freebsd-nq/lib/libzfs_core/libzfs_core.c
LOLi cf7684bc8d Retire send space estimation via ZFS_IOC_SEND
Add a small wrapper around libzfs_core`lzc_send_space() to libzfs so
that every legacy ZFS_IOC_SEND consumer, along with their userland
counterpart estimate_ioctl(), can leverage ZFS_IOC_SEND_SPACE to
request send space estimation.

The legacy functionality in zfs_ioc_send() is left untouched for
compatibility purposes.

Reviewed by: Thomas Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes #6029
2017-08-31 09:00:35 -07:00

1114 lines
32 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2012, 2014 by Delphix. All rights reserved.
* Copyright (c) 2013 Steven Hartland. All rights reserved.
* Copyright (c) 2017 Datto Inc.
* Copyright 2017 RackTop Systems.
*/
/*
* LibZFS_Core (lzc) is intended to replace most functionality in libzfs.
* It has the following characteristics:
*
* - Thread Safe. libzfs_core is accessible concurrently from multiple
* threads. This is accomplished primarily by avoiding global data
* (e.g. caching). Since it's thread-safe, there is no reason for a
* process to have multiple libzfs "instances". Therefore, we store
* our few pieces of data (e.g. the file descriptor) in global
* variables. The fd is reference-counted so that the libzfs_core
* library can be "initialized" multiple times (e.g. by different
* consumers within the same process).
*
* - Committed Interface. The libzfs_core interface will be committed,
* therefore consumers can compile against it and be confident that
* their code will continue to work on future releases of this code.
* Currently, the interface is Evolving (not Committed), but we intend
* to commit to it once it is more complete and we determine that it
* meets the needs of all consumers.
*
* - Programmatic Error Handling. libzfs_core communicates errors with
* defined error numbers, and doesn't print anything to stdout/stderr.
*
* - Thin Layer. libzfs_core is a thin layer, marshaling arguments
* to/from the kernel ioctls. There is generally a 1:1 correspondence
* between libzfs_core functions and ioctls to /dev/zfs.
*
* - Clear Atomicity. Because libzfs_core functions are generally 1:1
* with kernel ioctls, and kernel ioctls are general atomic, each
* libzfs_core function is atomic. For example, creating multiple
* snapshots with a single call to lzc_snapshot() is atomic -- it
* can't fail with only some of the requested snapshots created, even
* in the event of power loss or system crash.
*
* - Continued libzfs Support. Some higher-level operations (e.g.
* support for "zfs send -R") are too complicated to fit the scope of
* libzfs_core. This functionality will continue to live in libzfs.
* Where appropriate, libzfs will use the underlying atomic operations
* of libzfs_core. For example, libzfs may implement "zfs send -R |
* zfs receive" by using individual "send one snapshot", rename,
* destroy, and "receive one snapshot" operations in libzfs_core.
* /sbin/zfs and /zbin/zpool will link with both libzfs and
* libzfs_core. Other consumers should aim to use only libzfs_core,
* since that will be the supported, stable interface going forwards.
*/
#include <libzfs_core.h>
#include <ctype.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <sys/nvpair.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/zfs_ioctl.h>
static int g_fd = -1;
static pthread_mutex_t g_lock = PTHREAD_MUTEX_INITIALIZER;
static int g_refcount;
int
libzfs_core_init(void)
{
(void) pthread_mutex_lock(&g_lock);
if (g_refcount == 0) {
g_fd = open("/dev/zfs", O_RDWR);
if (g_fd < 0) {
(void) pthread_mutex_unlock(&g_lock);
return (errno);
}
}
g_refcount++;
(void) pthread_mutex_unlock(&g_lock);
return (0);
}
void
libzfs_core_fini(void)
{
(void) pthread_mutex_lock(&g_lock);
ASSERT3S(g_refcount, >, 0);
if (g_refcount > 0)
g_refcount--;
if (g_refcount == 0 && g_fd != -1) {
(void) close(g_fd);
g_fd = -1;
}
