freebsd-nq/sys/arm64/cavium/thunder_pcie_pem.c
Andrew Turner be95c24986 Group the ThunderX PCIe PEM newbus methods to help find them.
Obtained from:	ABT Systems Ltd
Sponsored by:	The FreeBSD Foundation
2016-04-20 14:12:40 +00:00

834 lines
22 KiB
C

/*-
* Copyright (c) 2015 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Semihalf under
* the sponsorship of the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* PCIe external MAC root complex driver (PEM) for Cavium Thunder SOC */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_platform.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/endian.h>
#ifdef FDT
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/ofw/ofw_pci.h>
#endif
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pci_host_generic.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/smp.h>
#include <machine/intr.h>
#include <arm64/cavium/thunder_pcie_common.h>
#include <arm64/cavium/thunder_pcie_pem.h>
#include "pcib_if.h"
#define THUNDER_PEM_DEVICE_ID 0xa020
#define THUNDER_PEM_VENDOR_ID 0x177d
/* ThunderX specific defines */
#define THUNDER_PEMn_REG_BASE(unit) (0x87e0c0000000UL | ((unit) << 24))
#define PCIERC_CFG002 0x08
#define PCIERC_CFG006 0x18
#define PCIERC_CFG032 0x80
#define PCIERC_CFG006_SEC_BUS(reg) (((reg) >> 8) & 0xFF)
#define PEM_CFG_RD_REG_ALIGN(reg) ((reg) & ~0x3)
#define PEM_CFG_RD_REG_DATA(val) (((val) >> 32) & 0xFFFFFFFF)
#define PEM_CFG_RD 0x30
#define PEM_CFG_LINK_MASK 0x3
#define PEM_CFG_LINK_RDY 0x3
#define PEM_CFG_SLIX_TO_REG(slix) ((slix) << 4)
#define SBNUM_OFFSET 0x8
#define SBNUM_MASK 0xFF
#define PEM_ON_REG 0x420
#define PEM_CTL_STATUS 0x0
#define PEM_LINK_ENABLE (1 << 4)
#define PEM_LINK_DLLA (1 << 29)
#define PEM_LINK_LT (1 << 27)
#define PEM_BUS_SHIFT (24)
#define PEM_SLOT_SHIFT (19)
#define PEM_FUNC_SHIFT (16)
#define SLIX_S2M_REGX_ACC 0x874001000000UL
#define SLIX_S2M_REGX_ACC_SIZE 0x1000
#define SLIX_S2M_REGX_ACC_SPACING 0x001000000000UL
#define SLI_BASE 0x880000000000UL
#define SLI_WINDOW_SPACING 0x004000000000UL
#define SLI_PCI_OFFSET 0x001000000000UL
#define SLI_NODE_SHIFT (44)
#define SLI_NODE_MASK (3)
#define SLI_GROUP_SHIFT (40)
#define SLI_ID_SHIFT (24)
#define SLI_ID_MASK (7)
#define SLI_PEMS_PER_GROUP (3)
#define SLI_GROUPS_PER_NODE (2)
#define SLI_PEMS_PER_NODE (SLI_PEMS_PER_GROUP * SLI_GROUPS_PER_NODE)
#define SLI_ACC_REG_CNT (256)
/*
* Each PEM device creates its own bus with
* own address translation, so we can adjust bus addresses
* as we want. To support 32-bit cards let's assume
* PCI window assignment looks as following:
*
* 0x00000000 - 0x000FFFFF IO
* 0x00100000 - 0xFFFFFFFF Memory
*/
#define PCI_IO_BASE 0x00000000UL
#define PCI_IO_SIZE 0x00100000UL
#define PCI_MEMORY_BASE PCI_IO_SIZE
#define PCI_MEMORY_SIZE 0xFFF00000UL
#define RID_PEM_SPACE 1
static int thunder_pem_activate_resource(device_t, device_t, int, int,
struct resource *);
static int thunder_pem_adjust_resource(device_t, device_t, int,
struct resource *, rman_res_t, rman_res_t);
static struct resource * thunder_pem_alloc_resource(device_t, device_t, int,
int *, rman_res_t, rman_res_t, rman_res_t, u_int);
static int thunder_pem_alloc_msi(device_t, device_t, int, int, int *);
static int thunder_pem_release_msi(device_t, device_t, int, int *);
static int thunder_pem_map_msi(device_t, device_t, int, uint64_t *, uint32_t *);
static int thunder_pem_alloc_msix(device_t, device_t, int *);
static int thunder_pem_release_msix(device_t, device_t, int);
static int thunder_pem_attach(device_t);
static int thunder_pem_deactivate_resource(device_t, device_t, int, int,
struct resource *);
static int thunder_pem_detach(device_t);
