b40ce02a2f
new platform module. These are probed in early boot, and have the responsibility of determining the layout of physical memory, determining the CPU timebase frequency, and handling the zoo of SMP mechanisms found on PowerPC. Reviewed by: marcel, raj Book-E parts by: raj
2444 lines
63 KiB
C
2444 lines
63 KiB
C
/*-
|
|
* Copyright (c) 2001 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
/*-
|
|
* Copyright (C) 1995, 1996 Wolfgang Solfrank.
|
|
* Copyright (C) 1995, 1996 TooLs GmbH.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by TooLs GmbH.
|
|
* 4. The name of TooLs GmbH may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
|
|
*/
|
|
/*-
|
|
* Copyright (C) 2001 Benno Rice.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Manages physical address maps.
|
|
*
|
|
* In addition to hardware address maps, this module is called upon to
|
|
* provide software-use-only maps which may or may not be stored in the
|
|
* same form as hardware maps. These pseudo-maps are used to store
|
|
* intermediate results from copy operations to and from address spaces.
|
|
*
|
|
* Since the information managed by this module is also stored by the
|
|
* logical address mapping module, this module may throw away valid virtual
|
|
* to physical mappings at almost any time. However, invalidations of
|
|
* mappings must be done as requested.
|
|
*
|
|
* In order to cope with hardware architectures which make virtual to
|
|
* physical map invalidates expensive, this module may delay invalidate
|
|
* reduced protection operations until such time as they are actually
|
|
* necessary. This module is given full information as to which processors
|
|
* are currently using which maps, and to when physical maps must be made
|
|
* correct.
|
|
*/
|
|
|
|
#include "opt_kstack_pages.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#include <sys/kdb.h>
|
|
|
|
#include <dev/ofw/openfirm.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_pager.h>
|
|
#include <vm/uma.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/platform.h>
|
|
#include <machine/frame.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/psl.h>
|
|
#include <machine/bat.h>
|
|
#include <machine/pte.h>
|
|
#include <machine/sr.h>
|
|
#include <machine/trap.h>
|
|
#include <machine/mmuvar.h>
|
|
|
|
#include "mmu_if.h"
|
|
|
|
#define MOEA_DEBUG
|
|
|
|
#define TODO panic("%s: not implemented", __func__);
|
|
|
|
static __inline u_int32_t
|
|
cntlzw(volatile u_int32_t a) {
|
|
u_int32_t b;
|
|
__asm ("cntlzw %0, %1" : "=r"(b) : "r"(a));
|
|
return b;
|
|
}
|
|
|
|
static __inline uint64_t
|
|
va_to_vsid(pmap_t pm, vm_offset_t va)
|
|
{
|
|
return ((pm->pm_sr[(uintptr_t)va >> ADDR_SR_SHFT]) & SR_VSID_MASK);
|
|
}
|
|
|
|
#define TLBSYNC() __asm __volatile("tlbsync; ptesync");
|
|
#define SYNC() __asm __volatile("sync");
|
|
#define EIEIO() __asm __volatile("eieio");
|
|
|
|
/*
|
|
* The tlbie instruction must be executed in 64-bit mode
|
|
* so we have to twiddle MSR[SF] around every invocation.
|
|
* Just to add to the fun, exceptions must be off as well
|
|
* so that we can't trap in 64-bit mode. What a pain.
|
|
*/
|
|
|
|
static __inline void
|
|
TLBIE(pmap_t pmap, vm_offset_t va) {
|
|
register_t msr;
|
|
register_t scratch;
|
|
|
|
uint64_t vpn;
|
|
register_t vpn_hi, vpn_lo;
|
|
|
|
#if 1
|
|
/*
|
|
* CPU documentation says that tlbie takes the VPN, not the
|
|
* VA. I think the code below does this correctly. We will see.
|
|
*/
|
|
|
|
vpn = (uint64_t)(va & ADDR_PIDX);
|
|
if (pmap != NULL)
|
|
vpn |= (va_to_vsid(pmap,va) << 28);
|
|
#else
|
|
vpn = va;
|
|
#endif
|
|
|
|
vpn_hi = (uint32_t)(vpn >> 32);
|
|
vpn_lo = (uint32_t)vpn;
|
|
|
|
__asm __volatile("\
|
|
mfmsr %0; \
|
|
clrldi %1,%0,49; \
|
|
insrdi %1,1,1,0; \
|
|
mtmsrd %1; \
|
|
ptesync; \
|
|
\
|
|
sld %1,%2,%4; \
|
|
or %1,%1,%3; \
|
|
tlbie %1; \
|
|
\
|
|
mtmsrd %0; \
|
|
eieio; \
|
|
tlbsync; \
|
|
ptesync;"
|
|
: "=r"(msr), "=r"(scratch) : "r"(vpn_hi), "r"(vpn_lo), "r"(32));
|
|
}
|
|
|
|
#define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR); isync()
|
|
#define ENABLE_TRANS(msr) mtmsr(msr); isync()
|
|
|
|
#define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4))
|
|
#define VSID_TO_SR(vsid) ((vsid) & 0xf)
|
|
#define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff)
|
|
|
|
#define PVO_PTEGIDX_MASK 0x007 /* which PTEG slot */
|
|
#define PVO_PTEGIDX_VALID 0x008 /* slot is valid */
|
|
#define PVO_WIRED 0x010 /* PVO entry is wired */
|
|
#define PVO_MANAGED 0x020 /* PVO entry is managed */
|
|
#define PVO_BOOTSTRAP 0x080 /* PVO entry allocated during
|
|
bootstrap */
|
|
#define PVO_FAKE 0x100 /* fictitious phys page */
|
|
#define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
|
|
#define PVO_ISFAKE(pvo) ((pvo)->pvo_vaddr & PVO_FAKE)
|
|
#define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
|
|
#define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
|
|
#define PVO_PTEGIDX_CLR(pvo) \
|
|
((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
|
|
#define PVO_PTEGIDX_SET(pvo, i) \
|
|
((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
|
|
|
|
#define MOEA_PVO_CHECK(pvo)
|
|
|
|
#define LOCK_TABLE() mtx_lock(&moea64_table_mutex)
|
|
#define UNLOCK_TABLE() mtx_unlock(&moea64_table_mutex);
|
|
#define ASSERT_TABLE_LOCK() mtx_assert(&moea64_table_mutex, MA_OWNED)
|
|
|
|
struct ofw_map {
|
|
vm_offset_t om_va;
|
|
vm_size_t om_len;
|
|
vm_offset_t om_pa_hi;
|
|
vm_offset_t om_pa_lo;
|
|
u_int om_mode;
|
|
};
|
|
|
|
/*
|
|
* Map of physical memory regions.
|
|
*/
|
|
static struct mem_region *regions;
|
|
static struct mem_region *pregions;
|
|
extern u_int phys_avail_count;
|
|
extern int regions_sz, pregions_sz;
|
|
extern int ofw_real_mode;
|
|
static struct ofw_map translations[64];
|
|
|
|
extern struct pmap ofw_pmap;
|
|
|
|
extern void bs_remap_earlyboot(void);
|
|
|
|
|
|
/*
|
|
* Lock for the pteg and pvo tables.
|
|
*/
|
|
struct mtx moea64_table_mutex;
|
|
|
|
/*
|
|
* PTEG data.
|
|
*/
|
|
static struct lpteg *moea64_pteg_table;
|
|
u_int moea64_pteg_count;
|
|
u_int moea64_pteg_mask;
|
|
|
|
/*
|
|
* PVO data.
|
|
*/
|
|
struct pvo_head *moea64_pvo_table; /* pvo entries by pteg index */
|
|
/* lists of unmanaged pages */
|
|
struct pvo_head moea64_pvo_kunmanaged =
|
|
LIST_HEAD_INITIALIZER(moea64_pvo_kunmanaged);
|
|
struct pvo_head moea64_pvo_unmanaged =
|
|
LIST_HEAD_INITIALIZER(moea64_pvo_unmanaged);
|
|
|
|
uma_zone_t moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
|
|
uma_zone_t moea64_mpvo_zone; /* zone for pvo entries for managed pages */
|
|
|
|
vm_offset_t pvo_allocator_start;
|
|
vm_offset_t pvo_allocator_end;
|
|
|
|
#define BPVO_POOL_SIZE 327680
|
|
static struct pvo_entry *moea64_bpvo_pool;
|
|
static int moea64_bpvo_pool_index = 0;
|
|
|
|
#define VSID_NBPW (sizeof(u_int32_t) * 8)
|
|
static u_int moea64_vsid_bitmap[NPMAPS / VSID_NBPW];
|
|
|
|
static boolean_t moea64_initialized = FALSE;
|
|
|
|
/*
|
|
* Statistics.
|
|
*/
|
|
u_int moea64_pte_valid = 0;
|
|
u_int moea64_pte_overflow = 0;
|
|
u_int moea64_pvo_entries = 0;
|
|
u_int moea64_pvo_enter_calls = 0;
|
|
u_int moea64_pvo_remove_calls = 0;
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
|
|
&moea64_pte_valid, 0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
|
|
&moea64_pte_overflow, 0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
|
|
&moea64_pvo_entries, 0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
|
|
&moea64_pvo_enter_calls, 0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
|
|
&moea64_pvo_remove_calls, 0, "");
|
|
|
|
vm_offset_t moea64_scratchpage_va[2];
|
|
struct pvo_entry *moea64_scratchpage_pvo[2];
|
|
struct lpte *moea64_scratchpage_pte[2];
|
|
struct mtx moea64_scratchpage_mtx;
|
|
|
|
/*
|
|
* Allocate physical memory for use in moea64_bootstrap.
|
|
*/
|
|
static vm_offset_t moea64_bootstrap_alloc(vm_size_t, u_int);
|
|
|
|
/*
|
|
* PTE calls.
|
|
*/
|
|
static int moea64_pte_insert(u_int, struct lpte *);
|
|
|
|
/*
|
|
* PVO calls.
|
|
*/
|
|
static int moea64_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
|
|
vm_offset_t, vm_offset_t, uint64_t, int, int);
|
|
static void moea64_pvo_remove(struct pvo_entry *, int);
|
|
static struct pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t, int *);
|
|
static struct lpte *moea64_pvo_to_pte(const struct pvo_entry *, int);
|
|
|
|
/*
|
|
* Utility routines.
