);
|
|
}
|
|
} else {
|
|
vm_page_activate(p);
|
|
vm_page_flag_clear(p, PG_REFERENCED);
|
|
if (p->act_count < (ACT_MAX - ACT_ADVANCE))
|
|
p->act_count += ACT_ADVANCE;
|
|
vm_pageq_requeue(p);
|
|
}
|
|
} else if (p->queue == PQ_INACTIVE) {
|
|
vm_page_protect(p, VM_PROT_NONE);
|
|
}
|
|
p = next;
|
|
}
|
|
vm_page_unlock_queues();
|
|
object = object->backing_object;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* deactivate some number of pages in a map, try to do it fairly, but
|
|
* that is really hard to do.
|
|
*/
|
|
static void
|
|
vm_pageout_map_deactivate_pages(map, desired)
|
|
vm_map_t map;
|
|
vm_pindex_t desired;
|
|
{
|
|
vm_map_entry_t tmpe;
|
|
vm_object_t obj, bigobj;
|
|
int nothingwired;
|
|
|
|
GIANT_REQUIRED;
|
|
if (!vm_map_trylock(map))
|
|
return;
|
|
|
|
bigobj = NULL;
|
|
nothingwired = TRUE;
|
|
|
|
/*
|
|
* first, search out the biggest object, and try to free pages from
|
|
* that.
|
|
*/
|
|
tmpe = map->header.next;
|
|
while (tmpe != &map->header) {
|
|
if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
|
|
obj = tmpe->object.vm_object;
|
|
if ((obj != NULL) && (obj->shadow_count <= 1) &&
|
|
((bigobj == NULL) ||
|
|
(bigobj->resident_page_count < obj->resident_page_count))) {
|
|
bigobj = obj;
|
|
}
|
|
}
|
|
if (tmpe->wired_count > 0)
|
|
nothingwired = FALSE;
|
|
tmpe = tmpe->next;
|
|
}
|
|
|
|
if (bigobj)
|
|
vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
|
|
|
|
/*
|
|
* Next, hunt around for other pages to deactivate. We actually
|
|
* do this search sort of wrong -- .text first is not the best idea.
|
|
*/
|
|
tmpe = map->header.next;
|
|
while (tmpe != &map->header) {
|
|
if (pmap_resident_count(vm_map_pmap(map)) <= desired)
|
|
break;
|
|
if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
|
|
obj = tmpe->object.vm_object;
|
|
if (obj)
|
|
vm_pageout_object_deactivate_pages(map, obj, desired, 0);
|
|
}
|
|
tmpe = tmpe->next;
|
|
};
|
|
|
|
/*
|
|
* Remove all mappings if a process is swapped out, this will free page
|
|
* table pages.
|
|
*/
|
|
if (desired == 0 && nothingwired)
|
|
pmap_remove(vm_map_pmap(map),
|
|
VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
|
|
vm_map_unlock(map);
|
|
return;
|
|
}
|
|
#endif /* !defined(NO_SWAPPING) */
|
|
|
|
/*
|
|
* Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
|
|
* to vnode deadlocks. We only do it for OBJT_DEFAULT and OBJT_SWAP objects
|
|
* which we know can be trivially freed.
|
|
*/
|
|
void
|
|
vm_pageout_page_free(vm_page_t m) {
|
|
vm_object_t object = m->object;
|
|
int type = object->type;
|
|
|
|
GIANT_REQUIRED;
|
|
if (type == OBJT_SWAP || type == OBJT_DEFAULT)
|
|
vm_object_reference(object);
|
|
vm_page_busy(m);
|
|
vm_page_protect(m, VM_PROT_NONE);
|
|
vm_page_free(m);
|
|
if (type == OBJT_SWAP || type == OBJT_DEFAULT)
|
|
vm_object_deallocate(object);
|
|
}
|
|
|
|
/*
|
|
* vm_pageout_scan does the dirty work for the pageout daemon.
|
|
*/
|
|
static void
|
|
vm_pageout_scan(int pass)
|
|
{
|
|
vm_page_t m, next;
|
|
struct vm_page marker;
|
|
int save_page_shortage;
|
|
int save_inactive_count;
|
|
int page_shortage, maxscan, pcount;
|
|
int addl_page_shortage, addl_page_shortage_init;
|
|
struct proc *p, *bigproc;
|
|
vm_offset_t size, bigsize;
|
|
vm_object_t object;
|
|
int actcount;
|
|
int vnodes_skipped = 0;
|
|
int maxlaunder;
|
|
int s;
|
|
struct thread *td;
|
|
|
|
GIANT_REQUIRED;
|
|
/*
|
|
* Do whatever cleanup that the pmap code can.