static uint64_t thunder_pem_config_reg_read(struct thunder_pem_softc *, int);
static int thunder_pem_link_init(struct thunder_pem_softc *);
static int thunder_pem_maxslots(device_t);
static int thunder_pem_probe(device_t);
static uint32_t thunder_pem_read_config(device_t, u_int, u_int, u_int, u_int,
int);
static int thunder_pem_read_ivar(device_t, device_t, int, uintptr_t *);
static void thunder_pem_release_all(device_t);
static int thunder_pem_release_resource(device_t, device_t, int, int,
struct resource *);
static struct rman * thunder_pem_rman(struct thunder_pem_softc *, int);
static void thunder_pem_slix_s2m_regx_acc_modify(struct thunder_pem_softc *,
int, int);
static void thunder_pem_write_config(device_t, u_int, u_int, u_int, u_int,
uint32_t, int);
static int thunder_pem_write_ivar(device_t, device_t, int, uintptr_t);
/* Global handlers for SLI interface */
static bus_space_handle_t sli0_s2m_regx_base = 0;
static bus_space_handle_t sli1_s2m_regx_base = 0;
static device_method_t thunder_pem_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, thunder_pem_probe),
DEVMETHOD(device_attach, thunder_pem_attach),
DEVMETHOD(device_detach, thunder_pem_detach),
/* Bus interface */
DEVMETHOD(bus_read_ivar, thunder_pem_read_ivar),
DEVMETHOD(bus_write_ivar, thunder_pem_write_ivar),
DEVMETHOD(bus_alloc_resource, thunder_pem_alloc_resource),
DEVMETHOD(bus_release_resource, thunder_pem_release_resource),
DEVMETHOD(bus_adjust_resource, thunder_pem_adjust_resource),
DEVMETHOD(bus_activate_resource, thunder_pem_activate_resource),
DEVMETHOD(bus_deactivate_resource, thunder_pem_deactivate_resource),
DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
/* pcib interface */
DEVMETHOD(pcib_maxslots, thunder_pem_maxslots),
DEVMETHOD(pcib_read_config, thunder_pem_read_config),
DEVMETHOD(pcib_write_config, thunder_pem_write_config),
DEVMETHOD(pcib_map_msi, thunder_pem_map_msi),
DEVMETHOD(pcib_alloc_msix, thunder_pem_alloc_msix),
DEVMETHOD(pcib_release_msix, thunder_pem_release_msix),
DEVMETHOD(pcib_alloc_msi, thunder_pem_alloc_msi),
DEVMETHOD(pcib_release_msi, thunder_pem_release_msi),
DEVMETHOD_END
};
DEFINE_CLASS_0(pcib, thunder_pem_driver, thunder_pem_methods,
sizeof(struct thunder_pem_softc));
static devclass_t thunder_pem_devclass;
extern struct bus_space memmap_bus;
DRIVER_MODULE(thunder_pem, pci, thunder_pem_driver, thunder_pem_devclass, 0, 0);
MODULE_DEPEND(thunder_pem, pci, 1, 1, 1);
static int
thunder_pem_maxslots(device_t dev)
{
#if 0
/* max slots per bus acc. to standard */
return (PCI_SLOTMAX);
#else
/*
* ARM64TODO Workaround - otherwise an em(4) interface appears to be
* present on every PCI function on the bus to which it is connected
*/
return (0);
#endif
}
static int
thunder_pem_read_ivar(device_t dev, device_t child, int index,
uintptr_t *result)
{
struct thunder_pem_softc *sc;
int secondary_bus = 0;
sc = device_get_softc(dev);
if (index == PCIB_IVAR_BUS) {
secondary_bus = thunder_pem_config_reg_read(sc, PCIERC_CFG006);
*result = PCIERC_CFG006_SEC_BUS(secondary_bus);
return (0);
}
if (index == PCIB_IVAR_DOMAIN) {
*result = sc->id;
return (0);
}
return (ENOENT);
}
static int
thunder_pem_write_ivar(device_t dev, device_t child, int index,
uintptr_t value)
{
return (ENOENT);
}
static int
thunder_pem_activate_resource(device_t dev, device_t child, int type, int rid,
struct resource *r)
{
int err;
bus_addr_t paddr;
bus_size_t psize;
bus_space_handle_t vaddr;
struct thunder_pem_softc *sc;
if ((err = rman_activate_resource(r)) != 0)
return (err);
sc = device_get_softc(dev);
/*
* If this is a memory resource, map it into the kernel.