|
|
*/
|
|
static void moea64_bridge_bootstrap(mmu_t mmup,
|
|
vm_offset_t kernelstart, vm_offset_t kernelend);
|
|
static void moea64_bridge_cpu_bootstrap(mmu_t, int ap);
|
|
static void moea64_enter_locked(pmap_t, vm_offset_t, vm_page_t,
|
|
vm_prot_t, boolean_t);
|
|
static boolean_t moea64_query_bit(vm_page_t, u_int64_t);
|
|
static u_int moea64_clear_bit(vm_page_t, u_int64_t, u_int64_t *);
|
|
static void moea64_kremove(mmu_t, vm_offset_t);
|
|
static void moea64_syncicache(pmap_t pmap, vm_offset_t va,
|
|
vm_offset_t pa);
|
|
static void tlbia(void);
|
|
|
|
/*
|
|
* Kernel MMU interface
|
|
*/
|
|
void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
|
|
void moea64_clear_modify(mmu_t, vm_page_t);
|
|
void moea64_clear_reference(mmu_t, vm_page_t);
|
|
void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
|
|
void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
|
|
void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
|
|
vm_prot_t);
|
|
void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
|
|
vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
|
|
vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
|
|
void moea64_init(mmu_t);
|
|
boolean_t moea64_is_modified(mmu_t, vm_page_t);
|
|
boolean_t moea64_ts_referenced(mmu_t, vm_page_t);
|
|
vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
|
|
boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
|
|
int moea64_page_wired_mappings(mmu_t, vm_page_t);
|
|
void moea64_pinit(mmu_t, pmap_t);
|
|
void moea64_pinit0(mmu_t, pmap_t);
|
|
void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
|
|
void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
|
|
void moea64_qremove(mmu_t, vm_offset_t, int);
|
|
void moea64_release(mmu_t, pmap_t);
|
|
void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
|
|
void moea64_remove_all(mmu_t, vm_page_t);
|
|
void moea64_remove_write(mmu_t, vm_page_t);
|
|
void moea64_zero_page(mmu_t, vm_page_t);
|
|
void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
|
|
void moea64_zero_page_idle(mmu_t, vm_page_t);
|
|
void moea64_activate(mmu_t, struct thread *);
|
|
void moea64_deactivate(mmu_t, struct thread *);
|
|
void *moea64_mapdev(mmu_t, vm_offset_t, vm_size_t);
|
|
void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
|
|
vm_offset_t moea64_kextract(mmu_t, vm_offset_t);
|
|
void moea64_kenter(mmu_t, vm_offset_t, vm_offset_t);
|
|
boolean_t moea64_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
|
|
boolean_t moea64_page_executable(mmu_t, vm_page_t);
|
|
|
|
static mmu_method_t moea64_bridge_methods[] = {
|
|
MMUMETHOD(mmu_change_wiring, moea64_change_wiring),
|
|
MMUMETHOD(mmu_clear_modify, moea64_clear_modify),
|
|
MMUMETHOD(mmu_clear_reference, moea64_clear_reference),
|
|
MMUMETHOD(mmu_copy_page, moea64_copy_page),
|
|
MMUMETHOD(mmu_enter, moea64_enter),
|
|
MMUMETHOD(mmu_enter_object, moea64_enter_object),
|
|
MMUMETHOD(mmu_enter_quick, moea64_enter_quick),
|
|
MMUMETHOD(mmu_extract, moea64_extract),
|
|
MMUMETHOD(mmu_extract_and_hold, moea64_extract_and_hold),
|
|
MMUMETHOD(mmu_init, moea64_init),
|
|
MMUMETHOD(mmu_is_modified, moea64_is_modified),
|
|
MMUMETHOD(mmu_ts_referenced, moea64_ts_referenced),
|
|
MMUMETHOD(mmu_map, moea64_map),
|
|
MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
|
|
MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
|
|
MMUMETHOD(mmu_pinit, moea64_pinit),
|
|
MMUMETHOD(mmu_pinit0, moea64_pinit0),
|
|
MMUMETHOD(mmu_protect, moea64_protect),
|
|
MMUMETHOD(mmu_qenter, moea64_qenter),
|
|
MMUMETHOD(mmu_qremove, moea64_qremove),
|
|
MMUMETHOD(mmu_release, moea64_release),
|
|
MMUMETHOD(mmu_remove, moea64_remove),
|
|
MMUMETHOD(mmu_remove_all, moea64_remove_all),
|
|
MMUMETHOD(mmu_remove_write, moea64_remove_write),
|
|
MMUMETHOD(mmu_zero_page, moea64_zero_page),
|
|
MMUMETHOD(mmu_zero_page_area, moea64_zero_page_area),
|
|
MMUMETHOD(mmu_zero_page_idle, moea64_zero_page_idle),
|
|
MMUMETHOD(mmu_activate, moea64_activate),
|
|
MMUMETHOD(mmu_deactivate, moea64_deactivate),
|
|
|
|
/* Internal interfaces */
|
|
MMUMETHOD(mmu_bootstrap, moea64_bridge_bootstrap),
|
|
MMUMETHOD(mmu_cpu_bootstrap, moea64_bridge_cpu_bootstrap),
|
|
MMUMETHOD(mmu_mapdev, moea64_mapdev),
|
|
MMUMETHOD(mmu_unmapdev, moea64_unmapdev),
|
|
MMUMETHOD(mmu_kextract, moea64_kextract),
|
|
MMUMETHOD(mmu_kenter, moea64_kenter),
|
|
MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
|
|
MMUMETHOD(mmu_page_executable, moea64_page_executable),
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static mmu_def_t oea64_bridge_mmu = {
|
|
MMU_TYPE_G5,
|
|
moea64_bridge_methods,
|
|
0
|
|
};
|
|
MMU_DEF(oea64_bridge_mmu);
|
|
|
|
static __inline u_int
|
|
va_to_pteg(uint64_t vsid, vm_offset_t addr)
|
|
{
|
|
u_int hash;
|
|
|
|
hash = vsid ^ (((uint64_t)addr & ADDR_PIDX) >>
|
|
ADDR_PIDX_SHFT);
|
|
return (hash & moea64_pteg_mask);
|
|
}
|
|
|
|
static __inline struct pvo_head *
|
|
pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
|
|
{
|
|
struct vm_page *pg;
|
|
|
|
pg = PHYS_TO_VM_PAGE(pa);
|
|
|
|
if (pg_p != NULL)
|
|
*pg_p = pg;
|
|
|
|
if (pg == NULL)
|
|
return (&moea64_pvo_unmanaged);
|
|
|
|
return (&pg->md.mdpg_pvoh);
|
|
}
|
|
|
|
static __inline struct pvo_head *
|
|
vm_page_to_pvoh(vm_page_t m)
|
|
{
|
|
|
|
return (&m->md.mdpg_pvoh);
|
|
}
|
|
|
|
static __inline void
|
|
moea64_attr_clear(vm_page_t m, u_int64_t ptebit)
|
|
{
|
|
|
|
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
|
|
m->md.mdpg_attrs &= ~ptebit;
|
|
}
|
|
|
|
static __inline u_int64_t
|
|
moea64_attr_fetch(vm_page_t m)
|
|
{
|
|
|
|
return (m->md.mdpg_attrs);
|
|
}
|
|
|
|
static __inline void
|
|
moea64_attr_save(vm_page_t m, u_int64_t ptebit)
|
|
{
|
|
|
|
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
|
|
m->md.mdpg_attrs |= ptebit;
|
|
}
|
|
|
|
static __inline int
|
|
moea64_pte_compare(const struct lpte *pt, const struct lpte *pvo_pt)
|
|
{
|
|
if (pt->pte_hi == pvo_pt->pte_hi)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static __inline int
|
|
moea64_pte_match(struct lpte *pt, uint64_t vsid, vm_offset_t va, int which)
|
|
{
|
|
return (pt->pte_hi & ~LPTE_VALID) ==
|
|
((vsid << LPTE_VSID_SHIFT) |
|
|
((uint64_t)(va >> ADDR_API_SHFT64) & LPTE_API) | which);
|
|
}
|
|
|
|
static __inline void
|
|
moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
|
|
uint64_t pte_lo)
|
|
{
|
|
ASSERT_TABLE_LOCK();
|
|
|
|
/*
|
|
* Construct a PTE. Default to IMB initially. Valid bit only gets
|
|
* set when the real pte is set in memory.
|
|
*
|
|
* Note: Don't set the valid bit for correct operation of tlb update.
|
|
*/
|
|
pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
|
|
(((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
|
|
|
|
pt->pte_lo = pte_lo;
|
|
}
|
|
|
|
static __inline void
|
|
moea64_pte_synch(struct lpte *pt, struct lpte *pvo_pt)
|
|
{
|
|
|
|
ASSERT_TABLE_LOCK();
|
|
|
|
pvo_pt->pte_lo |= pt->pte_lo & (LPTE_REF | LPTE_CHG);
|
|
}
|
|
|
|
static __inline void
|
|
moea64_pte_clear(struct lpte *pt, pmap_t pmap, vm_offset_t va, u_int64_t ptebit)
|
|
{
|
|
ASSERT_TABLE_LOCK();
|
|
|
|
/*
|
|
* As shown in Section 7.6.3.2.3
|
|
*/
|
|
pt->pte_lo &= ~ptebit;
|
|
TLBIE(pmap,va);
|
|
}
|
|
|
|
static __inline void
|
|
moea64_pte_set(struct lpte *pt, struct lpte *pvo_pt)
|
|
{
|
|
|
|
ASSERT_TABLE_LOCK();
|
|
pvo_pt->pte_hi |= LPTE_VALID;
|
|
|
|
/*
|
|
* Update the PTE as defined in section 7.6.3.1.
|
|
* Note that the REF/CHG bits are from pvo_pt and thus should have
|
|
* been saved so this routine can restore them (if desired).
|
|
*/
|
|
pt->pte_lo = pvo_pt->pte_lo;
|
|
EIEIO();
|
|
pt->pte_hi = pvo_pt->pte_hi;
|
|
SYNC();
|
|
moea64_pte_valid++;
|
|
}
|
|
|
|
static __inline void
|
|
moea64_pte_unset(struct lpte *pt, struct lpte *pvo_pt, pmap_t pmap, vm_offset_t va)
|
|
{
|
|
ASSERT_TABLE_LOCK();
|
|
pvo_pt->pte_hi &= ~LPTE_VALID;
|
|
|
|
/*
|
|
* Force the reg & chg bits back into the PTEs.
|
|
*/
|
|
SYNC();
|
|
|
|
/*
|
|
* Invalidate the pte.
