b2255edcc0
This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <he.huang@intel.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Co-authored-by: Don Brady <don.brady@delphix.com> Co-authored-by: Matthew Ahrens <mahrens@delphix.com> Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mmaybee@cray.com> Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10102
973 lines
26 KiB
C
973 lines
26 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2012, 2015 by Delphix. All rights reserved.
|
|
* Copyright (c) 2017, Intel Corporation.
|
|
*/
|
|
|
|
/*
|
|
* ZFS fault injection
|
|
*
|
|
* To handle fault injection, we keep track of a series of zinject_record_t
|
|
* structures which describe which logical block(s) should be injected with a
|
|
* fault. These are kept in a global list. Each record corresponds to a given
|
|
* spa_t and maintains a special hold on the spa_t so that it cannot be deleted
|
|
* or exported while the injection record exists.
|
|
*
|
|
* Device level injection is done using the 'zi_guid' field. If this is set, it
|
|
* means that the error is destined for a particular device, not a piece of
|
|
* data.
|
|
*
|
|
* This is a rather poor data structure and algorithm, but we don't expect more
|
|
* than a few faults at any one time, so it should be sufficient for our needs.
|
|
*/
|
|
|
|
#include <sys/arc.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zfs_ioctl.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/fs/zfs.h>
|
|
|
|
uint32_t zio_injection_enabled = 0;
|
|
|
|
/*
|
|
* Data describing each zinject handler registered on the system, and
|
|
* contains the list node linking the handler in the global zinject
|
|
* handler list.
|
|
*/
|
|
typedef struct inject_handler {
|
|
int zi_id;
|
|
spa_t *zi_spa;
|
|
zinject_record_t zi_record;
|
|
uint64_t *zi_lanes;
|
|
int zi_next_lane;
|
|
list_node_t zi_link;
|
|
} inject_handler_t;
|
|
|
|
/*
|
|
* List of all zinject handlers registered on the system, protected by
|
|
* the inject_lock defined below.
|
|
*/
|
|
static list_t inject_handlers;
|
|
|
|
/*
|
|
* This protects insertion into, and traversal of, the inject handler
|
|
* list defined above; as well as the inject_delay_count. Any time a
|
|
* handler is inserted or removed from the list, this lock should be
|
|
* taken as a RW_WRITER; and any time traversal is done over the list
|
|
* (without modification to it) this lock should be taken as a RW_READER.
|
|
*/
|
|
static krwlock_t inject_lock;
|
|
|
|
/*
|
|
* This holds the number of zinject delay handlers that have been
|
|
* registered on the system. It is protected by the inject_lock defined
|
|
* above. Thus modifications to this count must be a RW_WRITER of the
|
|
* inject_lock, and reads of this count must be (at least) a RW_READER
|
|
* of the lock.
|
|
*/
|
|
static int inject_delay_count = 0;
|
|
|
|
/*
|
|
* This lock is used only in zio_handle_io_delay(), refer to the comment
|
|
* in that function for more details.
|
|
*/
|
|
static kmutex_t inject_delay_mtx;
|
|
|
|
/*
|
|
* Used to assign unique identifying numbers to each new zinject handler.
|
|
*/
|
|
static int inject_next_id = 1;
|
|
|
|
/*
|
|
* Test if the requested frequency was triggered
|
|
*/
|
|
static boolean_t
|
|
freq_triggered(uint32_t frequency)
|
|
{
|
|
/*
|
|
* zero implies always (100%)
|
|
*/
|
|
if (frequency == 0)
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* Note: we still handle legacy (unscaled) frequency values
|
|
*/
|
|
uint32_t maximum = (frequency <= 100) ? 100 : ZI_PERCENTAGE_MAX;
|
|
|
|
return (spa_get_random(maximum) < frequency);
|
|
}
|
|
|
|
/*
|
|
* Returns true if the given record matches the I/O in progress.
|
|
*/
|
|
static boolean_t
|
|
zio_match_handler(const zbookmark_phys_t *zb, uint64_t type, int dva,
|
|
zinject_record_t *record, int error)
|
|
{
|
|
/*
|
|
* Check for a match against the MOS, which is based on type
|
|
*/
|
|
if (zb->zb_objset == DMU_META_OBJSET &&
|
|
record->zi_objset == DMU_META_OBJSET &&
|
|
record->zi_object == DMU_META_DNODE_OBJECT) {
|
|
if (record->zi_type == DMU_OT_NONE ||
|
|
type == record->zi_type)
|
|
return (freq_triggered(record->zi_freq));
|
|
else
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Check for an exact match.
