freebsd-nq/sys/boot/sparc64/loader/main.c
Ken Smith a6406834da Back out v1.24. v1.40 of sys/sparc64/sparc64/bus_machdep.c fixes the
problem this hack was put in place for.

MFC to be done if the fix to bus_machdep.c is MFC-ed.
2004-09-08 12:52:45 +00:00

516 lines
11 KiB
C

/*
* Initial implementation:
* Copyright (c) 2001 Robert Drehmel
* All rights reserved.
*
* As long as the above copyright statement and this notice remain
* unchanged, you can do what ever you want with this file.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* FreeBSD/sparc64 kernel loader - machine dependent part
*
* - implements copyin and readin functions that map kernel
* pages on demand. The machine independent code does not
* know the size of the kernel early enough to pre-enter
* TTEs and install just one 4MB mapping seemed to limiting
* to me.
*/
#include <stand.h>
#include <sys/exec.h>
#include <sys/param.h>
#include <sys/queue.h>
#include <sys/linker.h>
#include <machine/asi.h>
#include <machine/atomic.h>
#include <machine/cpufunc.h>
#include <machine/elf.h>
#include <machine/lsu.h>
#include <machine/metadata.h>
#include <machine/tte.h>
#include <machine/upa.h>
#include "bootstrap.h"
#include "libofw.h"
#include "dev_net.h"
enum {
HEAPVA = 0x800000,
HEAPSZ = 0x1000000,
LOADSZ = 0x1000000 /* for kernel and modules */
};
struct memory_slice {
vm_offset_t pstart;
vm_offset_t size;
};
typedef void kernel_entry_t(vm_offset_t mdp, u_long o1, u_long o2, u_long o3,
void *openfirmware);
extern void itlb_enter(u_long vpn, u_long data);
extern void dtlb_enter(u_long vpn, u_long data);
extern vm_offset_t itlb_va_to_pa(vm_offset_t);
extern vm_offset_t dtlb_va_to_pa(vm_offset_t);
extern vm_offset_t md_load(char *, vm_offset_t *);
static int __elfN(exec)(struct preloaded_file *);
static int sparc64_autoload(void);
static int mmu_mapin(vm_offset_t, vm_size_t);
extern char bootprog_name[], bootprog_rev[], bootprog_date[], bootprog_maker[];
struct tlb_entry *dtlb_store;
struct tlb_entry *itlb_store;
int dtlb_slot;
int itlb_slot;
int dtlb_slot_max;
int itlb_slot_max;
vm_offset_t curkva = 0;
vm_offset_t heapva;
phandle_t pmemh; /* OFW memory handle */
struct memory_slice memslices[18];
/*
* Machine dependent structures that the machine independent
* loader part uses.
*/
struct devsw *devsw[] = {
#ifdef LOADER_DISK_SUPPORT
&ofwdisk,
#endif
#ifdef LOADER_NET_SUPPORT
&netdev,
#endif
0
};
struct arch_switch archsw;
struct file_format sparc64_elf = {
__elfN(loadfile),
__elfN(exec)
};
struct file_format *file_formats[] = {
&sparc64_elf,
0
};
struct fs_ops *file_system[] = {
#ifdef LOADER_UFS_SUPPORT
&ufs_fsops,
#endif
#ifdef LOADER_CD9660_SUPPORT
&cd9660_fsops,
#endif
#ifdef LOADER_ZIP_SUPPORT
&zipfs_fsops,
#endif
#ifdef LOADER_GZIP_SUPPORT
&gzipfs_fsops,
#endif
#ifdef LOADER_BZIP2_SUPPORT
&bzipfs_fsops,
#endif
#ifdef LOADER_NFS_SUPPORT
&nfs_fsops,
#endif
#ifdef LOADER_TFTP_SUPPORT
&tftp_fsops,
#endif
0
};
struct netif_driver *netif_drivers[] = {