(void) pthread_mutex_unlock(&g_lock);
}
static int
lzc_ioctl(zfs_ioc_t ioc, const char *name,
nvlist_t *source, nvlist_t **resultp)
{
zfs_cmd_t zc = {"\0"};
int error = 0;
char *packed = NULL;
size_t size = 0;
ASSERT3S(g_refcount, >, 0);
VERIFY3S(g_fd, !=, -1);
if (name != NULL)
(void) strlcpy(zc.zc_name, name, sizeof (zc.zc_name));
if (source != NULL) {
packed = fnvlist_pack(source, &size);
zc.zc_nvlist_src = (uint64_t)(uintptr_t)packed;
zc.zc_nvlist_src_size = size;
}
if (resultp != NULL) {
*resultp = NULL;
zc.zc_nvlist_dst_size = MAX(size * 2, 128 * 1024);
zc.zc_nvlist_dst = (uint64_t)(uintptr_t)
malloc(zc.zc_nvlist_dst_size);
if (zc.zc_nvlist_dst == (uint64_t)0) {
error = ENOMEM;
goto out;
}
}
while (ioctl(g_fd, ioc, &zc) != 0) {
if (errno == ENOMEM && resultp != NULL) {
free((void *)(uintptr_t)zc.zc_nvlist_dst);
zc.zc_nvlist_dst_size *= 2;
zc.zc_nvlist_dst = (uint64_t)(uintptr_t)
malloc(zc.zc_nvlist_dst_size);
if (zc.zc_nvlist_dst == (uint64_t)0) {
error = ENOMEM;
goto out;
}
} else {
error = errno;
break;
}
}
if (zc.zc_nvlist_dst_filled) {
*resultp = fnvlist_unpack((void *)(uintptr_t)zc.zc_nvlist_dst,
zc.zc_nvlist_dst_size);
}
out:
if (packed != NULL)
fnvlist_pack_free(packed, size);
free((void *)(uintptr_t)zc.zc_nvlist_dst);
return (error);
}
int
lzc_create(const char *fsname, enum lzc_dataset_type type, nvlist_t *props,
uint8_t *wkeydata, uint_t wkeylen)
{
int error;
nvlist_t *hidden_args = NULL;
nvlist_t *args = fnvlist_alloc();
fnvlist_add_int32(args, "type", (dmu_objset_type_t)type);
if (props != NULL)
fnvlist_add_nvlist(args, "props", props);
if (wkeydata != NULL) {
hidden_args = fnvlist_alloc();
fnvlist_add_uint8_array(hidden_args, "wkeydata", wkeydata,
wkeylen);
fnvlist_add_nvlist(args, ZPOOL_HIDDEN_ARGS, hidden_args);
}
error = lzc_ioctl(ZFS_IOC_CREATE, fsname, args, NULL);
nvlist_free(hidden_args);
nvlist_free(args);
return (error);
}
int
lzc_clone(const char *fsname, const char *origin, nvlist_t *props)
{
int error;
nvlist_t *hidden_args = NULL;
nvlist_t *args = fnvlist_alloc();
fnvlist_add_string(args, "origin", origin);
if (props != NULL)
fnvlist_add_nvlist(args, "props", props);
error = lzc_ioctl(ZFS_IOC_CLONE, fsname, args, NULL);
nvlist_free(hidden_args);
nvlist_free(args);
return (error);
}
int
lzc_promote(const char *fsname, char *snapnamebuf, int snapnamelen)
{
/*
* The promote ioctl is still legacy, so we need to construct our
* own zfs_cmd_t rather than using lzc_ioctl().
*/
zfs_cmd_t zc = { "\0" };
ASSERT3S(g_refcount, >, 0);
VERIFY3S(g_fd, !=, -1);
(void) strlcpy(zc.zc_name, fsname, sizeof (zc.zc_name));
if (ioctl(g_fd, ZFS_IOC_PROMOTE, &zc) != 0) {
int error = errno;
if (error == EEXIST && snapnamebuf != NULL)
(void) strlcpy(snapnamebuf, zc.zc_string, snapnamelen);
return (error);
}
return (0);
}
/*
* Creates snapshots.
*
* The keys in the snaps nvlist are the snapshots to be created.
* They must all be in the same pool.
*
* The props nvlist is properties to set. Currently only user properties
* are supported. { user:prop_name -> string value }
*
* The returned results nvlist will have an entry for each snapshot that failed.
* The value will be the (int32) error code.
*
* The return value will be 0 if all snapshots were created, otherwise it will
* be the errno of a (unspecified) snapshot that failed.
*/
int
lzc_snapshot(nvlist_t *snaps, nvlist_t *props, nvlist_t **errlist)
{
nvpair_t *elem;
nvlist_t *args;
int error;
char pool[ZFS_MAX_DATASET_NAME_LEN];
*errlist = NULL;
/* determine the pool name */
elem = nvlist_next_nvpair(snaps, NULL);
if (elem == NULL)
return (0);
(void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
pool[strcspn(pool, "/@")] = '\0';
args = fnvlist_alloc();
fnvlist_add_nvlist(args, "snaps", snaps);
if (props != NULL)
fnvlist_add_nvlist(args, "props", props);
error = lzc_ioctl(ZFS_IOC_SNAPSHOT, pool, args, errlist);
nvlist_free(args);
return (error);
}
/*
* Destroys snapshots.