|
|
*/
|
|
if (zb->zb_objset == record->zi_objset &&
|
|
zb->zb_object == record->zi_object &&
|
|
zb->zb_level == record->zi_level &&
|
|
zb->zb_blkid >= record->zi_start &&
|
|
zb->zb_blkid <= record->zi_end &&
|
|
(record->zi_dvas == 0 || (record->zi_dvas & (1ULL << dva))) &&
|
|
error == record->zi_error) {
|
|
return (freq_triggered(record->zi_freq));
|
|
}
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Panic the system when a config change happens in the function
|
|
* specified by tag.
|
|
*/
|
|
void
|
|
zio_handle_panic_injection(spa_t *spa, char *tag, uint64_t type)
|
|
{
|
|
inject_handler_t *handler;
|
|
|
|
rw_enter(&inject_lock, RW_READER);
|
|
|
|
for (handler = list_head(&inject_handlers); handler != NULL;
|
|
handler = list_next(&inject_handlers, handler)) {
|
|
|
|
if (spa != handler->zi_spa)
|
|
continue;
|
|
|
|
if (handler->zi_record.zi_type == type &&
|
|
strcmp(tag, handler->zi_record.zi_func) == 0)
|
|
panic("Panic requested in function %s\n", tag);
|
|
}
|
|
|
|
rw_exit(&inject_lock);
|
|
}
|
|
|
|
/*
|
|
* Inject a decryption failure. Decryption failures can occur in
|
|
* both the ARC and the ZIO layers.
|
|
*/
|
|
int
|
|
zio_handle_decrypt_injection(spa_t *spa, const zbookmark_phys_t *zb,
|
|
uint64_t type, int error)
|
|
{
|
|
int ret = 0;
|
|
inject_handler_t *handler;
|
|
|
|
rw_enter(&inject_lock, RW_READER);
|
|
|
|
for (handler = list_head(&inject_handlers); handler != NULL;
|
|
handler = list_next(&inject_handlers, handler)) {
|
|
|
|
if (spa != handler->zi_spa ||
|
|
handler->zi_record.zi_cmd != ZINJECT_DECRYPT_FAULT)
|
|
continue;
|
|
|
|
if (zio_match_handler(zb, type, ZI_NO_DVA,
|
|
&handler->zi_record, error)) {
|
|
ret = error;
|
|
break;
|
|
}
|
|
}
|
|
|
|
rw_exit(&inject_lock);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* If this is a physical I/O for a vdev child determine which DVA it is
|
|
* for. We iterate backwards through the DVAs matching on the offset so
|
|
* that we end up with ZI_NO_DVA (-1) if we don't find a match.
|
|
*/
|
|
static int
|
|
zio_match_dva(zio_t *zio)
|
|
{
|
|
int i = ZI_NO_DVA;
|
|
|
|
if (zio->io_bp != NULL && zio->io_vd != NULL &&
|
|
zio->io_child_type == ZIO_CHILD_VDEV) {
|
|
for (i = BP_GET_NDVAS(zio->io_bp) - 1; i >= 0; i--) {
|
|
dva_t *dva = &zio->io_bp->blk_dva[i];
|
|
uint64_t off = DVA_GET_OFFSET(dva);
|
|
vdev_t *vd = vdev_lookup_top(zio->io_spa,
|
|
DVA_GET_VDEV(dva));
|
|
|
|
/* Compensate for vdev label added to leaves */
|
|
if (zio->io_vd->vdev_ops->vdev_op_leaf)
|
|
off += VDEV_LABEL_START_SIZE;
|
|
|
|
if (zio->io_vd == vd && zio->io_offset == off)
|
|
break;
|
|
}
|
|
}
|
|
|
|
return (i);
|
|
}
|
|
|
|
|
|
/*
|
|
* Determine if the I/O in question should return failure. Returns the errno
|
|
* to be returned to the caller.
|
|
*/
|
|
int
|
|
zio_handle_fault_injection(zio_t *zio, int error)
|
|
{
|
|
int ret = 0;
|
|
inject_handler_t *handler;
|
|
|
|
/*
|
|
* Ignore I/O not associated with any logical data.
