73a1170a8c
No functional change, only trivial cases are done in this sweep, Drivers that can get further enhancements will be done independently. Discussed in: freebsd-current
1202 lines
30 KiB
C
1202 lines
30 KiB
C
/*-
|
|
* Copyright (c) 1996-1999
|
|
* Kazutaka YOKOTA (yokota@zodiac.mech.utsunomiya-u.ac.jp)
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote
|
|
* products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from kbdio.c,v 1.13 1998/09/25 11:55:46 yokota Exp
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_kbd.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/syslog.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/rman.h>
|
|
|
|
#if defined(__amd64__)
|
|
#include <machine/clock.h>
|
|
#endif
|
|
|
|
#include <dev/atkbdc/atkbdcreg.h>
|
|
|
|
#ifdef __sparc64__
|
|
#include <dev/ofw/openfirm.h>
|
|
#include <machine/bus_private.h>
|
|
#include <machine/ofw_machdep.h>
|
|
#else
|
|
#include <isa/isareg.h>
|
|
#endif
|
|
|
|
/* constants */
|
|
|
|
#define MAXKBDC 1 /* XXX */
|
|
|
|
/* macros */
|
|
|
|
#ifndef MAX
|
|
#define MAX(x, y) ((x) > (y) ? (x) : (y))
|
|
#endif
|
|
|
|
#define kbdcp(p) ((atkbdc_softc_t *)(p))
|
|
#define nextq(i) (((i) + 1) % KBDQ_BUFSIZE)
|
|
#define availq(q) ((q)->head != (q)->tail)
|
|
#if KBDIO_DEBUG >= 2
|
|
#define emptyq(q) ((q)->tail = (q)->head = (q)->qcount = 0)
|
|
#else
|
|
#define emptyq(q) ((q)->tail = (q)->head = 0)
|
|
#endif
|
|
|
|
#define read_data(k) (bus_space_read_1((k)->iot, (k)->ioh0, 0))
|
|
#define read_status(k) (bus_space_read_1((k)->iot, (k)->ioh1, 0))
|
|
#define write_data(k, d) \
|
|
(bus_space_write_1((k)->iot, (k)->ioh0, 0, (d)))
|
|
#define write_command(k, d) \
|
|
(bus_space_write_1((k)->iot, (k)->ioh1, 0, (d)))
|
|
|
|
/* local variables */
|
|
|
|
/*
|
|
* We always need at least one copy of the kbdc_softc struct for the
|
|
* low-level console. As the low-level console accesses the keyboard
|
|
* controller before kbdc, and all other devices, is probed, we
|
|
* statically allocate one entry. XXX
|
|
*/
|
|
static atkbdc_softc_t default_kbdc;
|
|
static atkbdc_softc_t *atkbdc_softc[MAXKBDC] = { &default_kbdc };
|
|
|
|
static int verbose = KBDIO_DEBUG;
|
|
|
|
#ifdef __sparc64__
|
|
static struct bus_space_tag atkbdc_bst_store[MAXKBDC];
|
|
#endif
|
|
|
|
/* function prototypes */
|
|
|
|
static int atkbdc_setup(atkbdc_softc_t *sc, bus_space_tag_t tag,
|
|
bus_space_handle_t h0, bus_space_handle_t h1);
|
|
static int addq(kqueue *q, int c);
|
|
static int removeq(kqueue *q);
|
|
static int wait_while_controller_busy(atkbdc_softc_t *kbdc);
|
|
static int wait_for_data(atkbdc_softc_t *kbdc);
|
|
static int wait_for_kbd_data(atkbdc_softc_t *kbdc);
|
|
static int wait_for_kbd_ack(atkbdc_softc_t *kbdc);
|
|
static int wait_for_aux_data(atkbdc_softc_t *kbdc);
|
|
static int wait_for_aux_ack(atkbdc_softc_t *kbdc);
|
|
|
|
struct atkbdc_quirks {
|
|
const char* bios_vendor;
|
|
const char* maker;
|
|
const char* product;
|
|
int quirk;
|
|
};
|
|
|
|
static struct atkbdc_quirks quirks[] = {
|
|
{"coreboot", "Acer", "Peppy",
|
|
KBDC_QUIRK_KEEP_ACTIVATED | KBDC_QUIRK_IGNORE_PROBE_RESULT |
|
|
KBDC_QUIRK_RESET_AFTER_PROBE | KBDC_QUIRK_SETLEDS_ON_INIT},
|
|
|
|
{NULL, NULL, NULL, 0}
|
|
};
|
|
|
|
#define QUIRK_STR_MATCH(s1, s2) (s1 == NULL || \
|
|
(s2 != NULL && !strcmp(s1, s2)))
|
|
|
|
static int
|
|
atkbdc_getquirks(void)
|
|
{
|
|
int i;
|
|
char* bios_vendor = kern_getenv("smbios.bios.vendor");
|
|
char* maker = kern_getenv("smbios.system.maker");
|
|
char* product = kern_getenv("smbios.system.product");
|
|
|
|
for (i=0; quirks[i].quirk != 0; ++i)
|
|
if (QUIRK_STR_MATCH(quirks[i].bios_vendor, bios_vendor) &&
|
|
QUIRK_STR_MATCH(quirks[i].maker, maker) &&
|
|
QUIRK_STR_MATCH(quirks[i].product, product))
|
|
return (quirks[i].quirk);
|
|
|
|
return (0);
|
|
}
|
|
|
|
atkbdc_softc_t
|
|
*atkbdc_get_softc(int unit)
|
|
{
|
|
atkbdc_softc_t *sc;
|
|
|
|
if (unit >= nitems(atkbdc_softc))
|
|
return NULL;
|
|
sc = atkbdc_softc[unit];
|
|
if (sc == NULL) {
|
|
sc = atkbdc_softc[unit]
|
|
= malloc(sizeof(*sc), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (sc == NULL)
|
|
return NULL;
|
|
}
|
|
return sc;
|
|