|
|
*/
|
|
pt->pte_hi &= ~LPTE_VALID;
|
|
|
|
TLBIE(pmap,va);
|
|
|
|
/*
|
|
* Save the reg & chg bits.
|
|
*/
|
|
moea64_pte_synch(pt, pvo_pt);
|
|
moea64_pte_valid--;
|
|
}
|
|
|
|
static __inline void
|
|
moea64_pte_change(struct lpte *pt, struct lpte *pvo_pt, pmap_t pmap, vm_offset_t va)
|
|
{
|
|
|
|
/*
|
|
* Invalidate the PTE
|
|
*/
|
|
moea64_pte_unset(pt, pvo_pt, pmap, va);
|
|
moea64_pte_set(pt, pvo_pt);
|
|
}
|
|
|
|
static __inline uint64_t
|
|
moea64_calc_wimg(vm_offset_t pa)
|
|
{
|
|
uint64_t pte_lo;
|
|
int i;
|
|
|
|
/*
|
|
* Assume the page is cache inhibited and access is guarded unless
|
|
* it's in our available memory array.
|
|
*/
|
|
pte_lo = LPTE_I | LPTE_G;
|
|
for (i = 0; i < pregions_sz; i++) {
|
|
if ((pa >= pregions[i].mr_start) &&
|
|
(pa < (pregions[i].mr_start + pregions[i].mr_size))) {
|
|
pte_lo &= ~(LPTE_I | LPTE_G);
|
|
pte_lo |= LPTE_M;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return pte_lo;
|
|
}
|
|
|
|
/*
|
|
* Quick sort callout for comparing memory regions.
|
|
*/
|
|
static int mr_cmp(const void *a, const void *b);
|
|
static int om_cmp(const void *a, const void *b);
|
|
|
|
static int
|
|
mr_cmp(const void *a, const void *b)
|
|
{
|
|
const struct mem_region *regiona;
|
|
const struct mem_region *regionb;
|
|
|
|
regiona = a;
|
|
regionb = b;
|
|
if (regiona->mr_start < regionb->mr_start)
|
|
return (-1);
|
|
else if (regiona->mr_start > regionb->mr_start)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
om_cmp(const void *a, const void *b)
|
|
{
|
|
const struct ofw_map *mapa;
|
|
const struct ofw_map *mapb;
|
|
|
|
mapa = a;
|
|
mapb = b;
|
|
if (mapa->om_pa_hi < mapb->om_pa_hi)
|
|
return (-1);
|
|
else if (mapa->om_pa_hi > mapb->om_pa_hi)
|
|
return (1);
|
|
else if (mapa->om_pa_lo < mapb->om_pa_lo)
|
|
return (-1);
|
|
else if (mapa->om_pa_lo > mapb->om_pa_lo)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
moea64_bridge_cpu_bootstrap(mmu_t mmup, int ap)
|
|
{
|
|
int i = 0;
|
|
|
|
/*
|
|
* Initialize segment registers and MMU
|
|
*/
|
|
|
|
mtmsr(mfmsr() & ~PSL_DR & ~PSL_IR); isync();
|
|
for (i = 0; i < 16; i++) {
|
|
mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
|
|
}
|
|
__asm __volatile ("sync; mtsdr1 %0; isync"
|
|
:: "r"((u_int)moea64_pteg_table
|
|
| (32 - cntlzw(moea64_pteg_mask >> 11))));
|
|
tlbia();
|
|
}
|
|
|
|
static void
|
|
moea64_bridge_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
|
|
{
|
|
ihandle_t mmui;
|
|
phandle_t chosen;
|
|
phandle_t mmu;
|
|
int sz;
|
|
int i, j;
|
|
int ofw_mappings;
|
|
vm_size_t size, physsz, hwphyssz;
|
|
vm_offset_t pa, va, off;
|
|
uint32_t msr;
|
|
|
|
/* We don't have a direct map since there is no BAT */
|
|
hw_direct_map = 0;
|
|
|
|
/* Make sure battable is zero, since we have no BAT */
|
|
for (i = 0; i < 16; i++) {
|
|
battable[i].batu = 0;
|
|
battable[i].batl = 0;
|
|
}
|
|
|
|
/* Get physical memory regions from firmware */
|
|
mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz);
|
|
CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
|
|
|
|
qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
|
|
if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
|
|
panic("moea64_bootstrap: phys_avail too small");
|
|
qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
|
|
phys_avail_count = 0;
|
|
physsz = 0;
|
|
hwphyssz = 0;
|
|
TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
|
|
for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
|
|
CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
|
|
regions[i].mr_start + regions[i].mr_size,
|
|
regions[i].mr_size);
|
|
if (hwphyssz != 0 &&
|
|
(physsz + regions[i].mr_size) >= hwphyssz) {
|
|
if (physsz < hwphyssz) {
|
|
phys_avail[j] = regions[i].mr_start;
|
|
phys_avail[j + 1] = regions[i].mr_start +
|
|
hwphyssz - physsz;
|
|
physsz = hwphyssz;
|
|
phys_avail_count++;
|
|
}
|
|
break;
|
|
}
|
|
phys_avail[j] = regions[i].mr_start;
|
|
phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
|
|
phys_avail_count++;
|
|
physsz += regions[i].mr_size;
|
|
}
|
|
physmem = btoc(physsz);
|
|
|
|
/*
|
|
* Allocate PTEG table.
|
|
*/
|
|
#ifdef PTEGCOUNT
|
|
moea64_pteg_count = PTEGCOUNT;
|
|
#else
|
|
moea64_pteg_count = 0x1000;
|
|
|
|
while (moea64_pteg_count < physmem)
|
|
moea64_pteg_count <<= 1;
|
|
|
|
moea64_pteg_count >>= 1;
|
|
#endif /* PTEGCOUNT */
|
|
|
|
size = moea64_pteg_count * sizeof(struct lpteg);
|
|
CTR2(KTR_PMAP, "moea64_bootstrap: %d PTEGs, %d bytes",
|
|
moea64_pteg_count, size);
|
|
|
|
/*
|
|
* We now need to allocate memory. This memory, to be allocated,
|
|
* has to reside in a page table. The page table we are about to
|
|
* allocate. We don't have BAT. So drop to data real mode for a minute
|
|
* as a measure of last resort. We do this a couple times.
|
|
*/
|
|
|
|
moea64_pteg_table = (struct lpteg *)moea64_bootstrap_alloc(size, size);
|
|
DISABLE_TRANS(msr);
|
|
bzero((void *)moea64_pteg_table, moea64_pteg_count * sizeof(struct lpteg));
|
|
ENABLE_TRANS(msr);
|
|
|
|
moea64_pteg_mask = moea64_pteg_count - 1;
|
|
|
|
CTR1(KTR_PMAP, "moea64_bootstrap: PTEG table at %p", moea64_pteg_table);
|
|
|
|
/*
|
|
* Allocate pv/overflow lists.
|
|
*/
|
|
size = sizeof(struct pvo_head) * moea64_pteg_count;
|
|
|
|
moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
|
|
PAGE_SIZE);
|
|
CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
|
|
|
|
DISABLE_TRANS(msr);
|
|
for (i = 0; i < moea64_pteg_count; i++)
|
|
LIST_INIT(&moea64_pvo_table[i]);
|
|
ENABLE_TRANS(msr);
|
|
|
|
/*
|
|
* Initialize the lock that synchronizes access to the pteg and pvo
|
|
* tables.
|
|
*/
|
|
mtx_init(&moea64_table_mutex, "pmap table", NULL, MTX_DEF |
|
|
MTX_RECURSE);
|
|
|
|
/*
|
|
* Initialise the unmanaged pvo pool.
|
|
*/
|
|
moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
|
|
BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
|
|
moea64_bpvo_pool_index = 0;
|
|
|
|
/*
|
|
* Make sure kernel vsid is allocated as well as VSID 0.
|
|
*/
|
|
moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
|
|
|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
|
|
moea64_vsid_bitmap[0] |= 1;
|
|
|
|
/*
|
|
* Initialize the kernel pmap (which is statically allocated).
|
|
*/
|
|
for (i = 0; i < 16; i++)
|
|
kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
|
|
|
|
kernel_pmap->pmap_phys = kernel_pmap;
|
|
kernel_pmap->pm_active = ~0;
|
|
|
|
PMAP_LOCK_INIT(kernel_pmap);
|
|
|
|
/*
|
|
* Now map in all the other buffers we allocated earlier
|
|
*/
|
|
|
|
DISABLE_TRANS(msr);
|
|
size = moea64_pteg_count * sizeof(struct lpteg);
|
|
off = (vm_offset_t)(moea64_pteg_table);
|
|
for (pa = off; pa < off + size; pa += PAGE_SIZE)
|
|
moea64_kenter(mmup, pa, pa);
|
|
size = sizeof(struct pvo_head) * moea64_pteg_count;
|
|
off = (vm_offset_t)(moea64_pvo_table);
|
|
for (pa = off; pa < off + size; pa += PAGE_SIZE)
|
|
moea64_kenter(mmup, pa, pa);
|
|
size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
|
|
off = (vm_offset_t)(moea64_bpvo_pool);
|
|
for (pa = off; pa < off + size; pa += PAGE_SIZE)
|
|
moea64_kenter(mmup, pa, pa);
|
|
ENABLE_TRANS(msr);
|
|
|
|
/*
|
|
* Map certain important things, like ourselves and the exception
|
|
* vectors
|
|
*/
|
|
|
|
DISABLE_TRANS(msr);
|
|
for (pa = kernelstart & ~PAGE_MASK; pa < kernelend; pa += PAGE_SIZE)
|
|
moea64_kenter(mmup, pa, pa);
|
|
for (pa = EXC_RSVD; pa < EXC_LAST; pa += PAGE_SIZE)
|
|
moea64_kenter(mmup, pa, pa);
|
|
ENABLE_TRANS(msr);
|
|
|
|
if (!ofw_real_mode) {
|
|
/*
|
|
* Set up the Open Firmware pmap and add its mappings.