|
|
*/
|
|
if (zio->io_logical == NULL)
|
|
return (0);
|
|
|
|
/*
|
|
* Currently, we only support fault injection on reads.
|
|
*/
|
|
if (zio->io_type != ZIO_TYPE_READ)
|
|
return (0);
|
|
|
|
/*
|
|
* A rebuild I/O has no checksum to verify.
|
|
*/
|
|
if (zio->io_priority == ZIO_PRIORITY_REBUILD && error == ECKSUM)
|
|
return (0);
|
|
|
|
rw_enter(&inject_lock, RW_READER);
|
|
|
|
for (handler = list_head(&inject_handlers); handler != NULL;
|
|
handler = list_next(&inject_handlers, handler)) {
|
|
if (zio->io_spa != handler->zi_spa ||
|
|
handler->zi_record.zi_cmd != ZINJECT_DATA_FAULT)
|
|
continue;
|
|
|
|
/* If this handler matches, return the specified error */
|
|
if (zio_match_handler(&zio->io_logical->io_bookmark,
|
|
zio->io_bp ? BP_GET_TYPE(zio->io_bp) : DMU_OT_NONE,
|
|
zio_match_dva(zio), &handler->zi_record, error)) {
|
|
ret = error;
|
|
break;
|
|
}
|
|
}
|
|
|
|
rw_exit(&inject_lock);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Determine if the zio is part of a label update and has an injection
|
|
* handler associated with that portion of the label. Currently, we
|
|
* allow error injection in either the nvlist or the uberblock region of
|
|
* of the vdev label.
|
|
*/
|
|
int
|
|
zio_handle_label_injection(zio_t *zio, int error)
|
|
{
|
|
inject_handler_t *handler;
|
|
vdev_t *vd = zio->io_vd;
|
|
uint64_t offset = zio->io_offset;
|
|
int label;
|
|
int ret = 0;
|
|
|
|
if (offset >= VDEV_LABEL_START_SIZE &&
|
|
offset < vd->vdev_psize - VDEV_LABEL_END_SIZE)
|
|
return (0);
|
|
|
|
rw_enter(&inject_lock, RW_READER);
|
|
|
|
for (handler = list_head(&inject_handlers); handler != NULL;
|
|
handler = list_next(&inject_handlers, handler)) {
|
|
uint64_t start = handler->zi_record.zi_start;
|
|
uint64_t end = handler->zi_record.zi_end;
|
|
|
|
if (handler->zi_record.zi_cmd != ZINJECT_LABEL_FAULT)
|
|
continue;
|
|
|
|
/*
|
|
* The injection region is the relative offsets within a
|
|
* vdev label. We must determine the label which is being
|
|
* updated and adjust our region accordingly.
|
|
*/
|
|
label = vdev_label_number(vd->vdev_psize, offset);
|
|
start = vdev_label_offset(vd->vdev_psize, label, start);
|
|
end = vdev_label_offset(vd->vdev_psize, label, end);
|
|
|
|
if (zio->io_vd->vdev_guid == handler->zi_record.zi_guid &&
|
|
(offset >= start && offset <= end)) {
|
|
ret = error;
|
|
break;
|
|
}
|
|
}
|
|
rw_exit(&inject_lock);
|
|
return (ret);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
zio_inject_bitflip_cb(void *data, size_t len, void *private)
|
|
{
|
|
zio_t *zio __maybe_unused = private;
|
|
uint8_t *buffer = data;
|
|
uint_t byte = spa_get_random(len);
|
|
|
|
ASSERT(zio->io_type == ZIO_TYPE_READ);
|
|
|
|
/* flip a single random bit in an abd data buffer */
|
|
buffer[byte] ^= 1 << spa_get_random(8);
|
|
|
|
return (1); /* stop after first flip */
|
|
}
|
|
|
|
static int
|
|
zio_handle_device_injection_impl(vdev_t *vd, zio_t *zio, int err1, int err2)
|
|
{
|
|
inject_handler_t *handler;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* We skip over faults in the labels unless it's during
|
|
* device open (i.e. zio == NULL).
