Justin Hibbits eff83876b6 Replace several bus_alloc_resource() calls with bus_alloc_resource_any()
Most of these are BARs, and we allocate them in their entirety.  The one outlier
in this is amdsbwd, which calls bus_set_resource() prior.

Reviewed by:	jhb
Differential Revision:	https://reviews.freebsd.org/D5370 (partial)
2016-02-27 03:34:01 +00:00

923 lines
28 KiB
C

/*
* Copyright (c) 2010, LSI Corp.
* All rights reserved.
* Author : Manjunath Ranganathaiah
* Support: freebsdraid@lsi.com
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name of the <ORGANIZATION> nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/tws/tws.h>
#include <dev/tws/tws_services.h>
#include <dev/tws/tws_hdm.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
MALLOC_DEFINE(M_TWS, "twsbuf", "buffers used by tws driver");
int tws_queue_depth = TWS_MAX_REQS;
int tws_enable_msi = 0;
int tws_enable_msix = 0;
/* externs */
extern int tws_cam_attach(struct tws_softc *sc);
extern void tws_cam_detach(struct tws_softc *sc);
extern int tws_init_ctlr(struct tws_softc *sc);
extern boolean tws_ctlr_ready(struct tws_softc *sc);
extern void tws_turn_off_interrupts(struct tws_softc *sc);
extern void tws_q_insert_tail(struct tws_softc *sc, struct tws_request *req,
u_int8_t q_type );
extern struct tws_request *tws_q_remove_request(struct tws_softc *sc,
struct tws_request *req, u_int8_t q_type );
extern struct tws_request *tws_q_remove_head(struct tws_softc *sc,
u_int8_t q_type );
extern boolean tws_get_response(struct tws_softc *sc, u_int16_t *req_id);
extern boolean tws_ctlr_reset(struct tws_softc *sc);
extern void tws_intr(void *arg);
extern int tws_use_32bit_sgls;
struct tws_request *tws_get_request(struct tws_softc *sc, u_int16_t type);
int tws_init_connect(struct tws_softc *sc, u_int16_t mc);
void tws_send_event(struct tws_softc *sc, u_int8_t event);
uint8_t tws_get_state(struct tws_softc *sc);
void tws_release_request(struct tws_request *req);
/* Function prototypes */
static d_open_t tws_open;
static d_close_t tws_close;
static d_read_t tws_read;
static d_write_t tws_write;
extern d_ioctl_t tws_ioctl;
static int tws_init(struct tws_softc *sc);
static void tws_dmamap_cmds_load_cbfn(void *arg, bus_dma_segment_t *segs,
int nseg, int error);
static int tws_init_reqs(struct tws_softc *sc, u_int32_t dma_mem_size);
static int tws_init_aen_q(struct tws_softc *sc);
static int tws_init_trace_q(struct tws_softc *sc);
static int tws_setup_irq(struct tws_softc *sc);
int tws_setup_intr(struct tws_softc *sc, int irqs);
int tws_teardown_intr(struct tws_softc *sc);
/* Character device entry points */
static struct cdevsw tws_cdevsw = {
.d_version = D_VERSION,
.d_open = tws_open,
.d_close = tws_close,
.d_read = tws_read,
.d_write = tws_write,
.d_ioctl = tws_ioctl,
.d_name = "tws",
};
/*
* In the cdevsw routines, we find our softc by using the si_drv1 member
* of struct cdev. We set this variable to point to our softc in our
* attach routine when we create the /dev entry.
