50e2347e68
For UP, we were using $tmp_stk as a stack from the data section. If the kernel text section grew beyond ~3MB, the data section would be pushed beyond the temporary 4MB P==V mapping. This would cause the trampoline up to high memory to fault. The hack workaround I did was to use all of the page table pages that we already have while preparing the initial P==V mapping, instead of just the first one. For SMP, the AP bootstrap process suffered the same sort of problem and got the same treatment. MFC candidate - this breaks on 4.x just the same.. Thanks to: Richard Todd <rmtodd@ichotolot.servalan.com>
2901 lines
68 KiB
C
2901 lines
68 KiB
C
/*
|
|
* Copyright (c) 1996, by Steve Passe
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. The name of the developer may NOT be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "opt_cpu.h"
|
|
|
|
#ifdef SMP
|
|
#include <machine/smptests.h>
|
|
#else
|
|
#error
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/memrange.h>
|
|
#include <sys/mutex.h>
|
|
#ifdef BETTER_CLOCK
|
|
#include <sys/dkstat.h>
|
|
#endif
|
|
#include <sys/cons.h> /* cngetc() */
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_extern.h>
|
|
#ifdef BETTER_CLOCK
|
|
#include <sys/lock.h>
|
|
#include <vm/vm_map.h>
|
|
#include <sys/user.h>
|
|
#ifdef GPROF
|
|
#include <sys/gmon.h>
|
|
#endif
|
|
#endif
|
|
|
|
#include <machine/smp.h>
|
|
#include <machine/apic.h>
|
|
#include <machine/atomic.h>
|
|
#include <machine/cpufunc.h>
|
|
#include <machine/mpapic.h>
|
|
#include <machine/psl.h>
|
|
#include <machine/segments.h>
|
|
#include <machine/smptests.h> /** TEST_DEFAULT_CONFIG, TEST_TEST1 */
|
|
#include <machine/tss.h>
|
|
#include <machine/specialreg.h>
|
|
#include <machine/globaldata.h>
|
|
|
|
#if defined(APIC_IO)
|
|
#include <machine/md_var.h> /* setidt() */
|
|
#include <i386/isa/icu.h> /* IPIs */
|
|
#include <i386/isa/intr_machdep.h> /* IPIs */
|
|
#endif /* APIC_IO */
|
|
|
|
#if defined(TEST_DEFAULT_CONFIG)
|
|
#define MPFPS_MPFB1 TEST_DEFAULT_CONFIG
|
|
#else
|
|
#define MPFPS_MPFB1 mpfps->mpfb1
|
|
#endif /* TEST_DEFAULT_CONFIG */
|
|
|
|
#define WARMBOOT_TARGET 0
|
|
#define WARMBOOT_OFF (KERNBASE + 0x0467)
|
|
#define WARMBOOT_SEG (KERNBASE + 0x0469)
|
|
|
|
#ifdef PC98
|
|
#define BIOS_BASE (0xe8000)
|
|
#define BIOS_SIZE (0x18000)
|
|
#else
|
|
#define BIOS_BASE (0xf0000)
|
|
#define BIOS_SIZE (0x10000)
|
|
#endif
|
|
#define BIOS_COUNT (BIOS_SIZE/4)
|
|
|
|
#define CMOS_REG (0x70)
|
|
#define CMOS_DATA (0x71)
|
|
#define BIOS_RESET (0x0f)
|
|
#define BIOS_WARM (0x0a)
|
|
|
|
#define PROCENTRY_FLAG_EN 0x01
|
|
#define PROCENTRY_FLAG_BP 0x02
|
|
#define IOAPICENTRY_FLAG_EN 0x01
|
|
|
|
|
|
/* MP Floating Pointer Structure */
|
|
typedef struct MPFPS {
|
|
char signature[4];
|
|
void *pap;
|
|
u_char length;
|
|
u_char spec_rev;
|
|
u_char checksum;
|
|
u_char mpfb1;
|
|
u_char mpfb2;
|
|
u_char mpfb3;
|
|
u_char mpfb4;
|
|
u_char mpfb5;
|
|
} *mpfps_t;
|
|
|
|
/* MP Configuration Table Header */
|
|
typedef struct MPCTH {
|
|
char signature[4];
|
|
u_short base_table_length;
|
|
u_char spec_rev;
|
|
u_char checksum;
|
|
u_char oem_id[8];
|
|
u_char product_id[12];
|
|
void *oem_table_pointer;
|
|
u_short oem_table_size;
|
|
u_short entry_count;
|
|
void *apic_address;
|
|
u_short extended_table_length;
|
|
u_char extended_table_checksum;
|
|
u_char reserved;
|
|
} *mpcth_t;
|
|
|
|
|
|
typedef struct PROCENTRY {
|
|
u_char type;
|
|
u_char apic_id;
|
|
u_char apic_version;
|
|
u_char cpu_flags;
|
|
u_long cpu_signature;
|
|
u_long feature_flags;
|
|
u_long reserved1;
|
|
u_long reserved2;
|
|
} *proc_entry_ptr;
|
|
|
|
typedef struct BUSENTRY {
|
|
u_char type;
|
|
u_char bus_id;
|
|
char bus_type[6];
|
|
} *bus_entry_ptr;
|
|
|
|
typedef struct IOAPICENTRY {
|
|
u_char type;
|
|
u_char apic_id;
|
|
u_char apic_version;
|
|
u_char apic_flags;
|
|
void *apic_address;
|
|
} *io_apic_entry_ptr;
|
|
|
|
typedef struct INTENTRY {
|
|
u_char type;
|
|
u_char int_type;
|
|
u_short int_flags;
|
|
u_char src_bus_id;
|
|
u_char src_bus_irq;
|
|
u_char dst_apic_id;
|
|
u_char dst_apic_int;
|
|
} *int_entry_ptr;
|
|
|
|
/* descriptions of MP basetable entries */
|
|
typedef struct BASETABLE_ENTRY {
|
|
u_char type;
|
|
u_char length;
|
|
char name[16];
|
|
} basetable_entry;
|
|
|
|
/*
|
|
* this code MUST be enabled here and in mpboot.s.
|
|
* it follows the very early stages of AP boot by placing values in CMOS ram.
|
|
* it NORMALLY will never be needed and thus the primitive method for enabling.