|
|
*/
|
|
pmap_collect();
|
|
uma_reclaim();
|
|
|
|
addl_page_shortage_init = vm_pageout_deficit;
|
|
vm_pageout_deficit = 0;
|
|
|
|
/*
|
|
* Calculate the number of pages we want to either free or move
|
|
* to the cache.
|
|
*/
|
|
page_shortage = vm_paging_target() + addl_page_shortage_init;
|
|
save_page_shortage = page_shortage;
|
|
save_inactive_count = cnt.v_inactive_count;
|
|
|
|
/*
|
|
* Initialize our marker
|
|
*/
|
|
bzero(&marker, sizeof(marker));
|
|
marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
|
|
marker.queue = PQ_INACTIVE;
|
|
marker.wire_count = 1;
|
|
|
|
/*
|
|
* Start scanning the inactive queue for pages we can move to the
|
|
* cache or free. The scan will stop when the target is reached or
|
|
* we have scanned the entire inactive queue. Note that m->act_count
|
|
* is not used to form decisions for the inactive queue, only for the
|
|
* active queue.
|
|
*
|
|
* maxlaunder limits the number of dirty pages we flush per scan.
|
|
* For most systems a smaller value (16 or 32) is more robust under
|
|
* extreme memory and disk pressure because any unnecessary writes
|
|
* to disk can result in extreme performance degredation. However,
|
|
* systems with excessive dirty pages (especially when MAP_NOSYNC is
|
|
* used) will die horribly with limited laundering. If the pageout
|
|
* daemon cannot clean enough pages in the first pass, we let it go
|
|
* all out in succeeding passes.
|
|
*/
|
|
if ((maxlaunder = vm_max_launder) <= 1)
|
|
maxlaunder = 1;
|
|
if (pass)
|
|
maxlaunder = 10000;
|
|
rescan0:
|
|
addl_page_shortage = addl_page_shortage_init;
|
|
maxscan = cnt.v_inactive_count;
|
|
|
|
for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
|
|
m != NULL && maxscan-- > 0 && page_shortage > 0;
|
|
m = next) {
|
|
|
|
cnt.v_pdpages++;
|
|
|
|
if (m->queue != PQ_INACTIVE) {
|
|
goto rescan0;
|
|
}
|
|
|
|
next = TAILQ_NEXT(m, pageq);
|
|
|
|
/*
|
|
* skip marker pages
|
|
*/
|
|
if (m->flags & PG_MARKER)
|
|
continue;
|
|
|
|
/*
|
|
* A held page may be undergoing I/O, so skip it.
|
|
*/
|
|
if (m->hold_count) {
|
|
vm_pageq_requeue(m);
|
|
addl_page_shortage++;
|
|
continue;
|
|
}
|
|
/*
|
|
* Don't mess with busy pages, keep in the front of the
|
|
* queue, most likely are being paged out.
|
|
*/
|
|
if (m->busy || (m->flags & PG_BUSY)) {
|
|
addl_page_shortage++;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the object is not being used, we ignore previous
|
|
* references.
|
|
*/
|
|
if (m->object->ref_count == 0) {
|
|
vm_page_flag_clear(m, PG_REFERENCED);
|
|
pmap_clear_reference(m);
|
|
|
|
/*
|
|
* Otherwise, if the page has been referenced while in the
|
|
* inactive queue, we bump the "activation count" upwards,
|
|
* making it less likely that the page will be added back to
|
|
* the inactive queue prematurely again. Here we check the
|
|
* page tables (or emulated bits, if any), given the upper
|
|
* level VM system not knowing anything about existing
|
|
* references.
|
|
*/
|
|
} else if (((m->flags & PG_REFERENCED) == 0) &&
|
|
(actcount = pmap_ts_referenced(m))) {
|
|
vm_page_activate(m);
|
|
m->act_count += (actcount + ACT_ADVANCE);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the upper level VM system knows about any page
|
|
* references, we activate the page. We also set the
|
|
* "activation count" higher than normal so that we will less
|
|
* likely place pages back onto the inactive queue again.