}
|
|
|
|
int
|
|
atkbdc_probe_unit(int unit, struct resource *port0, struct resource *port1)
|
|
{
|
|
if (rman_get_start(port0) <= 0)
|
|
return ENXIO;
|
|
if (rman_get_start(port1) <= 0)
|
|
return ENXIO;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
atkbdc_attach_unit(int unit, atkbdc_softc_t *sc, struct resource *port0,
|
|
struct resource *port1)
|
|
{
|
|
return atkbdc_setup(sc, rman_get_bustag(port0),
|
|
rman_get_bushandle(port0),
|
|
rman_get_bushandle(port1));
|
|
}
|
|
|
|
/* the backdoor to the keyboard controller! XXX */
|
|
int
|
|
atkbdc_configure(void)
|
|
{
|
|
bus_space_tag_t tag;
|
|
bus_space_handle_t h0;
|
|
bus_space_handle_t h1;
|
|
#if defined(__i386__) || defined(__amd64__)
|
|
volatile int i;
|
|
register_t flags;
|
|
#endif
|
|
#ifdef __sparc64__
|
|
char name[32];
|
|
phandle_t chosen, node;
|
|
ihandle_t stdin;
|
|
bus_addr_t port0;
|
|
bus_addr_t port1;
|
|
int space;
|
|
#else
|
|
int port0;
|
|
int port1;
|
|
#endif
|
|
|
|
/* XXX: tag should be passed from the caller */
|
|
#if defined(__amd64__) || defined(__i386__)
|
|
tag = X86_BUS_SPACE_IO;
|
|
#elif defined(__sparc64__)
|
|
tag = &atkbdc_bst_store[0];
|
|
#else
|
|
#error "define tag!"
|
|
#endif
|
|
|
|
#ifdef __sparc64__
|
|
if ((chosen = OF_finddevice("/chosen")) == -1)
|
|
return 0;
|
|
if (OF_getprop(chosen, "stdin", &stdin, sizeof(stdin)) == -1)
|
|
return 0;
|
|
if ((node = OF_instance_to_package(stdin)) == -1)
|
|
return 0;
|
|
if (OF_getprop(node, "name", name, sizeof(name)) == -1)
|
|
return 0;
|
|
name[sizeof(name) - 1] = '\0';
|
|
if (strcmp(name, "kb_ps2") != 0)
|
|
return 0;
|
|
/*
|
|
* The stdin handle points to an instance of a PS/2 keyboard
|
|
* package but we want the 8042 controller, which is the parent
|
|
* of that keyboard node.
|
|
*/
|
|
if ((node = OF_parent(node)) == 0)
|
|
return 0;
|
|
if (OF_decode_addr(node, 0, &space, &port0) != 0)
|
|
return 0;
|
|
h0 = sparc64_fake_bustag(space, port0, tag);
|
|
bus_space_subregion(tag, h0, KBD_DATA_PORT, 1, &h0);
|
|
if (OF_decode_addr(node, 1, &space, &port1) != 0)
|
|
return 0;
|
|
h1 = sparc64_fake_bustag(space, port1, tag);
|
|
bus_space_subregion(tag, h1, KBD_STATUS_PORT, 1, &h1);
|
|
#else
|
|
port0 = IO_KBD;
|
|
resource_int_value("atkbdc", 0, "port", &port0);
|
|
port1 = IO_KBD + KBD_STATUS_PORT;
|
|
#ifdef notyet
|
|
bus_space_map(tag, port0, IO_KBDSIZE, 0, &h0);
|
|
bus_space_map(tag, port1, IO_KBDSIZE, 0, &h1);
|
|
#else
|
|
h0 = (bus_space_handle_t)port0;
|
|
h1 = (bus_space_handle_t)port1;
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(__i386__) || defined(__amd64__)
|
|
/*
|
|
* Check if we really have AT keyboard controller. Poll status
|
|
* register until we get "all clear" indication. If no such
|
|
* indication comes, it probably means that there is no AT
|
|
* keyboard controller present. Give up in such case. Check relies
|
|
* on the fact that reading from non-existing in/out port returns
|
|
* 0xff on i386. May or may not be true on other platforms.
|
|
*/
|
|
flags = intr_disable();
|
|
for (i = 0; i != 65535; i++) {
|
|
if ((bus_space_read_1(tag, h1, 0) & 0x2) == 0)
|
|
break;
|
|
}
|
|
intr_restore(flags);
|
|
if (i == 65535)
|
|
return ENXIO;
|
|
#endif
|
|
|
|
return atkbdc_setup(atkbdc_softc[0], tag, h0, h1);
|
|
}
|
|
|
|
static int
|
|
atkbdc_setup(atkbdc_softc_t *sc, bus_space_tag_t tag, bus_space_handle_t h0,
|
|
bus_space_handle_t h1)
|
|
{
|
|
#if defined(__amd64__)
|
|
u_int64_t tscval[3], read_delay;
|
|
register_t flags;
|
|
#endif
|
|
|
|
if (sc->ioh0 == 0) { /* XXX */
|
|
sc->command_byte = -1;
|
|
sc->command_mask = 0;
|
|
sc->lock = FALSE;
|
|
sc->kbd.head = sc->kbd.tail = 0;
|
|
sc->aux.head = sc->aux.tail = 0;
|
|
#if KBDIO_DEBUG >= 2
|
|
sc->kbd.call_count = 0;
|
|
sc->kbd.qcount = sc->kbd.max_qcount = 0;
|
|
sc->aux.call_count = 0;
|
|
sc->aux.qcount = sc->aux.max_qcount = 0;
|
|
#endif
|
|
}
|
|
sc->iot = tag;
|
|
sc->ioh0 = h0;
|
|
sc->ioh1 = h1;
|
|
|
|
#if defined(__amd64__)
|
|
/*
|
|
* On certain chipsets AT keyboard controller isn't present and is
|
|
* emulated by BIOS using SMI interrupt. On those chipsets reading
|
|
* from the status port may be thousand times slower than usually.