#ifdef LOADER_NET_SUPPORT
&ofwnet,
#endif
0
};
extern struct console ofwconsole;
struct console *consoles[] = {
&ofwconsole,
0
};
#ifdef LOADER_DEBUG
static int
watch_phys_set_mask(vm_offset_t pa, u_long mask)
{
u_long lsucr;
stxa(AA_DMMU_PWPR, ASI_DMMU, pa & (((2UL << 38) - 1) << 3));
lsucr = ldxa(0, ASI_LSU_CTL_REG);
lsucr = ((lsucr | LSU_PW) & ~LSU_PM_MASK) |
(mask << LSU_PM_SHIFT);
stxa(0, ASI_LSU_CTL_REG, lsucr);
return (0);
}
static int
watch_phys_set(vm_offset_t pa, int sz)
{
u_long off;
off = (u_long)pa & 7;
/* Test for misaligned watch points. */
if (off + sz > 8)
return (-1);
return (watch_phys_set_mask(pa, ((1 << sz) - 1) << off));
}
static int
watch_virt_set_mask(vm_offset_t va, u_long mask)
{
u_long lsucr;
stxa(AA_DMMU_VWPR, ASI_DMMU, va & (((2UL << 41) - 1) << 3));
lsucr = ldxa(0, ASI_LSU_CTL_REG);
lsucr = ((lsucr | LSU_VW) & ~LSU_VM_MASK) |
(mask << LSU_VM_SHIFT);
stxa(0, ASI_LSU_CTL_REG, lsucr);
return (0);
}
static int
watch_virt_set(vm_offset_t va, int sz)
{
u_long off;
off = (u_long)va & 7;
/* Test for misaligned watch points. */
if (off + sz > 8)
return (-1);
return (watch_virt_set_mask(va, ((1 << sz) - 1) << off));
}
#endif
/*
* archsw functions
*/
static int
sparc64_autoload(void)
{
printf("nothing to autoload yet.\n");
return 0;
}
static ssize_t
sparc64_readin(const int fd, vm_offset_t va, const size_t len)
{
mmu_mapin(va, len);
return read(fd, (void *)va, len);
}
static ssize_t
sparc64_copyin(const void *src, vm_offset_t dest, size_t len)
{
mmu_mapin(dest, len);
memcpy((void *)dest, src, len);
return len;
}
/*
* other MD functions
*/
static int
__elfN(exec)(struct preloaded_file *fp)
{
struct file_metadata *fmp;
vm_offset_t mdp;
Elf_Addr entry;
Elf_Ehdr *e;
int error;
if ((fmp = file_findmetadata(fp, MODINFOMD_ELFHDR)) == 0) {
return EFTYPE;
}
e = (Elf_Ehdr *)&fmp->md_data;
if ((error = md_load(fp->f_args, &mdp)) != 0)
return error;
printf("jumping to kernel entry at %#lx.\n", e->e_entry);
#if 0
pmap_print_tlb('i');
pmap_print_tlb('d');
#endif
entry = e->e_entry;
OF_release(heapva, HEAPSZ);
((kernel_entry_t *)entry)(mdp, 0, 0, 0, openfirmware);
panic("exec returned");
}
static int
mmu_mapin(vm_offset_t va, vm_size_t len)
{
vm_offset_t pa, mva;
u_long data;
if (va + len > curkva)
curkva = va + len;
pa = (vm_offset_t)-1;
len += va & PAGE_MASK_4M;
va &= ~PAGE_MASK_4M;
while (len) {
if (dtlb_va_to_pa(va) == (vm_offset_t)-1 ||
itlb_va_to_pa(va) == (vm_offset_t)-1) {
/* Allocate a physical page, claim the virtual area */
if (pa == (vm_offset_t)-1) {
pa = (vm_offset_t)OF_alloc_phys(PAGE_SIZE_4M,
PAGE_SIZE_4M);
if (pa == (vm_offset_t)-1)
panic("out of memory");
mva = (vm_offset_t)OF_claim_virt(va,
PAGE_SIZE_4M, 0);
if (mva != va) {
panic("can't claim virtual page "
"(wanted %#lx, got %#lx)",
va, mva);
}
/* The mappings may have changed, be paranoid. */
continue;
}
/*
* Actually, we can only allocate two pages less at
* most (depending on the kernel TSB size).