|
|
*/
|
|
if ((m->flags & PG_REFERENCED) != 0) {
|
|
vm_page_flag_clear(m, PG_REFERENCED);
|
|
actcount = pmap_ts_referenced(m);
|
|
vm_page_activate(m);
|
|
m->act_count += (actcount + ACT_ADVANCE + 1);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the upper level VM system doesn't know anything about
|
|
* the page being dirty, we have to check for it again. As
|
|
* far as the VM code knows, any partially dirty pages are
|
|
* fully dirty.
|
|
*/
|
|
if (m->dirty == 0) {
|
|
vm_page_test_dirty(m);
|
|
} else {
|
|
vm_page_dirty(m);
|
|
}
|
|
|
|
/*
|
|
* Invalid pages can be easily freed
|
|
*/
|
|
if (m->valid == 0) {
|
|
vm_pageout_page_free(m);
|
|
cnt.v_dfree++;
|
|
--page_shortage;
|
|
|
|
/*
|
|
* Clean pages can be placed onto the cache queue. This
|
|
* effectively frees them.
|
|
*/
|
|
} else if (m->dirty == 0) {
|
|
vm_page_lock_queues();
|
|
vm_page_cache(m);
|
|
vm_page_unlock_queues();
|
|
--page_shortage;
|
|
} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
|
|
/*
|
|
* Dirty pages need to be paged out, but flushing
|
|
* a page is extremely expensive verses freeing
|
|
* a clean page. Rather then artificially limiting
|
|
* the number of pages we can flush, we instead give
|
|
* dirty pages extra priority on the inactive queue
|
|
* by forcing them to be cycled through the queue
|
|
* twice before being flushed, after which the
|
|
* (now clean) page will cycle through once more
|
|
* before being freed. This significantly extends
|
|
* the thrash point for a heavily loaded machine.
|
|
*/
|
|
vm_page_flag_set(m, PG_WINATCFLS);
|
|
vm_pageq_requeue(m);
|
|
} else if (maxlaunder > 0) {
|
|
/*
|
|
* We always want to try to flush some dirty pages if
|
|
* we encounter them, to keep the system stable.
|
|
* Normally this number is small, but under extreme
|
|
* pressure where there are insufficient clean pages
|
|
* on the inactive queue, we may have to go all out.
|
|
*/
|
|
int swap_pageouts_ok;
|
|
struct vnode *vp = NULL;
|
|
struct mount *mp;
|
|
|
|
object = m->object;
|
|
|
|
if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
|
|
swap_pageouts_ok = 1;
|
|
} else {
|
|
swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
|
|
swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
|
|
vm_page_count_min());
|
|
|
|
}
|
|
|
|
/*
|
|
* We don't bother paging objects that are "dead".
|
|
* Those objects are in a "rundown" state.
|
|
*/
|
|
if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
|
|
vm_pageq_requeue(m);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The object is already known NOT to be dead. It
|
|
* is possible for the vget() to block the whole
|
|
* pageout daemon, but the new low-memory handling
|
|
* code should prevent it.
|
|
*
|
|
* The previous code skipped locked vnodes and, worse,
|
|
* reordered pages in the queue. This results in
|
|
* completely non-deterministic operation and, on a
|
|
* busy system, can lead to extremely non-optimal
|
|
* pageouts. For example, it can cause clean pages
|
|
* to be freed and dirty pages to be moved to the end
|
|
* of the queue. Since dirty pages are also moved to
|
|
* the end of the queue once-cleaned, this gives
|
|
* way too large a weighting to defering the freeing
|
|
* of dirty pages.
|
|
*
|
|
* We can't wait forever for the vnode lock, we might
|
|
* deadlock due to a vn_read() getting stuck in
|
|
* vm_wait while holding this vnode. We skip the
|
|
* vnode if we can't get it in a reasonable amount
|
|
* of time.
|
|
*/
|
|
if (object->type == OBJT_VNODE) {
|
|
vp = object->handle;
|
|
|
|
mp = NULL;
|
|
if (vp->v_type == VREG)
|
|
vn_start_write(vp, &mp, V_NOWAIT);
|
|
if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK, curthread)) {
|
|
++pageout_lock_miss;
|
|
vn_finished_write(mp);
|
|
if (object->flags & OBJ_MIGHTBEDIRTY)
|
|
vnodes_skipped++;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The page might have been moved to another
|
|
* queue during potential blocking in vget()
|
|
* above. The page might have been freed and
|
|
* reused for another vnode. The object might
|
|
* have been reused for another vnode.
