Rebecca Cran 866036f46c bhyve: Support a _VARS.fd file for bootrom
OVMF creates two separate .fd files, a _CODE.fd file containing
the UEFI code, and a _VARS.fd file containing a template of an
empty UEFI variable store.

OVMF decides to write variables to the memory range just below the
boot rom code if it detects a CFI flash device. So here we add
just the barest facsimile of CFI command handling to bootrom.c
that is needed to placate OVMF.

Submitted by: D Scott Phillips <d.scott.phillips@intel.com>
Sponsored by: Intel Corporation
Differential Revision: https://reviews.freebsd.org/D19976
MFC After: 1 week
2021-12-12 08:07:27 -07:00

298 lines
7.4 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2015 Neel Natu <neel@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/param.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <machine/vmm.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <stdbool.h>
#include <vmmapi.h>
#include "bhyverun.h"
#include "bootrom.h"
#include "debug.h"
#include "mem.h"
#define BOOTROM_SIZE (16 * 1024 * 1024) /* 16 MB */
/*
* ROM region is 16 MB at the top of 4GB ("low") memory.
*
* The size is limited so it doesn't encroach into reserved MMIO space (e.g.,
* APIC, HPET, MSI).
*
* It is allocated in page-multiple blocks on a first-come first-serve basis,
* from high to low, during initialization, and does not change at runtime.
*/
static char *romptr; /* Pointer to userspace-mapped bootrom region. */
static vm_paddr_t gpa_base; /* GPA of low end of region. */
static vm_paddr_t gpa_allocbot; /* Low GPA of free region. */
static vm_paddr_t gpa_alloctop; /* High GPA, minus 1, of free region. */
#define CFI_BCS_WRITE_BYTE 0x10
#define CFI_BCS_CLEAR_STATUS 0x50
#define CFI_BCS_READ_STATUS 0x70
#define CFI_BCS_READ_ARRAY 0xff
static struct bootrom_var_state {
uint8_t *mmap;
uint64_t gpa;
off_t size;
uint8_t cmd;
} var = { NULL, 0, 0, CFI_BCS_READ_ARRAY };
/*
* Emulate just those CFI basic commands that will convince EDK II
* that the Firmware Volume area is writable and persistent.
*/
static int
bootrom_var_mem_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
int size, uint64_t *val, void *arg1, long arg2)
{
off_t offset;
offset = addr - var.gpa;
if (offset + size > var.size || offset < 0 || offset + size <= offset)
return (EINVAL);
if (dir == MEM_F_WRITE) {
switch (var.cmd) {
case CFI_BCS_WRITE_BYTE:
memcpy(var.mmap + offset, val, size);
var.cmd = CFI_BCS_READ_ARRAY;
break;
default:
var.cmd = *(uint8_t *)val;
}
} else {
switch (var.cmd) {
case CFI_BCS_CLEAR_STATUS:
case CFI_BCS_READ_STATUS:
memset(val, 0, size);
var.cmd = CFI_BCS_READ_ARRAY;
break;
default:
memcpy(val, var.mmap + offset, size);
break;
}
}
return (0);
}
void
init_bootrom(struct vmctx *ctx)
{
romptr = vm_create_devmem(ctx, VM_BOOTROM, "bootrom", BOOTROM_SIZE);
if (romptr == MAP_FAILED)
err(4, "%s: vm_create_devmem", __func__);
gpa_base = (1ULL << 32) - BOOTROM_SIZE;
gpa_allocbot = gpa_base;
gpa_alloctop = (1ULL << 32) - 1;
}
int
bootrom_alloc(struct vmctx *ctx, size_t len, int prot, int flags,
char **region_out, uint64_t *gpa_out)
{
static const int bootrom_valid_flags = BOOTROM_ALLOC_TOP;
vm_paddr_t gpa;
vm_ooffset_t segoff;
