freebsd-nq/lib/libarchive/test/test_tar_large.c
Tim Kientzle 2a5e8d812c Extensive improvements to the libarchive_test test program that
exercises and verifies the libarchive APIs:

* Improved error reporting; hexdumps are now provided for
  many file/memory content differences.
* Overall status more clearly counts "tests" and "assertions"
* Reference files can now be stored on disk instead of having
  to be compiled into the test program itself.  A couple of
  tests have been converted to this more natural structure.
* Several memory leaks corrected so that leaks within libarchive
  itself can be more easily detected and diagnosed.
* New test: GNU tar compatibility
* New test: Zip compatibility
* New test: Zero-byte writes to a compressed archive entry
* New test: archive_entry_strmode() format verification
* New test: mtree reader
* New test: write/read of large (2G - 1TB) entries to tar archives
  (thanks to recent performance work, this test only requires a few seconds)
* New test: detailed format verification of cpio odc and newc writers
* Many minor additions/improvements to existing tests as well.
2008-01-01 22:28:04 +00:00

310 lines
8.4 KiB
C

/*-
* Copyright (c) 2003-2007 Tim Kientzle
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "test.h"
__FBSDID("$FreeBSD$");
#include <errno.h>
#include <stdlib.h>
#include <string.h>
/*
* This is a somewhat tricky test that verifies the ability to
* write and read very large entries to tar archives. It
* writes entries from 2GB up to 1TB to an archive in memory.
* The memory storage here carefully avoids actually storing
* any part of the file bodies, so it runs very quickly and requires
* very little memory. If you're willing to wait a few minutes,
* you should be able to exercise petabyte entries with this code.
*/
/*
* Each file is built up by duplicating the following block.
*/
static size_t filedatasize;
static void *filedata;
/*
* We store the archive as blocks of data generated by libarchive,
* each possibly followed by bytes of file data.
*/
struct memblock {
struct memblock *next;
size_t size;
void *buff;
off_t filebytes;
};
/*
* The total memory store is just a list of memblocks plus
* some accounting overhead.
*/
struct memdata {
off_t filebytes;
void *buff;
struct memblock *first;
struct memblock *last;
};
/* The following size definitions simplify things below. */
#define KB ((off_t)1024)
#define MB ((off_t)1024 * KB)
#define GB ((off_t)1024 * MB)
#define TB ((off_t)1024 * GB)
#if ARCHIVE_API_VERSION < 2
static ssize_t memory_read_skip(struct archive *, void *, size_t request);
#else
static off_t memory_read_skip(struct archive *, void *, off_t request);
#endif
static ssize_t memory_read(struct archive *, void *, const void **buff);
static ssize_t memory_write(struct archive *, void *, const void *, size_t);
static ssize_t
memory_write(struct archive *a, void *_private, const void *buff, size_t size)
{
struct memdata *private = _private;
struct memblock *block;
(void)a;
/*
* Since libarchive tries to behave in a zero-copy manner, if
* you give a pointer to filedata to the library, a pointer
* into that data will (usually) pop out here. This way, we
* can tell the difference between filedata and library header
* and metadata.
*/
if ((const char *)filedata <= (const char *)buff
&& (const char *)buff < (const char *)filedata + filedatasize) {
/* We don't need to store a block of file data. */
private->last->filebytes += size;
} else {
/* Yes, we're assuming the very first write is metadata. */
/* It's header or metadata, copy and save it. */
block = (struct memblock *)malloc(sizeof(*block));
memset(block, 0, sizeof(*block));
block->size = size;
block->buff = malloc(size);
memcpy(block->buff, buff, size);
if (private->last == NULL) {
private->first = private->last = block;
} else {
private->last->next = block;
private->last = block;
}
block->next = NULL;
}
return (size);
}
static ssize_t
memory_read(struct archive *a, void *_private, const void **buff)
{
struct memdata *private = _private;
struct memblock *block;
ssize_t size;