|
|
*
|
|
#define CHECK_POINTS
|
|
*/
|
|
|
|
#if defined(CHECK_POINTS) && !defined(PC98)
|
|
#define CHECK_READ(A) (outb(CMOS_REG, (A)), inb(CMOS_DATA))
|
|
#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
|
|
|
|
#define CHECK_INIT(D); \
|
|
CHECK_WRITE(0x34, (D)); \
|
|
CHECK_WRITE(0x35, (D)); \
|
|
CHECK_WRITE(0x36, (D)); \
|
|
CHECK_WRITE(0x37, (D)); \
|
|
CHECK_WRITE(0x38, (D)); \
|
|
CHECK_WRITE(0x39, (D));
|
|
|
|
#define CHECK_PRINT(S); \
|
|
printf("%s: %d, %d, %d, %d, %d, %d\n", \
|
|
(S), \
|
|
CHECK_READ(0x34), \
|
|
CHECK_READ(0x35), \
|
|
CHECK_READ(0x36), \
|
|
CHECK_READ(0x37), \
|
|
CHECK_READ(0x38), \
|
|
CHECK_READ(0x39));
|
|
|
|
#else /* CHECK_POINTS */
|
|
|
|
#define CHECK_INIT(D)
|
|
#define CHECK_PRINT(S)
|
|
|
|
#endif /* CHECK_POINTS */
|
|
|
|
/*
|
|
* Values to send to the POST hardware.
|
|
*/
|
|
#define MP_BOOTADDRESS_POST 0x10
|
|
#define MP_PROBE_POST 0x11
|
|
#define MPTABLE_PASS1_POST 0x12
|
|
|
|
#define MP_START_POST 0x13
|
|
#define MP_ENABLE_POST 0x14
|
|
#define MPTABLE_PASS2_POST 0x15
|
|
|
|
#define START_ALL_APS_POST 0x16
|
|
#define INSTALL_AP_TRAMP_POST 0x17
|
|
#define START_AP_POST 0x18
|
|
|
|
#define MP_ANNOUNCE_POST 0x19
|
|
|
|
/* used to hold the AP's until we are ready to release them */
|
|
struct mtx ap_boot_mtx;
|
|
|
|
/** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
|
|
int current_postcode;
|
|
|
|
/** XXX FIXME: what system files declare these??? */
|
|
extern struct region_descriptor r_gdt, r_idt;
|
|
|
|
int bsp_apic_ready = 0; /* flags useability of BSP apic */
|
|
int mp_ncpus; /* # of CPUs, including BSP */
|
|
int mp_naps; /* # of Applications processors */
|
|
int mp_nbusses; /* # of busses */
|
|
int mp_napics; /* # of IO APICs */
|
|
int boot_cpu_id; /* designated BSP */
|
|
vm_offset_t cpu_apic_address;
|
|
vm_offset_t io_apic_address[NAPICID]; /* NAPICID is more than enough */
|
|
extern int nkpt;
|
|
|
|
u_int32_t cpu_apic_versions[MAXCPU];
|
|
u_int32_t *io_apic_versions;
|
|
|
|
#ifdef APIC_INTR_REORDER
|
|
struct {
|
|
volatile int *location;
|
|
int bit;
|
|
} apic_isrbit_location[32];
|
|
#endif
|
|
|
|
struct apic_intmapinfo int_to_apicintpin[APIC_INTMAPSIZE];
|
|
|
|
/*
|
|
* APIC ID logical/physical mapping structures.
|
|
* We oversize these to simplify boot-time config.
|
|
*/
|
|
int cpu_num_to_apic_id[NAPICID];
|
|
int io_num_to_apic_id[NAPICID];
|
|
int apic_id_to_logical[NAPICID];
|
|
|
|
|
|
/* Bitmap of all available CPUs */
|
|
u_int all_cpus;
|
|
|
|
/* AP uses this during bootstrap. Do not staticize. */
|
|
char *bootSTK;
|
|
static int bootAP;
|
|
|
|
/* Hotwire a 0->4MB V==P mapping */
|
|
extern pt_entry_t *KPTphys;
|
|
|
|
/* SMP page table page */
|
|
extern pt_entry_t *SMPpt;
|
|
|
|
struct pcb stoppcbs[MAXCPU];
|
|
|
|
int smp_started; /* has the system started? */
|
|
int smp_active = 0; /* are the APs allowed to run? */
|
|
SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, "");
|
|
|
|
/* XXX maybe should be hw.ncpu */
|
|
static int smp_cpus = 1; /* how many cpu's running */
|
|
SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, "");
|
|
|
|
int invltlb_ok = 0; /* throttle smp_invltlb() till safe */
|
|
SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
|
|
|
|
/* Enable forwarding of a signal to a process running on a different CPU */
|
|
static int forward_signal_enabled = 1;
|
|
SYSCTL_INT(_machdep, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
|
|
&forward_signal_enabled, 0, "");
|
|
|
|
/* Enable forwarding of roundrobin to all other cpus */
|
|
static int forward_roundrobin_enabled = 1;
|
|
SYSCTL_INT(_machdep, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
|
|
&forward_roundrobin_enabled, 0, "");
|
|
|
|
|
|
/*
|
|
* Local data and functions.
|
|
*/
|
|
|
|
/* Set to 1 once we're ready to let the APs out of the pen. */
|
|
static volatile int aps_ready = 0;
|
|
|
|
static int mp_capable;
|
|
static u_int boot_address;
|
|
static u_int base_memory;
|
|
|
|
static int picmode; /* 0: virtual wire mode, 1: PIC mode */
|
|
static mpfps_t mpfps;
|
|
static int search_for_sig(u_int32_t target, int count);
|
|
static void mp_enable(u_int boot_addr);
|
|
|
|
static void mptable_pass1(void);
|
|
static int mptable_pass2(void);
|
|
static void default_mp_table(int type);
|
|
static void fix_mp_table(void);
|
|
static void setup_apic_irq_mapping(void);
|
|
static void init_locks(void);
|
|
static int start_all_aps(u_int boot_addr);
|
|
static void install_ap_tramp(u_int boot_addr);
|
|
static int start_ap(int logicalCpu, u_int boot_addr);
|
|
void ap_init(void);
|
|
static int apic_int_is_bus_type(int intr, int bus_type);
|
|
static void release_aps(void *dummy);
|
|
|
|
/*
|
|
* initialize all the SMP locks
|
|
*/
|
|
|
|
/* critical region around IO APIC, apic_imen */
|
|
struct mtx imen_mtx;
|
|
|
|
/* lock region used by kernel profiling */
|
|
struct mtx mcount_mtx;
|
|
|
|
#ifdef USE_COMLOCK
|
|
/* locks com (tty) data/hardware accesses: a FASTINTR() */
|
|
struct mtx com_mtx;
|
|
#endif /* USE_COMLOCK */
|
|
|
|
/* lock around the MP rendezvous */
|
|
static struct mtx smp_rv_mtx;
|
|
|
|
/* only 1 CPU can panic at a time :) */
|
|
struct mtx panic_mtx;
|
|
|
|
static void
|
|
init_locks(void)
|
|
{
|
|
/*
|
|
* XXX The mcount mutex probably needs to be statically initialized,
|
|
* since it will be used even in the function calls that get us to this
|
|
* point.