|
|
*/
|
|
if (zio != NULL) {
|
|
uint64_t offset = zio->io_offset;
|
|
|
|
if (offset < VDEV_LABEL_START_SIZE ||
|
|
offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE)
|
|
return (0);
|
|
}
|
|
|
|
rw_enter(&inject_lock, RW_READER);
|
|
|
|
for (handler = list_head(&inject_handlers); handler != NULL;
|
|
handler = list_next(&inject_handlers, handler)) {
|
|
|
|
if (handler->zi_record.zi_cmd != ZINJECT_DEVICE_FAULT)
|
|
continue;
|
|
|
|
if (vd->vdev_guid == handler->zi_record.zi_guid) {
|
|
if (handler->zi_record.zi_failfast &&
|
|
(zio == NULL || (zio->io_flags &
|
|
(ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))) {
|
|
continue;
|
|
}
|
|
|
|
/* Handle type specific I/O failures */
|
|
if (zio != NULL &&
|
|
handler->zi_record.zi_iotype != ZIO_TYPES &&
|
|
handler->zi_record.zi_iotype != zio->io_type)
|
|
continue;
|
|
|
|
if (handler->zi_record.zi_error == err1 ||
|
|
handler->zi_record.zi_error == err2) {
|
|
/*
|
|
* limit error injection if requested
|
|
*/
|
|
if (!freq_triggered(handler->zi_record.zi_freq))
|
|
continue;
|
|
|
|
/*
|
|
* For a failed open, pretend like the device
|
|
* has gone away.
|
|
*/
|
|
if (err1 == ENXIO)
|
|
vd->vdev_stat.vs_aux =
|
|
VDEV_AUX_OPEN_FAILED;
|
|
|
|
/*
|
|
* Treat these errors as if they had been
|
|
* retried so that all the appropriate stats
|
|
* and FMA events are generated.
|
|
*/
|
|
if (!handler->zi_record.zi_failfast &&
|
|
zio != NULL)
|
|
zio->io_flags |= ZIO_FLAG_IO_RETRY;
|
|
|
|
/*
|
|
* EILSEQ means flip a bit after a read
|
|
*/
|
|
if (handler->zi_record.zi_error == EILSEQ) {
|
|
if (zio == NULL)
|
|
break;
|
|
|
|
/* locate buffer data and flip a bit */
|
|
(void) abd_iterate_func(zio->io_abd, 0,
|
|
zio->io_size, zio_inject_bitflip_cb,
|
|
zio);
|
|
break;
|
|
}
|
|
|
|
ret = handler->zi_record.zi_error;
|
|
break;
|
|
}
|
|
if (handler->zi_record.zi_error == ENXIO) {
|
|
ret = SET_ERROR(EIO);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
rw_exit(&inject_lock);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
zio_handle_device_injection(vdev_t *vd, zio_t *zio, int error)
|
|
{
|
|
return (zio_handle_device_injection_impl(vd, zio, error, INT_MAX));
|
|
}
|
|
|
|
int
|
|
zio_handle_device_injections(vdev_t *vd, zio_t *zio, int err1, int err2)
|
|
{
|
|
return (zio_handle_device_injection_impl(vd, zio, err1, err2));
|
|
}
|
|
|
|
/*
|
|
* Simulate hardware that ignores cache flushes. For requested number
|
|
* of seconds nix the actual writing to disk.
|
|
*/
|
|
void
|
|
zio_handle_ignored_writes(zio_t *zio)
|
|
{
|
|
inject_handler_t *handler;
|
|
|
|
rw_enter(&inject_lock, RW_READER);
|
|
|
|
for (handler = list_head(&inject_handlers); handler != NULL;
|
|
handler = list_next(&inject_handlers, handler)) {
|
|
|
|
/* Ignore errors not destined for this pool */
|
|
if (zio->io_spa != handler->zi_spa ||
|
|
handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
|
|
continue;
|
|
|
|
/*
|
|
* Positive duration implies # of seconds, negative
|
|
* a number of txgs
|
|
*/
|
|
if (handler->zi_record.zi_timer == 0) {
|
|
if (handler->zi_record.zi_duration > 0)
|
|
handler->zi_record.zi_timer = ddi_get_lbolt64();
|
|
else
|
|
handler->zi_record.zi_timer = zio->io_txg;
|
|
}
|
|
|
|
/* Have a "problem" writing 60% of the time */
|
|
if (spa_get_random(100) < 60)
|
|
zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
|
|
break;
|
|
}
|
|
|
|
rw_exit(&inject_lock);
|
|
}
|
|
|
|
void
|
|
spa_handle_ignored_writes(spa_t *spa)
|
|
{
|
|
inject_handler_t *handler;
|
|
|
|
if (zio_injection_enabled == 0)
|
|
return;
|
|
|
|
rw_enter(&inject_lock, RW_READER);