|
|
* Sometimes this emilation is not working properly resulting in
|
|
* commands timing our and since we assume that inb() operation
|
|
* takes very little time to complete we need to adjust number of
|
|
* retries to keep waiting time within a designed limits (100ms).
|
|
* Measure time it takes to make read_status() call and adjust
|
|
* number of retries accordingly.
|
|
*/
|
|
flags = intr_disable();
|
|
tscval[0] = rdtsc();
|
|
read_status(sc);
|
|
tscval[1] = rdtsc();
|
|
DELAY(1000);
|
|
tscval[2] = rdtsc();
|
|
intr_restore(flags);
|
|
read_delay = tscval[1] - tscval[0];
|
|
read_delay /= (tscval[2] - tscval[1]) / 1000;
|
|
sc->retry = 100000 / ((KBDD_DELAYTIME * 2) + read_delay);
|
|
#else
|
|
sc->retry = 5000;
|
|
#endif
|
|
sc->quirks = atkbdc_getquirks();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* open a keyboard controller */
|
|
KBDC
|
|
atkbdc_open(int unit)
|
|
{
|
|
if (unit <= 0)
|
|
unit = 0;
|
|
if (unit >= MAXKBDC)
|
|
return NULL;
|
|
if ((atkbdc_softc[unit]->port0 != NULL)
|
|
|| (atkbdc_softc[unit]->ioh0 != 0)) /* XXX */
|
|
return (KBDC)atkbdc_softc[unit];
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* I/O access arbitration in `kbdio'
|
|
*
|
|
* The `kbdio' module uses a simplistic convention to arbitrate
|
|
* I/O access to the controller/keyboard/mouse. The convention requires
|
|
* close cooperation of the calling device driver.
|
|
*
|
|
* The device drivers which utilize the `kbdio' module are assumed to
|
|
* have the following set of routines.
|
|
* a. An interrupt handler (the bottom half of the driver).
|
|
* b. Timeout routines which may briefly poll the keyboard controller.
|
|
* c. Routines outside interrupt context (the top half of the driver).
|
|
* They should follow the rules below:
|
|
* 1. The interrupt handler may assume that it always has full access
|
|
* to the controller/keyboard/mouse.
|
|
* 2. The other routines must issue `spltty()' if they wish to
|
|
* prevent the interrupt handler from accessing
|
|
* the controller/keyboard/mouse.
|
|
* 3. The timeout routines and the top half routines of the device driver
|
|
* arbitrate I/O access by observing the lock flag in `kbdio'.
|
|
* The flag is manipulated via `kbdc_lock()'; when one wants to
|
|
* perform I/O, call `kbdc_lock(kbdc, TRUE)' and proceed only if
|
|
* the call returns with TRUE. Otherwise the caller must back off.
|
|
* Call `kbdc_lock(kbdc, FALSE)' when necessary I/O operaion
|
|
* is finished. This mechanism does not prevent the interrupt
|
|
* handler from being invoked at any time and carrying out I/O.
|
|
* Therefore, `spltty()' must be strategically placed in the device
|
|
* driver code. Also note that the timeout routine may interrupt
|
|
* `kbdc_lock()' called by the top half of the driver, but this
|
|
* interruption is OK so long as the timeout routine observes
|
|
* rule 4 below.
|
|
* 4. The interrupt and timeout routines should not extend I/O operation
|
|
* across more than one interrupt or timeout; they must complete any
|
|
* necessary I/O operation within one invocation of the routine.
|
|
* This means that if the timeout routine acquires the lock flag,
|
|
* it must reset the flag to FALSE before it returns.
|
|
*/
|
|
|
|
/* set/reset polling lock */
|
|
int
|
|
kbdc_lock(KBDC p, int lock)
|
|
{
|
|
int prevlock;
|
|
|
|
prevlock = kbdcp(p)->lock;
|
|
kbdcp(p)->lock = lock;
|
|
|
|
return (prevlock != lock);
|
|
}
|
|
|
|
/* check if any data is waiting to be processed */
|
|
int
|
|
kbdc_data_ready(KBDC p)
|
|
{
|
|
return (availq(&kbdcp(p)->kbd) || availq(&kbdcp(p)->aux)
|
|
|| (read_status(kbdcp(p)) & KBDS_ANY_BUFFER_FULL));
|
|
}
|
|
|
|
/* queuing functions */
|
|
|
|
static int
|
|
addq(kqueue *q, int c)
|
|
{
|
|
if (nextq(q->tail) != q->head) {
|
|
q->q[q->tail] = c;
|
|
q->tail = nextq(q->tail);
|
|
#if KBDIO_DEBUG >= 2
|
|
++q->call_count;
|
|
++q->qcount;
|
|
if (q->qcount > q->max_qcount)
|
|
q->max_qcount = q->qcount;
|
|
#endif
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
static int
|
|
removeq(kqueue *q)
|
|
{
|
|
int c;
|
|
|
|
if (q->tail != q->head) {
|
|
c = q->q[q->head];
|
|
q->head = nextq(q->head);
|
|
#if KBDIO_DEBUG >= 2
|
|
--q->qcount;
|
|
#endif
|
|
return c;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* device I/O routines
|
|
*/
|
|
static int
|
|
wait_while_controller_busy(struct atkbdc_softc *kbdc)
|
|
{
|
|
int retry;
|
|
int f;
|
|
|
|
/* CPU will stay inside the loop for 100msec at most */
|
|
retry = kbdc->retry;
|
|
|
|
while ((f = read_status(kbdc)) & KBDS_INPUT_BUFFER_FULL) {
|
|
if ((f & KBDS_BUFFER_FULL) == KBDS_KBD_BUFFER_FULL) {
|
|
DELAY(KBDD_DELAYTIME);
|
|
addq(&kbdc->kbd, read_data(kbdc));
|
|
} else if ((f & KBDS_BUFFER_FULL) == KBDS_AUX_BUFFER_FULL) {
|
|
DELAY(KBDD_DELAYTIME);
|
|
addq(&kbdc->aux, read_data(kbdc));
|
|
}
|
|
DELAY(KBDC_DELAYTIME);
|
|
if (--retry < 0)
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* wait for any data; whether it's from the controller,
|
|
* the keyboard, or the aux device.