|
|
*/
|
|
mtx_init(&mcount_mtx, "mcount", MTX_DEF);
|
|
|
|
mtx_init(&smp_rv_mtx, "smp rendezvous", MTX_SPIN);
|
|
mtx_init(&panic_mtx, "panic", MTX_DEF);
|
|
|
|
#ifdef USE_COMLOCK
|
|
mtx_init(&com_mtx, "com", MTX_SPIN);
|
|
#endif /* USE_COMLOCK */
|
|
|
|
mtx_init(&ap_boot_mtx, "ap boot", MTX_SPIN);
|
|
}
|
|
|
|
/*
|
|
* Calculate usable address in base memory for AP trampoline code.
|
|
*/
|
|
u_int
|
|
mp_bootaddress(u_int basemem)
|
|
{
|
|
POSTCODE(MP_BOOTADDRESS_POST);
|
|
|
|
base_memory = basemem * 1024; /* convert to bytes */
|
|
|
|
boot_address = base_memory & ~0xfff; /* round down to 4k boundary */
|
|
if ((base_memory - boot_address) < bootMP_size)
|
|
boot_address -= 4096; /* not enough, lower by 4k */
|
|
|
|
return boot_address;
|
|
}
|
|
|
|
|
|
/*
|
|
* Look for an Intel MP spec table (ie, SMP capable hardware).
|
|
*/
|
|
int
|
|
mp_probe(void)
|
|
{
|
|
int x;
|
|
u_long segment;
|
|
u_int32_t target;
|
|
|
|
POSTCODE(MP_PROBE_POST);
|
|
|
|
/* see if EBDA exists */
|
|
if ((segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) != 0) {
|
|
/* search first 1K of EBDA */
|
|
target = (u_int32_t) (segment << 4);
|
|
if ((x = search_for_sig(target, 1024 / 4)) >= 0)
|
|
goto found;
|
|
} else {
|
|
/* last 1K of base memory, effective 'top of base' passed in */
|
|
target = (u_int32_t) (base_memory - 0x400);
|
|
if ((x = search_for_sig(target, 1024 / 4)) >= 0)
|
|
goto found;
|
|
}
|
|
|
|
/* search the BIOS */
|
|
target = (u_int32_t) BIOS_BASE;
|
|
if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
|
|
goto found;
|
|
|
|
/* nothing found */
|
|
mpfps = (mpfps_t)0;
|
|
mp_capable = 0;
|
|
return 0;
|
|
|
|
found:
|
|
/* calculate needed resources */
|
|
mpfps = (mpfps_t)x;
|
|
mptable_pass1();
|
|
|
|
/* flag fact that we are running multiple processors */
|
|
mp_capable = 1;
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize the SMP hardware and the APIC and start up the AP's.
|
|
*/
|
|
void
|
|
mp_start(void)
|
|
{
|
|
POSTCODE(MP_START_POST);
|
|
|
|
/* look for MP capable motherboard */
|
|
if (mp_capable)
|
|
mp_enable(boot_address);
|
|
else
|
|
panic("MP hardware not found!");
|
|
}
|
|
|
|
|
|
/*
|
|
* Print various information about the SMP system hardware and setup.
|
|
*/
|
|
void
|
|
mp_announce(void)
|
|
{
|
|
int x;
|
|
|
|
POSTCODE(MP_ANNOUNCE_POST);
|
|
|
|
printf("FreeBSD/SMP: Multiprocessor motherboard\n");
|
|
printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
|
|
printf(", version: 0x%08x", cpu_apic_versions[0]);
|
|
printf(", at 0x%08x\n", cpu_apic_address);
|
|
for (x = 1; x <= mp_naps; ++x) {
|
|
printf(" cpu%d (AP): apic id: %2d", x, CPU_TO_ID(x));
|
|
printf(", version: 0x%08x", cpu_apic_versions[x]);
|
|
printf(", at 0x%08x\n", cpu_apic_address);
|
|
}
|
|
|
|
#if defined(APIC_IO)
|
|
for (x = 0; x < mp_napics; ++x) {
|
|
printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
|
|
printf(", version: 0x%08x", io_apic_versions[x]);
|
|
printf(", at 0x%08x\n", io_apic_address[x]);
|
|
}
|
|
#else
|
|
printf(" Warning: APIC I/O disabled\n");
|
|
#endif /* APIC_IO */
|
|
}
|
|
|
|
/*
|
|
* AP cpu's call this to sync up protected mode.
|
|
*/
|
|
void
|
|
init_secondary(void)
|
|
{
|
|
int gsel_tss;
|
|
int x, myid = bootAP;
|
|
|
|
gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[myid];
|
|
gdt_segs[GPROC0_SEL].ssd_base =
|
|
(int) &SMP_prvspace[myid].globaldata.gd_common_tss;
|
|
SMP_prvspace[myid].globaldata.gd_prvspace =
|
|
&SMP_prvspace[myid].globaldata;
|
|
|
|
for (x = 0; x < NGDT; x++) {
|
|
ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
|
|
}
|
|
|
|
r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
|
|
r_gdt.rd_base = (int) &gdt[myid * NGDT];
|
|
lgdt(&r_gdt); /* does magic intra-segment return */
|
|
|
|
lidt(&r_idt);
|
|
|
|
lldt(_default_ldt);
|
|
PCPU_SET(currentldt, _default_ldt);
|
|
|
|
gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
|
|
gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
|
|
PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
|
|
PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
|
|
PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
|
|
PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
|
|
PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
|
|
ltr(gsel_tss);
|
|
|
|
pmap_set_opt();
|
|
}
|
|
|
|
|
|
#if defined(APIC_IO)
|
|
/*
|
|
* Final configuration of the BSP's local APIC:
|
|
* - disable 'pic mode'.