|
|
|
|
for (handler = list_head(&inject_handlers); handler != NULL;
|
|
handler = list_next(&inject_handlers, handler)) {
|
|
|
|
if (spa != handler->zi_spa ||
|
|
handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
|
|
continue;
|
|
|
|
if (handler->zi_record.zi_duration > 0) {
|
|
VERIFY(handler->zi_record.zi_timer == 0 ||
|
|
ddi_time_after64(
|
|
(int64_t)handler->zi_record.zi_timer +
|
|
handler->zi_record.zi_duration * hz,
|
|
ddi_get_lbolt64()));
|
|
} else {
|
|
/* duration is negative so the subtraction here adds */
|
|
VERIFY(handler->zi_record.zi_timer == 0 ||
|
|
handler->zi_record.zi_timer -
|
|
handler->zi_record.zi_duration >=
|
|
spa_syncing_txg(spa));
|
|
}
|
|
}
|
|
|
|
rw_exit(&inject_lock);
|
|
}
|
|
|
|
hrtime_t
|
|
zio_handle_io_delay(zio_t *zio)
|
|
{
|
|
vdev_t *vd = zio->io_vd;
|
|
inject_handler_t *min_handler = NULL;
|
|
hrtime_t min_target = 0;
|
|
|
|
rw_enter(&inject_lock, RW_READER);
|
|
|
|
/*
|
|
* inject_delay_count is a subset of zio_injection_enabled that
|
|
* is only incremented for delay handlers. These checks are
|
|
* mainly added to remind the reader why we're not explicitly
|
|
* checking zio_injection_enabled like the other functions.
|
|
*/
|
|
IMPLY(inject_delay_count > 0, zio_injection_enabled > 0);
|
|
IMPLY(zio_injection_enabled == 0, inject_delay_count == 0);
|
|
|
|
/*
|
|
* If there aren't any inject delay handlers registered, then we
|
|
* can short circuit and simply return 0 here. A value of zero
|
|
* informs zio_delay_interrupt() that this request should not be
|
|
* delayed. This short circuit keeps us from acquiring the
|
|
* inject_delay_mutex unnecessarily.
|
|
*/
|
|
if (inject_delay_count == 0) {
|
|
rw_exit(&inject_lock);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Each inject handler has a number of "lanes" associated with
|
|
* it. Each lane is able to handle requests independently of one
|
|
* another, and at a latency defined by the inject handler
|
|
* record's zi_timer field. Thus if a handler in configured with
|
|
* a single lane with a 10ms latency, it will delay requests
|
|
* such that only a single request is completed every 10ms. So,
|
|
* if more than one request is attempted per each 10ms interval,
|
|
* the average latency of the requests will be greater than
|
|
* 10ms; but if only a single request is submitted each 10ms
|
|
* interval the average latency will be 10ms.
|
|
*
|
|
* We need to acquire this mutex to prevent multiple concurrent
|
|
* threads being assigned to the same lane of a given inject
|
|
* handler. The mutex allows us to perform the following two
|
|
* operations atomically:
|
|
*
|
|
* 1. determine the minimum handler and minimum target
|
|
* value of all the possible handlers
|
|
* 2. update that minimum handler's lane array
|
|
*
|
|
* Without atomicity, two (or more) threads could pick the same
|
|
* lane in step (1), and then conflict with each other in step
|
|
* (2). This could allow a single lane handler to process
|
|
* multiple requests simultaneously, which shouldn't be possible.
|
|
*/
|
|
mutex_enter(&inject_delay_mtx);
|
|
|
|
for (inject_handler_t *handler = list_head(&inject_handlers);
|
|
handler != NULL; handler = list_next(&inject_handlers, handler)) {
|
|
if (handler->zi_record.zi_cmd != ZINJECT_DELAY_IO)
|
|
continue;
|
|
|
|
if (!freq_triggered(handler->zi_record.zi_freq))
|
|
continue;
|
|
|
|
if (vd->vdev_guid != handler->zi_record.zi_guid)
|
|
continue;
|
|
|
|
/*
|
|
* Defensive; should never happen as the array allocation
|
|
* occurs prior to inserting this handler on the list.