*/
int
tws_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
struct tws_softc *sc = dev->si_drv1;
if ( sc )
TWS_TRACE_DEBUG(sc, "entry", dev, oflags);
return (0);
}
int
tws_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
struct tws_softc *sc = dev->si_drv1;
if ( sc )
TWS_TRACE_DEBUG(sc, "entry", dev, fflag);
return (0);
}
int
tws_read(struct cdev *dev, struct uio *uio, int ioflag)
{
struct tws_softc *sc = dev->si_drv1;
if ( sc )
TWS_TRACE_DEBUG(sc, "entry", dev, ioflag);
return (0);
}
int
tws_write(struct cdev *dev, struct uio *uio, int ioflag)
{
struct tws_softc *sc = dev->si_drv1;
if ( sc )
TWS_TRACE_DEBUG(sc, "entry", dev, ioflag);
return (0);
}
/* PCI Support Functions */
/*
* Compare the device ID of this device against the IDs that this driver
* supports. If there is a match, set the description and return success.
*/
static int
tws_probe(device_t dev)
{
static u_int8_t first_ctlr = 1;
if ((pci_get_vendor(dev) == TWS_VENDOR_ID) &&
(pci_get_device(dev) == TWS_DEVICE_ID)) {
device_set_desc(dev, "LSI 3ware SAS/SATA Storage Controller");
if (first_ctlr) {
printf("LSI 3ware device driver for SAS/SATA storage "
"controllers, version: %s\n", TWS_DRIVER_VERSION_STRING);
first_ctlr = 0;
}
return(BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
/* Attach function is only called if the probe is successful. */
static int
tws_attach(device_t dev)
{
struct tws_softc *sc = device_get_softc(dev);
u_int32_t bar;
int error=0,i;
/* no tracing yet */
/* Look up our softc and initialize its fields. */
sc->tws_dev = dev;
sc->device_id = pci_get_device(dev);
sc->subvendor_id = pci_get_subvendor(dev);
sc->subdevice_id = pci_get_subdevice(dev);
/* Intialize mutexes */
mtx_init( &sc->q_lock, "tws_q_lock", NULL, MTX_DEF);
mtx_init( &sc->sim_lock, "tws_sim_lock", NULL, MTX_DEF);
mtx_init( &sc->gen_lock, "tws_gen_lock", NULL, MTX_DEF);
mtx_init( &sc->io_lock, "tws_io_lock", NULL, MTX_DEF | MTX_RECURSE);
callout_init(&sc->stats_timer, 1);
if ( tws_init_trace_q(sc) == FAILURE )
printf("trace init failure\n");
/* send init event */
mtx_lock(&sc->gen_lock);
tws_send_event(sc, TWS_INIT_START);
mtx_unlock(&sc->gen_lock);
#if _BYTE_ORDER == _BIG_ENDIAN
TWS_TRACE(sc, "BIG endian", 0, 0);
#endif
/* sysctl context setup */
sysctl_ctx_init(&sc->tws_clist);
sc->tws_oidp = SYSCTL_ADD_NODE(&sc->tws_clist,
SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
device_get_nameunit(dev),
CTLFLAG_RD, 0, "");
if ( sc->tws_oidp == NULL ) {
tws_log(sc, SYSCTL_TREE_NODE_ADD);
goto attach_fail_1;
}
SYSCTL_ADD_STRING(&sc->tws_clist, SYSCTL_CHILDREN(sc->tws_oidp),
OID_AUTO, "driver_version", CTLFLAG_RD,
TWS_DRIVER_VERSION_STRING, 0, "TWS driver version");
pci_enable_busmaster(dev);