|
|
* - disable 'virtual wire mode'.
|
|
* - enable NMI.
|
|
*/
|
|
void
|
|
bsp_apic_configure(void)
|
|
{
|
|
u_char byte;
|
|
u_int32_t temp;
|
|
|
|
/* leave 'pic mode' if necessary */
|
|
if (picmode) {
|
|
outb(0x22, 0x70); /* select IMCR */
|
|
byte = inb(0x23); /* current contents */
|
|
byte |= 0x01; /* mask external INTR */
|
|
outb(0x23, byte); /* disconnect 8259s/NMI */
|
|
}
|
|
|
|
/* mask lint0 (the 8259 'virtual wire' connection) */
|
|
temp = lapic.lvt_lint0;
|
|
temp |= APIC_LVT_M; /* set the mask */
|
|
lapic.lvt_lint0 = temp;
|
|
|
|
/* setup lint1 to handle NMI */
|
|
temp = lapic.lvt_lint1;
|
|
temp &= ~APIC_LVT_M; /* clear the mask */
|
|
lapic.lvt_lint1 = temp;
|
|
|
|
if (bootverbose)
|
|
apic_dump("bsp_apic_configure()");
|
|
}
|
|
#endif /* APIC_IO */
|
|
|
|
|
|
/*******************************************************************
|
|
* local functions and data
|
|
*/
|
|
|
|
/*
|
|
* start the SMP system
|
|
*/
|
|
static void
|
|
mp_enable(u_int boot_addr)
|
|
{
|
|
int x;
|
|
#if defined(APIC_IO)
|
|
int apic;
|
|
u_int ux;
|
|
#endif /* APIC_IO */
|
|
|
|
POSTCODE(MP_ENABLE_POST);
|
|
|
|
/* turn on 4MB of V == P addressing so we can get to MP table */
|
|
*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
|
|
invltlb();
|
|
|
|
/* examine the MP table for needed info, uses physical addresses */
|
|
x = mptable_pass2();
|
|
|
|
*(int *)PTD = 0;
|
|
invltlb();
|
|
|
|
/* can't process default configs till the CPU APIC is pmapped */
|
|
if (x)
|
|
default_mp_table(x);
|
|
|
|
/* post scan cleanup */
|
|
fix_mp_table();
|
|
setup_apic_irq_mapping();
|
|
|
|
#if defined(APIC_IO)
|
|
|
|
/* fill the LOGICAL io_apic_versions table */
|
|
for (apic = 0; apic < mp_napics; ++apic) {
|
|
ux = io_apic_read(apic, IOAPIC_VER);
|
|
io_apic_versions[apic] = ux;
|
|
io_apic_set_id(apic, IO_TO_ID(apic));
|
|
}
|
|
|
|
/* program each IO APIC in the system */
|
|
for (apic = 0; apic < mp_napics; ++apic)
|
|
if (io_apic_setup(apic) < 0)
|
|
panic("IO APIC setup failure");
|
|
|
|
/* install a 'Spurious INTerrupt' vector */
|
|
setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
|
|
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
|
|
/* install an inter-CPU IPI for TLB invalidation */
|
|
setidt(XINVLTLB_OFFSET, Xinvltlb,
|
|
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
|
|
#ifdef BETTER_CLOCK
|
|
/* install an inter-CPU IPI for reading processor state */
|
|
setidt(XCPUCHECKSTATE_OFFSET, Xcpucheckstate,
|
|
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
#endif
|
|
|
|
/* install an inter-CPU IPI for all-CPU rendezvous */
|
|
setidt(XRENDEZVOUS_OFFSET, Xrendezvous,
|
|
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
|
|
/* install an inter-CPU IPI for forcing an additional software trap */
|
|
setidt(XCPUAST_OFFSET, Xcpuast,
|
|
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
|
|
/* install an inter-CPU IPI for CPU stop/restart */
|
|
setidt(XCPUSTOP_OFFSET, Xcpustop,
|
|
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
|
|
#if defined(TEST_TEST1)
|
|
/* install a "fake hardware INTerrupt" vector */
|
|
setidt(XTEST1_OFFSET, Xtest1,
|
|
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
|
|
#endif /** TEST_TEST1 */
|
|
|
|
#endif /* APIC_IO */
|
|
|
|
/* initialize all SMP locks */
|
|
init_locks();
|
|
|
|
/* start each Application Processor */
|
|
start_all_aps(boot_addr);
|
|
}
|
|
|
|
|
|
/*
|
|
* look for the MP spec signature
|
|
*/
|
|
|
|
/* string defined by the Intel MP Spec as identifying the MP table */
|
|
#define MP_SIG 0x5f504d5f /* _MP_ */
|
|
#define NEXT(X) ((X) += 4)
|
|
static int
|
|
search_for_sig(u_int32_t target, int count)
|
|
{
|
|
int x;
|
|
u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
|
|
|
|
for (x = 0; x < count; NEXT(x))
|
|
if (addr[x] == MP_SIG)
|
|
/* make array index a byte index */
|
|
return (target + (x * sizeof(u_int32_t)));
|
|
|
|
return -1;
|
|
}
|
|
|
|
|
|
static basetable_entry basetable_entry_types[] =
|
|
{
|
|
{0, 20, "Processor"},
|
|
{1, 8, "Bus"},
|
|
{2, 8, "I/O APIC"},
|
|
{3, 8, "I/O INT"},
|
|
{4, 8, "Local INT"}
|
|
};
|
|
|
|
typedef struct BUSDATA {
|
|
u_char bus_id;
|
|
enum busTypes bus_type;
|
|
} bus_datum;
|
|
|
|
typedef struct INTDATA {
|
|
u_char int_type;
|
|
u_short int_flags;
|
|