*/
if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) {
paddr = (bus_addr_t)rman_get_start(r);
psize = (bus_size_t)rman_get_size(r);
paddr = range_addr_pci_to_phys(sc->ranges, paddr);
err = bus_space_map(&memmap_bus, paddr, psize, 0, &vaddr);
if (err != 0) {
rman_deactivate_resource(r);
return (err);
}
rman_set_bustag(r, &memmap_bus);
rman_set_virtual(r, (void *)vaddr);
rman_set_bushandle(r, vaddr);
}
return (0);
}
/*
* This function is an exact copy of nexus_deactivate_resource()
* Keep it up-to-date with all changes in nexus. To be removed
* once bus-mapping interface is developed.
*/
static int
thunder_pem_deactivate_resource(device_t bus, device_t child, int type, int rid,
struct resource *r)
{
bus_size_t psize;
bus_space_handle_t vaddr;
psize = (bus_size_t)rman_get_size(r);
vaddr = rman_get_bushandle(r);
if (vaddr != 0) {
bus_space_unmap(&memmap_bus, vaddr, psize);
rman_set_virtual(r, NULL);
rman_set_bushandle(r, 0);
}
return (rman_deactivate_resource(r));
}
static int
thunder_pem_adjust_resource(device_t dev, device_t child, int type,
struct resource *res, rman_res_t start, rman_res_t end)
{
struct thunder_pem_softc *sc;
struct rman *rm;
sc = device_get_softc(dev);
rm = thunder_pem_rman(sc, type);
if (rm == NULL)
return (bus_generic_adjust_resource(dev, child, type, res,
start, end));
if (!rman_is_region_manager(res, rm))
/*
* This means a child device has a memory or I/O
* resource not from you which shouldn't happen.
*/
return (EINVAL);
return (rman_adjust_resource(res, start, end));
}
static int
thunder_pem_alloc_msi(device_t pci, device_t child, int count, int maxcount,
int *irqs)
{
return (arm_alloc_msi(pci, child, count, maxcount, irqs));
}
static int
thunder_pem_release_msi(device_t pci, device_t child, int count, int *irqs)
{
return (arm_release_msi(pci, child, count, irqs));
}
static int
thunder_pem_map_msi(device_t pci, device_t child, int irq, uint64_t *addr,
uint32_t *data)
{
return (arm_map_msi(pci, child, irq, addr, data));
}
static int
thunder_pem_alloc_msix(device_t pci, device_t child, int *irq)
{
return (arm_alloc_msix(pci, child, irq));
}
static int
thunder_pem_release_msix(device_t pci, device_t child, int irq)
{
return (arm_release_msix(pci, child, irq));
}
static int
thunder_pem_identify(device_t dev)
{
struct thunder_pem_softc *sc;
rman_res_t start;
sc = device_get_softc(dev);
start = rman_get_start(sc->reg);
/* Calculate PEM designations from its address */
sc->node = (start >> SLI_NODE_SHIFT) & SLI_NODE_MASK;
sc->id = ((start >> SLI_ID_SHIFT) & SLI_ID_MASK) +
(SLI_PEMS_PER_NODE * sc->node);
sc->sli = sc->id % SLI_PEMS_PER_GROUP;
sc->sli_group = (sc->id / SLI_PEMS_PER_GROUP) % SLI_GROUPS_PER_NODE;
sc->sli_window_base = SLI_BASE |
(((uint64_t)sc->node) << SLI_NODE_SHIFT) |
((uint64_t)sc->sli_group << SLI_GROUP_SHIFT);
sc->sli_window_base += SLI_WINDOW_SPACING * sc->sli;
return (0);
}
static void
thunder_pem_slix_s2m_regx_acc_modify(struct thunder_pem_softc *sc,
int sli_group, int slix)
{
uint64_t regval;
bus_space_handle_t handle = 0;
KASSERT(slix >= 0 && slix <= SLI_ACC_REG_CNT, ("Invalid SLI index"));
if (sli_group == 0)
handle = sli0_s2m_regx_base;
else if (sli_group == 1)
handle = sli1_s2m_regx_base;