bar = pci_read_config(dev, TWS_PCI_BAR0, 4);
TWS_TRACE_DEBUG(sc, "bar0 ", bar, 0);
bar = pci_read_config(dev, TWS_PCI_BAR1, 4);
bar = bar & ~TWS_BIT2;
TWS_TRACE_DEBUG(sc, "bar1 ", bar, 0);
/* MFA base address is BAR2 register used for
* push mode. Firmware will evatualy move to
* pull mode during witch this needs to change
*/
#ifndef TWS_PULL_MODE_ENABLE
sc->mfa_base = (u_int64_t)pci_read_config(dev, TWS_PCI_BAR2, 4);
sc->mfa_base = sc->mfa_base & ~TWS_BIT2;
TWS_TRACE_DEBUG(sc, "bar2 ", sc->mfa_base, 0);
#endif
/* allocate MMIO register space */
sc->reg_res_id = TWS_PCI_BAR1; /* BAR1 offset */
if ((sc->reg_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&(sc->reg_res_id), RF_ACTIVE))
== NULL) {
tws_log(sc, ALLOC_MEMORY_RES);
goto attach_fail_1;
}
sc->bus_tag = rman_get_bustag(sc->reg_res);
sc->bus_handle = rman_get_bushandle(sc->reg_res);
#ifndef TWS_PULL_MODE_ENABLE
/* Allocate bus space for inbound mfa */
sc->mfa_res_id = TWS_PCI_BAR2; /* BAR2 offset */
if ((sc->mfa_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&(sc->mfa_res_id), RF_ACTIVE))
== NULL) {
tws_log(sc, ALLOC_MEMORY_RES);
goto attach_fail_2;
}
sc->bus_mfa_tag = rman_get_bustag(sc->mfa_res);
sc->bus_mfa_handle = rman_get_bushandle(sc->mfa_res);
#endif
/* Allocate and register our interrupt. */
sc->intr_type = TWS_INTx; /* default */
if ( tws_enable_msi )
sc->intr_type = TWS_MSI;
if ( tws_setup_irq(sc) == FAILURE ) {
tws_log(sc, ALLOC_MEMORY_RES);
goto attach_fail_3;
}
/*
* Create a /dev entry for this device. The kernel will assign us
* a major number automatically. We use the unit number of this
* device as the minor number and name the character device
* "tws<unit>".
*/
sc->tws_cdev = make_dev(&tws_cdevsw, device_get_unit(dev),
UID_ROOT, GID_OPERATOR, S_IRUSR | S_IWUSR, "tws%u",
device_get_unit(dev));
sc->tws_cdev->si_drv1 = sc;
if ( tws_init(sc) == FAILURE ) {
tws_log(sc, TWS_INIT_FAILURE);
goto attach_fail_4;
}
if ( tws_init_ctlr(sc) == FAILURE ) {
tws_log(sc, TWS_CTLR_INIT_FAILURE);
goto attach_fail_4;
}
if ((error = tws_cam_attach(sc))) {
tws_log(sc, TWS_CAM_ATTACH);
goto attach_fail_4;
}
/* send init complete event */
mtx_lock(&sc->gen_lock);
tws_send_event(sc, TWS_INIT_COMPLETE);
mtx_unlock(&sc->gen_lock);
TWS_TRACE_DEBUG(sc, "attached successfully", 0, sc->device_id);
return(0);
attach_fail_4:
tws_teardown_intr(sc);
destroy_dev(sc->tws_cdev);
if (sc->dma_mem_phys)
bus_dmamap_unload(sc->cmd_tag, sc->cmd_map);
if (sc->dma_mem)
bus_dmamem_free(sc->cmd_tag, sc->dma_mem, sc->cmd_map);
if (sc->cmd_tag)
bus_dma_tag_destroy(sc->cmd_tag);
attach_fail_3:
for(i=0;i<sc->irqs;i++) {
if ( sc->irq_res[i] ){
if (bus_release_resource(sc->tws_dev,
SYS_RES_IRQ, sc->irq_res_id[i], sc->irq_res[i]))