u_char src_bus_id;
|
|
u_char src_bus_irq;
|
|
u_char dst_apic_id;
|
|
u_char dst_apic_int;
|
|
u_char int_vector;
|
|
} io_int, local_int;
|
|
|
|
typedef struct BUSTYPENAME {
|
|
u_char type;
|
|
char name[7];
|
|
} bus_type_name;
|
|
|
|
static bus_type_name bus_type_table[] =
|
|
{
|
|
{CBUS, "CBUS"},
|
|
{CBUSII, "CBUSII"},
|
|
{EISA, "EISA"},
|
|
{MCA, "MCA"},
|
|
{UNKNOWN_BUSTYPE, "---"},
|
|
{ISA, "ISA"},
|
|
{MCA, "MCA"},
|
|
{UNKNOWN_BUSTYPE, "---"},
|
|
{UNKNOWN_BUSTYPE, "---"},
|
|
{UNKNOWN_BUSTYPE, "---"},
|
|
{UNKNOWN_BUSTYPE, "---"},
|
|
{UNKNOWN_BUSTYPE, "---"},
|
|
{PCI, "PCI"},
|
|
{UNKNOWN_BUSTYPE, "---"},
|
|
{UNKNOWN_BUSTYPE, "---"},
|
|
{UNKNOWN_BUSTYPE, "---"},
|
|
{UNKNOWN_BUSTYPE, "---"},
|
|
{XPRESS, "XPRESS"},
|
|
{UNKNOWN_BUSTYPE, "---"}
|
|
};
|
|
/* from MP spec v1.4, table 5-1 */
|
|
static int default_data[7][5] =
|
|
{
|
|
/* nbus, id0, type0, id1, type1 */
|
|
{1, 0, ISA, 255, 255},
|
|
{1, 0, EISA, 255, 255},
|
|
{1, 0, EISA, 255, 255},
|
|
{1, 0, MCA, 255, 255},
|
|
{2, 0, ISA, 1, PCI},
|
|
{2, 0, EISA, 1, PCI},
|
|
{2, 0, MCA, 1, PCI}
|
|
};
|
|
|
|
|
|
/* the bus data */
|
|
static bus_datum *bus_data;
|
|
|
|
/* the IO INT data, one entry per possible APIC INTerrupt */
|
|
static io_int *io_apic_ints;
|
|
|
|
static int nintrs;
|
|
|
|
static int processor_entry __P((proc_entry_ptr entry, int cpu));
|
|
static int bus_entry __P((bus_entry_ptr entry, int bus));
|
|
static int io_apic_entry __P((io_apic_entry_ptr entry, int apic));
|
|
static int int_entry __P((int_entry_ptr entry, int intr));
|
|
static int lookup_bus_type __P((char *name));
|
|
|
|
|
|
/*
|
|
* 1st pass on motherboard's Intel MP specification table.
|
|
*
|
|
* initializes:
|
|
* mp_ncpus = 1
|
|
*
|
|
* determines:
|
|
* cpu_apic_address (common to all CPUs)
|
|
* io_apic_address[N]
|
|
* mp_naps
|
|
* mp_nbusses
|
|
* mp_napics
|
|
* nintrs
|
|
*/
|
|
static void
|
|
mptable_pass1(void)
|
|
{
|
|
int x;
|
|
mpcth_t cth;
|
|
int totalSize;
|
|
void* position;
|
|
int count;
|
|
int type;
|
|
|
|
POSTCODE(MPTABLE_PASS1_POST);
|
|
|
|
/* clear various tables */
|
|
for (x = 0; x < NAPICID; ++x) {
|
|
io_apic_address[x] = ~0; /* IO APIC address table */
|
|
}
|
|
|
|
/* init everything to empty */
|
|
mp_naps = 0;
|
|
mp_nbusses = 0;
|
|
mp_napics = 0;
|
|
nintrs = 0;
|
|
|
|
/* check for use of 'default' configuration */
|
|
if (MPFPS_MPFB1 != 0) {
|
|
/* use default addresses */
|
|
cpu_apic_address = DEFAULT_APIC_BASE;
|
|
io_apic_address[0] = DEFAULT_IO_APIC_BASE;
|
|
|
|
/* fill in with defaults */
|
|
mp_naps = 2; /* includes BSP */
|
|
mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
|
|
#if defined(APIC_IO)
|
|
mp_napics = 1;
|
|
nintrs = 16;
|
|
#endif /* APIC_IO */
|
|
}
|
|
else {
|
|
if ((cth = mpfps->pap) == 0)
|
|
panic("MP Configuration Table Header MISSING!");
|
|
|
|
cpu_apic_address = (vm_offset_t) cth->apic_address;
|
|
|
|
/* walk the table, recording info of interest */
|
|
totalSize = cth->base_table_length - sizeof(struct MPCTH);
|
|
position = (u_char *) cth + sizeof(struct MPCTH);
|
|
count = cth->entry_count;
|
|
|
|
while (count--) {
|
|
switch (type = *(u_char *) position) {
|
|
case 0: /* processor_entry */
|
|
if (((proc_entry_ptr)position)->cpu_flags
|
|
& PROCENTRY_FLAG_EN)
|
|
++mp_naps;
|
|
break;
|
|
case 1: /* bus_entry */
|
|
++mp_nbusses;
|
|
break;
|
|
case 2: /* io_apic_entry */
|
|
if (((io_apic_entry_ptr)position)->apic_flags
|
|
& IOAPICENTRY_FLAG_EN)
|
|
io_apic_address[mp_napics++] =
|
|
(vm_offset_t)((io_apic_entry_ptr)
|
|
position)->apic_address;
|
|
break;
|
|
case 3: /* int_entry */
|
|
++nintrs;
|
|
break;
|
|
case 4: /* int_entry */
|
|
break;
|
|
default:
|
|
panic("mpfps Base Table HOSED!");
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
totalSize -= basetable_entry_types[type].length;
|
|
(u_char*)position += basetable_entry_types[type].length;
|
|
}
|
|
}
|
|
|
|
/* qualify the numbers */
|
|
if (mp_naps > MAXCPU) {
|
|
printf("Warning: only using %d of %d available CPUs!\n",
|
|
MAXCPU, mp_naps);
|
|
mp_naps = MAXCPU;
|
|
}
|
|
|
|
/*
|
|
* Count the BSP.
|
|
* This is also used as a counter while starting the APs.
|
|
*/
|
|
mp_ncpus = 1;
|
|
|
|
--mp_naps; /* subtract the BSP */
|
|
}
|
|
|
|
|
|
/*
|
|
* 2nd pass on motherboard's Intel MP specification table.