|
|
*/
|
|
|
|
moea64_pinit(mmup, &ofw_pmap);
|
|
ofw_pmap.pm_sr[KERNEL_SR] = kernel_pmap->pm_sr[KERNEL_SR];
|
|
ofw_pmap.pm_sr[KERNEL2_SR] = kernel_pmap->pm_sr[KERNEL2_SR];
|
|
|
|
if ((chosen = OF_finddevice("/chosen")) == -1)
|
|
panic("moea64_bootstrap: can't find /chosen");
|
|
OF_getprop(chosen, "mmu", &mmui, 4);
|
|
if ((mmu = OF_instance_to_package(mmui)) == -1)
|
|
panic("moea64_bootstrap: can't get mmu package");
|
|
if ((sz = OF_getproplen(mmu, "translations")) == -1)
|
|
panic("moea64_bootstrap: can't get ofw translation count");
|
|
|
|
bzero(translations, sz);
|
|
if (OF_getprop(mmu, "translations", translations, sz) == -1)
|
|
panic("moea64_bootstrap: can't get ofw translations");
|
|
|
|
CTR0(KTR_PMAP, "moea64_bootstrap: translations");
|
|
sz /= sizeof(*translations);
|
|
qsort(translations, sz, sizeof (*translations), om_cmp);
|
|
|
|
for (i = 0, ofw_mappings = 0; i < sz; i++) {
|
|
CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
|
|
(uint32_t)(translations[i].om_pa_lo), translations[i].om_va,
|
|
translations[i].om_len);
|
|
|
|
if (translations[i].om_pa_lo % PAGE_SIZE)
|
|
panic("OFW translation not page-aligned!");
|
|
|
|
if (translations[i].om_pa_hi)
|
|
panic("OFW translations above 32-bit boundary!");
|
|
|
|
/* Now enter the pages for this mapping */
|
|
|
|
/*
|
|
* Lock the ofw pmap. pmap_kenter(), which we use for the
|
|
* pages the kernel also needs, does its own locking.
|
|
*/
|
|
PMAP_LOCK(&ofw_pmap);
|
|
DISABLE_TRANS(msr);
|
|
for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
|
|
struct vm_page m;
|
|
|
|
/* Map low memory mappings into the kernel pmap, too.
|
|
* These are typically mappings made by the loader,
|
|
* so we need them if we want to keep executing. */
|
|
|
|
if (translations[i].om_va + off < SEGMENT_LENGTH)
|
|
moea64_kenter(mmup, translations[i].om_va + off,
|
|
translations[i].om_va + off);
|
|
|
|
m.phys_addr = translations[i].om_pa_lo + off;
|
|
moea64_enter_locked(&ofw_pmap,
|
|
translations[i].om_va + off, &m, VM_PROT_ALL, 1);
|
|
|
|
ofw_mappings++;
|
|
}
|
|
ENABLE_TRANS(msr);
|
|
PMAP_UNLOCK(&ofw_pmap);
|
|
}
|
|
}
|
|
|
|
#ifdef SMP
|
|
TLBSYNC();
|
|
#endif
|
|
|
|
/*
|
|
* Calculate the last available physical address.
|
|
*/
|
|
for (i = 0; phys_avail[i + 2] != 0; i += 2)
|
|
;
|
|
Maxmem = powerpc_btop(phys_avail[i + 1]);
|
|
|
|
/*
|
|
* Initialize MMU and remap early physical mappings
|
|
*/
|
|
moea64_bridge_cpu_bootstrap(mmup,0);
|
|
mtmsr(mfmsr() | PSL_DR | PSL_IR); isync();
|
|
pmap_bootstrapped++;
|
|
bs_remap_earlyboot();
|
|
|
|
/*
|
|
* Set the start and end of kva.
|
|
*/
|
|
virtual_avail = VM_MIN_KERNEL_ADDRESS;
|
|
virtual_end = VM_MAX_KERNEL_ADDRESS;
|
|
|
|
/*
|
|
* Allocate some stupid buffer regions.
|
|
*/
|
|
|
|
pvo_allocator_start = virtual_avail;
|
|
virtual_avail += SEGMENT_LENGTH/4;
|
|
pvo_allocator_end = virtual_avail;
|
|
|
|
/*
|
|
* Allocate some things for page zeroing
|
|
*/
|
|
|
|
mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL, MTX_DEF);
|
|
for (i = 0; i < 2; i++) {
|
|
moea64_scratchpage_va[i] = virtual_avail;
|
|
virtual_avail += PAGE_SIZE;
|
|
|
|
moea64_kenter(mmup,moea64_scratchpage_va[i],kernelstart);
|
|
|
|
LOCK_TABLE();
|
|
moea64_scratchpage_pvo[i] = moea64_pvo_find_va(kernel_pmap,
|
|
moea64_scratchpage_va[i],&j);
|
|
moea64_scratchpage_pte[i] = moea64_pvo_to_pte(
|
|
moea64_scratchpage_pvo[i],j);
|
|
UNLOCK_TABLE();
|
|
}
|
|
|
|
/*
|
|
* Allocate a kernel stack with a guard page for thread0 and map it
|
|
* into the kernel page map.
|
|
*/
|
|
pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
|
|
va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
|
|
virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
|
|
CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
|
|
thread0.td_kstack = va;
|
|
thread0.td_kstack_pages = KSTACK_PAGES;
|
|
for (i = 0; i < KSTACK_PAGES; i++) {
|
|
moea64_kenter(mmup, va, pa);;
|
|
pa += PAGE_SIZE;
|
|
va += PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Allocate virtual address space for the message buffer.
|
|
*/
|
|
pa = msgbuf_phys = moea64_bootstrap_alloc(MSGBUF_SIZE, PAGE_SIZE);
|
|
msgbufp = (struct msgbuf *)virtual_avail;
|
|
va = virtual_avail;
|
|
virtual_avail += round_page(MSGBUF_SIZE);
|
|
while (va < virtual_avail) {
|
|
moea64_kenter(mmup, va, pa);;
|
|
pa += PAGE_SIZE;
|
|
va += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Activate a user pmap. The pmap must be activated before it's address
|
|
* space can be accessed in any way.
|
|
*/
|
|
void
|
|
moea64_activate(mmu_t mmu, struct thread *td)
|
|
{
|
|
pmap_t pm, pmr;
|
|
|
|
/*
|
|
* Load all the data we need up front to encourage the compiler to
|
|
* not issue any loads while we have interrupts disabled below.
|
|
*/
|
|
pm = &td->td_proc->p_vmspace->vm_pmap;
|
|
pmr = pm->pmap_phys;
|
|
|
|
pm->pm_active |= PCPU_GET(cpumask);
|
|
PCPU_SET(curpmap, pmr);
|
|
}
|
|
|
|
void
|
|
moea64_deactivate(mmu_t mmu, struct thread *td)
|
|
{
|
|
pmap_t pm;
|
|
|
|
pm = &td->td_proc->p_vmspace->vm_pmap;
|
|
pm->pm_active &= ~(PCPU_GET(cpumask));
|
|
PCPU_SET(curpmap, NULL);
|
|
}
|
|
|
|
void
|
|
moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
|
|
PMAP_LOCK(pm);
|
|
pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
|
|
|
|
if (pvo != NULL) {
|
|
if (wired) {
|
|
if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
|
|
pm->pm_stats.wired_count++;
|
|
pvo->pvo_vaddr |= PVO_WIRED;
|
|
} else {
|
|
if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
|
|
pm->pm_stats.wired_count--;
|
|
pvo->pvo_vaddr &= ~PVO_WIRED;
|
|
}
|
|
}
|
|
PMAP_UNLOCK(pm);
|
|
}
|
|
|
|
/*
|
|
* Zero a page of physical memory by temporarily mapping it into the tlb.
|
|
*/
|
|
void
|
|
moea64_zero_page(mmu_t mmu, vm_page_t m)
|
|
{
|
|
moea64_zero_page_area(mmu,m,0,PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* This goes through and sets the physical address of our
|
|
* special scratch PTE to the PA we want to zero or copy. Because
|
|
* of locking issues (this can get called in pvo_enter() by
|
|
* the UMA allocator), we can't use most other utility functions here
|
|
*/
|
|
|
|
static __inline
|
|
void moea64_set_scratchpage_pa(int which, vm_offset_t pa) {
|
|
moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
|
|
(~LPTE_WIMG & ~LPTE_RPGN);
|
|
moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
|
|
moea64_calc_wimg(pa) | (uint64_t)pa;
|
|
|
|
moea64_scratchpage_pte[which]->pte_hi &= ~LPTE_VALID;
|
|
TLBIE(kernel_pmap, moea64_scratchpage_va[which]);
|
|
|
|
moea64_scratchpage_pte[which]->pte_lo =
|
|
moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo;
|
|
EIEIO();
|
|
|
|
moea64_scratchpage_pte[which]->pte_hi |= LPTE_VALID;
|
|
TLBIE(kernel_pmap, moea64_scratchpage_va[which]);
|
|
}
|
|
|
|
void
|
|
moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
|
|
{
|
|
vm_offset_t dst;
|
|
vm_offset_t src;
|
|
|
|
dst = VM_PAGE_TO_PHYS(mdst);
|
|
src = VM_PAGE_TO_PHYS(msrc);
|
|
|
|
mtx_lock(&moea64_scratchpage_mtx);
|
|
|
|
moea64_set_scratchpage_pa(0,src);
|
|
moea64_set_scratchpage_pa(1,dst);
|
|
|
|
kcopy((void *)moea64_scratchpage_va[0],
|
|
(void *)moea64_scratchpage_va[1], PAGE_SIZE);
|
|
|
|
__syncicache((void *)moea64_scratchpage_va[1],PAGE_SIZE);
|
|
|
|
mtx_unlock(&moea64_scratchpage_mtx);
|
|
}
|
|
|
|
void
|
|
moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
|
|
{
|
|
vm_offset_t pa = VM_PAGE_TO_PHYS(m);
|
|
|
|
if (!moea64_initialized)
|
|
panic("moea64_zero_page: can't zero pa %#x", pa);
|
|
if (size + off > PAGE_SIZE)
|
|
panic("moea64_zero_page: size + off > PAGE_SIZE");
|
|
|
|
mtx_lock(&moea64_scratchpage_mtx);
|
|
|
|
moea64_set_scratchpage_pa(0,pa);
|
|
bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
|
|
__syncicache((void *)moea64_scratchpage_va[0],PAGE_SIZE);
|
|
|
|
mtx_unlock(&moea64_scratchpage_mtx);
|
|
}
|
|
|
|
void
|
|
moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
|
|
{
|
|
|
|
moea64_zero_page(mmu, m);
|
|
}
|
|
|
|
/*
|
|
* Map the given physical page at the specified virtual address in the
|
|
* target pmap with the protection requested. If specified the page
|
|
* will be wired down.