*
* The keys in the snaps nvlist are the snapshots to be destroyed.
* They must all be in the same pool.
*
* Snapshots that do not exist will be silently ignored.
*
* If 'defer' is not set, and a snapshot has user holds or clones, the
* destroy operation will fail and none of the snapshots will be
* destroyed.
*
* If 'defer' is set, and a snapshot has user holds or clones, it will be
* marked for deferred destruction, and will be destroyed when the last hold
* or clone is removed/destroyed.
*
* The return value will be 0 if all snapshots were destroyed (or marked for
* later destruction if 'defer' is set) or didn't exist to begin with.
*
* Otherwise the return value will be the errno of a (unspecified) snapshot
* that failed, no snapshots will be destroyed, and the errlist will have an
* entry for each snapshot that failed. The value in the errlist will be
* the (int32) error code.
*/
int
lzc_destroy_snaps(nvlist_t *snaps, boolean_t defer, nvlist_t **errlist)
{
nvpair_t *elem;
nvlist_t *args;
int error;
char pool[ZFS_MAX_DATASET_NAME_LEN];
/* determine the pool name */
elem = nvlist_next_nvpair(snaps, NULL);
if (elem == NULL)
return (0);
(void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
pool[strcspn(pool, "/@")] = '\0';
args = fnvlist_alloc();
fnvlist_add_nvlist(args, "snaps", snaps);
if (defer)
fnvlist_add_boolean(args, "defer");
error = lzc_ioctl(ZFS_IOC_DESTROY_SNAPS, pool, args, errlist);
nvlist_free(args);
return (error);
}
int
lzc_snaprange_space(const char *firstsnap, const char *lastsnap,
uint64_t *usedp)
{
nvlist_t *args;
nvlist_t *result;
int err;
char fs[ZFS_MAX_DATASET_NAME_LEN];
char *atp;
/* determine the fs name */
(void) strlcpy(fs, firstsnap, sizeof (fs));
atp = strchr(fs, '@');
if (atp == NULL)
return (EINVAL);
*atp = '\0';
args = fnvlist_alloc();
fnvlist_add_string(args, "firstsnap", firstsnap);
err = lzc_ioctl(ZFS_IOC_SPACE_SNAPS, lastsnap, args, &result);
nvlist_free(args);
if (err == 0)
*usedp = fnvlist_lookup_uint64(result, "used");
fnvlist_free(result);
return (err);
}
boolean_t
lzc_exists(const char *dataset)
{
/*
* The objset_stats ioctl is still legacy, so we need to construct our
* own zfs_cmd_t rather than using lzc_ioctl().
*/
zfs_cmd_t zc = {"\0"};
ASSERT3S(g_refcount, >, 0);
VERIFY3S(g_fd, !=, -1);
(void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
return (ioctl(g_fd, ZFS_IOC_OBJSET_STATS, &zc) == 0);
}
/*
* outnvl is unused.
* It was added to preserve the function signature in case it is
* needed in the future.
*/
/*ARGSUSED*/
int
lzc_sync(const char *pool_name, nvlist_t *innvl, nvlist_t **outnvl)
{
return (lzc_ioctl(ZFS_IOC_POOL_SYNC, pool_name, innvl, NULL));
}
/*
* Create "user holds" on snapshots. If there is a hold on a snapshot,
* the snapshot can not be destroyed. (However, it can be marked for deletion
* by lzc_destroy_snaps(defer=B_TRUE).)
*
* The keys in the nvlist are snapshot names.
* The snapshots must all be in the same pool.
* The value is the name of the hold (string type).
*
* If cleanup_fd is not -1, it must be the result of open("/dev/zfs", O_EXCL).
* In this case, when the cleanup_fd is closed (including on process
* termination), the holds will be released. If the system is shut down
* uncleanly, the holds will be released when the pool is next opened
* or imported.
*
* Holds for snapshots which don't exist will be skipped and have an entry
* added to errlist, but will not cause an overall failure.
*
* The return value will be 0 if all holds, for snapshots that existed,
* were successfully created.
*
* Otherwise the return value will be the errno of a (unspecified) hold that
* failed and no holds will be created.
*
* In all cases the errlist will have an entry for each hold that failed
* (name = snapshot), with its value being the error code (int32).