TWS_TRACE(sc, "bus irq res", 0, 0);
}
}
#ifndef TWS_PULL_MODE_ENABLE
attach_fail_2:
#endif
if ( sc->mfa_res ){
if (bus_release_resource(sc->tws_dev,
SYS_RES_MEMORY, sc->mfa_res_id, sc->mfa_res))
TWS_TRACE(sc, "bus release ", 0, sc->mfa_res_id);
}
if ( sc->reg_res ){
if (bus_release_resource(sc->tws_dev,
SYS_RES_MEMORY, sc->reg_res_id, sc->reg_res))
TWS_TRACE(sc, "bus release2 ", 0, sc->reg_res_id);
}
attach_fail_1:
mtx_destroy(&sc->q_lock);
mtx_destroy(&sc->sim_lock);
mtx_destroy(&sc->gen_lock);
mtx_destroy(&sc->io_lock);
sysctl_ctx_free(&sc->tws_clist);
return (ENXIO);
}
/* Detach device. */
static int
tws_detach(device_t dev)
{
struct tws_softc *sc = device_get_softc(dev);
int i;
u_int32_t reg;
TWS_TRACE_DEBUG(sc, "entry", 0, 0);
mtx_lock(&sc->gen_lock);
tws_send_event(sc, TWS_UNINIT_START);
mtx_unlock(&sc->gen_lock);
/* needs to disable interrupt before detaching from cam */
tws_turn_off_interrupts(sc);
/* clear door bell */
tws_write_reg(sc, TWS_I2O0_HOBDBC, ~0, 4);
reg = tws_read_reg(sc, TWS_I2O0_HIMASK, 4);
TWS_TRACE_DEBUG(sc, "turn-off-intr", reg, 0);
sc->obfl_q_overrun = false;
tws_init_connect(sc, 1);
/* Teardown the state in our softc created in our attach routine. */
/* Disconnect the interrupt handler. */
tws_teardown_intr(sc);
/* Release irq resource */
for(i=0;i<sc->irqs;i++) {
if ( sc->irq_res[i] ){
if (bus_release_resource(sc->tws_dev,
SYS_RES_IRQ, sc->irq_res_id[i], sc->irq_res[i]))
TWS_TRACE(sc, "bus release irq resource",
i, sc->irq_res_id[i]);
}
}
if ( sc->intr_type == TWS_MSI ) {
pci_release_msi(sc->tws_dev);
}
tws_cam_detach(sc);
if (sc->dma_mem_phys)
bus_dmamap_unload(sc->cmd_tag, sc->cmd_map);
if (sc->dma_mem)
bus_dmamem_free(sc->cmd_tag, sc->dma_mem, sc->cmd_map);
if (sc->cmd_tag)
bus_dma_tag_destroy(sc->cmd_tag);
/* Release memory resource */
if ( sc->mfa_res ){
if (bus_release_resource(sc->tws_dev,
SYS_RES_MEMORY, sc->mfa_res_id, sc->mfa_res))
TWS_TRACE(sc, "bus release mem resource", 0, sc->mfa_res_id);
}
if ( sc->reg_res ){
if (bus_release_resource(sc->tws_dev,
SYS_RES_MEMORY, sc->reg_res_id, sc->reg_res))
TWS_TRACE(sc, "bus release mem resource", 0, sc->reg_res_id);
}
for ( i=0; i< tws_queue_depth; i++) {
if (sc->reqs[i].dma_map)
bus_dmamap_destroy(sc->data_tag, sc->reqs[i].dma_map);
callout_drain(&sc->reqs[i].timeout);
}
callout_drain(&sc->stats_timer);
free(sc->reqs, M_TWS);
free(sc->sense_bufs, M_TWS);
free(sc->scan_ccb, M_TWS);
if (sc->ioctl_data_mem)
bus_dmamem_free(sc->data_tag, sc->ioctl_data_mem, sc->ioctl_data_map);
if (sc->data_tag)
bus_dma_tag_destroy(sc->data_tag);
free(sc->aen_q.q, M_TWS);
free(sc->trace_q.q, M_TWS);
mtx_destroy(&sc->q_lock);
mtx_destroy(&sc->sim_lock);