*/
if (dtlb_slot >= dtlb_slot_max)
panic("mmu_mapin: out of dtlb_slots");
if (itlb_slot >= itlb_slot_max)
panic("mmu_mapin: out of itlb_slots");
data = TD_V | TD_4M | TD_PA(pa) | TD_L | TD_CP |
TD_CV | TD_P | TD_W;
dtlb_store[dtlb_slot].te_pa = pa;
dtlb_store[dtlb_slot].te_va = va;
itlb_store[itlb_slot].te_pa = pa;
itlb_store[itlb_slot].te_va = va;
dtlb_slot++;
itlb_slot++;
dtlb_enter(va, data);
itlb_enter(va, data);
pa = (vm_offset_t)-1;
}
len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
va += PAGE_SIZE_4M;
}
if (pa != (vm_offset_t)-1)
OF_release_phys(pa, PAGE_SIZE_4M);
return 0;
}
static vm_offset_t
init_heap(void)
{
if ((pmemh = OF_finddevice("/memory")) == (phandle_t)-1)
OF_exit();
if (OF_getprop(pmemh, "available", memslices, sizeof(memslices)) <= 0)
OF_exit();
/* There is no need for continuous physical heap memory. */
heapva = (vm_offset_t)OF_claim((void *)HEAPVA, HEAPSZ, 32);
return heapva;
}
static void
tlb_init(void)
{
phandle_t child;
phandle_t root;
char buf[128];
u_int bootcpu;
u_int cpu;
bootcpu = UPA_CR_GET_MID(ldxa(0, ASI_UPA_CONFIG_REG));
if ((root = OF_peer(0)) == -1)
panic("main: OF_peer");
for (child = OF_child(root); child != 0; child = OF_peer(child)) {
if (child == -1)
panic("main: OF_child");
if (OF_getprop(child, "device_type", buf, sizeof(buf)) > 0 &&
strcmp(buf, "cpu") == 0) {
if (OF_getprop(child, "upa-portid", &cpu,
sizeof(cpu)) == -1 && OF_getprop(child, "portid",
&cpu, sizeof(cpu)) == -1)
panic("main: OF_getprop");
if (cpu == bootcpu)
break;
}
}
if (cpu != bootcpu)
panic("init_tlb: no node for bootcpu?!?!");
if (OF_getprop(child, "#dtlb-entries", &dtlb_slot_max,
sizeof(dtlb_slot_max)) == -1 ||
OF_getprop(child, "#itlb-entries", &itlb_slot_max,
sizeof(itlb_slot_max)) == -1)
panic("init_tlb: OF_getprop");
dtlb_store = malloc(dtlb_slot_max * sizeof(*dtlb_store));
itlb_store = malloc(itlb_slot_max * sizeof(*itlb_store));
if (dtlb_store == NULL || itlb_store == NULL)
panic("init_tlb: malloc");
}
int
main(int (*openfirm)(void *))
{
char bootpath[64];
struct devsw **dp;
phandle_t chosenh;
/*
* Tell the Open Firmware functions where they find the ofw gate.
*/
OF_init(openfirm);
archsw.arch_getdev = ofw_getdev;
archsw.arch_copyin = sparc64_copyin;
archsw.arch_copyout = ofw_copyout;
archsw.arch_readin = sparc64_readin;
archsw.arch_autoload = sparc64_autoload;
init_heap();
setheap((void *)heapva, (void *)(heapva + HEAPSZ));
/*
* Probe for a console.
*/
cons_probe();
tlb_init();
bcache_init(32, 512);
/*
* Initialize devices.