*/
int
lzc_hold(nvlist_t *holds, int cleanup_fd, nvlist_t **errlist)
{
char pool[ZFS_MAX_DATASET_NAME_LEN];
nvlist_t *args;
nvpair_t *elem;
int error;
/* determine the pool name */
elem = nvlist_next_nvpair(holds, NULL);
if (elem == NULL)
return (0);
(void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
pool[strcspn(pool, "/@")] = '\0';
args = fnvlist_alloc();
fnvlist_add_nvlist(args, "holds", holds);
if (cleanup_fd != -1)
fnvlist_add_int32(args, "cleanup_fd", cleanup_fd);
error = lzc_ioctl(ZFS_IOC_HOLD, pool, args, errlist);
nvlist_free(args);
return (error);
}
/*
* Release "user holds" on snapshots. If the snapshot has been marked for
* deferred destroy (by lzc_destroy_snaps(defer=B_TRUE)), it does not have
* any clones, and all the user holds are removed, then the snapshot will be
* destroyed.
*
* The keys in the nvlist are snapshot names.
* The snapshots must all be in the same pool.
* The value is an nvlist whose keys are the holds to remove.
*
* Holds which failed to release because they didn't exist will have an entry
* added to errlist, but will not cause an overall failure.
*
* The return value will be 0 if the nvl holds was empty or all holds that
* existed, were successfully removed.
*
* Otherwise the return value will be the errno of a (unspecified) hold that
* failed to release and no holds will be released.
*
* In all cases the errlist will have an entry for each hold that failed to
* to release.
*/
int
lzc_release(nvlist_t *holds, nvlist_t **errlist)
{
char pool[ZFS_MAX_DATASET_NAME_LEN];
nvpair_t *elem;
/* determine the pool name */
elem = nvlist_next_nvpair(holds, NULL);
if (elem == NULL)
return (0);
(void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
pool[strcspn(pool, "/@")] = '\0';
return (lzc_ioctl(ZFS_IOC_RELEASE, pool, holds, errlist));
}
/*
* Retrieve list of user holds on the specified snapshot.
*
* On success, *holdsp will be set to an nvlist which the caller must free.
* The keys are the names of the holds, and the value is the creation time
* of the hold (uint64) in seconds since the epoch.
*/
int
lzc_get_holds(const char *snapname, nvlist_t **holdsp)
{
return (lzc_ioctl(ZFS_IOC_GET_HOLDS, snapname, NULL, holdsp));
}
/*
* Generate a zfs send stream for the specified snapshot and write it to
* the specified file descriptor.
*
* "snapname" is the full name of the snapshot to send (e.g. "pool/fs@snap")
*
* If "from" is NULL, a full (non-incremental) stream will be sent.
* If "from" is non-NULL, it must be the full name of a snapshot or
* bookmark to send an incremental from (e.g. "pool/fs@earlier_snap" or
* "pool/fs#earlier_bmark"). If non-NULL, the specified snapshot or
* bookmark must represent an earlier point in the history of "snapname").
* It can be an earlier snapshot in the same filesystem or zvol as "snapname",
* or it can be the origin of "snapname"'s filesystem, or an earlier
* snapshot in the origin, etc.
*
* "fd" is the file descriptor to write the send stream to.
*
* If "flags" contains LZC_SEND_FLAG_LARGE_BLOCK, the stream is permitted
* to contain DRR_WRITE records with drr_length > 128K, and DRR_OBJECT
* records with drr_blksz > 128K.
*
* If "flags" contains LZC_SEND_FLAG_EMBED_DATA, the stream is permitted
* to contain DRR_WRITE_EMBEDDED records with drr_etype==BP_EMBEDDED_TYPE_DATA,
* which the receiving system must support (as indicated by support
* for the "embedded_data" feature).
*/
int
lzc_send(const char *snapname, const char *from, int fd,
enum lzc_send_flags flags)
{
return (lzc_send_resume(snapname, from, fd, flags, 0, 0));
}
int
lzc_send_resume(const char *snapname, const char *from, int fd,
enum lzc_send_flags flags, uint64_t resumeobj, uint64_t resumeoff)
{
nvlist_t *args;
int err;
args = fnvlist_alloc();
fnvlist_add_int32(args, "fd", fd);
if (from != NULL)
fnvlist_add_string(args, "fromsnap", from);
if (flags & LZC_SEND_FLAG_LARGE_BLOCK)
fnvlist_add_boolean(args, "largeblockok");
if (flags & LZC_SEND_FLAG_EMBED_DATA)
fnvlist_add_boolean(args, "embedok");
if (flags & LZC_SEND_FLAG_COMPRESS)
fnvlist_add_boolean(args, "compressok");
if (flags & LZC_SEND_FLAG_RAW)
fnvlist_add_boolean(args, "rawok");
if (resumeobj != 0 || resumeoff != 0) {
fnvlist_add_uint64(args, "resume_object", resumeobj);
fnvlist_add_uint64(args, "resume_offset", resumeoff);
}
err = lzc_ioctl(ZFS_IOC_SEND_NEW, snapname, args, NULL);
nvlist_free(args);
return (err);
}
/*
* "from" can be NULL, a snapshot, or a bookmark.