|
|
*
|
|
* sets:
|
|
* boot_cpu_id
|
|
* ID_TO_IO(N), phy APIC ID to log CPU/IO table
|
|
* CPU_TO_ID(N), logical CPU to APIC ID table
|
|
* IO_TO_ID(N), logical IO to APIC ID table
|
|
* bus_data[N]
|
|
* io_apic_ints[N]
|
|
*/
|
|
static int
|
|
mptable_pass2(void)
|
|
{
|
|
int x;
|
|
mpcth_t cth;
|
|
int totalSize;
|
|
void* position;
|
|
int count;
|
|
int type;
|
|
int apic, bus, cpu, intr;
|
|
int i, j;
|
|
int pgeflag;
|
|
|
|
POSTCODE(MPTABLE_PASS2_POST);
|
|
|
|
pgeflag = 0; /* XXX - Not used under SMP yet. */
|
|
|
|
MALLOC(io_apic_versions, u_int32_t *, sizeof(u_int32_t) * mp_napics,
|
|
M_DEVBUF, M_WAITOK);
|
|
MALLOC(ioapic, volatile ioapic_t **, sizeof(ioapic_t *) * mp_napics,
|
|
M_DEVBUF, M_WAITOK);
|
|
MALLOC(io_apic_ints, io_int *, sizeof(io_int) * (nintrs + 1),
|
|
M_DEVBUF, M_WAITOK);
|
|
MALLOC(bus_data, bus_datum *, sizeof(bus_datum) * mp_nbusses,
|
|
M_DEVBUF, M_WAITOK);
|
|
|
|
bzero(ioapic, sizeof(ioapic_t *) * mp_napics);
|
|
|
|
for (i = 0; i < mp_napics; i++) {
|
|
for (j = 0; j < mp_napics; j++) {
|
|
/* same page frame as a previous IO apic? */
|
|
if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) ==
|
|
(io_apic_address[i] & PG_FRAME)) {
|
|
ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
|
|
+ (NPTEPG-2-j) * PAGE_SIZE
|
|
+ (io_apic_address[i] & PAGE_MASK));
|
|
break;
|
|
}
|
|
/* use this slot if available */
|
|
if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) == 0) {
|
|
SMPpt[NPTEPG-2-j] = (pt_entry_t)(PG_V | PG_RW |
|
|
pgeflag | (io_apic_address[i] & PG_FRAME));
|
|
ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
|
|
+ (NPTEPG-2-j) * PAGE_SIZE
|
|
+ (io_apic_address[i] & PAGE_MASK));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* clear various tables */
|
|
for (x = 0; x < NAPICID; ++x) {
|
|
ID_TO_IO(x) = -1; /* phy APIC ID to log CPU/IO table */
|
|
CPU_TO_ID(x) = -1; /* logical CPU to APIC ID table */
|
|
IO_TO_ID(x) = -1; /* logical IO to APIC ID table */
|
|
}
|
|
|
|
/* clear bus data table */
|
|
for (x = 0; x < mp_nbusses; ++x)
|
|
bus_data[x].bus_id = 0xff;
|
|
|
|
/* clear IO APIC INT table */
|
|
for (x = 0; x < (nintrs + 1); ++x) {
|
|
io_apic_ints[x].int_type = 0xff;
|
|
io_apic_ints[x].int_vector = 0xff;
|
|
}
|
|
|
|
/* setup the cpu/apic mapping arrays */
|
|
boot_cpu_id = -1;
|
|
|
|
/* record whether PIC or virtual-wire mode */
|
|
picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
|
|
|
|
/* check for use of 'default' configuration */
|
|
if (MPFPS_MPFB1 != 0)
|
|
return MPFPS_MPFB1; /* return default configuration type */
|
|
|
|
if ((cth = mpfps->pap) == 0)
|
|
panic("MP Configuration Table Header MISSING!");
|
|
|
|
/* walk the table, recording info of interest */
|
|
totalSize = cth->base_table_length - sizeof(struct MPCTH);
|
|
position = (u_char *) cth + sizeof(struct MPCTH);
|
|
count = cth->entry_count;
|
|
apic = bus = intr = 0;
|
|
cpu = 1; /* pre-count the BSP */
|
|
|
|
while (count--) {
|
|
switch (type = *(u_char *) position) {
|
|
case 0:
|
|
if (processor_entry(position, cpu))
|
|
++cpu;
|
|
break;
|
|
case 1:
|
|
if (bus_entry(position, bus))
|
|
++bus;
|
|
break;
|
|
case 2:
|
|
if (io_apic_entry(position, apic))
|
|
++apic;
|
|
break;
|
|
case 3:
|
|
if (int_entry(position, intr))
|
|
++intr;
|
|
break;
|
|
case 4:
|
|
/* int_entry(position); */
|
|
break;
|
|
default:
|
|
panic("mpfps Base Table HOSED!");
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
totalSize -= basetable_entry_types[type].length;
|
|
(u_char *) position += basetable_entry_types[type].length;
|
|
}
|
|
|
|
if (boot_cpu_id == -1)
|
|
panic("NO BSP found!");
|
|
|
|
/* report fact that its NOT a default configuration */
|
|
return 0;
|
|
}
|
|
|
|
|
|
void
|
|
assign_apic_irq(int apic, int intpin, int irq)
|
|
{
|
|
int x;
|
|
|
|
if (int_to_apicintpin[irq].ioapic != -1)
|
|
panic("assign_apic_irq: inconsistent table");
|
|
|
|
int_to_apicintpin[irq].ioapic = apic;
|
|
int_to_apicintpin[irq].int_pin = intpin;
|
|
int_to_apicintpin[irq].apic_address = ioapic[apic];
|
|
int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin;
|
|
|
|
for (x = 0; x < nintrs; x++) {
|
|
if ((io_apic_ints[x].int_type == 0 ||
|
|
io_apic_ints[x].int_type == 3) &&
|
|
io_apic_ints[x].int_vector == 0xff &&
|
|
io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) &&
|
|
io_apic_ints[x].dst_apic_int == intpin)
|
|
io_apic_ints[x].int_vector = irq;
|
|
}
|
|
}
|
|
|
|
void
|
|
revoke_apic_irq(int irq)
|
|
{
|
|
int x;
|
|
int oldapic;
|
|
int oldintpin;
|
|
|
|
if (int_to_apicintpin[irq].ioapic == -1)
|
|
panic("assign_apic_irq: inconsistent table");
|
|
|
|