|
|
*/
|
|
static int
|
|
wait_for_data(struct atkbdc_softc *kbdc)
|
|
{
|
|
int retry;
|
|
int f;
|
|
|
|
/* CPU will stay inside the loop for 200msec at most */
|
|
retry = kbdc->retry * 2;
|
|
|
|
while ((f = read_status(kbdc) & KBDS_ANY_BUFFER_FULL) == 0) {
|
|
DELAY(KBDC_DELAYTIME);
|
|
if (--retry < 0)
|
|
return 0;
|
|
}
|
|
DELAY(KBDD_DELAYTIME);
|
|
return f;
|
|
}
|
|
|
|
/* wait for data from the keyboard */
|
|
static int
|
|
wait_for_kbd_data(struct atkbdc_softc *kbdc)
|
|
{
|
|
int retry;
|
|
int f;
|
|
|
|
/* CPU will stay inside the loop for 200msec at most */
|
|
retry = kbdc->retry * 2;
|
|
|
|
while ((f = read_status(kbdc) & KBDS_BUFFER_FULL)
|
|
!= KBDS_KBD_BUFFER_FULL) {
|
|
if (f == KBDS_AUX_BUFFER_FULL) {
|
|
DELAY(KBDD_DELAYTIME);
|
|
addq(&kbdc->aux, read_data(kbdc));
|
|
}
|
|
DELAY(KBDC_DELAYTIME);
|
|
if (--retry < 0)
|
|
return 0;
|
|
}
|
|
DELAY(KBDD_DELAYTIME);
|
|
return f;
|
|
}
|
|
|
|
/*
|
|
* wait for an ACK(FAh), RESEND(FEh), or RESET_FAIL(FCh) from the keyboard.
|
|
* queue anything else.
|
|
*/
|
|
static int
|
|
wait_for_kbd_ack(struct atkbdc_softc *kbdc)
|
|
{
|
|
int retry;
|
|
int f;
|
|
int b;
|
|
|
|
/* CPU will stay inside the loop for 200msec at most */
|
|
retry = kbdc->retry * 2;
|
|
|
|
while (retry-- > 0) {
|
|
if ((f = read_status(kbdc)) & KBDS_ANY_BUFFER_FULL) {
|
|
DELAY(KBDD_DELAYTIME);
|
|
b = read_data(kbdc);
|
|
if ((f & KBDS_BUFFER_FULL) == KBDS_KBD_BUFFER_FULL) {
|
|
if ((b == KBD_ACK) || (b == KBD_RESEND)
|
|
|| (b == KBD_RESET_FAIL))
|
|
return b;
|
|
addq(&kbdc->kbd, b);
|
|
} else if ((f & KBDS_BUFFER_FULL) == KBDS_AUX_BUFFER_FULL) {
|
|
addq(&kbdc->aux, b);
|
|
}
|
|
}
|
|
DELAY(KBDC_DELAYTIME);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* wait for data from the aux device */
|
|
static int
|
|
wait_for_aux_data(struct atkbdc_softc *kbdc)
|
|
{
|
|
int retry;
|
|
int f;
|
|
|
|
/* CPU will stay inside the loop for 200msec at most */
|
|
retry = kbdc->retry * 2;
|
|
|
|
while ((f = read_status(kbdc) & KBDS_BUFFER_FULL)
|
|
!= KBDS_AUX_BUFFER_FULL) {
|
|
if (f == KBDS_KBD_BUFFER_FULL) {
|
|
DELAY(KBDD_DELAYTIME);
|
|
addq(&kbdc->kbd, read_data(kbdc));
|
|
}
|
|
DELAY(KBDC_DELAYTIME);
|
|
if (--retry < 0)
|
|
return 0;
|
|
}
|
|
DELAY(KBDD_DELAYTIME);
|
|
return f;
|
|
}
|
|
|
|
/*
|
|
* wait for an ACK(FAh), RESEND(FEh), or RESET_FAIL(FCh) from the aux device.
|
|
* queue anything else.