*
* If from is NULL, a full (non-incremental) stream will be estimated. This
* is calculated very efficiently.
*
* If from is a snapshot, lzc_send_space uses the deadlists attached to
* each snapshot to efficiently estimate the stream size.
*
* If from is a bookmark, the indirect blocks in the destination snapshot
* are traversed, looking for blocks with a birth time since the creation TXG of
* the snapshot this bookmark was created from. This will result in
* significantly more I/O and be less efficient than a send space estimation on
* an equivalent snapshot.
*/
int
lzc_send_space(const char *snapname, const char *from,
enum lzc_send_flags flags, uint64_t *spacep)
{
nvlist_t *args;
nvlist_t *result;
int err;
args = fnvlist_alloc();
if (from != NULL)
fnvlist_add_string(args, "from", from);
if (flags & LZC_SEND_FLAG_LARGE_BLOCK)
fnvlist_add_boolean(args, "largeblockok");
if (flags & LZC_SEND_FLAG_EMBED_DATA)
fnvlist_add_boolean(args, "embedok");
if (flags & LZC_SEND_FLAG_COMPRESS)
fnvlist_add_boolean(args, "compressok");
if (flags & LZC_SEND_FLAG_RAW)
fnvlist_add_boolean(args, "rawok");
err = lzc_ioctl(ZFS_IOC_SEND_SPACE, snapname, args, &result);
nvlist_free(args);
if (err == 0)
*spacep = fnvlist_lookup_uint64(result, "space");
nvlist_free(result);
return (err);
}
static int
recv_read(int fd, void *buf, int ilen)
{
char *cp = buf;
int rv;
int len = ilen;
do {
rv = read(fd, cp, len);
cp += rv;
len -= rv;
} while (rv > 0);
if (rv < 0 || len != 0)
return (EIO);
return (0);
}
/*
* Linux adds ZFS_IOC_RECV_NEW for resumable and raw streams and preserves the
* legacy ZFS_IOC_RECV user/kernel interface. The new interface supports all
* stream options but is currently only used for resumable streams. This way
* updated user space utilities will interoperate with older kernel modules.
*
* Non-Linux OpenZFS platforms have opted to modify the legacy interface.
*/
static int
recv_impl(const char *snapname, nvlist_t *recvdprops, nvlist_t *localprops,
const char *origin, boolean_t force, boolean_t resumable, boolean_t raw,
int input_fd, const dmu_replay_record_t *begin_record, int cleanup_fd,
uint64_t *read_bytes, uint64_t *errflags, uint64_t *action_handle,
nvlist_t **errors)
{
dmu_replay_record_t drr;
char fsname[MAXPATHLEN];
char *atp;
int error;
ASSERT3S(g_refcount, >, 0);
VERIFY3S(g_fd, !=, -1);
/* Set 'fsname' to the name of containing filesystem */
(void) strlcpy(fsname, snapname, sizeof (fsname));
atp = strchr(fsname, '@');
if (atp == NULL)
return (EINVAL);
*atp = '\0';
/* If the fs does not exist, try its parent. */
if (!lzc_exists(fsname)) {
char *slashp = strrchr(fsname, '/');
if (slashp == NULL)
return (ENOENT);
*slashp = '\0';
}
/*
* The begin_record is normally a non-byteswapped BEGIN record.
* For resumable streams it may be set to any non-byteswapped
* dmu_replay_record_t.