|
|
*/
|
|
void
|
|
moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
|
|
vm_prot_t prot, boolean_t wired)
|
|
{
|
|
|
|
vm_page_lock_queues();
|
|
PMAP_LOCK(pmap);
|
|
moea64_enter_locked(pmap, va, m, prot, wired);
|
|
vm_page_unlock_queues();
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
|
|
/*
|
|
* Map the given physical page at the specified virtual address in the
|
|
* target pmap with the protection requested. If specified the page
|
|
* will be wired down.
|
|
*
|
|
* The page queues and pmap must be locked.
|
|
*/
|
|
|
|
static void
|
|
moea64_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
|
|
boolean_t wired)
|
|
{
|
|
struct pvo_head *pvo_head;
|
|
uma_zone_t zone;
|
|
vm_page_t pg;
|
|
uint64_t pte_lo;
|
|
u_int pvo_flags;
|
|
int error;
|
|
|
|
if (!moea64_initialized) {
|
|
pvo_head = &moea64_pvo_kunmanaged;
|
|
pg = NULL;
|
|
zone = moea64_upvo_zone;
|
|
pvo_flags = 0;
|
|
} else {
|
|
pvo_head = vm_page_to_pvoh(m);
|
|
pg = m;
|
|
zone = moea64_mpvo_zone;
|
|
pvo_flags = PVO_MANAGED;
|
|
}
|
|
|
|
if (pmap_bootstrapped)
|
|
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
|
|
/* XXX change the pvo head for fake pages */
|
|
if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS) {
|
|
pvo_flags &= ~PVO_MANAGED;
|
|
pvo_head = &moea64_pvo_kunmanaged;
|
|
zone = moea64_upvo_zone;
|
|
}
|
|
|
|
pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m));
|
|
|
|
if (prot & VM_PROT_WRITE) {
|
|
pte_lo |= LPTE_BW;
|
|
if (pmap_bootstrapped)
|
|
vm_page_flag_set(m, PG_WRITEABLE);
|
|
} else
|
|
pte_lo |= LPTE_BR;
|
|
|
|
if (prot & VM_PROT_EXECUTE)
|
|
pvo_flags |= VM_PROT_EXECUTE;
|
|
|
|
if (wired)
|
|
pvo_flags |= PVO_WIRED;
|
|
|
|
if ((m->flags & PG_FICTITIOUS) != 0)
|
|
pvo_flags |= PVO_FAKE;
|
|
|
|
error = moea64_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
|
|
pte_lo, pvo_flags, 0);
|
|
|
|
if (pmap == kernel_pmap)
|
|
TLBIE(pmap, va);
|
|
|
|
/*
|
|
* Flush the page from the instruction cache if this page is
|
|
* mapped executable and cacheable.
|
|
*/
|
|
if ((pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
|
|
moea64_syncicache(pmap, va, VM_PAGE_TO_PHYS(m));
|
|
}
|
|
}
|
|
|
|
static void
|
|
moea64_syncicache(pmap_t pmap, vm_offset_t va, vm_offset_t pa)
|
|
{
|
|
/*
|
|
* This is much trickier than on older systems because
|
|
* we can't sync the icache on physical addresses directly
|
|
* without a direct map. Instead we check a couple of cases
|
|
* where the memory is already mapped in and, failing that,
|
|
* use the same trick we use for page zeroing to create
|
|
* a temporary mapping for this physical address.
|
|
*/
|
|
|
|
if (!pmap_bootstrapped) {
|
|
/*
|
|
* If PMAP is not bootstrapped, we are likely to be
|
|
* in real mode.
|
|
*/
|
|
__syncicache((void *)pa,PAGE_SIZE);
|
|
} else if (pmap == kernel_pmap) {
|
|
__syncicache((void *)va,PAGE_SIZE);
|
|
} else {
|
|
/* Use the scratch page to set up a temp mapping */
|
|
|
|
mtx_lock(&moea64_scratchpage_mtx);
|
|
|
|
moea64_set_scratchpage_pa(1,pa);
|
|
__syncicache((void *)moea64_scratchpage_va[1],PAGE_SIZE);
|
|
|
|
mtx_unlock(&moea64_scratchpage_mtx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Maps a sequence of resident pages belonging to the same object.
|
|
* The sequence begins with the given page m_start. This page is
|
|
* mapped at the given virtual address start. Each subsequent page is
|
|
* mapped at a virtual address that is offset from start by the same
|
|
* amount as the page is offset from m_start within the object. The
|
|
* last page in the sequence is the page with the largest offset from
|
|
* m_start that can be mapped at a virtual address less than the given
|
|
* virtual address end. Not every virtual page between start and end
|
|
* is mapped; only those for which a resident page exists with the
|
|
* corresponding offset from m_start are mapped.
|
|
*/
|
|
void
|
|
moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
|
|
vm_page_t m_start, vm_prot_t prot)
|
|
{
|
|
vm_page_t m;
|
|
vm_pindex_t diff, psize;
|
|
|
|
psize = atop(end - start);
|
|
m = m_start;
|
|
PMAP_LOCK(pm);
|
|
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
|
|
moea64_enter_locked(pm, start + ptoa(diff), m, prot &
|
|
(VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
|
|
m = TAILQ_NEXT(m, listq);
|
|
}
|
|
PMAP_UNLOCK(pm);
|
|
}
|
|
|
|
void
|
|
moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
|
|
vm_prot_t prot)
|
|
{
|
|
PMAP_LOCK(pm);
|
|
moea64_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
|
|
FALSE);
|
|
PMAP_UNLOCK(pm);
|
|
|
|
}
|
|
|
|
vm_paddr_t
|
|
moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_paddr_t pa;
|
|
|
|
PMAP_LOCK(pm);
|
|
pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
|
|
if (pvo == NULL)
|
|
pa = 0;
|
|
else
|
|
pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va & ADDR_POFF);
|
|
PMAP_UNLOCK(pm);
|
|
return (pa);
|
|
}
|
|
|
|
/*
|
|
* Atomically extract and hold the physical page with the given
|
|
* pmap and virtual address pair if that mapping permits the given
|
|
* protection.
|
|
*/
|
|
vm_page_t
|
|
moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_page_t m;
|
|
|
|
m = NULL;
|
|
vm_page_lock_queues();
|
|
PMAP_LOCK(pmap);
|
|
pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
|
|
if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
|
|
((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
|
|
(prot & VM_PROT_WRITE) == 0)) {
|
|
m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
|
|
vm_page_hold(m);
|
|
}
|
|
vm_page_unlock_queues();
|
|
PMAP_UNLOCK(pmap);
|
|
return (m);
|
|
}
|
|
|
|
static void *
|
|
moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
|
|
{
|
|
/*
|
|
* This entire routine is a horrible hack to avoid bothering kmem
|
|
* for new KVA addresses. Because this can get called from inside
|
|
* kmem allocation routines, calling kmem for a new address here
|
|
* can lead to multiply locking non-recursive mutexes.
|
|
*/
|
|
static vm_pindex_t color;
|
|
vm_offset_t va;
|
|
|
|
vm_page_t m;
|
|
int pflags, needed_lock;
|
|
|
|
*flags = UMA_SLAB_PRIV;
|
|
needed_lock = !PMAP_LOCKED(kernel_pmap);
|
|
|
|
if (needed_lock)
|
|
PMAP_LOCK(kernel_pmap);
|
|
|
|
if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
|
|
pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
|
|
else
|
|
pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
|
|
if (wait & M_ZERO)
|
|
pflags |= VM_ALLOC_ZERO;
|
|
|
|
for (;;) {
|
|
m = vm_page_alloc(NULL, color++, pflags | VM_ALLOC_NOOBJ);
|
|
if (m == NULL) {
|
|
if (wait & M_NOWAIT)
|
|
return (NULL);
|
|
VM_WAIT;
|
|
} else
|
|
break;
|
|
}
|
|
|
|
va = pvo_allocator_start;
|
|
pvo_allocator_start += PAGE_SIZE;
|
|
|
|
if (pvo_allocator_start >= pvo_allocator_end)
|
|
panic("Ran out of PVO allocator buffer space!");
|
|
|
|
/* Now call pvo_enter in recursive mode */
|
|
moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
|
|
&moea64_pvo_kunmanaged, va, VM_PAGE_TO_PHYS(m), LPTE_M,
|
|
PVO_WIRED | PVO_BOOTSTRAP, 1);
|
|
|
|
TLBIE(kernel_pmap, va);
|
|
|
|
if (needed_lock)
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
|
|
if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
|
|
bzero((void *)va, PAGE_SIZE);
|
|
|
|
return (void *)va;
|
|
}
|
|
|
|
void
|
|
moea64_init(mmu_t mmu)
|
|
{
|
|
|
|
CTR0(KTR_PMAP, "moea64_init");
|
|
|
|
moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
|
|
UMA_ZONE_VM | UMA_ZONE_NOFREE);
|
|
moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
|
|
UMA_ZONE_VM | UMA_ZONE_NOFREE);
|
|
|
|
if (!hw_direct_map) {
|
|
uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
|
|
uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
|
|
}
|
|
|
|
moea64_initialized = TRUE;
|
|
}
|
|
|
|
boolean_t
|
|
moea64_is_modified(mmu_t mmu, vm_page_t m)
|
|
{
|
|
|
|
if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
|
|
return (FALSE);
|
|
|
|
return (moea64_query_bit(m, LPTE_CHG));
|
|
}
|
|
|
|
void
|
|
moea64_clear_reference(mmu_t mmu, vm_page_t m)
|
|
{
|
|
|
|
if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
|
|
return;
|
|
moea64_clear_bit(m, LPTE_REF, NULL);
|
|
}
|
|
|
|
void
|
|
moea64_clear_modify(mmu_t mmu, vm_page_t m)
|
|
{
|
|
|
|
if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
|
|
return;
|
|
moea64_clear_bit(m, LPTE_CHG, NULL);
|
|
}
|
|
|
|
/*
|
|
* Clear the write and modified bits in each of the given page's mappings.