|
|
*/
|
|
static int
|
|
wait_for_aux_ack(struct atkbdc_softc *kbdc)
|
|
{
|
|
int retry;
|
|
int f;
|
|
int b;
|
|
|
|
/* CPU will stay inside the loop for 200msec at most */
|
|
retry = kbdc->retry * 2;
|
|
|
|
while (retry-- > 0) {
|
|
if ((f = read_status(kbdc)) & KBDS_ANY_BUFFER_FULL) {
|
|
DELAY(KBDD_DELAYTIME);
|
|
b = read_data(kbdc);
|
|
if ((f & KBDS_BUFFER_FULL) == KBDS_AUX_BUFFER_FULL) {
|
|
if ((b == PSM_ACK) || (b == PSM_RESEND)
|
|
|| (b == PSM_RESET_FAIL))
|
|
return b;
|
|
addq(&kbdc->aux, b);
|
|
} else if ((f & KBDS_BUFFER_FULL) == KBDS_KBD_BUFFER_FULL) {
|
|
addq(&kbdc->kbd, b);
|
|
}
|
|
}
|
|
DELAY(KBDC_DELAYTIME);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* write a one byte command to the controller */
|
|
int
|
|
write_controller_command(KBDC p, int c)
|
|
{
|
|
if (!wait_while_controller_busy(kbdcp(p)))
|
|
return FALSE;
|
|
write_command(kbdcp(p), c);
|
|
return TRUE;
|
|
}
|
|
|
|
/* write a one byte data to the controller */
|
|
int
|
|
write_controller_data(KBDC p, int c)
|
|
{
|
|
if (!wait_while_controller_busy(kbdcp(p)))
|
|
return FALSE;
|
|
write_data(kbdcp(p), c);
|
|
return TRUE;
|
|
}
|
|
|
|
/* write a one byte keyboard command */
|
|
int
|
|
write_kbd_command(KBDC p, int c)
|
|
{
|
|
if (!wait_while_controller_busy(kbdcp(p)))
|
|
return FALSE;
|
|
write_data(kbdcp(p), c);
|
|
return TRUE;
|
|
}
|
|
|
|
/* write a one byte auxiliary device command */
|
|
int
|
|
write_aux_command(KBDC p, int c)
|
|
{
|
|
if (!write_controller_command(p, KBDC_WRITE_TO_AUX))
|
|
return FALSE;
|
|
return write_controller_data(p, c);
|
|
}
|
|
|
|
/* send a command to the keyboard and wait for ACK */
|
|
int
|
|
send_kbd_command(KBDC p, int c)
|
|
{
|
|
int retry = KBD_MAXRETRY;
|
|
int res = -1;
|
|
|
|
while (retry-- > 0) {
|
|
if (!write_kbd_command(p, c))
|
|
continue;
|
|
res = wait_for_kbd_ack(kbdcp(p));
|
|
if (res == KBD_ACK)
|
|
break;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* send a command to the auxiliary device and wait for ACK */
|
|
int
|
|
send_aux_command(KBDC p, int c)
|
|
{
|
|
int retry = KBD_MAXRETRY;
|
|
int res = -1;
|
|
|
|
while (retry-- > 0) {
|
|
if (!write_aux_command(p, c))
|
|
continue;
|
|
/*
|
|
* FIXME: XXX
|
|
* The aux device may have already sent one or two bytes of
|
|
* status data, when a command is received. It will immediately
|
|
* stop data transmission, thus, leaving an incomplete data
|
|
* packet in our buffer. We have to discard any unprocessed
|
|
* data in order to remove such packets. Well, we may remove
|
|
* unprocessed, but necessary data byte as well...
|
|
*/
|
|
emptyq(&kbdcp(p)->aux);
|
|
res = wait_for_aux_ack(kbdcp(p));
|
|
if (res == PSM_ACK)
|
|
break;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* send a command and a data to the keyboard, wait for ACKs */
|
|
int
|
|
send_kbd_command_and_data(KBDC p, int c, int d)
|
|
{
|
|
int retry;
|
|
int res = -1;
|
|
|
|
for (retry = KBD_MAXRETRY; retry > 0; --retry) {
|
|
if (!write_kbd_command(p, c))
|
|
continue;
|
|
res = wait_for_kbd_ack(kbdcp(p));
|
|
if (res == KBD_ACK)
|
|
break;
|
|
else if (res != KBD_RESEND)
|
|
return res;
|
|
}
|
|
if (retry <= 0)
|
|
return res;
|
|
|
|
for (retry = KBD_MAXRETRY, res = -1; retry > 0; --retry) {
|
|
if (!write_kbd_command(p, d))
|
|
continue;
|
|
res = wait_for_kbd_ack(kbdcp(p));
|
|
if (res != KBD_RESEND)
|
|
break;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* send a command and a data to the auxiliary device, wait for ACKs */
|
|
int
|
|
send_aux_command_and_data(KBDC p, int c, int d)
|
|
{
|
|
int retry;
|
|
int res = -1;
|
|
|
|