|
|
*/
|
|
if (m->queue != PQ_INACTIVE ||
|
|
m->object != object ||
|
|
object->handle != vp) {
|
|
if (object->flags & OBJ_MIGHTBEDIRTY)
|
|
vnodes_skipped++;
|
|
vput(vp);
|
|
vn_finished_write(mp);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The page may have been busied during the
|
|
* blocking in vput(); We don't move the
|
|
* page back onto the end of the queue so that
|
|
* statistics are more correct if we don't.
|
|
*/
|
|
if (m->busy || (m->flags & PG_BUSY)) {
|
|
vput(vp);
|
|
vn_finished_write(mp);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the page has become held it might
|
|
* be undergoing I/O, so skip it
|
|
*/
|
|
if (m->hold_count) {
|
|
vm_pageq_requeue(m);
|
|
if (object->flags & OBJ_MIGHTBEDIRTY)
|
|
vnodes_skipped++;
|
|
vput(vp);
|
|
vn_finished_write(mp);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If a page is dirty, then it is either being washed
|
|
* (but not yet cleaned) or it is still in the
|
|
* laundry. If it is still in the laundry, then we
|
|
* start the cleaning operation.
|
|
*
|
|
* This operation may cluster, invalidating the 'next'
|
|
* pointer. To prevent an inordinate number of
|
|
* restarts we use our marker to remember our place.
|
|
*
|
|
* decrement page_shortage on success to account for
|
|
* the (future) cleaned page. Otherwise we could wind
|
|
* up laundering or cleaning too many pages.
|
|
*/
|
|
s = splvm();
|
|
TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
|
|
splx(s);
|
|
if (vm_pageout_clean(m) != 0) {
|
|
--page_shortage;
|
|
--maxlaunder;
|
|
}
|
|
s = splvm();
|
|
next = TAILQ_NEXT(&marker, pageq);
|
|
TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
|
|
splx(s);
|
|
if (vp) {
|
|
vput(vp);
|
|
vn_finished_write(mp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute the number of pages we want to try to move from the
|
|
* active queue to the inactive queue.
|
|
*/
|
|
page_shortage = vm_paging_target() +
|
|
cnt.v_inactive_target - cnt.v_inactive_count;
|
|
page_shortage += addl_page_shortage;
|
|
|
|
vm_page_lock_queues();
|
|
/*
|
|
* Scan the active queue for things we can deactivate. We nominally
|
|
* track the per-page activity counter and use it to locate
|
|
* deactivation candidates.
|
|
*/
|
|
pcount = cnt.v_active_count;
|
|
m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
|
|
|
|
while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
|
|
|
|
/*
|
|
* This is a consistency check, and should likely be a panic
|
|
* or warning.
|
|
*/
|
|
if (m->queue != PQ_ACTIVE) {
|
|
break;
|
|
}
|
|
|
|
next = TAILQ_NEXT(m, pageq);
|
|
/*
|
|
* Don't deactivate pages that are busy.
|
|
*/
|
|
if ((m->busy != 0) ||
|
|
(m->flags & PG_BUSY) ||
|
|
(m->hold_count != 0)) {
|
|
vm_pageq_requeue(m);
|
|
m = next;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The count for pagedaemon pages is done after checking the
|
|
* page for eligibility...
|
|
*/
|
|
cnt.v_pdpages++;
|
|
|
|
/*
|
|
* Check to see "how much" the page has been used.
|
|
*/
|
|
actcount = 0;
|
|
if (m->object->ref_count != 0) {
|
|
if (m->flags & PG_REFERENCED) {
|
|
actcount += 1;
|
|
}
|
|
actcount += pmap_ts_referenced(m);
|
|
if (actcount) {
|
|
m->act_count += ACT_ADVANCE + actcount;
|
|
if (m->act_count > ACT_MAX)
|
|
m->act_count = ACT_MAX;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Since we have "tested" this bit, we need to clear it now.
|
|
*/
|
|
vm_page_flag_clear(m, PG_REFERENCED);
|
|
|
|
/*
|
|
* Only if an object is currently being used, do we use the
|
|
* page activation count stats.