*/
if (begin_record == NULL) {
error = recv_read(input_fd, &drr, sizeof (drr));
if (error != 0)
return (error);
} else {
drr = *begin_record;
}
if (resumable || raw) {
nvlist_t *outnvl = NULL;
nvlist_t *innvl = fnvlist_alloc();
fnvlist_add_string(innvl, "snapname", snapname);
if (recvdprops != NULL)
fnvlist_add_nvlist(innvl, "props", recvdprops);
if (localprops != NULL)
fnvlist_add_nvlist(innvl, "localprops", localprops);
if (origin != NULL && strlen(origin))
fnvlist_add_string(innvl, "origin", origin);
fnvlist_add_byte_array(innvl, "begin_record",
(uchar_t *)&drr, sizeof (drr));
fnvlist_add_int32(innvl, "input_fd", input_fd);
if (force)
fnvlist_add_boolean(innvl, "force");
if (resumable)
fnvlist_add_boolean(innvl, "resumable");
if (cleanup_fd >= 0)
fnvlist_add_int32(innvl, "cleanup_fd", cleanup_fd);
if (action_handle != NULL)
fnvlist_add_uint64(innvl, "action_handle",
*action_handle);
error = lzc_ioctl(ZFS_IOC_RECV_NEW, fsname, innvl, &outnvl);
if (error == 0 && read_bytes != NULL)
error = nvlist_lookup_uint64(outnvl, "read_bytes",
read_bytes);
if (error == 0 && errflags != NULL)
error = nvlist_lookup_uint64(outnvl, "error_flags",
errflags);
if (error == 0 && action_handle != NULL)
error = nvlist_lookup_uint64(outnvl, "action_handle",
action_handle);
if (error == 0 && errors != NULL) {
nvlist_t *nvl;
error = nvlist_lookup_nvlist(outnvl, "errors", &nvl);
if (error == 0)
*errors = fnvlist_dup(nvl);
}
fnvlist_free(innvl);
fnvlist_free(outnvl);
} else {
zfs_cmd_t zc = {"\0"};
char *packed = NULL;
size_t size;
ASSERT3S(g_refcount, >, 0);
(void) strlcpy(zc.zc_name, fsname, sizeof (zc.zc_value));
(void) strlcpy(zc.zc_value, snapname, sizeof (zc.zc_value));
if (recvdprops != NULL) {
packed = fnvlist_pack(recvdprops, &size);
zc.zc_nvlist_src = (uint64_t)(uintptr_t)packed;
zc.zc_nvlist_src_size = size;
}
if (localprops != NULL) {
packed = fnvlist_pack(localprops, &size);
zc.zc_nvlist_conf = (uint64_t)(uintptr_t)packed;
zc.zc_nvlist_conf_size = size;
}
if (origin != NULL)
(void) strlcpy(zc.zc_string, origin,
sizeof (zc.zc_string));
ASSERT3S(drr.drr_type, ==, DRR_BEGIN);
zc.zc_begin_record = drr.drr_u.drr_begin;
zc.zc_guid = force;
zc.zc_cookie = input_fd;
zc.zc_cleanup_fd = -1;
zc.zc_action_handle = 0;
if (cleanup_fd >= 0)
zc.zc_cleanup_fd = cleanup_fd;
if (action_handle != NULL)
zc.zc_action_handle = *action_handle;
zc.zc_nvlist_dst_size = 128 * 1024;
zc.zc_nvlist_dst = (uint64_t)(uintptr_t)
malloc(zc.zc_nvlist_dst_size);
error = ioctl(g_fd, ZFS_IOC_RECV, &zc);
if (error != 0) {
error = errno;
} else {
if (read_bytes != NULL)
*read_bytes = zc.zc_cookie;
if (errflags != NULL)
*errflags = zc.zc_obj;
if (action_handle != NULL)
*action_handle = zc.zc_action_handle;
if (errors != NULL)
VERIFY0(nvlist_unpack(
(void *)(uintptr_t)zc.zc_nvlist_dst,
zc.zc_nvlist_dst_size, errors, KM_SLEEP));
}
if (packed != NULL)
fnvlist_pack_free(packed, size);
free((void *)(uintptr_t)zc.zc_nvlist_dst);
}
return (error);
}
/*
* The simplest receive case: receive from the specified fd, creating the
* specified snapshot. Apply the specified properties as "received" properties
* (which can be overridden by locally-set properties). If the stream is a
* clone, its origin snapshot must be specified by 'origin'. The 'force'
* flag will cause the target filesystem to be rolled back or destroyed if
* necessary to receive.
*
* Return 0 on success or an errno on failure.
*
* Note: this interface does not work on dedup'd streams
* (those with DMU_BACKUP_FEATURE_DEDUP).
*/
int
lzc_receive(const char *snapname, nvlist_t *props, const char *origin,
boolean_t force, boolean_t raw, int fd)
{
return (recv_impl(snapname, props, NULL, origin, force, B_FALSE, raw,
fd, NULL, -1, NULL, NULL, NULL, NULL));
}
/*
* Like lzc_receive, but if the receive fails due to premature stream
* termination, the intermediate state will be preserved on disk. In this
* case, ECKSUM will be returned. The receive may subsequently be resumed
* with a resuming send stream generated by lzc_send_resume().
*/
int
lzc_receive_resumable(const char *snapname, nvlist_t *props, const char *origin,
boolean_t force, boolean_t raw, int fd)
{
return (recv_impl(snapname, props, NULL, origin, force, B_TRUE, raw,
fd, NULL, -1, NULL, NULL, NULL, NULL));
}
/*
* Like lzc_receive, but allows the caller to read the begin record and then to
* pass it in. That could be useful if the caller wants to derive, for example,
* the snapname or the origin parameters based on the information contained in
* the begin record.
* The begin record must be in its original form as read from the stream,
* in other words, it should not be byteswapped.