for (retry = KBD_MAXRETRY; retry > 0; --retry) {
|
|
if (!write_aux_command(p, c))
|
|
continue;
|
|
emptyq(&kbdcp(p)->aux);
|
|
res = wait_for_aux_ack(kbdcp(p));
|
|
if (res == PSM_ACK)
|
|
break;
|
|
else if (res != PSM_RESEND)
|
|
return res;
|
|
}
|
|
if (retry <= 0)
|
|
return res;
|
|
|
|
for (retry = KBD_MAXRETRY, res = -1; retry > 0; --retry) {
|
|
if (!write_aux_command(p, d))
|
|
continue;
|
|
res = wait_for_aux_ack(kbdcp(p));
|
|
if (res != PSM_RESEND)
|
|
break;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* read one byte from any source; whether from the controller,
|
|
* the keyboard, or the aux device
|
|
*/
|
|
int
|
|
read_controller_data(KBDC p)
|
|
{
|
|
if (availq(&kbdcp(p)->kbd))
|
|
return removeq(&kbdcp(p)->kbd);
|
|
if (availq(&kbdcp(p)->aux))
|
|
return removeq(&kbdcp(p)->aux);
|
|
if (!wait_for_data(kbdcp(p)))
|
|
return -1; /* timeout */
|
|
return read_data(kbdcp(p));
|
|
}
|
|
|
|
#if KBDIO_DEBUG >= 2
|
|
static int call = 0;
|
|
#endif
|
|
|
|
/* read one byte from the keyboard */
|
|
int
|
|
read_kbd_data(KBDC p)
|
|
{
|
|
#if KBDIO_DEBUG >= 2
|
|
if (++call > 2000) {
|
|
call = 0;
|
|
log(LOG_DEBUG, "kbdc: kbd q: %d calls, max %d chars, "
|
|
"aux q: %d calls, max %d chars\n",
|
|
kbdcp(p)->kbd.call_count, kbdcp(p)->kbd.max_qcount,
|
|
kbdcp(p)->aux.call_count, kbdcp(p)->aux.max_qcount);
|
|
}
|
|
#endif
|
|
|
|
if (availq(&kbdcp(p)->kbd))
|
|
return removeq(&kbdcp(p)->kbd);
|
|
if (!wait_for_kbd_data(kbdcp(p)))
|
|
return -1; /* timeout */
|
|
return read_data(kbdcp(p));
|
|
}
|
|
|
|
/* read one byte from the keyboard, but return immediately if
|
|
* no data is waiting
|
|
*/
|
|
int
|
|
read_kbd_data_no_wait(KBDC p)
|
|
{
|
|
int f;
|
|
|
|
#if KBDIO_DEBUG >= 2
|
|
if (++call > 2000) {
|
|
call = 0;
|
|
log(LOG_DEBUG, "kbdc: kbd q: %d calls, max %d chars, "
|
|
"aux q: %d calls, max %d chars\n",
|
|
kbdcp(p)->kbd.call_count, kbdcp(p)->kbd.max_qcount,
|
|
kbdcp(p)->aux.call_count, kbdcp(p)->aux.max_qcount);
|
|
}
|
|
#endif
|
|
|
|
if (availq(&kbdcp(p)->kbd))
|
|
return removeq(&kbdcp(p)->kbd);
|
|
f = read_status(kbdcp(p)) & KBDS_BUFFER_FULL;
|
|
if (f == KBDS_AUX_BUFFER_FULL) {
|
|
DELAY(KBDD_DELAYTIME);
|
|
addq(&kbdcp(p)->aux, read_data(kbdcp(p)));
|
|
f = read_status(kbdcp(p)) & KBDS_BUFFER_FULL;
|
|
}
|
|
if (f == KBDS_KBD_BUFFER_FULL) {
|
|
DELAY(KBDD_DELAYTIME);
|
|
return read_data(kbdcp(p));
|
|
}
|
|
return -1; /* no data */
|
|
}
|
|
|
|
/* read one byte from the aux device */
|
|
int
|
|
read_aux_data(KBDC p)
|
|
{
|
|
if (availq(&kbdcp(p)->aux))
|
|
return removeq(&kbdcp(p)->aux);
|
|
if (!wait_for_aux_data(kbdcp(p)))
|
|
return -1; /* timeout */
|
|
return read_data(kbdcp(p));
|
|
}
|
|
|
|
/* read one byte from the aux device, but return immediately if
|
|
* no data is waiting
|
|
*/
|
|
int
|
|
read_aux_data_no_wait(KBDC p)
|
|
{
|
|
int f;
|
|
|
|
if (availq(&kbdcp(p)->aux))
|
|
return removeq(&kbdcp(p)->aux);
|
|
f = read_status(kbdcp(p)) & KBDS_BUFFER_FULL;
|
|
if (f == KBDS_KBD_BUFFER_FULL) {
|
|
DELAY(KBDD_DELAYTIME);
|
|
addq(&kbdcp(p)->kbd, read_data(kbdcp(p)));
|
|
f = read_status(kbdcp(p)) & KBDS_BUFFER_FULL;
|
|
}
|
|
if (f == KBDS_AUX_BUFFER_FULL) {
|
|
DELAY(KBDD_DELAYTIME);
|
|
return read_data(kbdcp(p));
|
|
}
|
|
return -1; /* no data */
|
|
}
|
|
|
|
/* discard data from the keyboard */
|
|
void
|
|
empty_kbd_buffer(KBDC p, int wait)
|
|
{
|
|
int t;
|
|
int b;
|
|
int f;
|
|
#if KBDIO_DEBUG >= 2
|
|
int c1 = 0;
|
|
int c2 = 0;
|
|
#endif
|
|
int delta = 2;
|
|
|
|
for (t = wait; t > 0; ) {
|
|
if ((f = read_status(kbdcp(p))) & KBDS_ANY_BUFFER_FULL) {
|
|
DELAY(KBDD_DELAYTIME);
|
|