mtx_destroy(&sc->gen_lock);
mtx_destroy(&sc->io_lock);
destroy_dev(sc->tws_cdev);
sysctl_ctx_free(&sc->tws_clist);
return (0);
}
int
tws_setup_intr(struct tws_softc *sc, int irqs)
{
int i, error;
for(i=0;i<irqs;i++) {
if (!(sc->intr_handle[i])) {
if ((error = bus_setup_intr(sc->tws_dev, sc->irq_res[i],
INTR_TYPE_CAM | INTR_MPSAFE,
#if (__FreeBSD_version >= 700000)
NULL,
#endif
tws_intr, sc, &sc->intr_handle[i]))) {
tws_log(sc, SETUP_INTR_RES);
return(FAILURE);
}
}
}
return(SUCCESS);
}
int
tws_teardown_intr(struct tws_softc *sc)
{
int i, error;
for(i=0;i<sc->irqs;i++) {
if (sc->intr_handle[i]) {
error = bus_teardown_intr(sc->tws_dev,
sc->irq_res[i], sc->intr_handle[i]);
sc->intr_handle[i] = NULL;
}
}
return(SUCCESS);
}
static int
tws_setup_irq(struct tws_softc *sc)
{
int messages;
switch(sc->intr_type) {
case TWS_INTx :
sc->irqs = 1;
sc->irq_res_id[0] = 0;
sc->irq_res[0] = bus_alloc_resource_any(sc->tws_dev, SYS_RES_IRQ,
&sc->irq_res_id[0], RF_SHAREABLE | RF_ACTIVE);
if ( ! sc->irq_res[0] )
return(FAILURE);
if ( tws_setup_intr(sc, sc->irqs) == FAILURE )
return(FAILURE);
device_printf(sc->tws_dev, "Using legacy INTx\n");
break;
case TWS_MSI :
sc->irqs = 1;
sc->irq_res_id[0] = 1;
messages = 1;
if (pci_alloc_msi(sc->tws_dev, &messages) != 0 ) {
TWS_TRACE(sc, "pci alloc msi fail", 0, messages);
return(FAILURE);
}
sc->irq_res[0] = bus_alloc_resource_any(sc->tws_dev, SYS_RES_IRQ,
&sc->irq_res_id[0], RF_SHAREABLE | RF_ACTIVE);
if ( !sc->irq_res[0] )
return(FAILURE);
if ( tws_setup_intr(sc, sc->irqs) == FAILURE )
return(FAILURE);
device_printf(sc->tws_dev, "Using MSI\n");
break;
}
return(SUCCESS);
}
static int
tws_init(struct tws_softc *sc)
{
u_int32_t max_sg_elements;
u_int32_t dma_mem_size;
int error;
u_int32_t reg;
sc->seq_id = 0;
if ( tws_queue_depth > TWS_MAX_REQS )
tws_queue_depth = TWS_MAX_REQS;
if (tws_queue_depth < TWS_RESERVED_REQS+1)
tws_queue_depth = TWS_RESERVED_REQS+1;
sc->is64bit = (sizeof(bus_addr_t) == 8) ? true : false;
max_sg_elements = (sc->is64bit && !tws_use_32bit_sgls) ?
TWS_MAX_64BIT_SG_ELEMENTS :
TWS_MAX_32BIT_SG_ELEMENTS;
dma_mem_size = (sizeof(struct tws_command_packet) * tws_queue_depth) +
(TWS_SECTOR_SIZE) ;
if ( bus_dma_tag_create(bus_get_dma_tag(sc->tws_dev), /* PCI parent */
TWS_ALIGNMENT, /* alignment */
0, /* boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE, /* maxsize */
max_sg_elements, /* numsegs */
BUS_SPACE_MAXSIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&sc->parent_tag /* tag */
)) {
TWS_TRACE_DEBUG(sc, "DMA parent tag Create fail", max_sg_elements,
sc->is64bit);
return(ENOMEM);
}
/* In bound message frame requires 16byte alignment.
* Outbound MF's can live with 4byte alignment - for now just
* use 16 for both.