*
* The 'resumable' parameter allows to obtain the same behavior as with
* lzc_receive_resumable.
*/
int
lzc_receive_with_header(const char *snapname, nvlist_t *props,
const char *origin, boolean_t force, boolean_t resumable, boolean_t raw,
int fd, const dmu_replay_record_t *begin_record)
{
if (begin_record == NULL)
return (EINVAL);
return (recv_impl(snapname, props, NULL, origin, force, resumable, raw,
fd, begin_record, -1, NULL, NULL, NULL, NULL));
}
/*
* Like lzc_receive, but allows the caller to pass all supported arguments
* and retrieve all values returned. The only additional input parameter
* is 'cleanup_fd' which is used to set a cleanup-on-exit file descriptor.
*
* The following parameters all provide return values. Several may be set
* in the failure case and will contain additional information.
*
* The 'read_bytes' value will be set to the total number of bytes read.
*
* The 'errflags' value will contain zprop_errflags_t flags which are
* used to describe any failures.
*
* The 'action_handle' is used to pass the handle for this guid/ds mapping.
* It should be set to zero on first call and will contain an updated handle
* on success, it should be passed in subsequent calls.
*
* The 'errors' nvlist contains an entry for each unapplied received
* property. Callers are responsible for freeing this nvlist.
*/
int lzc_receive_one(const char *snapname, nvlist_t *props,
const char *origin, boolean_t force, boolean_t resumable, boolean_t raw,
int input_fd, const dmu_replay_record_t *begin_record, int cleanup_fd,
uint64_t *read_bytes, uint64_t *errflags, uint64_t *action_handle,
nvlist_t **errors)
{
return (recv_impl(snapname, props, NULL, origin, force, resumable,
raw, input_fd, begin_record, cleanup_fd, read_bytes, errflags,
action_handle, errors));
}
/*
* Like lzc_receive_one, but allows the caller to pass an additional 'cmdprops'
* argument.
*
* The 'cmdprops' nvlist contains both override ('zfs receive -o') and
* exclude ('zfs receive -x') properties. Callers are responsible for freeing
* this nvlist
*/
int lzc_receive_with_cmdprops(const char *snapname, nvlist_t *props,
nvlist_t *cmdprops, const char *origin, boolean_t force,
boolean_t resumable, boolean_t raw, int input_fd,
const dmu_replay_record_t *begin_record, int cleanup_fd,
uint64_t *read_bytes, uint64_t *errflags, uint64_t *action_handle,
nvlist_t **errors)
{
return (recv_impl(snapname, props, cmdprops, origin, force, resumable,
raw, input_fd, begin_record, cleanup_fd, read_bytes, errflags,
action_handle, errors));
}
/*
* Roll back this filesystem or volume to its most recent snapshot.
* If snapnamebuf is not NULL, it will be filled in with the name
* of the most recent snapshot.
* Note that the latest snapshot may change if a new one is concurrently
* created or the current one is destroyed. lzc_rollback_to can be used
* to roll back to a specific latest snapshot.
*
* Return 0 on success or an errno on failure.
*/
int
lzc_rollback(const char *fsname, char *snapnamebuf, int snapnamelen)
{
nvlist_t *args;
nvlist_t *result;
int err;
args = fnvlist_alloc();
err = lzc_ioctl(ZFS_IOC_ROLLBACK, fsname, args, &result);
nvlist_free(args);
if (err == 0 && snapnamebuf != NULL) {
const char *snapname = fnvlist_lookup_string(result, "target");
(void) strlcpy(snapnamebuf, snapname, snapnamelen);
}
nvlist_free(result);
return (err);
}
/*
* Roll back this filesystem or volume to the specified snapshot,
* if possible.
*
* Return 0 on success or an errno on failure.
*/
int
lzc_rollback_to(const char *fsname, const char *snapname)
{
nvlist_t *args;
nvlist_t *result;
int err;
args = fnvlist_alloc();
fnvlist_add_string(args, "target", snapname);
err = lzc_ioctl(ZFS_IOC_ROLLBACK, fsname, args, &result);
nvlist_free(args);
nvlist_free(result);
return (err);
}
/*
* Creates bookmarks.
*
* The bookmarks nvlist maps from name of the bookmark (e.g. "pool/fs#bmark") to
* the name of the snapshot (e.g. "pool/fs@snap"). All the bookmarks and
* snapshots must be in the same pool.
*
* The returned results nvlist will have an entry for each bookmark that failed.
* The value will be the (int32) error code.
*
* The return value will be 0 if all bookmarks were created, otherwise it will
* be the errno of a (undetermined) bookmarks that failed.