|
|
*/
|
|
ASSERT3P(handler->zi_lanes, !=, NULL);
|
|
|
|
/*
|
|
* This should never happen, the zinject command should
|
|
* prevent a user from setting an IO delay with zero lanes.
|
|
*/
|
|
ASSERT3U(handler->zi_record.zi_nlanes, !=, 0);
|
|
|
|
ASSERT3U(handler->zi_record.zi_nlanes, >,
|
|
handler->zi_next_lane);
|
|
|
|
/*
|
|
* We want to issue this IO to the lane that will become
|
|
* idle the soonest, so we compare the soonest this
|
|
* specific handler can complete the IO with all other
|
|
* handlers, to find the lowest value of all possible
|
|
* lanes. We then use this lane to submit the request.
|
|
*
|
|
* Since each handler has a constant value for its
|
|
* delay, we can just use the "next" lane for that
|
|
* handler; as it will always be the lane with the
|
|
* lowest value for that particular handler (i.e. the
|
|
* lane that will become idle the soonest). This saves a
|
|
* scan of each handler's lanes array.
|
|
*
|
|
* There's two cases to consider when determining when
|
|
* this specific IO request should complete. If this
|
|
* lane is idle, we want to "submit" the request now so
|
|
* it will complete after zi_timer milliseconds. Thus,
|
|
* we set the target to now + zi_timer.
|
|
*
|
|
* If the lane is busy, we want this request to complete
|
|
* zi_timer milliseconds after the lane becomes idle.
|
|
* Since the 'zi_lanes' array holds the time at which
|
|
* each lane will become idle, we use that value to
|
|
* determine when this request should complete.
|
|
*/
|
|
hrtime_t idle = handler->zi_record.zi_timer + gethrtime();
|
|
hrtime_t busy = handler->zi_record.zi_timer +
|
|
handler->zi_lanes[handler->zi_next_lane];
|
|
hrtime_t target = MAX(idle, busy);
|
|
|
|
if (min_handler == NULL) {
|
|
min_handler = handler;
|
|
min_target = target;
|
|
continue;
|
|
}
|
|
|
|
ASSERT3P(min_handler, !=, NULL);
|
|
ASSERT3U(min_target, !=, 0);
|
|
|
|
/*
|
|
* We don't yet increment the "next lane" variable since
|
|
* we still might find a lower value lane in another
|
|
* handler during any remaining iterations. Once we're
|
|
* sure we've selected the absolute minimum, we'll claim
|
|
* the lane and increment the handler's "next lane"
|
|
* field below.
|
|
*/
|
|
|
|
if (target < min_target) {
|
|
min_handler = handler;
|
|
min_target = target;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 'min_handler' will be NULL if no IO delays are registered for
|
|
* this vdev, otherwise it will point to the handler containing
|
|
* the lane that will become idle the soonest.
|
|
*/
|
|
if (min_handler != NULL) {
|
|
ASSERT3U(min_target, !=, 0);
|
|
min_handler->zi_lanes[min_handler->zi_next_lane] = min_target;
|
|
|
|
/*
|
|
* If we've used all possible lanes for this handler,
|
|
* loop back and start using the first lane again;
|
|
* otherwise, just increment the lane index.
|
|
*/
|
|
min_handler->zi_next_lane = (min_handler->zi_next_lane + 1) %
|
|
min_handler->zi_record.zi_nlanes;
|
|
}
|
|
|
|
mutex_exit(&inject_delay_mtx);
|
|
rw_exit(&inject_lock);
|
|
|
|
return (min_target);
|
|
}
|
|
|
|
static int
|
|
zio_calculate_range(const char *pool, zinject_record_t *record)
|
|
{
|
|
dsl_pool_t *dp;
|
|
dsl_dataset_t *ds;
|
|
objset_t *os = NULL;
|
|
dnode_t *dn = NULL;
|
|
int error;
|
|
|
|
/*
|
|
* Obtain the dnode for object using pool, objset, and object
|
|
*/
|
|
error = dsl_pool_hold(pool, FTAG, &dp);
|
|
if (error)
|
|
return (error);
|
|
|
|
error = dsl_dataset_hold_obj(dp, record->zi_objset, FTAG, &ds);
|
|
dsl_pool_rele(dp, FTAG);
|
|
if (error)
|
|
return (error);
|
|
|
|
error = dmu_objset_from_ds(ds, &os);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
if (error)
|
|
return (error);
|
|
|
|
error = dnode_hold(os, record->zi_object, FTAG, &dn);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* Translate the range into block IDs
|
|
*/
|
|
if (record->zi_start != 0 || record->zi_end != -1ULL) {
|
|
record->zi_start >>= dn->dn_datablkshift;
|
|
record->zi_end >>= dn->dn_datablkshift;
|
|
}
|
|
if (record->zi_level > 0) {
|
|
if (record->zi_level >= dn->dn_nlevels) {
|
|
dnode_rele(dn, FTAG);
|
|
return (SET_ERROR(EDOM));
|
|
}
|
|
|
|
if (record->zi_start != 0 || record->zi_end != 0) {
|
|
int shift = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
|
|
|
|
for (int level = record->zi_level; level > 0; level--) {
|
|
record->zi_start >>= shift;
|
|
record->zi_end >>= shift;
|
|
}
|
|
}
|
|
}
|
|
|
|
dnode_rele(dn, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Create a new handler for the given record. We add it to the list, adding
|
|
* a reference to the spa_t in the process. We increment zio_injection_enabled,
|
|
* which is the switch to trigger all fault injection.