|
|
*/
|
|
void
|
|
moea64_remove_write(mmu_t mmu, vm_page_t m)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
struct lpte *pt;
|
|
pmap_t pmap;
|
|
uint64_t lo;
|
|
|
|
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
|
|
if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
|
|
(m->flags & PG_WRITEABLE) == 0)
|
|
return;
|
|
lo = moea64_attr_fetch(m);
|
|
SYNC();
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
pmap = pvo->pvo_pmap;
|
|
PMAP_LOCK(pmap);
|
|
if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
|
|
LOCK_TABLE();
|
|
pt = moea64_pvo_to_pte(pvo, -1);
|
|
pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
|
|
pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
|
|
if (pt != NULL) {
|
|
moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
|
|
lo |= pvo->pvo_pte.lpte.pte_lo;
|
|
pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
|
|
moea64_pte_change(pt, &pvo->pvo_pte.lpte,
|
|
pvo->pvo_pmap, pvo->pvo_vaddr);
|
|
}
|
|
UNLOCK_TABLE();
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
if ((lo & LPTE_CHG) != 0) {
|
|
moea64_attr_clear(m, LPTE_CHG);
|
|
vm_page_dirty(m);
|
|
}
|
|
vm_page_flag_clear(m, PG_WRITEABLE);
|
|
}
|
|
|
|
/*
|
|
* moea64_ts_referenced:
|
|
*
|
|
* Return a count of reference bits for a page, clearing those bits.
|
|
* It is not necessary for every reference bit to be cleared, but it
|
|
* is necessary that 0 only be returned when there are truly no
|
|
* reference bits set.
|
|
*
|
|
* XXX: The exact number of bits to check and clear is a matter that
|
|
* should be tested and standardized at some point in the future for
|
|
* optimal aging of shared pages.
|
|
*/
|
|
boolean_t
|
|
moea64_ts_referenced(mmu_t mmu, vm_page_t m)
|
|
{
|
|
int count;
|
|
|
|
if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
|
|
return (0);
|
|
|
|
count = moea64_clear_bit(m, LPTE_REF, NULL);
|
|
|
|
return (count);
|
|
}
|
|
|
|
/*
|
|
* Map a wired page into kernel virtual address space.
|
|
*/
|
|
void
|
|
moea64_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
|
|
{
|
|
uint64_t pte_lo;
|
|
int error;
|
|
|
|
if (!pmap_bootstrapped) {
|
|
if (va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)
|
|
panic("Trying to enter an address in KVA -- %#x!\n",pa);
|
|
}
|
|
|
|
pte_lo = moea64_calc_wimg(pa);
|
|
|
|
PMAP_LOCK(kernel_pmap);
|
|
error = moea64_pvo_enter(kernel_pmap, moea64_upvo_zone,
|
|
&moea64_pvo_kunmanaged, va, pa, pte_lo,
|
|
PVO_WIRED | VM_PROT_EXECUTE, 0);
|
|
|
|
TLBIE(kernel_pmap, va);
|
|
|
|
if (error != 0 && error != ENOENT)
|
|
panic("moea64_kenter: failed to enter va %#x pa %#x: %d", va,
|
|
pa, error);
|
|
|
|
/*
|
|
* Flush the memory from the instruction cache.
|
|
*/
|
|
if ((pte_lo & (LPTE_I | LPTE_G)) == 0) {
|
|
__syncicache((void *)va, PAGE_SIZE);
|
|
}
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
}
|
|
|
|
/*
|
|
* Extract the physical page address associated with the given kernel virtual
|
|
* address.
|
|
*/
|
|
vm_offset_t
|
|
moea64_kextract(mmu_t mmu, vm_offset_t va)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_paddr_t pa;
|
|
|
|
PMAP_LOCK(kernel_pmap);
|
|
pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
|
|
KASSERT(pvo != NULL, ("moea64_kextract: no addr found"));
|
|
pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va & ADDR_POFF);
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
return (pa);
|
|
}
|
|
|
|
/*
|
|
* Remove a wired page from kernel virtual address space.
|
|
*/
|
|
void
|
|
moea64_kremove(mmu_t mmu, vm_offset_t va)
|
|
{
|
|
moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Map a range of physical addresses into kernel virtual address space.
|
|
*
|
|
* The value passed in *virt is a suggested virtual address for the mapping.
|
|
* Architectures which can support a direct-mapped physical to virtual region
|
|
* can return the appropriate address within that region, leaving '*virt'
|
|
* unchanged. We cannot and therefore do not; *virt is updated with the
|
|
* first usable address after the mapped region.
|
|
*/
|
|
vm_offset_t
|
|
moea64_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
|
|
vm_offset_t pa_end, int prot)
|
|
{
|
|
vm_offset_t sva, va;
|
|
|
|
sva = *virt;
|
|
va = sva;
|
|
for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
|
|
moea64_kenter(mmu, va, pa_start);
|
|
*virt = va;
|
|
|
|
return (sva);
|
|
}
|
|
|
|
/*
|
|
* Returns true if the pmap's pv is one of the first
|
|
* 16 pvs linked to from this page. This count may
|
|
* be changed upwards or downwards in the future; it
|
|
* is only necessary that true be returned for a small
|
|
* subset of pmaps for proper page aging.
|
|
*/
|
|
boolean_t
|
|
moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
|
|
{
|
|
int loops;
|
|
struct pvo_entry *pvo;
|
|
|
|
if (!moea64_initialized || (m->flags & PG_FICTITIOUS))
|
|
return FALSE;
|
|
|
|
loops = 0;
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
if (pvo->pvo_pmap == pmap)
|
|
return (TRUE);
|
|
if (++loops >= 16)
|
|
break;
|
|
}
|
|
|
|
return (FALSE);
|
|
}
|
|
|
|
/*
|
|
* Return the number of managed mappings to the given physical page
|
|
* that are wired.
|
|
*/
|
|
int
|
|
moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
int count;
|
|
|
|
count = 0;
|
|
if (!moea64_initialized || (m->flags & PG_FICTITIOUS) != 0)
|
|
return (count);
|
|
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
|
|
if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
|
|
count++;
|
|
return (count);
|
|
}
|
|
|
|
static u_int moea64_vsidcontext;
|
|
|
|
void
|
|
moea64_pinit(mmu_t mmu, pmap_t pmap)
|
|
{
|
|
int i, mask;
|
|
u_int entropy;
|
|
|
|
PMAP_LOCK_INIT(pmap);
|
|
|
|
entropy = 0;
|
|
__asm __volatile("mftb %0" : "=r"(entropy));
|
|
|
|
if (pmap_bootstrapped)
|
|
pmap->pmap_phys = (pmap_t)moea64_kextract(mmu, (vm_offset_t)pmap);
|
|
else
|
|
pmap->pmap_phys = pmap;
|
|
|
|
/*
|
|
* Allocate some segment registers for this pmap.
|
|
*/
|
|
for (i = 0; i < NPMAPS; i += VSID_NBPW) {
|
|
u_int hash, n;
|
|
|
|
/*
|
|
* Create a new value by mutiplying by a prime and adding in
|
|
* entropy from the timebase register. This is to make the
|
|
* VSID more random so that the PT hash function collides
|
|
* less often. (Note that the prime casues gcc to do shifts
|
|
* instead of a multiply.)
|
|
*/
|
|
moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
|
|
hash = moea64_vsidcontext & (NPMAPS - 1);
|
|
if (hash == 0) /* 0 is special, avoid it */
|
|
continue;
|
|
n = hash >> 5;
|
|
mask = 1 << (hash & (VSID_NBPW - 1));
|
|
hash = (moea64_vsidcontext & 0xfffff);
|
|
if (moea64_vsid_bitmap[n] & mask) { /* collision? */
|
|
/* anything free in this bucket? */
|
|
if (moea64_vsid_bitmap[n] == 0xffffffff) {
|
|
entropy = (moea64_vsidcontext >> 20);
|
|
continue;
|
|
}
|
|
i = ffs(~moea64_vsid_bitmap[i]) - 1;
|
|
mask = 1 << i;
|
|
hash &= 0xfffff & ~(VSID_NBPW - 1);
|
|
hash |= i;
|
|
}
|
|
moea64_vsid_bitmap[n] |= mask;
|
|
for (i = 0; i < 16; i++) {
|
|
pmap->pm_sr[i] = VSID_MAKE(i, hash);
|
|
}
|
|
return;
|
|
}
|
|
|
|
panic("moea64_pinit: out of segments");
|
|
}
|
|
|
|
/*
|
|
* Initialize the pmap associated with process 0.
|
|
*/
|
|
void
|
|
moea64_pinit0(mmu_t mmu, pmap_t pm)
|
|
{
|
|
moea64_pinit(mmu, pm);
|
|
bzero(&pm->pm_stats, sizeof(pm->pm_stats));
|
|
}
|
|
|
|
/*
|
|
* Set the physical protection on the specified range of this map as requested.
|
|
*/
|
|
void
|
|
moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
|
|
vm_prot_t prot)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
struct lpte *pt;
|
|
int pteidx;
|
|
|
|
CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
|
|
eva, prot);
|
|
|
|
|
|
KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
|
|
("moea64_protect: non current pmap"));
|
|
|
|
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
|
|
moea64_remove(mmu, pm, sva, eva);
|
|
return;
|
|
}
|
|
|
|
vm_page_lock_queues();
|
|
PMAP_LOCK(pm);
|
|
for (; sva < eva; sva += PAGE_SIZE) {
|
|
pvo = moea64_pvo_find_va(pm, sva, &pteidx);
|
|
if (pvo == NULL)
|
|
continue;
|
|
|
|
/*
|
|
* Grab the PTE pointer before we diddle with the cached PTE
|
|
* copy.
|
|
*/
|
|
LOCK_TABLE();
|
|
pt = moea64_pvo_to_pte(pvo, pteidx);
|
|
|
|
/*
|
|
* Change the protection of the page.
|
|
*/
|
|
pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
|
|
pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
|
|
pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
|
|
if ((prot & VM_PROT_EXECUTE) == 0)
|
|
pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
|
|
|
|
/*
|
|
* If the PVO is in the page table, update that pte as well.
|
|
*/
|
|
if (pt != NULL) {
|
|
moea64_pte_change(pt, &pvo->pvo_pte.lpte,
|
|
pvo->pvo_pmap, pvo->pvo_vaddr);
|
|
if ((pvo->pvo_pte.lpte.pte_lo &
|
|
(LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
|
|
moea64_syncicache(pm, sva,
|
|
pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
|
|
}
|
|
}
|
|
UNLOCK_TABLE();
|
|
}
|
|
vm_page_unlock_queues();
|
|
PMAP_UNLOCK(pm);
|
|
}
|
|
|
|
/*
|
|
* Map a list of wired pages into kernel virtual address space. This is
|
|
* intended for temporary mappings which do not need page modification or
|
|
* references recorded. Existing mappings in the region are overwritten.