(void)a;
free(private->buff);
private->buff = NULL;
if (private->first == NULL) {
private->last = NULL;
return (ARCHIVE_EOF);
}
if (private->filebytes > 0) {
/*
* We're returning file bytes, simulate it by
* passing blocks from the template data.
*/
if (private->filebytes > (off_t)filedatasize)
size = filedatasize;
else
size = (ssize_t)private->filebytes;
private->filebytes -= size;
*buff = filedata;
} else {
/*
* We need to get some real data to return.
*/
block = private->first;
private->first = block->next;
size = block->size;
if (block->buff != NULL) {
private->buff = block->buff;
*buff = block->buff;
} else {
private->buff = NULL;
*buff = filedata;
}
private->filebytes = block->filebytes;
free(block);
}
return (size);
}
#if ARCHIVE_API_VERSION < 2
static ssize_t
memory_read_skip(struct archive *a, void *private, size_t skip)
{
(void)a; /* UNUSED */
(void)private; /* UNUSED */
(void)skip; /* UNUSED */
return (0);
}
#else
static off_t
memory_read_skip(struct archive *a, void *_private, off_t skip)
#endif
{
struct memdata *private = _private;
(void)a;
if (private->first == NULL) {
private->last = NULL;
return (0);
}
if (private->filebytes > 0) {
if (private->filebytes < skip)
skip = private->filebytes;
private->filebytes -= skip;
} else {
skip = 0;
}
return (skip);
}
DEFINE_TEST(test_tar_large)
{
/* The sizes of the entries we're going to generate. */
static off_t tests[] = {
/* Test for 32-bit signed overflow. */
2 * GB - 1, 2 * GB, 2 * GB + 1,
/* Test for 32-bit unsigned overflow. */
4 * GB - 1, 4 * GB, 4 * GB + 1,
/* 8GB is the "official" max for ustar. */
8 * GB - 1, 8 * GB, 8 * GB + 1,
/* Bend ustar a tad and you can get 64GB (12 octal digits). */
64 * GB - 1, 64 * GB,
/* And larger entries that require non-ustar extensions. */
256 * GB, 1 * TB, 0 };
int i;
char namebuff[64];
struct memdata memdata;
struct archive_entry *ae;
struct archive *a;
off_t filesize, writesize;
filedatasize = 1 * MB;
filedata = malloc(filedatasize);
memset(filedata, 0xAA, filedatasize);
memset(&memdata, 0, sizeof(memdata));
/*
* Open an archive for writing.
*/
a = archive_write_new();
archive_write_set_format_pax_restricted(a);
archive_write_set_bytes_per_block(a, 0); /* No buffering. */
archive_write_open(a, &memdata, NULL, memory_write, NULL);
/*
* Write a series of large files to it.
*/
for (i = 0; tests[i] > 0; i++) {
assert((ae = archive_entry_new()) != NULL);
sprintf(namebuff, "file_%d", i);
archive_entry_copy_pathname(ae, namebuff);
archive_entry_set_mode(ae, S_IFREG | 0755);
filesize = tests[i];
archive_entry_set_size(ae, filesize);
assertA(0 == archive_write_header(a, ae));
archive_entry_free(ae);
/*
* Write the actual data to the archive.
*/
while (filesize > 0) {
writesize = filedatasize;
if (writesize > filesize)
writesize = filesize;
assertA(writesize == archive_write_data(a, filedata, writesize));
filesize -= writesize;
}
}
assert((ae = archive_entry_new()) != NULL);
archive_entry_copy_pathname(ae, "lastfile");
archive_entry_set_mode(ae, S_IFREG | 0755);
assertA(0 == archive_write_header(a, ae));
archive_entry_free(ae);
/* Close out the archive. */
assertA(0 == archive_write_close(a));
#if ARCHIVE_API_VERSION > 1
assertA(0 == archive_write_finish(a));
#else
archive_write_finish(a);
#endif
/*
* Open the same archive for reading.
*/
a = archive_read_new();
archive_read_support_format_tar(a);
archive_read_open2(a, &memdata, NULL,
memory_read, memory_read_skip, NULL);
/*
* Read entries back.
*/
for (i = 0; tests[i] > 0; i++) {
assertEqualIntA(a, 0, archive_read_next_header(a, &ae));
sprintf(namebuff, "file_%d", i);
assertEqualString(namebuff, archive_entry_pathname(ae));
assert(tests[i] == archive_entry_size(ae));
}
assertEqualIntA(a, 0, archive_read_next_header(a, &ae));
assertEqualString("lastfile", archive_entry_pathname(ae));
assertEqualIntA(a, ARCHIVE_EOF, archive_read_next_header(a, &ae));
/* Close out the archive. */
assertA(0 == archive_read_close(a));
#if ARCHIVE_API_VERSION > 1
assertA(0 == archive_read_finish(a));
#else
archive_read_finish(a);
#endif
free(memdata.buff);
free(filedata);
}