*/
for (dp = devsw; *dp != 0; dp++) {
if ((*dp)->dv_init != 0)
(*dp)->dv_init();
}
/*
* Set up the current device.
*/
chosenh = OF_finddevice("/chosen");
OF_getprop(chosenh, "bootpath", bootpath, sizeof(bootpath));
/*
* Sun compatible bootable CD-ROMs have a disk label placed
* before the cd9660 data, with the actual filesystem being
* in the first partition, while the other partitions contain
* pseudo disk labels with embedded boot blocks for different
* architectures, which may be followed by UFS filesystems.
* The firmware will set the boot path to the partition it
* boots from ('f' in the sun4u case), but we want the kernel
* to be loaded from the cd9660 fs ('a'), so the boot path
* needs to be altered.
*/
if (bootpath[strlen(bootpath) - 2] == ':' &&
bootpath[strlen(bootpath) - 1] == 'f') {
bootpath[strlen(bootpath) - 1] = 'a';
printf("Boot path set to %s\n", bootpath);
}
env_setenv("currdev", EV_VOLATILE, bootpath,
ofw_setcurrdev, env_nounset);
env_setenv("loaddev", EV_VOLATILE, bootpath,
env_noset, env_nounset);
printf("\n");
printf("%s, Revision %s\n", bootprog_name, bootprog_rev);
printf("(%s, %s)\n", bootprog_maker, bootprog_date);
printf("bootpath=\"%s\"\n", bootpath);
/* Give control to the machine independent loader code. */
interact();
return 1;
}
COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
static int
command_reboot(int argc, char *argv[])
{
int i;
for (i = 0; devsw[i] != NULL; ++i)
if (devsw[i]->dv_cleanup != NULL)
(devsw[i]->dv_cleanup)();
printf("Rebooting...\n");
OF_exit();
}
/* provide this for panic, as it's not in the startup code */
void
exit(int code)
{
OF_exit();
}
#ifdef LOADER_DEBUG
typedef u_int64_t tte_t;
const char *page_sizes[] = {
" 8k", " 64k", "512k", " 4m"
};
static void
pmap_print_tte(tte_t tag, tte_t tte)
{
printf("%s %s ",
page_sizes[(tte & TD_SIZE_MASK) >> TD_SIZE_SHIFT],
tag & TD_G ? "G" : " ");
printf(tte & TD_W ? "W " : " ");
printf(tte & TD_P ? "\e[33mP\e[0m " : " ");
printf(tte & TD_E ? "E " : " ");
printf(tte & TD_CV ? "CV " : " ");
printf(tte & TD_CP ? "CP " : " ");
printf(tte & TD_L ? "\e[32mL\e[0m " : " ");
printf(tte & TD_IE ? "IE " : " ");
printf(tte & TD_NFO ? "NFO " : " ");
printf("tag=0x%lx pa=0x%lx va=0x%lx ctx=%ld\n", tag, TD_PA(tte),
TT_VA(tag), TT_CTX(tag));
}
void
pmap_print_tlb(char which)
{
int i;
tte_t tte, tag;
for (i = 0; i < 64*8; i += 8) {
if (which == 'i') {
__asm__ __volatile__("ldxa [%1] %2, %0\n" :
"=r" (tag) : "r" (i),
"i" (ASI_ITLB_TAG_READ_REG));
__asm__ __volatile__("ldxa [%1] %2, %0\n" :
"=r" (tte) : "r" (i),
"i" (ASI_ITLB_DATA_ACCESS_REG));
}
else {
__asm__ __volatile__("ldxa [%1] %2, %0\n" :
"=r" (tag) : "r" (i),
"i" (ASI_DTLB_TAG_READ_REG));
__asm__ __volatile__("ldxa [%1] %2, %0\n" :
"=r" (tte) : "r" (i),
"i" (ASI_DTLB_DATA_ACCESS_REG));
}
if (!(tte & TD_V))
continue;
printf("%cTLB-%2u: ", which, i>>3);
pmap_print_tte(tag, tte);
}
}
#endif