|
|
*/
|
|
void
|
|
moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
|
|
{
|
|
while (count-- > 0) {
|
|
moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
|
|
va += PAGE_SIZE;
|
|
m++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove page mappings from kernel virtual address space. Intended for
|
|
* temporary mappings entered by moea64_qenter.
|
|
*/
|
|
void
|
|
moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
|
|
{
|
|
while (count-- > 0) {
|
|
moea64_kremove(mmu, va);
|
|
va += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
void
|
|
moea64_release(mmu_t mmu, pmap_t pmap)
|
|
{
|
|
int idx, mask;
|
|
|
|
/*
|
|
* Free segment register's VSID
|
|
*/
|
|
if (pmap->pm_sr[0] == 0)
|
|
panic("moea64_release");
|
|
|
|
idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
|
|
mask = 1 << (idx % VSID_NBPW);
|
|
idx /= VSID_NBPW;
|
|
moea64_vsid_bitmap[idx] &= ~mask;
|
|
PMAP_LOCK_DESTROY(pmap);
|
|
}
|
|
|
|
/*
|
|
* Remove the given range of addresses from the specified map.
|
|
*/
|
|
void
|
|
moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
int pteidx;
|
|
|
|
vm_page_lock_queues();
|
|
PMAP_LOCK(pm);
|
|
for (; sva < eva; sva += PAGE_SIZE) {
|
|
pvo = moea64_pvo_find_va(pm, sva, &pteidx);
|
|
if (pvo != NULL) {
|
|
moea64_pvo_remove(pvo, pteidx);
|
|
}
|
|
}
|
|
vm_page_unlock_queues();
|
|
PMAP_UNLOCK(pm);
|
|
}
|
|
|
|
/*
|
|
* Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
|
|
* will reflect changes in pte's back to the vm_page.
|
|
*/
|
|
void
|
|
moea64_remove_all(mmu_t mmu, vm_page_t m)
|
|
{
|
|
struct pvo_head *pvo_head;
|
|
struct pvo_entry *pvo, *next_pvo;
|
|
pmap_t pmap;
|
|
|
|
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
|
|
|
|
pvo_head = vm_page_to_pvoh(m);
|
|
for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
|
|
next_pvo = LIST_NEXT(pvo, pvo_vlink);
|
|
|
|
MOEA_PVO_CHECK(pvo); /* sanity check */
|
|
pmap = pvo->pvo_pmap;
|
|
PMAP_LOCK(pmap);
|
|
moea64_pvo_remove(pvo, -1);
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
vm_page_flag_clear(m, PG_WRITEABLE);
|
|
}
|
|
|
|
/*
|
|
* Allocate a physical page of memory directly from the phys_avail map.
|
|
* Can only be called from moea64_bootstrap before avail start and end are
|
|
* calculated.
|
|
*/
|
|
static vm_offset_t
|
|
moea64_bootstrap_alloc(vm_size_t size, u_int align)
|
|
{
|
|
vm_offset_t s, e;
|
|
int i, j;
|
|
|
|
size = round_page(size);
|
|
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
|
|
if (align != 0)
|
|
s = (phys_avail[i] + align - 1) & ~(align - 1);
|
|
else
|
|
s = phys_avail[i];
|
|
e = s + size;
|
|
|
|
if (s < phys_avail[i] || e > phys_avail[i + 1])
|
|
continue;
|
|
|
|
if (s == phys_avail[i]) {
|
|
phys_avail[i] += size;
|
|
} else if (e == phys_avail[i + 1]) {
|
|
phys_avail[i + 1] -= size;
|
|
} else {
|
|
for (j = phys_avail_count * 2; j > i; j -= 2) {
|
|
phys_avail[j] = phys_avail[j - 2];
|
|
phys_avail[j + 1] = phys_avail[j - 1];
|
|
}
|
|
|
|
phys_avail[i + 3] = phys_avail[i + 1];
|
|
phys_avail[i + 1] = s;
|
|
phys_avail[i + 2] = e;
|
|
phys_avail_count++;
|
|
}
|
|
|
|
return (s);
|
|
}
|
|
panic("moea64_bootstrap_alloc: could not allocate memory");
|
|
}
|
|
|
|
static void
|
|
tlbia(void)
|
|
{
|
|
vm_offset_t i;
|
|
|
|
for (i = 0; i < 0xFF000; i += 0x00001000)
|
|
TLBIE(NULL,i);
|
|
}
|
|
|
|
static int
|
|
moea64_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
|
|
vm_offset_t va, vm_offset_t pa, uint64_t pte_lo, int flags, int recurse)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
uint64_t vsid;
|
|
int first;
|
|
u_int ptegidx;
|
|
int i;
|
|
int bootstrap;
|
|
|
|
/*
|
|
* One nasty thing that can happen here is that the UMA calls to
|
|
* allocate new PVOs need to map more memory, which calls pvo_enter(),
|
|
* which calls UMA...
|
|
*
|
|
* We break the loop by detecting recursion and allocating out of
|
|
* the bootstrap pool.
|
|
*/
|
|
|
|
moea64_pvo_enter_calls++;
|
|
first = 0;
|
|
bootstrap = (flags & PVO_BOOTSTRAP);
|
|
|
|
if (!moea64_initialized)
|
|
bootstrap = 1;
|
|
|
|
/*
|
|
* Compute the PTE Group index.
|
|
*/
|
|
va &= ~ADDR_POFF;
|
|
vsid = va_to_vsid(pm, va);
|
|
ptegidx = va_to_pteg(vsid, va);
|
|
|
|
/*
|
|
* Remove any existing mapping for this page. Reuse the pvo entry if
|
|
* there is a mapping.
|
|
*/
|
|
if (!recurse)
|
|
LOCK_TABLE();
|
|
|
|
LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
|
|
if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
|
|
if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
|
|
(pvo->pvo_pte.lpte.pte_lo & LPTE_PP) ==
|
|
(pte_lo & LPTE_PP)) {
|
|
if (!recurse)
|
|
UNLOCK_TABLE();
|
|
return (0);
|
|
}
|
|
moea64_pvo_remove(pvo, -1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we aren't overwriting a mapping, try to allocate.
|
|
*/
|
|
if (bootstrap) {
|
|
if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
|
|
panic("moea64_enter: bpvo pool exhausted, %d, %d, %d",
|
|
moea64_bpvo_pool_index, BPVO_POOL_SIZE,
|
|
BPVO_POOL_SIZE * sizeof(struct pvo_entry));
|
|
}
|
|
pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
|
|
moea64_bpvo_pool_index++;
|
|
bootstrap = 1;
|
|
} else {
|
|
pvo = uma_zalloc(zone, M_NOWAIT);
|
|
}
|
|
|
|
if (pvo == NULL) {
|
|
if (!recurse)
|
|
UNLOCK_TABLE();
|
|
return (ENOMEM);
|
|
}
|
|
|
|
moea64_pvo_entries++;
|
|
pvo->pvo_vaddr = va;
|
|
pvo->pvo_pmap = pm;
|
|
LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
|
|
pvo->pvo_vaddr &= ~ADDR_POFF;
|
|
|
|
if (!(flags & VM_PROT_EXECUTE))
|
|
pte_lo |= LPTE_NOEXEC;
|
|
if (flags & PVO_WIRED)
|
|
pvo->pvo_vaddr |= PVO_WIRED;
|
|
if (pvo_head != &moea64_pvo_kunmanaged)
|
|
pvo->pvo_vaddr |= PVO_MANAGED;
|
|
if (bootstrap)
|
|
pvo->pvo_vaddr |= PVO_BOOTSTRAP;
|
|
if (flags & PVO_FAKE)
|
|
pvo->pvo_vaddr |= PVO_FAKE;
|
|
|
|
moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
|
|
(uint64_t)(pa) | pte_lo);
|
|
|
|
/*
|
|
* Remember if the list was empty and therefore will be the first
|
|
* item.
|
|
*/
|
|
if (LIST_FIRST(pvo_head) == NULL)
|
|
first = 1;
|
|
LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
|
|
|
|
if (pvo->pvo_pte.lpte.pte_lo & PVO_WIRED)
|
|
pm->pm_stats.wired_count++;
|
|
pm->pm_stats.resident_count++;
|
|
|
|
/*
|
|
* We hope this succeeds but it isn't required.
|
|
*/
|
|
i = moea64_pte_insert(ptegidx, &pvo->pvo_pte.lpte);
|
|
if (i >= 0) {
|
|
PVO_PTEGIDX_SET(pvo, i);
|
|
} else {
|
|
panic("moea64_pvo_enter: overflow");
|
|
moea64_pte_overflow++;
|
|
}
|
|
|
|
if (!recurse)
|
|
UNLOCK_TABLE();
|
|
|
|
return (first ? ENOENT : 0);
|
|
}
|
|
|
|
static void
|
|
moea64_pvo_remove(struct pvo_entry *pvo, int pteidx)
|
|
{
|
|
struct lpte *pt;
|
|
|
|
/*
|
|
* If there is an active pte entry, we need to deactivate it (and
|
|
* save the ref & cfg bits).
|
|
*/
|
|
LOCK_TABLE();
|
|
pt = moea64_pvo_to_pte(pvo, pteidx);
|
|
if (pt != NULL) {
|
|
moea64_pte_unset(pt, &pvo->pvo_pte.lpte, pvo->pvo_pmap,
|
|
pvo->pvo_vaddr);
|
|
PVO_PTEGIDX_CLR(pvo);
|
|
} else {
|
|
moea64_pte_overflow--;
|
|
}
|
|
UNLOCK_TABLE();
|
|
|
|
/*
|
|
* Update our statistics.
|
|
*/
|
|
pvo->pvo_pmap->pm_stats.resident_count--;
|
|
if (pvo->pvo_pte.lpte.pte_lo & PVO_WIRED)
|
|
pvo->pvo_pmap->pm_stats.wired_count--;
|
|
|
|
/*
|
|
* Save the REF/CHG bits into their cache if the page is managed.
|
|
*/
|
|
if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
|
|
struct vm_page *pg;
|
|
|
|
pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
|
|
if (pg != NULL) {
|
|
moea64_attr_save(pg, pvo->pvo_pte.lpte.pte_lo &
|
|
(LPTE_REF | LPTE_CHG));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove this PVO from the PV list.