b = read_data(kbdcp(p));
|
|
if ((f & KBDS_BUFFER_FULL) == KBDS_AUX_BUFFER_FULL) {
|
|
addq(&kbdcp(p)->aux, b);
|
|
#if KBDIO_DEBUG >= 2
|
|
++c2;
|
|
} else {
|
|
++c1;
|
|
#endif
|
|
}
|
|
t = wait;
|
|
} else {
|
|
t -= delta;
|
|
}
|
|
DELAY(delta*1000);
|
|
}
|
|
#if KBDIO_DEBUG >= 2
|
|
if ((c1 > 0) || (c2 > 0))
|
|
log(LOG_DEBUG, "kbdc: %d:%d char read (empty_kbd_buffer)\n", c1, c2);
|
|
#endif
|
|
|
|
emptyq(&kbdcp(p)->kbd);
|
|
}
|
|
|
|
/* discard data from the aux device */
|
|
void
|
|
empty_aux_buffer(KBDC p, int wait)
|
|
{
|
|
int t;
|
|
int b;
|
|
int f;
|
|
#if KBDIO_DEBUG >= 2
|
|
int c1 = 0;
|
|
int c2 = 0;
|
|
#endif
|
|
int delta = 2;
|
|
|
|
for (t = wait; t > 0; ) {
|
|
if ((f = read_status(kbdcp(p))) & KBDS_ANY_BUFFER_FULL) {
|
|
DELAY(KBDD_DELAYTIME);
|
|
b = read_data(kbdcp(p));
|
|
if ((f & KBDS_BUFFER_FULL) == KBDS_KBD_BUFFER_FULL) {
|
|
addq(&kbdcp(p)->kbd, b);
|
|
#if KBDIO_DEBUG >= 2
|
|
++c1;
|
|
} else {
|
|
++c2;
|
|
#endif
|
|
}
|
|
t = wait;
|
|
} else {
|
|
t -= delta;
|
|
}
|
|
DELAY(delta*1000);
|
|
}
|
|
#if KBDIO_DEBUG >= 2
|
|
if ((c1 > 0) || (c2 > 0))
|
|
log(LOG_DEBUG, "kbdc: %d:%d char read (empty_aux_buffer)\n", c1, c2);
|
|
#endif
|
|
|
|
emptyq(&kbdcp(p)->aux);
|
|
}
|
|
|
|
/* discard any data from the keyboard or the aux device */
|
|
void
|
|
empty_both_buffers(KBDC p, int wait)
|
|
{
|
|
int t;
|
|
int f;
|
|
int waited = 0;
|
|
#if KBDIO_DEBUG >= 2
|
|
int c1 = 0;
|
|
int c2 = 0;
|
|
#endif
|
|
int delta = 2;
|
|
|
|
for (t = wait; t > 0; ) {
|
|
if ((f = read_status(kbdcp(p))) & KBDS_ANY_BUFFER_FULL) {
|
|
DELAY(KBDD_DELAYTIME);
|
|
(void)read_data(kbdcp(p));
|
|
#if KBDIO_DEBUG >= 2
|
|
if ((f & KBDS_BUFFER_FULL) == KBDS_KBD_BUFFER_FULL)
|
|
++c1;
|
|
else
|
|
++c2;
|
|
#endif
|
|
t = wait;
|
|
} else {
|
|
t -= delta;
|
|
}
|
|
|
|
/*
|
|
* Some systems (Intel/IBM blades) do not have keyboard devices and
|
|
* will thus hang in this procedure. Time out after delta seconds to
|
|
* avoid this hang -- the keyboard attach will fail later on.
|
|
*/
|
|
waited += (delta * 1000);
|
|
if (waited == (delta * 1000000))
|
|
return;
|
|
|
|
DELAY(delta*1000);
|
|
}
|
|
#if KBDIO_DEBUG >= 2
|
|
if ((c1 > 0) || (c2 > 0))
|
|
log(LOG_DEBUG, "kbdc: %d:%d char read (empty_both_buffers)\n", c1, c2);
|
|
#endif
|
|
|
|
emptyq(&kbdcp(p)->kbd);
|
|
emptyq(&kbdcp(p)->aux);
|
|
}
|
|
|
|
/* keyboard and mouse device control */
|
|
|
|
/* NOTE: enable the keyboard port but disable the keyboard
|
|
* interrupt before calling "reset_kbd()".
|
|
*/
|
|
int
|
|
reset_kbd(KBDC p)
|
|
{
|
|
int retry = KBD_MAXRETRY;
|
|
int again = KBD_MAXWAIT;
|
|
int c = KBD_RESEND; /* keep the compiler happy */
|
|
|
|
while (retry-- > 0) {
|
|
empty_both_buffers(p, 10);
|
|
if (!write_kbd_command(p, KBDC_RESET_KBD))
|
|
continue;
|
|
emptyq(&kbdcp(p)->kbd);
|
|
c = read_controller_data(p);
|
|
if (verbose || bootverbose)
|
|
log(LOG_DEBUG, "kbdc: RESET_KBD return code:%04x\n", c);
|
|
if (c == KBD_ACK) /* keyboard has agreed to reset itself... */
|
|
break;
|
|
}
|
|
if (retry < 0)
|
|
return FALSE;
|
|
|
|
while (again-- > 0) {
|
|
/* wait awhile, well, in fact we must wait quite loooooooooooong */
|
|
DELAY(KBD_RESETDELAY*1000);
|
|
c = read_controller_data(p); /* RESET_DONE/RESET_FAIL */
|
|
if (c != -1) /* wait again if the controller is not ready */
|
|
break;
|
|
}
|
|
if (verbose || bootverbose)
|
|
log(LOG_DEBUG, "kbdc: RESET_KBD status:%04x\n", c);
|
|
if (c != KBD_RESET_DONE)
|
|
return FALSE;
|
|
return TRUE;
|
|
}
|
|
|
|
/* NOTE: enable the aux port but disable the aux interrupt
|
|
* before calling `reset_aux_dev()'.