|
|
*/
|
|
if (actcount && (m->object->ref_count != 0)) {
|
|
vm_pageq_requeue(m);
|
|
} else {
|
|
m->act_count -= min(m->act_count, ACT_DECLINE);
|
|
if (vm_pageout_algorithm ||
|
|
m->object->ref_count == 0 ||
|
|
m->act_count == 0) {
|
|
page_shortage--;
|
|
if (m->object->ref_count == 0) {
|
|
vm_page_protect(m, VM_PROT_NONE);
|
|
if (m->dirty == 0)
|
|
vm_page_cache(m);
|
|
else
|
|
vm_page_deactivate(m);
|
|
} else {
|
|
vm_page_deactivate(m);
|
|
}
|
|
} else {
|
|
vm_pageq_requeue(m);
|
|
}
|
|
}
|
|
m = next;
|
|
}
|
|
s = splvm();
|
|
|
|
/*
|
|
* We try to maintain some *really* free pages, this allows interrupt
|
|
* code to be guaranteed space. Since both cache and free queues
|
|
* are considered basically 'free', moving pages from cache to free
|
|
* does not effect other calculations.
|
|
*/
|
|
while (cnt.v_free_count < cnt.v_free_reserved) {
|
|
static int cache_rover = 0;
|
|
m = vm_pageq_find(PQ_CACHE, cache_rover, FALSE);
|
|
if (!m)
|
|
break;
|
|
if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
|
|
m->busy ||
|
|
m->hold_count ||
|
|
m->wire_count) {
|
|
#ifdef INVARIANTS
|
|
printf("Warning: busy page %p found in cache\n", m);
|
|
#endif
|
|
vm_page_deactivate(m);
|
|
continue;
|
|
}
|
|
cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
|
|
vm_pageout_page_free(m);
|
|
cnt.v_dfree++;
|
|
}
|
|
splx(s);
|
|
vm_page_unlock_queues();
|
|
#if !defined(NO_SWAPPING)
|
|
/*
|
|
* Idle process swapout -- run once per second.
|
|
*/
|
|
if (vm_swap_idle_enabled) {
|
|
static long lsec;
|
|
if (time_second != lsec) {
|
|
vm_pageout_req_swapout |= VM_SWAP_IDLE;
|
|
vm_req_vmdaemon();
|
|
lsec = time_second;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If we didn't get enough free pages, and we have skipped a vnode
|
|
* in a writeable object, wakeup the sync daemon. And kick swapout
|
|
* if we did not get enough free pages.
|
|
*/
|
|
if (vm_paging_target() > 0) {
|
|
if (vnodes_skipped && vm_page_count_min())
|
|
(void) speedup_syncer();
|
|
#if !defined(NO_SWAPPING)
|
|
if (vm_swap_enabled && vm_page_count_target()) {
|
|
vm_req_vmdaemon();
|
|
vm_pageout_req_swapout |= VM_SWAP_NORMAL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* If we are out of swap and were not able to reach our paging
|
|
* target, kill the largest process.
|
|
*
|
|
* We keep the process bigproc locked once we find it to keep anyone
|
|
* from messing with it; however, there is a possibility of
|
|
* deadlock if process B is bigproc and one of it's child processes
|
|
* attempts to propagate a signal to B while we are waiting for A's
|
|
* lock while walking this list. To avoid this, we don't block on
|
|
* the process lock but just skip a process if it is already locked.
|
|
*/
|
|
if ((vm_swap_size < 64 && vm_page_count_min()) ||
|
|
(swap_pager_full && vm_paging_target() > 0)) {
|
|
#if 0
|
|
if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
|
|
#endif
|
|
bigproc = NULL;
|
|
bigsize = 0;
|
|
sx_slock(&allproc_lock);
|
|
FOREACH_PROC_IN_SYSTEM(p) {
|
|
int breakout;
|
|
/*
|
|
* If this process is already locked, skip it.
|
|
*/
|
|
if (PROC_TRYLOCK(p) == 0)
|
|
continue;
|
|
/*
|
|
* if this is a system process, skip it
|
|
*/
|
|
if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
|
|
((p->p_pid < 48) && (vm_swap_size != 0))) {
|
|
PROC_UNLOCK(p);
|
|
continue;
|
|
}
|
|
/*
|
|
* if the process is in a non-running type state,
|
|
* don't touch it. Check all the threads individually.