|
|
*/
|
|
int
|
|
zio_inject_fault(char *name, int flags, int *id, zinject_record_t *record)
|
|
{
|
|
inject_handler_t *handler;
|
|
int error;
|
|
spa_t *spa;
|
|
|
|
/*
|
|
* If this is pool-wide metadata, make sure we unload the corresponding
|
|
* spa_t, so that the next attempt to load it will trigger the fault.
|
|
* We call spa_reset() to unload the pool appropriately.
|
|
*/
|
|
if (flags & ZINJECT_UNLOAD_SPA)
|
|
if ((error = spa_reset(name)) != 0)
|
|
return (error);
|
|
|
|
if (record->zi_cmd == ZINJECT_DELAY_IO) {
|
|
/*
|
|
* A value of zero for the number of lanes or for the
|
|
* delay time doesn't make sense.
|
|
*/
|
|
if (record->zi_timer == 0 || record->zi_nlanes == 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/*
|
|
* The number of lanes is directly mapped to the size of
|
|
* an array used by the handler. Thus, to ensure the
|
|
* user doesn't trigger an allocation that's "too large"
|
|
* we cap the number of lanes here.
|
|
*/
|
|
if (record->zi_nlanes >= UINT16_MAX)
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* If the supplied range was in bytes -- calculate the actual blkid
|
|
*/
|
|
if (flags & ZINJECT_CALC_RANGE) {
|
|
error = zio_calculate_range(name, record);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
|
|
if (!(flags & ZINJECT_NULL)) {
|
|
/*
|
|
* spa_inject_ref() will add an injection reference, which will
|
|
* prevent the pool from being removed from the namespace while
|
|
* still allowing it to be unloaded.
|
|
*/
|
|
if ((spa = spa_inject_addref(name)) == NULL)
|
|
return (SET_ERROR(ENOENT));
|
|
|
|
handler = kmem_alloc(sizeof (inject_handler_t), KM_SLEEP);
|
|
|
|
handler->zi_spa = spa;
|
|
handler->zi_record = *record;
|
|
|
|
if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
|
|
handler->zi_lanes = kmem_zalloc(
|
|
sizeof (*handler->zi_lanes) *
|
|
handler->zi_record.zi_nlanes, KM_SLEEP);
|
|
handler->zi_next_lane = 0;
|
|
} else {
|
|
handler->zi_lanes = NULL;
|
|
handler->zi_next_lane = 0;
|
|
}
|
|
|
|
rw_enter(&inject_lock, RW_WRITER);
|
|
|
|
/*
|
|
* We can't move this increment into the conditional
|
|
* above because we need to hold the RW_WRITER lock of
|
|
* inject_lock, and we don't want to hold that while
|
|
* allocating the handler's zi_lanes array.
|
|
*/
|
|
if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
|
|
ASSERT3S(inject_delay_count, >=, 0);
|
|
inject_delay_count++;
|
|
ASSERT3S(inject_delay_count, >, 0);
|
|
}
|
|
|
|
*id = handler->zi_id = inject_next_id++;
|
|
list_insert_tail(&inject_handlers, handler);
|
|
atomic_inc_32(&zio_injection_enabled);
|
|
|
|
rw_exit(&inject_lock);
|
|
}
|
|
|
|
/*
|
|
* Flush the ARC, so that any attempts to read this data will end up
|
|
* going to the ZIO layer. Note that this is a little overkill, but
|
|
* we don't have the necessary ARC interfaces to do anything else, and
|
|
* fault injection isn't a performance critical path.