|
|
*/
|
|
int
|
|
reset_aux_dev(KBDC p)
|
|
{
|
|
int retry = KBD_MAXRETRY;
|
|
int again = KBD_MAXWAIT;
|
|
int c = PSM_RESEND; /* keep the compiler happy */
|
|
|
|
while (retry-- > 0) {
|
|
empty_both_buffers(p, 10);
|
|
if (!write_aux_command(p, PSMC_RESET_DEV))
|
|
continue;
|
|
emptyq(&kbdcp(p)->aux);
|
|
/* NOTE: Compaq Armada laptops require extra delay here. XXX */
|
|
for (again = KBD_MAXWAIT; again > 0; --again) {
|
|
DELAY(KBD_RESETDELAY*1000);
|
|
c = read_aux_data_no_wait(p);
|
|
if (c != -1)
|
|
break;
|
|
}
|
|
if (verbose || bootverbose)
|
|
log(LOG_DEBUG, "kbdc: RESET_AUX return code:%04x\n", c);
|
|
if (c == PSM_ACK) /* aux dev is about to reset... */
|
|
break;
|
|
}
|
|
if (retry < 0)
|
|
return FALSE;
|
|
|
|
for (again = KBD_MAXWAIT; again > 0; --again) {
|
|
/* wait awhile, well, quite looooooooooooong */
|
|
DELAY(KBD_RESETDELAY*1000);
|
|
c = read_aux_data_no_wait(p); /* RESET_DONE/RESET_FAIL */
|
|
if (c != -1) /* wait again if the controller is not ready */
|
|
break;
|
|
}
|
|
if (verbose || bootverbose)
|
|
log(LOG_DEBUG, "kbdc: RESET_AUX status:%04x\n", c);
|
|
if (c != PSM_RESET_DONE) /* reset status */
|
|
return FALSE;
|
|
|
|
c = read_aux_data(p); /* device ID */
|
|
if (verbose || bootverbose)
|
|
log(LOG_DEBUG, "kbdc: RESET_AUX ID:%04x\n", c);
|
|
/* NOTE: we could check the device ID now, but leave it later... */
|
|
return TRUE;
|
|
}
|
|
|
|
/* controller diagnostics and setup */
|
|
|
|
int
|
|
test_controller(KBDC p)
|
|
{
|
|
int retry = KBD_MAXRETRY;
|
|
int again = KBD_MAXWAIT;
|
|
int c = KBD_DIAG_FAIL;
|
|
|
|
while (retry-- > 0) {
|
|
empty_both_buffers(p, 10);
|
|
if (write_controller_command(p, KBDC_DIAGNOSE))
|
|
break;
|
|
}
|
|
if (retry < 0)
|
|
return FALSE;
|
|
|
|
emptyq(&kbdcp(p)->kbd);
|
|
while (again-- > 0) {
|
|
/* wait awhile */
|
|
DELAY(KBD_RESETDELAY*1000);
|
|
c = read_controller_data(p); /* DIAG_DONE/DIAG_FAIL */
|
|
if (c != -1) /* wait again if the controller is not ready */
|
|
break;
|
|
}
|
|
if (verbose || bootverbose)
|
|
log(LOG_DEBUG, "kbdc: DIAGNOSE status:%04x\n", c);
|
|
return (c == KBD_DIAG_DONE);
|
|
}
|
|
|
|
int
|
|
test_kbd_port(KBDC p)
|
|
{
|
|
int retry = KBD_MAXRETRY;
|
|
int again = KBD_MAXWAIT;
|
|
int c = -1;
|
|
|
|
while (retry-- > 0) {
|
|
empty_both_buffers(p, 10);
|
|
if (write_controller_command(p, KBDC_TEST_KBD_PORT))
|
|
break;
|
|
}
|
|
if (retry < 0)
|
|
return FALSE;
|
|
|
|
emptyq(&kbdcp(p)->kbd);
|
|
while (again-- > 0) {
|
|
c = read_controller_data(p);
|
|
if (c != -1) /* try again if the controller is not ready */
|
|
break;
|
|
}
|
|
if (verbose || bootverbose)
|
|
log(LOG_DEBUG, "kbdc: TEST_KBD_PORT status:%04x\n", c);
|
|
return c;
|
|
}
|
|
|
|
int
|
|
test_aux_port(KBDC p)
|
|
{
|
|
int retry = KBD_MAXRETRY;
|
|
int again = KBD_MAXWAIT;
|
|
int c = -1;
|
|
|
|
while (retry-- > 0) {
|
|
empty_both_buffers(p, 10);
|
|
if (write_controller_command(p, KBDC_TEST_AUX_PORT))
|
|
break;
|
|
}
|
|
if (retry < 0)
|
|
return FALSE;
|
|
|
|
emptyq(&kbdcp(p)->kbd);
|
|
while (again-- > 0) {
|
|
c = read_controller_data(p);
|
|
if (c != -1) /* try again if the controller is not ready */
|
|
break;
|
|
}
|
|
if (verbose || bootverbose)
|
|
log(LOG_DEBUG, "kbdc: TEST_AUX_PORT status:%04x\n", c);
|
|
return c;
|
|
}
|
|
|
|
int
|
|
kbdc_get_device_mask(KBDC p)
|
|
{
|
|
return kbdcp(p)->command_mask;
|
|
}
|
|
|
|
void
|
|
kbdc_set_device_mask(KBDC p, int mask)
|
|
{
|
|
kbdcp(p)->command_mask =
|
|
mask & (((kbdcp(p)->quirks & KBDC_QUIRK_KEEP_ACTIVATED)
|
|
? 0 : KBD_KBD_CONTROL_BITS) | KBD_AUX_CONTROL_BITS);
|
|
}
|
|
|
|
int
|
|
get_controller_command_byte(KBDC p)
|
|
{
|
|
if (kbdcp(p)->command_byte != -1)
|
|
return kbdcp(p)->command_byte;
|
|
if (!write_controller_command(p, KBDC_GET_COMMAND_BYTE))
|
|
return -1;
|
|
emptyq(&kbdcp(p)->kbd);
|
|
kbdcp(p)->command_byte = read_controller_data(p);
|
|
return kbdcp(p)->command_byte;
|
|
}
|
|
|
|
int
|
|
set_controller_command_byte(KBDC p, int mask, int command)
|
|
{
|
|
if (get_controller_command_byte(p) == -1)
|
|
return FALSE;
|
|
|
|
command = (kbdcp(p)->command_byte & ~mask) | (command & mask);
|
|
if (command & KBD_DISABLE_KBD_PORT) {
|
|
if (!write_controller_command(p, KBDC_DISABLE_KBD_PORT))
|
|
return FALSE;
|
|
}
|
|
if (!write_controller_command(p, KBDC_SET_COMMAND_BYTE))
|
|
return FALSE;
|
|
if (!write_controller_data(p, command))
|
|
return FALSE;
|
|
kbdcp(p)->command_byte = command;
|
|
|
|
if (verbose)
|
|
log(LOG_DEBUG, "kbdc: new command byte:%04x (set_controller...)\n",
|
|
command);
|
|
|
|
return TRUE;
|
|
}
|