|
|
*/
|
|
mtx_lock_spin(&sched_lock);
|
|
breakout = 0;
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
if (td->td_state != TDS_RUNQ &&
|
|
td->td_state != TDS_RUNNING &&
|
|
td->td_state != TDS_SLP) {
|
|
breakout = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (breakout) {
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_UNLOCK(p);
|
|
continue;
|
|
}
|
|
mtx_unlock_spin(&sched_lock);
|
|
/*
|
|
* get the process size
|
|
*/
|
|
size = vmspace_resident_count(p->p_vmspace) +
|
|
vmspace_swap_count(p->p_vmspace);
|
|
/*
|
|
* if the this process is bigger than the biggest one
|
|
* remember it.
|
|
*/
|
|
if (size > bigsize) {
|
|
if (bigproc != NULL)
|
|
PROC_UNLOCK(bigproc);
|
|
bigproc = p;
|
|
bigsize = size;
|
|
} else
|
|
PROC_UNLOCK(p);
|
|
}
|
|
sx_sunlock(&allproc_lock);
|
|
if (bigproc != NULL) {
|
|
struct ksegrp *kg;
|
|
killproc(bigproc, "out of swap space");
|
|
mtx_lock_spin(&sched_lock);
|
|
FOREACH_KSEGRP_IN_PROC(bigproc, kg) {
|
|
kg->kg_estcpu = 0;
|
|
kg->kg_nice = PRIO_MIN; /* XXXKSE ??? */
|
|
resetpriority(kg);
|
|
}
|
|
mtx_unlock_spin(&sched_lock);
|
|
PROC_UNLOCK(bigproc);
|
|
wakeup(&cnt.v_free_count);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This routine tries to maintain the pseudo LRU active queue,
|
|
* so that during long periods of time where there is no paging,
|
|
* that some statistic accumulation still occurs. This code
|
|
* helps the situation where paging just starts to occur.
|
|
*/
|
|
static void
|
|
vm_pageout_page_stats()
|
|
{
|
|
vm_page_t m,next;
|
|
int pcount,tpcount; /* Number of pages to check */
|
|
static int fullintervalcount = 0;
|
|
int page_shortage;
|
|
int s0;
|
|
|
|
page_shortage =
|
|
(cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
|
|
(cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
|
|
|
|
if (page_shortage <= 0)
|
|
return;
|
|
|
|
s0 = splvm();
|
|
vm_page_lock_queues();
|
|
pcount = cnt.v_active_count;
|
|
fullintervalcount += vm_pageout_stats_interval;
|
|
if (fullintervalcount < vm_pageout_full_stats_interval) {
|
|
tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
|
|
if (pcount > tpcount)
|
|
pcount = tpcount;
|
|
} else {
|
|
fullintervalcount = 0;
|
|
}
|
|
|
|
m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
|
|
while ((m != NULL) && (pcount-- > 0)) {
|
|
int actcount;
|
|
|
|
if (m->queue != PQ_ACTIVE) {
|
|
break;
|
|
}
|
|
|
|
next = TAILQ_NEXT(m, pageq);
|
|
/*
|
|
* Don't deactivate pages that are busy.
|
|
*/
|
|
if ((m->busy != 0) ||
|
|
(m->flags & PG_BUSY) ||
|
|
(m->hold_count != 0)) {
|
|
vm_pageq_requeue(m);
|
|
m = next;
|
|
continue;
|
|
}
|
|
|
|
actcount = 0;
|
|
if (m->flags & PG_REFERENCED) {
|
|
vm_page_flag_clear(m, PG_REFERENCED);
|
|
actcount += 1;
|
|
}
|
|
|
|
actcount += pmap_ts_referenced(m);
|
|
if (actcount) {
|
|
m->act_count += ACT_ADVANCE + actcount;
|
|
if (m->act_count > ACT_MAX)
|
|
m->act_count = ACT_MAX;
|
|
vm_pageq_requeue(m);
|
|
} else {
|
|
if (m->act_count == 0) {
|
|
/*
|
|
* We turn off page access, so that we have
|
|
* more accurate RSS stats. We don't do this
|
|
* in the normal page deactivation when the
|
|
* system is loaded VM wise, because the
|
|
* cost of the large number of page protect
|
|
* operations would be higher than the value
|
|
* of doing the operation.