*/
if ( bus_dma_tag_create(sc->parent_tag, /* parent */
TWS_IN_MF_ALIGNMENT, /* alignment */
0, /* boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
dma_mem_size, /* maxsize */
1, /* numsegs */
BUS_SPACE_MAXSIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockfuncarg */
&sc->cmd_tag /* tag */
)) {
TWS_TRACE_DEBUG(sc, "DMA cmd tag Create fail", max_sg_elements, sc->is64bit);
return(ENOMEM);
}
if (bus_dmamem_alloc(sc->cmd_tag, &sc->dma_mem,
BUS_DMA_NOWAIT, &sc->cmd_map)) {
TWS_TRACE_DEBUG(sc, "DMA mem alloc fail", max_sg_elements, sc->is64bit);
return(ENOMEM);
}
/* if bus_dmamem_alloc succeeds then bus_dmamap_load will succeed */
sc->dma_mem_phys=0;
error = bus_dmamap_load(sc->cmd_tag, sc->cmd_map, sc->dma_mem,
dma_mem_size, tws_dmamap_cmds_load_cbfn,
&sc->dma_mem_phys, 0);
/*
* Create a dma tag for data buffers; size will be the maximum
* possible I/O size (128kB).
*/
if (bus_dma_tag_create(sc->parent_tag, /* parent */
TWS_ALIGNMENT, /* alignment */
0, /* boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
TWS_MAX_IO_SIZE, /* maxsize */
max_sg_elements, /* nsegments */
TWS_MAX_IO_SIZE, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
busdma_lock_mutex, /* lockfunc */
&sc->io_lock, /* lockfuncarg */
&sc->data_tag /* tag */)) {
TWS_TRACE_DEBUG(sc, "DMA cmd tag Create fail", max_sg_elements, sc->is64bit);
return(ENOMEM);
}
sc->reqs = malloc(sizeof(struct tws_request) * tws_queue_depth, M_TWS,
M_WAITOK | M_ZERO);
if ( sc->reqs == NULL ) {
TWS_TRACE_DEBUG(sc, "malloc failed", 0, sc->is64bit);
return(ENOMEM);
}
sc->sense_bufs = malloc(sizeof(struct tws_sense) * tws_queue_depth, M_TWS,
M_WAITOK | M_ZERO);
if ( sc->sense_bufs == NULL ) {
TWS_TRACE_DEBUG(sc, "sense malloc failed", 0, sc->is64bit);
return(ENOMEM);
}
sc->scan_ccb = malloc(sizeof(union ccb), M_TWS, M_WAITOK | M_ZERO);
if ( sc->scan_ccb == NULL ) {
TWS_TRACE_DEBUG(sc, "ccb malloc failed", 0, sc->is64bit);
return(ENOMEM);
}
if (bus_dmamem_alloc(sc->data_tag, (void **)&sc->ioctl_data_mem,
(BUS_DMA_NOWAIT | BUS_DMA_ZERO), &sc->ioctl_data_map)) {
device_printf(sc->tws_dev, "Cannot allocate ioctl data mem\n");
return(ENOMEM);
}
if ( !tws_ctlr_ready(sc) )
if( !tws_ctlr_reset(sc) )
return(FAILURE);
bzero(&sc->stats, sizeof(struct tws_stats));
tws_init_qs(sc);
tws_turn_off_interrupts(sc);
/*
* enable pull mode by setting bit1 .
* setting bit0 to 1 will enable interrupt coalesing
* will revisit.