oldapic = int_to_apicintpin[irq].ioapic;
|
|
oldintpin = int_to_apicintpin[irq].int_pin;
|
|
|
|
int_to_apicintpin[irq].ioapic = -1;
|
|
int_to_apicintpin[irq].int_pin = 0;
|
|
int_to_apicintpin[irq].apic_address = NULL;
|
|
int_to_apicintpin[irq].redirindex = 0;
|
|
|
|
for (x = 0; x < nintrs; x++) {
|
|
if ((io_apic_ints[x].int_type == 0 ||
|
|
io_apic_ints[x].int_type == 3) &&
|
|
io_apic_ints[x].int_vector == 0xff &&
|
|
io_apic_ints[x].dst_apic_id == IO_TO_ID(oldapic) &&
|
|
io_apic_ints[x].dst_apic_int == oldintpin)
|
|
io_apic_ints[x].int_vector = 0xff;
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
allocate_apic_irq(int intr)
|
|
{
|
|
int apic;
|
|
int intpin;
|
|
int irq;
|
|
|
|
if (io_apic_ints[intr].int_vector != 0xff)
|
|
return; /* Interrupt handler already assigned */
|
|
|
|
if (io_apic_ints[intr].int_type != 0 &&
|
|
(io_apic_ints[intr].int_type != 3 ||
|
|
(io_apic_ints[intr].dst_apic_id == IO_TO_ID(0) &&
|
|
io_apic_ints[intr].dst_apic_int == 0)))
|
|
return; /* Not INT or ExtInt on != (0, 0) */
|
|
|
|
irq = 0;
|
|
while (irq < APIC_INTMAPSIZE &&
|
|
int_to_apicintpin[irq].ioapic != -1)
|
|
irq++;
|
|
|
|
if (irq >= APIC_INTMAPSIZE)
|
|
return; /* No free interrupt handlers */
|
|
|
|
apic = ID_TO_IO(io_apic_ints[intr].dst_apic_id);
|
|
intpin = io_apic_ints[intr].dst_apic_int;
|
|
|
|
assign_apic_irq(apic, intpin, irq);
|
|
io_apic_setup_intpin(apic, intpin);
|
|
}
|
|
|
|
|
|
static void
|
|
swap_apic_id(int apic, int oldid, int newid)
|
|
{
|
|
int x;
|
|
int oapic;
|
|
|
|
|
|
if (oldid == newid)
|
|
return; /* Nothing to do */
|
|
|
|
printf("Changing APIC ID for IO APIC #%d from %d to %d in MP table\n",
|
|
apic, oldid, newid);
|
|
|
|
/* Swap physical APIC IDs in interrupt entries */
|
|
for (x = 0; x < nintrs; x++) {
|
|
if (io_apic_ints[x].dst_apic_id == oldid)
|
|
io_apic_ints[x].dst_apic_id = newid;
|
|
else if (io_apic_ints[x].dst_apic_id == newid)
|
|
io_apic_ints[x].dst_apic_id = oldid;
|
|
}
|
|
|
|
/* Swap physical APIC IDs in IO_TO_ID mappings */
|
|
for (oapic = 0; oapic < mp_napics; oapic++)
|
|
if (IO_TO_ID(oapic) == newid)
|
|
break;
|
|
|
|
if (oapic < mp_napics) {
|
|
printf("Changing APIC ID for IO APIC #%d from "
|
|
"%d to %d in MP table\n",
|
|
oapic, newid, oldid);
|
|
IO_TO_ID(oapic) = oldid;
|
|
}
|
|
IO_TO_ID(apic) = newid;
|
|
}
|
|
|
|
|
|
static void
|
|
fix_id_to_io_mapping(void)
|
|
{
|
|
int x;
|
|
|
|
for (x = 0; x < NAPICID; x++)
|
|
ID_TO_IO(x) = -1;
|
|
|
|
for (x = 0; x <= mp_naps; x++)
|
|
if (CPU_TO_ID(x) < NAPICID)
|
|
ID_TO_IO(CPU_TO_ID(x)) = x;
|
|
|
|
for (x = 0; x < mp_napics; x++)
|
|
if (IO_TO_ID(x) < NAPICID)
|
|
ID_TO_IO(IO_TO_ID(x)) = x;
|
|
}
|
|
|
|
|
|
static int
|
|
first_free_apic_id(void)
|
|
{
|
|
int freeid, x;
|
|
|
|
for (freeid = 0; freeid < NAPICID; freeid++) {
|
|
for (x = 0; x <= mp_naps; x++)
|
|
if (CPU_TO_ID(x) == freeid)
|
|
break;
|
|
if (x <= mp_naps)
|
|
continue;
|
|
for (x = 0; x < mp_napics; x++)
|
|
if (IO_TO_ID(x) == freeid)
|
|
break;
|
|
if (x < mp_napics)
|
|
continue;
|
|
return freeid;
|
|
}
|
|
return freeid;
|
|
}
|
|
|
|
|
|
static int
|
|
io_apic_id_acceptable(int apic, int id)
|
|
{
|
|
int cpu; /* Logical CPU number */
|
|
int oapic; /* Logical IO APIC number for other IO APIC */
|
|
|
|
if (id >= NAPICID)
|
|
return 0; /* Out of range */
|
|
|
|
for (cpu = 0; cpu <= mp_naps; cpu++)
|
|
if (CPU_TO_ID(cpu) == id)
|
|
return 0; /* Conflict with CPU */
|
|
|
|
for (oapic = 0; oapic < mp_napics && oapic < apic; oapic++)
|
|
if (IO_TO_ID(oapic) == id)
|
|
return 0; /* Conflict with other APIC */
|
|
|
|
return 1; /* ID is acceptable for IO APIC */
|
|
}
|
|
|
|
|
|
/*
|
|
* parse an Intel MP specification table
|
|
*/
|
|
static void
|
|
fix_mp_table(void)
|
|
{
|
|
int x;
|
|
int id;
|
|
int bus_0 = 0; /* Stop GCC warning */
|
|
int bus_pci = 0; /* Stop GCC warning */
|
|
int num_pci_bus;
|
|
int apic; /* IO APIC unit number */
|
|
int freeid; /* Free physical APIC ID */
|
|
int physid; /* Current physical IO APIC ID */
|
|
|
|
/*
|
|
* Fix mis-numbering of the PCI bus and its INT entries if the BIOS
|
|
* did it wrong. The MP spec says that when more than 1 PCI bus
|
|
* exists the BIOS must begin with bus entries for the PCI bus and use
|
|
* actual PCI bus numbering. This implies that when only 1 PCI bus
|
|
* exists the BIOS can choose to ignore this ordering, and indeed many
|
|
* MP motherboards do ignore it. This causes a problem when the PCI
|
|
* sub-system makes requests of the MP sub-system based on PCI bus
|
|
* numbers. So here we look for the situation and renumber the
|
|
* busses and associated INTs in an effort to "make it right".