|
|
*/
|
|
if (flags & ZINJECT_FLUSH_ARC)
|
|
/*
|
|
* We must use FALSE to ensure arc_flush returns, since
|
|
* we're not preventing concurrent ARC insertions.
|
|
*/
|
|
arc_flush(NULL, FALSE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Returns the next record with an ID greater than that supplied to the
|
|
* function. Used to iterate over all handlers in the system.
|
|
*/
|
|
int
|
|
zio_inject_list_next(int *id, char *name, size_t buflen,
|
|
zinject_record_t *record)
|
|
{
|
|
inject_handler_t *handler;
|
|
int ret;
|
|
|
|
mutex_enter(&spa_namespace_lock);
|
|
rw_enter(&inject_lock, RW_READER);
|
|
|
|
for (handler = list_head(&inject_handlers); handler != NULL;
|
|
handler = list_next(&inject_handlers, handler))
|
|
if (handler->zi_id > *id)
|
|
break;
|
|
|
|
if (handler) {
|
|
*record = handler->zi_record;
|
|
*id = handler->zi_id;
|
|
(void) strncpy(name, spa_name(handler->zi_spa), buflen);
|
|
ret = 0;
|
|
} else {
|
|
ret = SET_ERROR(ENOENT);
|
|
}
|
|
|
|
rw_exit(&inject_lock);
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Clear the fault handler with the given identifier, or return ENOENT if none
|
|
* exists.
|
|
*/
|
|
int
|
|
zio_clear_fault(int id)
|
|
{
|
|
inject_handler_t *handler;
|
|
|
|
rw_enter(&inject_lock, RW_WRITER);
|
|
|
|
for (handler = list_head(&inject_handlers); handler != NULL;
|
|
handler = list_next(&inject_handlers, handler))
|
|
if (handler->zi_id == id)
|
|
break;
|
|
|
|
if (handler == NULL) {
|
|
rw_exit(&inject_lock);
|
|
return (SET_ERROR(ENOENT));
|
|
}
|
|
|
|
if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
|
|
ASSERT3S(inject_delay_count, >, 0);
|
|
inject_delay_count--;
|
|
ASSERT3S(inject_delay_count, >=, 0);
|
|
}
|
|
|
|
list_remove(&inject_handlers, handler);
|
|
rw_exit(&inject_lock);
|
|
|
|
if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
|
|
ASSERT3P(handler->zi_lanes, !=, NULL);
|
|
kmem_free(handler->zi_lanes, sizeof (*handler->zi_lanes) *
|
|
handler->zi_record.zi_nlanes);
|
|
} else {
|
|
ASSERT3P(handler->zi_lanes, ==, NULL);
|
|
}
|
|
|
|
spa_inject_delref(handler->zi_spa);
|
|
kmem_free(handler, sizeof (inject_handler_t));
|
|
atomic_dec_32(&zio_injection_enabled);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
zio_inject_init(void)
|
|
{
|
|
rw_init(&inject_lock, NULL, RW_DEFAULT, NULL);
|
|
mutex_init(&inject_delay_mtx, NULL, MUTEX_DEFAULT, NULL);
|
|
list_create(&inject_handlers, sizeof (inject_handler_t),
|
|
offsetof(inject_handler_t, zi_link));
|
|
}
|
|
|
|
void
|
|
zio_inject_fini(void)
|
|
{
|
|
list_destroy(&inject_handlers);
|
|
mutex_destroy(&inject_delay_mtx);
|
|
rw_destroy(&inject_lock);
|
|
}
|
|
|
|
#if defined(_KERNEL)
|
|
EXPORT_SYMBOL(zio_injection_enabled);
|
|
EXPORT_SYMBOL(zio_inject_fault);
|
|
EXPORT_SYMBOL(zio_inject_list_next);
|
|
EXPORT_SYMBOL(zio_clear_fault);
|
|
EXPORT_SYMBOL(zio_handle_fault_injection);
|
|
EXPORT_SYMBOL(zio_handle_device_injection);
|
|
EXPORT_SYMBOL(zio_handle_label_injection);
|
|
#endif
|