*/
#ifdef TWS_PULL_MODE_ENABLE
reg = tws_read_reg(sc, TWS_I2O0_CTL, 4);
TWS_TRACE_DEBUG(sc, "i20 ctl", reg, TWS_I2O0_CTL);
tws_write_reg(sc, TWS_I2O0_CTL, reg | TWS_BIT1, 4);
#endif
TWS_TRACE_DEBUG(sc, "dma_mem_phys", sc->dma_mem_phys, TWS_I2O0_CTL);
if ( tws_init_reqs(sc, dma_mem_size) == FAILURE )
return(FAILURE);
if ( tws_init_aen_q(sc) == FAILURE )
return(FAILURE);
return(SUCCESS);
}
static int
tws_init_aen_q(struct tws_softc *sc)
{
sc->aen_q.head=0;
sc->aen_q.tail=0;
sc->aen_q.depth=256;
sc->aen_q.overflow=0;
sc->aen_q.q = malloc(sizeof(struct tws_event_packet)*sc->aen_q.depth,
M_TWS, M_WAITOK | M_ZERO);
if ( ! sc->aen_q.q )
return(FAILURE);
return(SUCCESS);
}
static int
tws_init_trace_q(struct tws_softc *sc)
{
sc->trace_q.head=0;
sc->trace_q.tail=0;
sc->trace_q.depth=256;
sc->trace_q.overflow=0;
sc->trace_q.q = malloc(sizeof(struct tws_trace_rec)*sc->trace_q.depth,
M_TWS, M_WAITOK | M_ZERO);
if ( ! sc->trace_q.q )
return(FAILURE);
return(SUCCESS);
}
static int
tws_init_reqs(struct tws_softc *sc, u_int32_t dma_mem_size)
{
struct tws_command_packet *cmd_buf;
cmd_buf = (struct tws_command_packet *)sc->dma_mem;
int i;
bzero(cmd_buf, dma_mem_size);
TWS_TRACE_DEBUG(sc, "phy cmd", sc->dma_mem_phys, 0);
mtx_lock(&sc->q_lock);
for ( i=0; i< tws_queue_depth; i++)
{
if (bus_dmamap_create(sc->data_tag, 0, &sc->reqs[i].dma_map)) {
/* log a ENOMEM failure msg here */
mtx_unlock(&sc->q_lock);
return(FAILURE);
}
sc->reqs[i].cmd_pkt = &cmd_buf[i];
sc->sense_bufs[i].hdr = &cmd_buf[i].hdr ;
sc->sense_bufs[i].hdr_pkt_phy = sc->dma_mem_phys +
(i * sizeof(struct tws_command_packet));
sc->reqs[i].cmd_pkt_phy = sc->dma_mem_phys +
sizeof(struct tws_command_header) +
(i * sizeof(struct tws_command_packet));
sc->reqs[i].request_id = i;
sc->reqs[i].sc = sc;
sc->reqs[i].cmd_pkt->hdr.header_desc.size_header = 128;
callout_init(&sc->reqs[i].timeout, 1);
sc->reqs[i].state = TWS_REQ_STATE_FREE;
if ( i >= TWS_RESERVED_REQS )
tws_q_insert_tail(sc, &sc->reqs[i], TWS_FREE_Q);
}
mtx_unlock(&sc->q_lock);
return(SUCCESS);
}
static void
tws_dmamap_cmds_load_cbfn(void *arg, bus_dma_segment_t *segs,
int nseg, int error)
{
/* printf("command load done \n"); */
*((bus_addr_t *)arg) = segs[0].ds_addr;
}
void
tws_send_event(struct tws_softc *sc, u_int8_t event)
{
mtx_assert(&sc->gen_lock, MA_OWNED);
TWS_TRACE_DEBUG(sc, "received event ", 0, event);
switch (event) {
case TWS_INIT_START:
sc->tws_state = TWS_INIT;
break;
case TWS_INIT_COMPLETE:
if (sc->tws_state != TWS_INIT) {
device_printf(sc->tws_dev, "invalid state transition %d => TWS_ONLINE\n", sc->tws_state);
} else {
sc->tws_state = TWS_ONLINE;
}
break;
case TWS_RESET_START:
/* We can transition to reset state from any state except reset*/
if (sc->tws_state != TWS_RESET) {
sc->tws_prev_state = sc->tws_state;
sc->tws_state = TWS_RESET;
}
break;
case TWS_RESET_COMPLETE:
if (sc->tws_state != TWS_RESET) {
device_printf(sc->tws_dev, "invalid state transition %d => %d (previous state)\n", sc->tws_state, sc->tws_prev_state);
} else {
sc->tws_state = sc->tws_prev_state;
}
break;
case TWS_SCAN_FAILURE:
if (sc->tws_state != TWS_ONLINE) {
device_printf(sc->tws_dev, "invalid state transition %d => TWS_OFFLINE\n", sc->tws_state);
} else {
sc->tws_state = TWS_OFFLINE;
}
break;
case TWS_UNINIT_START:
if ((sc->tws_state != TWS_ONLINE) && (sc->tws_state != TWS_OFFLINE)) {
device_printf(sc->tws_dev, "invalid state transition %d => TWS_UNINIT\n", sc->tws_state);
} else {
sc->tws_state = TWS_UNINIT;
}
break;
}
}
uint8_t
tws_get_state(struct tws_softc *sc)
{
return((u_int8_t)sc->tws_state);
}
/* Called during system shutdown after sync. */
static int
tws_shutdown(device_t dev)
{
struct tws_softc *sc = device_get_softc(dev);
TWS_TRACE_DEBUG(sc, "entry", 0, 0);
tws_turn_off_interrupts(sc);
tws_init_connect(sc, 1);
return (0);
}
/*
* Device suspend routine.