|
|
*/
|
|
LIST_REMOVE(pvo, pvo_vlink);
|
|
|
|
/*
|
|
* Remove this from the overflow list and return it to the pool
|
|
* if we aren't going to reuse it.
|
|
*/
|
|
LIST_REMOVE(pvo, pvo_olink);
|
|
if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
|
|
uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea64_mpvo_zone :
|
|
moea64_upvo_zone, pvo);
|
|
moea64_pvo_entries--;
|
|
moea64_pvo_remove_calls++;
|
|
}
|
|
|
|
static __inline int
|
|
moea64_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
|
|
{
|
|
int pteidx;
|
|
|
|
/*
|
|
* We can find the actual pte entry without searching by grabbing
|
|
* the PTEG index from 3 unused bits in pte_lo[11:9] and by
|
|
* noticing the HID bit.
|
|
*/
|
|
pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
|
|
if (pvo->pvo_pte.lpte.pte_hi & LPTE_HID)
|
|
pteidx ^= moea64_pteg_mask * 8;
|
|
|
|
return (pteidx);
|
|
}
|
|
|
|
static struct pvo_entry *
|
|
moea64_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
int ptegidx;
|
|
uint64_t vsid;
|
|
|
|
va &= ~ADDR_POFF;
|
|
vsid = va_to_vsid(pm, va);
|
|
ptegidx = va_to_pteg(vsid, va);
|
|
|
|
LOCK_TABLE();
|
|
LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
|
|
if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
|
|
if (pteidx_p)
|
|
*pteidx_p = moea64_pvo_pte_index(pvo, ptegidx);
|
|
break;
|
|
}
|
|
}
|
|
UNLOCK_TABLE();
|
|
|
|
return (pvo);
|
|
}
|
|
|
|
static struct lpte *
|
|
moea64_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
|
|
{
|
|
struct lpte *pt;
|
|
|
|
/*
|
|
* If we haven't been supplied the ptegidx, calculate it.
|
|
*/
|
|
if (pteidx == -1) {
|
|
int ptegidx;
|
|
uint64_t vsid;
|
|
|
|
vsid = va_to_vsid(pvo->pvo_pmap, pvo->pvo_vaddr);
|
|
ptegidx = va_to_pteg(vsid, pvo->pvo_vaddr);
|
|
pteidx = moea64_pvo_pte_index(pvo, ptegidx);
|
|
}
|
|
|
|
pt = &moea64_pteg_table[pteidx >> 3].pt[pteidx & 7];
|
|
|
|
if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
|
|
!PVO_PTEGIDX_ISSET(pvo)) {
|
|
panic("moea64_pvo_to_pte: pvo %p has valid pte in pvo but no "
|
|
"valid pte index", pvo);
|
|
}
|
|
|
|
if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0 &&
|
|
PVO_PTEGIDX_ISSET(pvo)) {
|
|
panic("moea64_pvo_to_pte: pvo %p has valid pte index in pvo "
|
|
"pvo but no valid pte", pvo);
|
|
}
|
|
|
|
if ((pt->pte_hi ^ (pvo->pvo_pte.lpte.pte_hi & ~LPTE_VALID)) ==
|
|
LPTE_VALID) {
|
|
if ((pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0) {
|
|
panic("moea64_pvo_to_pte: pvo %p has valid pte in "
|
|
"moea64_pteg_table %p but invalid in pvo", pvo, pt);
|
|
}
|
|
|
|
if (((pt->pte_lo ^ pvo->pvo_pte.lpte.pte_lo) &
|
|
~(LPTE_CHG|LPTE_REF)) != 0) {
|
|
panic("moea64_pvo_to_pte: pvo %p pte does not match "
|
|
"pte %p in moea64_pteg_table difference is %#x",
|
|
pvo, pt,
|
|
(uint32_t)(pt->pte_lo ^ pvo->pvo_pte.lpte.pte_lo));
|
|
}
|
|
|
|
ASSERT_TABLE_LOCK();
|
|
return (pt);
|
|
}
|
|
|
|
if (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) {
|
|
panic("moea64_pvo_to_pte: pvo %p has invalid pte %p in "
|
|
"moea64_pteg_table but valid in pvo", pvo, pt);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static int
|
|
moea64_pte_insert(u_int ptegidx, struct lpte *pvo_pt)
|
|
{
|
|
struct lpte *pt;
|
|
int i;
|
|
|
|
ASSERT_TABLE_LOCK();
|
|
|
|
/*
|
|
* First try primary hash.
|
|
*/
|
|
for (pt = moea64_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
|
|
if ((pt->pte_hi & LPTE_VALID) == 0) {
|
|
pvo_pt->pte_hi &= ~LPTE_HID;
|
|
moea64_pte_set(pt, pvo_pt);
|
|
return (i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now try secondary hash.
|
|
*/
|
|
ptegidx ^= moea64_pteg_mask;
|
|
|
|
for (pt = moea64_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
|
|
if ((pt->pte_hi & LPTE_VALID) == 0) {
|
|
pvo_pt->pte_hi |= LPTE_HID;
|
|
moea64_pte_set(pt, pvo_pt);
|
|
return (i);
|
|
}
|
|
}
|
|
|
|
panic("moea64_pte_insert: overflow");
|
|
return (-1);
|
|
}
|
|
|
|
static boolean_t
|
|
moea64_query_bit(vm_page_t m, u_int64_t ptebit)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
struct lpte *pt;
|
|
|
|
#if 0
|
|
if (moea64_attr_fetch(m) & ptebit)
|
|
return (TRUE);
|
|
#endif
|
|
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
MOEA_PVO_CHECK(pvo); /* sanity check */
|
|
|
|
/*
|
|
* See if we saved the bit off. If so, cache it and return
|
|
* success.
|
|
*/
|
|
if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
|
|
moea64_attr_save(m, ptebit);
|
|
MOEA_PVO_CHECK(pvo); /* sanity check */
|
|
return (TRUE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* No luck, now go through the hard part of looking at the PTEs
|
|
* themselves. Sync so that any pending REF/CHG bits are flushed to
|
|
* the PTEs.
|
|
*/
|
|
SYNC();
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
MOEA_PVO_CHECK(pvo); /* sanity check */
|
|
|
|
/*
|
|
* See if this pvo has a valid PTE. if so, fetch the
|
|
* REF/CHG bits from the valid PTE. If the appropriate
|
|
* ptebit is set, cache it and return success.
|
|
*/
|
|
LOCK_TABLE();
|
|
pt = moea64_pvo_to_pte(pvo, -1);
|
|
if (pt != NULL) {
|
|
moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
|
|
if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
|
|
UNLOCK_TABLE();
|
|
|
|
moea64_attr_save(m, ptebit);
|
|
MOEA_PVO_CHECK(pvo); /* sanity check */
|
|
return (TRUE);
|
|
}
|
|
}
|
|
UNLOCK_TABLE();
|
|
}
|
|
|
|
return (FALSE);
|
|
}
|
|
|
|
static u_int
|
|
moea64_clear_bit(vm_page_t m, u_int64_t ptebit, u_int64_t *origbit)
|
|
{
|
|
u_int count;
|
|
struct pvo_entry *pvo;
|
|
struct lpte *pt;
|
|
uint64_t rv;
|
|
|
|
/*
|
|
* Clear the cached value.
|
|
*/
|
|
rv = moea64_attr_fetch(m);
|
|
moea64_attr_clear(m, ptebit);
|
|
|
|
/*
|
|
* Sync so that any pending REF/CHG bits are flushed to the PTEs (so
|
|
* we can reset the right ones). note that since the pvo entries and
|
|
* list heads are accessed via BAT0 and are never placed in the page
|
|
* table, we don't have to worry about further accesses setting the
|
|
* REF/CHG bits.
|
|
*/
|
|
SYNC();
|
|
|
|
/*
|
|
* For each pvo entry, clear the pvo's ptebit. If this pvo has a
|
|
* valid pte clear the ptebit from the valid pte.
|
|
*/
|
|
count = 0;
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
MOEA_PVO_CHECK(pvo); /* sanity check */
|
|
|
|
LOCK_TABLE();
|
|
pt = moea64_pvo_to_pte(pvo, -1);
|
|
if (pt != NULL) {
|
|
moea64_pte_synch(pt, &pvo->pvo_pte.lpte);
|
|
if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
|
|
count++;
|
|
moea64_pte_clear(pt, pvo->pvo_pmap, PVO_VADDR(pvo), ptebit);
|
|
}
|
|
}
|
|
UNLOCK_TABLE();
|
|
rv |= pvo->pvo_pte.lpte.pte_lo;
|
|
pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
|
|
MOEA_PVO_CHECK(pvo); /* sanity check */
|
|
}
|
|
|
|
if (origbit != NULL) {
|
|
*origbit = rv;
|
|
}
|
|
|
|
return (count);
|
|
}
|
|
|
|
boolean_t
|
|
moea64_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
|
|
{
|
|
return (EFAULT);
|
|
}
|
|
|
|
boolean_t
|
|
moea64_page_executable(mmu_t mmu, vm_page_t pg)
|
|
{
|
|
return (!moea64_query_bit(pg, LPTE_NOEXEC));
|
|
}
|
|
|
|
/*
|
|
* Map a set of physical memory pages into the kernel virtual
|
|
* address space. Return a pointer to where it is mapped. This
|
|
* routine is intended to be used for mapping device memory,
|
|
* NOT real memory.
|
|
*/
|
|
void *
|
|
moea64_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
|
|
{
|
|
vm_offset_t va, tmpva, ppa, offset;
|
|
|
|
ppa = trunc_page(pa);
|
|
offset = pa & PAGE_MASK;
|
|
size = roundup(offset + size, PAGE_SIZE);
|
|
|
|
va = kmem_alloc_nofault(kernel_map, size);
|
|
|
|
if (!va)
|
|
panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
|
|
|
|
for (tmpva = va; size > 0;) {
|
|
moea64_kenter(mmu, tmpva, ppa);
|
|
size -= PAGE_SIZE;
|
|
tmpva += PAGE_SIZE;
|
|
ppa += PAGE_SIZE;
|
|
}
|
|
|
|
return ((void *)(va + offset));
|
|
}
|
|
|
|
void
|
|
moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
|
|
{
|
|
vm_offset_t base, offset;
|
|
|
|
base = trunc_page(va);
|
|
offset = va & PAGE_MASK;
|
|
size = roundup(offset + size, PAGE_SIZE);
|
|
|
|
kmem_free(kernel_map, base, size);
|
|
}
|
|
|