else
device_printf(sc->dev, "SLI group is not correct\n");
if (handle) {
/* Clear lower 32-bits of the SLIx register */
regval = bus_space_read_8(sc->reg_bst, handle,
PEM_CFG_SLIX_TO_REG(slix));
regval &= ~(0xFFFFFFFFUL);
bus_space_write_8(sc->reg_bst, handle,
PEM_CFG_SLIX_TO_REG(slix), regval);
}
}
static int
thunder_pem_link_init(struct thunder_pem_softc *sc)
{
uint64_t regval;
/* check whether PEM is safe to access. */
regval = bus_space_read_8(sc->reg_bst, sc->reg_bsh, PEM_ON_REG);
if ((regval & PEM_CFG_LINK_MASK) != PEM_CFG_LINK_RDY) {
device_printf(sc->dev, "PEM%d is not ON\n", sc->id);
return (ENXIO);
}
regval = bus_space_read_8(sc->reg_bst, sc->reg_bsh, PEM_CTL_STATUS);
regval |= PEM_LINK_ENABLE;
bus_space_write_8(sc->reg_bst, sc->reg_bsh, PEM_CTL_STATUS, regval);
/* Wait 1ms as per Cavium specification */
DELAY(1000);
regval = thunder_pem_config_reg_read(sc, PCIERC_CFG032);
if (((regval & PEM_LINK_DLLA) == 0) || ((regval & PEM_LINK_LT) != 0)) {
device_printf(sc->dev, "PCIe RC: Port %d Link Timeout\n",
sc->id);
return (ENXIO);
}
return (0);
}
static int
thunder_pem_init(struct thunder_pem_softc *sc)
{
int i, retval = 0;
retval = thunder_pem_link_init(sc);
if (retval) {
device_printf(sc->dev, "%s failed\n", __func__);
return retval;
}
/* To support 32-bit PCIe devices, set S2M_REGx_ACC[BA]=0x0 */
for (i = 0; i < SLI_ACC_REG_CNT; i++) {
thunder_pem_slix_s2m_regx_acc_modify(sc, sc->sli_group, i);
}
return (retval);
}
static uint64_t
thunder_pem_config_reg_read(struct thunder_pem_softc *sc, int reg)
{
uint64_t data;
/* Write to ADDR register */
bus_space_write_8(sc->reg_bst, sc->reg_bsh, PEM_CFG_RD,
PEM_CFG_RD_REG_ALIGN(reg));
bus_space_barrier(sc->reg_bst, sc->reg_bsh, PEM_CFG_RD, 8,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
/* Read from DATA register */
data = PEM_CFG_RD_REG_DATA(bus_space_read_8(sc->reg_bst, sc->reg_bsh,
PEM_CFG_RD));
return (data);
}
static uint32_t
thunder_pem_read_config(device_t dev, u_int bus, u_int slot,
u_int func, u_int reg, int bytes)
{
uint64_t offset;
uint32_t data;
struct thunder_pem_softc *sc;
bus_space_tag_t t;
bus_space_handle_t h;
if ((bus > PCI_BUSMAX) || (slot > PCI_SLOTMAX) ||
(func > PCI_FUNCMAX) || (reg > PCIE_REGMAX))
return (~0U);
sc = device_get_softc(dev);
/* Calculate offset */
offset = (bus << PEM_BUS_SHIFT) | (slot << PEM_SLOT_SHIFT) |
(func << PEM_FUNC_SHIFT);
t = sc->reg_bst;
h = sc->pem_sli_base;
bus_space_map(sc->reg_bst, sc->sli_window_base + offset,
PCIE_REGMAX, 0, &h);
switch (bytes) {
case 1:
data = bus_space_read_1(t, h, reg);
break;
case 2:
data = le16toh(bus_space_read_2(t, h, reg));
break;
case 4:
data = le32toh(bus_space_read_4(t, h, reg));
break;
default:
data = ~0U;
break;
}
bus_space_unmap(sc->reg_bst, h, PCIE_REGMAX);
return (data);
}
static void
thunder_pem_write_config(device_t dev, u_int bus, u_int slot,
u_int func, u_int reg, uint32_t val, int bytes)
{
uint64_t offset;
struct thunder_pem_softc *sc;
bus_space_tag_t t;
bus_space_handle_t h;
if ((bus > PCI_BUSMAX) || (slot > PCI_SLOTMAX) ||
(func > PCI_FUNCMAX) || (reg > PCIE_REGMAX))
return;
sc = device_get_softc(dev);
/* Calculate offset */
offset = (bus << PEM_BUS_SHIFT) | (slot << PEM_SLOT_SHIFT) |