*/
static int
tws_suspend(device_t dev)
{
struct tws_softc *sc = device_get_softc(dev);
if ( sc )
TWS_TRACE_DEBUG(sc, "entry", 0, 0);
return (0);
}
/*
* Device resume routine.
*/
static int
tws_resume(device_t dev)
{
struct tws_softc *sc = device_get_softc(dev);
if ( sc )
TWS_TRACE_DEBUG(sc, "entry", 0, 0);
return (0);
}
struct tws_request *
tws_get_request(struct tws_softc *sc, u_int16_t type)
{
struct mtx *my_mutex = ((type == TWS_REQ_TYPE_SCSI_IO) ? &sc->q_lock : &sc->gen_lock);
struct tws_request *r = NULL;
mtx_lock(my_mutex);
if (type == TWS_REQ_TYPE_SCSI_IO) {
r = tws_q_remove_head(sc, TWS_FREE_Q);
} else {
if ( sc->reqs[type].state == TWS_REQ_STATE_FREE ) {
r = &sc->reqs[type];
}
}
if ( r ) {
bzero(&r->cmd_pkt->cmd, sizeof(struct tws_command_apache));
r->data = NULL;
r->length = 0;
r->type = type;
r->flags = TWS_DIR_UNKNOWN;
r->error_code = TWS_REQ_RET_INVALID;
r->cb = NULL;
r->ccb_ptr = NULL;
callout_stop(&r->timeout);
r->next = r->prev = NULL;
r->state = ((type == TWS_REQ_TYPE_SCSI_IO) ? TWS_REQ_STATE_TRAN : TWS_REQ_STATE_BUSY);
}
mtx_unlock(my_mutex);
return(r);
}
void
tws_release_request(struct tws_request *req)
{
struct tws_softc *sc = req->sc;
TWS_TRACE_DEBUG(sc, "entry", sc, 0);
mtx_lock(&sc->q_lock);
tws_q_insert_tail(sc, req, TWS_FREE_Q);
mtx_unlock(&sc->q_lock);
}
static device_method_t tws_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, tws_probe),
DEVMETHOD(device_attach, tws_attach),
DEVMETHOD(device_detach, tws_detach),
DEVMETHOD(device_shutdown, tws_shutdown),
DEVMETHOD(device_suspend, tws_suspend),
DEVMETHOD(device_resume, tws_resume),
DEVMETHOD_END
};
static driver_t tws_driver = {
"tws",
tws_methods,
sizeof(struct tws_softc)
};
static devclass_t tws_devclass;
/* DEFINE_CLASS_0(tws, tws_driver, tws_methods, sizeof(struct tws_softc)); */
DRIVER_MODULE(tws, pci, tws_driver, tws_devclass, 0, 0);
MODULE_DEPEND(tws, cam, 1, 1, 1);
MODULE_DEPEND(tws, pci, 1, 1, 1);
TUNABLE_INT("hw.tws.queue_depth", &tws_queue_depth);
TUNABLE_INT("hw.tws.enable_msi", &tws_enable_msi);