*/
int
lzc_bookmark(nvlist_t *bookmarks, nvlist_t **errlist)
{
nvpair_t *elem;
int error;
char pool[ZFS_MAX_DATASET_NAME_LEN];
/* determine the pool name */
elem = nvlist_next_nvpair(bookmarks, NULL);
if (elem == NULL)
return (0);
(void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
pool[strcspn(pool, "/#")] = '\0';
error = lzc_ioctl(ZFS_IOC_BOOKMARK, pool, bookmarks, errlist);
return (error);
}
/*
* Retrieve bookmarks.
*
* Retrieve the list of bookmarks for the given file system. The props
* parameter is an nvlist of property names (with no values) that will be
* returned for each bookmark.
*
* The following are valid properties on bookmarks, all of which are numbers
* (represented as uint64 in the nvlist)
*
* "guid" - globally unique identifier of the snapshot it refers to
* "createtxg" - txg when the snapshot it refers to was created
* "creation" - timestamp when the snapshot it refers to was created
*
* The format of the returned nvlist as follows:
* <short name of bookmark> -> {
* <name of property> -> {
* "value" -> uint64
* }
* }
*/
int
lzc_get_bookmarks(const char *fsname, nvlist_t *props, nvlist_t **bmarks)
{
return (lzc_ioctl(ZFS_IOC_GET_BOOKMARKS, fsname, props, bmarks));
}
/*
* Destroys bookmarks.
*
* The keys in the bmarks nvlist are the bookmarks to be destroyed.
* They must all be in the same pool. Bookmarks are specified as
* <fs>#<bmark>.
*
* Bookmarks that do not exist will be silently ignored.
*
* The return value will be 0 if all bookmarks that existed were destroyed.
*
* Otherwise the return value will be the errno of a (undetermined) bookmark
* that failed, no bookmarks will be destroyed, and the errlist will have an
* entry for each bookmarks that failed. The value in the errlist will be
* the (int32) error code.
*/
int
lzc_destroy_bookmarks(nvlist_t *bmarks, nvlist_t **errlist)
{
nvpair_t *elem;
int error;
char pool[ZFS_MAX_DATASET_NAME_LEN];
/* determine the pool name */
elem = nvlist_next_nvpair(bmarks, NULL);
if (elem == NULL)
return (0);
(void) strlcpy(pool, nvpair_name(elem), sizeof (pool));
pool[strcspn(pool, "/#")] = '\0';
error = lzc_ioctl(ZFS_IOC_DESTROY_BOOKMARKS, pool, bmarks, errlist);
return (error);
}
/*
* Performs key management functions
*
* crypto_cmd should be a value from zfs_ioc_crypto_cmd_t. If the command
* specifies to load or change a wrapping key, the key should be specified in
* the hidden_args nvlist so that it is not logged
*/
int
lzc_load_key(const char *fsname, boolean_t noop, uint8_t *wkeydata,
uint_t wkeylen)
{
int error;
nvlist_t *ioc_args;
nvlist_t *hidden_args;
if (wkeydata == NULL)
return (EINVAL);
ioc_args = fnvlist_alloc();
hidden_args = fnvlist_alloc();
fnvlist_add_uint8_array(hidden_args, "wkeydata", wkeydata, wkeylen);
fnvlist_add_nvlist(ioc_args, ZPOOL_HIDDEN_ARGS, hidden_args);
if (noop)
fnvlist_add_boolean(ioc_args, "noop");
error = lzc_ioctl(ZFS_IOC_LOAD_KEY, fsname, ioc_args, NULL);
nvlist_free(hidden_args);
nvlist_free(ioc_args);
return (error);
}
int
lzc_unload_key(const char *fsname)
{
return (lzc_ioctl(ZFS_IOC_UNLOAD_KEY, fsname, NULL, NULL));
}
int
lzc_change_key(const char *fsname, uint64_t crypt_cmd, nvlist_t *props,
uint8_t *wkeydata, uint_t wkeylen)
{
int error;
nvlist_t *ioc_args = fnvlist_alloc();
nvlist_t *hidden_args = NULL;
fnvlist_add_uint64(ioc_args, "crypt_cmd", crypt_cmd);
if (wkeydata != NULL) {
hidden_args = fnvlist_alloc();
fnvlist_add_uint8_array(hidden_args, "wkeydata", wkeydata,
wkeylen);
fnvlist_add_nvlist(ioc_args, ZPOOL_HIDDEN_ARGS, hidden_args);
}
if (props != NULL)
fnvlist_add_nvlist(ioc_args, "props", props);
error = lzc_ioctl(ZFS_IOC_CHANGE_KEY, fsname, ioc_args, NULL);
nvlist_free(hidden_args);
nvlist_free(ioc_args);
return (error);
}