(func << PEM_FUNC_SHIFT);
t = sc->reg_bst;
h = sc->pem_sli_base;
bus_space_map(sc->reg_bst, sc->sli_window_base + offset,
PCIE_REGMAX, 0, &h);
switch (bytes) {
case 1:
bus_space_write_1(t, h, reg, val);
break;
case 2:
bus_space_write_2(t, h, reg, htole16(val));
break;
case 4:
bus_space_write_4(t, h, reg, htole32(val));
break;
default:
break;
}
bus_space_unmap(sc->reg_bst, h, PCIE_REGMAX);
}
static struct resource *
thunder_pem_alloc_resource(device_t dev, device_t child, int type, int *rid,
rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
{
struct thunder_pem_softc *sc = device_get_softc(dev);
struct rman *rm = NULL;
struct resource *res;
device_t parent_dev;
rm = thunder_pem_rman(sc, type);
if (rm == NULL) {
/* Find parent device. On ThunderX we know an exact path. */
parent_dev = device_get_parent(device_get_parent(dev));
return (BUS_ALLOC_RESOURCE(parent_dev, dev, type, rid, start,
end, count, flags));
}
if (!RMAN_IS_DEFAULT_RANGE(start, end)) {
/*
* We might get PHYS addresses here inherited from EFI.
* Convert to PCI if necessary.
*/
if (range_addr_is_phys(sc->ranges, start, count)) {
start = range_addr_phys_to_pci(sc->ranges, start);
end = start + count - 1;
}
}
if (bootverbose) {
device_printf(dev,
"thunder_pem_alloc_resource: start=%#lx, end=%#lx, count=%#lx\n",
start, end, count);
}
res = rman_reserve_resource(rm, start, end, count, flags, child);
if (res == NULL)
goto fail;
rman_set_rid(res, *rid);
if (flags & RF_ACTIVE)
if (bus_activate_resource(child, type, *rid, res)) {
rman_release_resource(res);
goto fail;
}
return (res);
fail:
if (bootverbose) {
device_printf(dev, "%s FAIL: type=%d, rid=%d, "
"start=%016lx, end=%016lx, count=%016lx, flags=%x\n",
__func__, type, *rid, start, end, count, flags);
}
return (NULL);
}
static int
thunder_pem_release_resource(device_t dev, device_t child, int type, int rid,
struct resource *res)
{
device_t parent_dev;
/* Find parent device. On ThunderX we know an exact path. */
parent_dev = device_get_parent(device_get_parent(dev));
if ((type != SYS_RES_MEMORY) && (type != SYS_RES_IOPORT))
return (BUS_RELEASE_RESOURCE(parent_dev, child,
type, rid, res));
return (rman_release_resource(res));
}
static struct rman *
thunder_pem_rman(struct thunder_pem_softc *sc, int type)
{
switch (type) {
case SYS_RES_IOPORT:
return (&sc->io_rman);
case SYS_RES_MEMORY:
return (&sc->mem_rman);
default:
break;
}
return (NULL);
}
static int
thunder_pem_probe(device_t dev)
{
uint16_t pci_vendor_id;
uint16_t pci_device_id;
pci_vendor_id = pci_get_vendor(dev);
pci_device_id = pci_get_device(dev);
if ((pci_vendor_id == THUNDER_PEM_VENDOR_ID) &&
(pci_device_id == THUNDER_PEM_DEVICE_ID)) {
device_set_desc_copy(dev, THUNDER_PEM_DESC);
return (0);
}
return (ENXIO);
}
static int
thunder_pem_attach(device_t dev)
{
devclass_t pci_class;
device_t parent;
struct thunder_pem_softc *sc;
int error;
int rid;
int tuple;
uint64_t base, size;
struct rman *rman;
sc = device_get_softc(dev);
sc->dev = dev;
/* Allocate memory for resource */
pci_class = devclass_find("pci");
parent = device_get_parent(dev);
if (device_get_devclass(parent) == pci_class)
rid = PCIR_BAR(0);
else
rid = RID_PEM_SPACE;
sc->reg = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&rid, RF_ACTIVE);