if (flags & ~bootrom_valid_flags) {
warnx("%s: Invalid flags: %x", __func__,
flags & ~bootrom_valid_flags);
return (EINVAL);
}
if (prot & ~_PROT_ALL) {
warnx("%s: Invalid protection: %x", __func__,
prot & ~_PROT_ALL);
return (EINVAL);
}
if (len == 0 || len > BOOTROM_SIZE) {
warnx("ROM size %zu is invalid", len);
return (EINVAL);
}
if (len & PAGE_MASK) {
warnx("ROM size %zu is not a multiple of the page size",
len);
return (EINVAL);
}
if (flags & BOOTROM_ALLOC_TOP) {
gpa = (gpa_alloctop - len) + 1;
if (gpa < gpa_allocbot) {
warnx("No room for %zu ROM in bootrom region", len);
return (ENOMEM);
}
} else {
gpa = gpa_allocbot;
if (gpa > (gpa_alloctop - len) + 1) {
warnx("No room for %zu ROM in bootrom region", len);
return (ENOMEM);
}
}
segoff = gpa - gpa_base;
if (vm_mmap_memseg(ctx, gpa, VM_BOOTROM, segoff, len, prot) != 0) {
int serrno = errno;
warn("%s: vm_mmap_mapseg", __func__);
return (serrno);
}
if (flags & BOOTROM_ALLOC_TOP)
gpa_alloctop = gpa - 1;
else
gpa_allocbot = gpa + len;
*region_out = romptr + segoff;
if (gpa_out != NULL)
*gpa_out = gpa;
return (0);
}
int
bootrom_loadrom(struct vmctx *ctx, const char *romfile)
{
struct stat sbuf;
ssize_t rlen;
off_t rom_size, var_size, total_size;
char *ptr, *varfile;
int fd, varfd, i, rv;
rv = -1;
varfd = -1;
varfile = strdup(romfile);
romfile = strsep(&varfile, ",");
fd = open(romfile, O_RDONLY);
if (fd < 0) {
EPRINTLN("Error opening bootrom \"%s\": %s",
romfile, strerror(errno));
goto done;
}
if (varfile != NULL) {
varfd = open(varfile, O_RDWR);
if (varfd < 0) {
fprintf(stderr, "Error opening bootrom variable file "
"\"%s\": %s\n", varfile, strerror(errno));
goto done;
}
}
if (fstat(fd, &sbuf) < 0) {
EPRINTLN("Could not fstat bootrom file \"%s\": %s",
romfile, strerror(errno));
goto done;
}
rom_size = sbuf.st_size;
if (varfd < 0) {
var_size = 0;
} else {
if (fstat(varfd, &sbuf) < 0) {
fprintf(stderr, "Could not fstat bootrom variable file \"%s\": %s\n",
varfile, strerror(errno));
goto done;
}
var_size = sbuf.st_size;
}
if (var_size > BOOTROM_SIZE ||
(var_size != 0 && var_size < PAGE_SIZE)) {
fprintf(stderr, "Invalid bootrom variable size %ld\n",
var_size);
goto done;
}
total_size = rom_size + var_size;
if (total_size > BOOTROM_SIZE) {
fprintf(stderr, "Invalid bootrom and variable aggregate size "
"%ld\n", total_size);
goto done;
}
/* Map the bootrom into the guest address space */
if (bootrom_alloc(ctx, rom_size, PROT_READ | PROT_EXEC,
BOOTROM_ALLOC_TOP, &ptr, NULL) != 0) {
goto done;
}
/* Read 'romfile' into the guest address space */
for (i = 0; i < rom_size / PAGE_SIZE; i++) {
rlen = read(fd, ptr + i * PAGE_SIZE, PAGE_SIZE);
if (rlen != PAGE_SIZE) {
EPRINTLN("Incomplete read of page %d of bootrom "
"file %s: %ld bytes", i, romfile, rlen);
goto done;
}
}
if (varfd >= 0) {
var.mmap = mmap(NULL, var_size, PROT_READ | PROT_WRITE,
MAP_SHARED, varfd, 0);
if (var.mmap == MAP_FAILED)
goto done;
var.size = var_size;
var.gpa = (gpa_alloctop - var_size) + 1;
gpa_alloctop = var.gpa - 1;
rv = register_mem(&(struct mem_range){
.name = "bootrom variable",
.flags = MEM_F_RW,
.handler = bootrom_var_mem_handler,
.base = var.gpa,
.size = var.size,
});
if (rv != 0)
goto done;
}
rv = 0;
done:
if (fd >= 0)
close(fd);
return (rv);
}