|
|
*/
|
|
vm_page_protect(m, VM_PROT_NONE);
|
|
vm_page_deactivate(m);
|
|
} else {
|
|
m->act_count -= min(m->act_count, ACT_DECLINE);
|
|
vm_pageq_requeue(m);
|
|
}
|
|
}
|
|
|
|
m = next;
|
|
}
|
|
vm_page_unlock_queues();
|
|
splx(s0);
|
|
}
|
|
|
|
static int
|
|
vm_pageout_free_page_calc(count)
|
|
vm_size_t count;
|
|
{
|
|
if (count < cnt.v_page_count)
|
|
return 0;
|
|
/*
|
|
* free_reserved needs to include enough for the largest swap pager
|
|
* structures plus enough for any pv_entry structs when paging.
|
|
*/
|
|
if (cnt.v_page_count > 1024)
|
|
cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
|
|
else
|
|
cnt.v_free_min = 4;
|
|
cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
|
|
cnt.v_interrupt_free_min;
|
|
cnt.v_free_reserved = vm_pageout_page_count +
|
|
cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
|
|
cnt.v_free_severe = cnt.v_free_min / 2;
|
|
cnt.v_free_min += cnt.v_free_reserved;
|
|
cnt.v_free_severe += cnt.v_free_reserved;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* vm_pageout is the high level pageout daemon.
|
|
*/
|
|
static void
|
|
vm_pageout()
|
|
{
|
|
int pass;
|
|
|
|
mtx_lock(&Giant);
|
|
|
|
/*
|
|
* Initialize some paging parameters.
|
|
*/
|
|
cnt.v_interrupt_free_min = 2;
|
|
if (cnt.v_page_count < 2000)
|
|
vm_pageout_page_count = 8;
|
|
|
|
vm_pageout_free_page_calc(cnt.v_page_count);
|
|
/*
|
|
* v_free_target and v_cache_min control pageout hysteresis. Note
|
|
* that these are more a measure of the VM cache queue hysteresis
|
|
* then the VM free queue. Specifically, v_free_target is the
|
|
* high water mark (free+cache pages).
|
|
*
|
|
* v_free_reserved + v_cache_min (mostly means v_cache_min) is the
|
|
* low water mark, while v_free_min is the stop. v_cache_min must
|
|
* be big enough to handle memory needs while the pageout daemon
|
|
* is signalled and run to free more pages.
|
|
*/
|
|
if (cnt.v_free_count > 6144)
|
|
cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
|
|
else
|
|
cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
|
|
|
|
if (cnt.v_free_count > 2048) {
|
|
cnt.v_cache_min = cnt.v_free_target;
|
|
cnt.v_cache_max = 2 * cnt.v_cache_min;
|
|
cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
|
|
} else {
|
|
cnt.v_cache_min = 0;
|
|
cnt.v_cache_max = 0;
|
|
cnt.v_inactive_target = cnt.v_free_count / 4;
|
|
}
|
|
if (cnt.v_inactive_target > cnt.v_free_count / 3)
|
|
cnt.v_inactive_target = cnt.v_free_count / 3;
|
|
|
|
/* XXX does not really belong here */
|
|
if (vm_page_max_wired == 0)
|
|
vm_page_max_wired = cnt.v_free_count / 3;
|
|
|
|
if (vm_pageout_stats_max == 0)
|
|
vm_pageout_stats_max = cnt.v_free_target;
|
|
|
|
/*
|
|
* Set interval in seconds for stats scan.
|
|
*/
|
|
if (vm_pageout_stats_interval == 0)
|
|
vm_pageout_stats_interval = 5;
|
|
if (vm_pageout_full_stats_interval == 0)
|
|
vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
|
|
|
|
/*
|
|
* Set maximum free per pass
|
|
*/
|
|
if (vm_pageout_stats_free_max == 0)
|
|
vm_pageout_stats_free_max = 5;
|
|
|
|
swap_pager_swap_init();
|
|
pass = 0;
|
|
/*
|
|
* The pageout daemon is never done, so loop forever.
|
|
*/
|
|
while (TRUE) {
|
|
int error;
|
|
int s = splvm();
|
|
|
|
/*
|
|
* If we have enough free memory, wakeup waiters. Do
|
|
* not clear vm_pages_needed until we reach our target,
|
|
* otherwise we may be woken up over and over again and
|
|
* waste a lot of cpu.