if (sc->reg == NULL) {
device_printf(dev, "Failed to allocate resource\n");
return (ENXIO);
}
sc->reg_bst = rman_get_bustag(sc->reg);
sc->reg_bsh = rman_get_bushandle(sc->reg);
/* Map SLI, do it only once */
if (!sli0_s2m_regx_base) {
bus_space_map(sc->reg_bst, SLIX_S2M_REGX_ACC,
SLIX_S2M_REGX_ACC_SIZE, 0, &sli0_s2m_regx_base);
}
if (!sli1_s2m_regx_base) {
bus_space_map(sc->reg_bst, SLIX_S2M_REGX_ACC +
SLIX_S2M_REGX_ACC_SPACING, SLIX_S2M_REGX_ACC_SIZE, 0,
&sli1_s2m_regx_base);
}
if ((sli0_s2m_regx_base == 0) || (sli1_s2m_regx_base == 0)) {
device_printf(dev,
"bus_space_map failed to map slix_s2m_regx_base\n");
goto fail;
}
/* Identify PEM */
if (thunder_pem_identify(dev) != 0)
goto fail;
/* Initialize rman and allocate regions */
sc->mem_rman.rm_type = RMAN_ARRAY;
sc->mem_rman.rm_descr = "PEM PCIe Memory";
error = rman_init(&sc->mem_rman);
if (error != 0) {
device_printf(dev, "memory rman_init() failed. error = %d\n",
error);
goto fail;
}
sc->io_rman.rm_type = RMAN_ARRAY;
sc->io_rman.rm_descr = "PEM PCIe IO";
error = rman_init(&sc->io_rman);
if (error != 0) {
device_printf(dev, "IO rman_init() failed. error = %d\n",
error);
goto fail_mem;
}
/*
* We ignore the values that may have been provided in FDT
* and configure ranges according to the below formula
* for all types of devices. This is because some DTBs provided
* by EFI do not have proper ranges property or don't have them
* at all.
*/
/* Fill memory window */
sc->ranges[0].pci_base = PCI_MEMORY_BASE;
sc->ranges[0].size = PCI_MEMORY_SIZE;
sc->ranges[0].phys_base = sc->sli_window_base + SLI_PCI_OFFSET +
sc->ranges[0].pci_base;
sc->ranges[0].flags = SYS_RES_MEMORY;
/* Fill IO window */
sc->ranges[1].pci_base = PCI_IO_BASE;
sc->ranges[1].size = PCI_IO_SIZE;
sc->ranges[1].phys_base = sc->sli_window_base + SLI_PCI_OFFSET +
sc->ranges[1].pci_base;
sc->ranges[1].flags = SYS_RES_IOPORT;
for (tuple = 0; tuple < MAX_RANGES_TUPLES; tuple++) {
base = sc->ranges[tuple].pci_base;
size = sc->ranges[tuple].size;
if (size == 0)
continue; /* empty range element */
rman = thunder_pem_rman(sc, sc->ranges[tuple].flags);
if (rman != NULL)
error = rman_manage_region(rman, base,
base + size - 1);
else
error = EINVAL;
if (error) {
device_printf(dev,
"rman_manage_region() failed. error = %d\n", error);
rman_fini(&sc->mem_rman);
return (error);
}
if (bootverbose) {
device_printf(dev,
"\tPCI addr: 0x%jx, CPU addr: 0x%jx, Size: 0x%jx, Flags:0x%jx\n",
sc->ranges[tuple].pci_base,
sc->ranges[tuple].phys_base,
sc->ranges[tuple].size,
sc->ranges[tuple].flags);
}
}
if (thunder_pem_init(sc)) {
device_printf(dev, "Failure during PEM init\n");
goto fail_io;
}
device_add_child(dev, "pci", -1);
return (bus_generic_attach(dev));
fail_io:
rman_fini(&sc->io_rman);
fail_mem:
rman_fini(&sc->mem_rman);
fail:
bus_free_resource(dev, SYS_RES_MEMORY, sc->reg);
return (ENXIO);
}
static void
thunder_pem_release_all(device_t dev)
{
struct thunder_pem_softc *sc;
sc = device_get_softc(dev);
rman_fini(&sc->io_rman);
rman_fini(&sc->mem_rman);
if (sc->reg != NULL)
bus_free_resource(dev, SYS_RES_MEMORY, sc->reg);
}
static int
thunder_pem_detach(device_t dev)
{
thunder_pem_release_all(dev);
return (0);
}