|
|
*/
|
|
if (vm_pages_needed && !vm_page_count_min()) {
|
|
if (vm_paging_needed() <= 0)
|
|
vm_pages_needed = 0;
|
|
wakeup(&cnt.v_free_count);
|
|
}
|
|
if (vm_pages_needed) {
|
|
/*
|
|
* Still not done, take a second pass without waiting
|
|
* (unlimited dirty cleaning), otherwise sleep a bit
|
|
* and try again.
|
|
*/
|
|
++pass;
|
|
if (pass > 1)
|
|
tsleep(&vm_pages_needed, PVM,
|
|
"psleep", hz/2);
|
|
} else {
|
|
/*
|
|
* Good enough, sleep & handle stats. Prime the pass
|
|
* for the next run.
|
|
*/
|
|
if (pass > 1)
|
|
pass = 1;
|
|
else
|
|
pass = 0;
|
|
error = tsleep(&vm_pages_needed, PVM,
|
|
"psleep", vm_pageout_stats_interval * hz);
|
|
if (error && !vm_pages_needed) {
|
|
splx(s);
|
|
pass = 0;
|
|
vm_pageout_page_stats();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (vm_pages_needed)
|
|
cnt.v_pdwakeups++;
|
|
splx(s);
|
|
vm_pageout_scan(pass);
|
|
vm_pageout_deficit = 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
pagedaemon_wakeup()
|
|
{
|
|
if (!vm_pages_needed && curthread->td_proc != pageproc) {
|
|
vm_pages_needed++;
|
|
wakeup(&vm_pages_needed);
|
|
}
|
|
}
|
|
|
|
#if !defined(NO_SWAPPING)
|
|
static void
|
|
vm_req_vmdaemon()
|
|
{
|
|
static int lastrun = 0;
|
|
|
|
if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
|
|
wakeup(&vm_daemon_needed);
|
|
lastrun = ticks;
|
|
}
|
|
}
|
|
|
|
static void
|
|
vm_daemon()
|
|
{
|
|
struct proc *p;
|
|
int breakout;
|
|
struct thread *td;
|
|
|
|
mtx_lock(&Giant);
|
|
while (TRUE) {
|
|
tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
|
|
if (vm_pageout_req_swapout) {
|
|
swapout_procs(vm_pageout_req_swapout);
|
|
vm_pageout_req_swapout = 0;
|
|
}
|
|
/*
|
|
* scan the processes for exceeding their rlimits or if
|
|
* process is swapped out -- deactivate pages
|
|
*/
|
|
sx_slock(&allproc_lock);
|
|
LIST_FOREACH(p, &allproc, p_list) {
|
|
vm_pindex_t limit, size;
|
|
|
|
/*
|
|
* if this is a system process or if we have already
|
|
* looked at this process, skip it.
|
|
*/
|
|
if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
|
|
continue;
|
|
}
|
|
/*
|
|
* if the process is in a non-running type state,
|
|
* don't touch it.
|
|
*/
|
|
mtx_lock_spin(&sched_lock);
|
|
breakout = 0;
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
if (td->td_state != TDS_RUNQ &&
|
|
td->td_state != TDS_RUNNING &&
|
|
td->td_state != TDS_SLP) {
|
|
breakout = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (breakout) {
|
|
mtx_unlock_spin(&sched_lock);
|
|
continue;
|
|
}
|
|
/*
|
|
* get a limit
|
|
*/
|
|
limit = OFF_TO_IDX(
|
|
qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
|
|
p->p_rlimit[RLIMIT_RSS].rlim_max));
|
|
|
|
/*
|
|
* let processes that are swapped out really be
|
|
* swapped out set the limit to nothing (will force a
|
|
* swap-out.)
|
|
*/
|
|
if ((p->p_sflag & PS_INMEM) == 0)
|
|
limit = 0; /* XXX */
|
|
mtx_unlock_spin(&sched_lock);
|
|
|
|
size = vmspace_resident_count(p->p_vmspace);
|
|
if (limit >= 0 && size >= limit) {
|
|
vm_pageout_map_deactivate_pages(
|
|
&p->p_vmspace->vm_map, limit);
|
|
}
|
|
}
|
|
sx_sunlock(&allproc_lock);
|
|
}
|
|
}
|
|
#endif /* !defined(NO_SWAPPING) */
|