|
|
*/
|
|
|
|
/* find bus 0, PCI bus, count the number of PCI busses */
|
|
for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
|
|
if (bus_data[x].bus_id == 0) {
|
|
bus_0 = x;
|
|
}
|
|
if (bus_data[x].bus_type == PCI) {
|
|
++num_pci_bus;
|
|
bus_pci = x;
|
|
}
|
|
}
|
|
/*
|
|
* bus_0 == slot of bus with ID of 0
|
|
* bus_pci == slot of last PCI bus encountered
|
|
*/
|
|
|
|
/* check the 1 PCI bus case for sanity */
|
|
/* if it is number 0 all is well */
|
|
if (num_pci_bus == 1 &&
|
|
bus_data[bus_pci].bus_id != 0) {
|
|
|
|
/* mis-numbered, swap with whichever bus uses slot 0 */
|
|
|
|
/* swap the bus entry types */
|
|
bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
|
|
bus_data[bus_0].bus_type = PCI;
|
|
|
|
/* swap each relavant INTerrupt entry */
|
|
id = bus_data[bus_pci].bus_id;
|
|
for (x = 0; x < nintrs; ++x) {
|
|
if (io_apic_ints[x].src_bus_id == id) {
|
|
io_apic_ints[x].src_bus_id = 0;
|
|
}
|
|
else if (io_apic_ints[x].src_bus_id == 0) {
|
|
io_apic_ints[x].src_bus_id = id;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Assign IO APIC IDs.
|
|
*
|
|
* First try the existing ID. If a conflict is detected, try
|
|
* the ID in the MP table. If a conflict is still detected, find
|
|
* a free id.
|
|
*
|
|
* We cannot use the ID_TO_IO table before all conflicts has been
|
|
* resolved and the table has been corrected.
|
|
*/
|
|
for (apic = 0; apic < mp_napics; ++apic) { /* For all IO APICs */
|
|
|
|
/* First try to use the value set by the BIOS */
|
|
physid = io_apic_get_id(apic);
|
|
if (io_apic_id_acceptable(apic, physid)) {
|
|
if (IO_TO_ID(apic) != physid)
|
|
swap_apic_id(apic, IO_TO_ID(apic), physid);
|
|
continue;
|
|
}
|
|
|
|
/* Then check if the value in the MP table is acceptable */
|
|
if (io_apic_id_acceptable(apic, IO_TO_ID(apic)))
|
|
continue;
|
|
|
|
/* Last resort, find a free APIC ID and use it */
|
|
freeid = first_free_apic_id();
|
|
if (freeid >= NAPICID)
|
|
panic("No free physical APIC IDs found");
|
|
|
|
if (io_apic_id_acceptable(apic, freeid)) {
|
|
swap_apic_id(apic, IO_TO_ID(apic), freeid);
|
|
continue;
|
|
}
|
|
panic("Free physical APIC ID not usable");
|
|
}
|
|
fix_id_to_io_mapping();
|
|
|
|
/* detect and fix broken Compaq MP table */
|
|
if (apic_int_type(0, 0) == -1) {
|
|
printf("APIC_IO: MP table broken: 8259->APIC entry missing!\n");
|
|
io_apic_ints[nintrs].int_type = 3; /* ExtInt */
|
|
io_apic_ints[nintrs].int_vector = 0xff; /* Unassigned */
|
|
/* XXX fixme, set src bus id etc, but it doesn't seem to hurt */
|
|
io_apic_ints[nintrs].dst_apic_id = IO_TO_ID(0);
|
|
io_apic_ints[nintrs].dst_apic_int = 0; /* Pin 0 */
|
|
nintrs++;
|
|
}
|
|
}
|
|
|
|
|
|
/* Assign low level interrupt handlers */
|
|
static void
|
|
setup_apic_irq_mapping(void)
|
|
{
|
|
int x;
|
|
int int_vector;
|
|
|
|
/* Clear array */
|
|
for (x = 0; x < APIC_INTMAPSIZE; x++) {
|
|
int_to_apicintpin[x].ioapic = -1;
|
|
int_to_apicintpin[x].int_pin = 0;
|
|
int_to_apicintpin[x].apic_address = NULL;
|
|
int_to_apicintpin[x].redirindex = 0;
|
|
}
|
|
|
|
/* First assign ISA/EISA interrupts */
|
|
for (x = 0; x < nintrs; x++) {
|
|
int_vector = io_apic_ints[x].src_bus_irq;
|
|
if (int_vector < APIC_INTMAPSIZE &&
|
|
io_apic_ints[x].int_vector == 0xff &&
|
|
int_to_apicintpin[int_vector].ioapic == -1 &&
|
|
(apic_int_is_bus_type(x, ISA) ||
|
|
apic_int_is_bus_type(x, EISA)) &&
|
|
io_apic_ints[x].int_type == 0) {
|
|
assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
|
|
io_apic_ints[x].dst_apic_int,
|
|
int_vector);
|
|
}
|
|
}
|
|
|
|
/* Assign ExtInt entry if no ISA/EISA interrupt 0 entry */
|
|
for (x = 0; x < nintrs; x++) {
|
|
if (io_apic_ints[x].dst_apic_int == 0 &&
|
|
io_apic_ints[x].dst_apic_id == IO_TO_ID(0) &&
|
|
io_apic_ints[x].int_vector == 0xff &&
|
|
int_to_apicintpin[0].ioapic == -1 &&
|
|
io_apic_ints[x].int_type == 3) {
|
|
assign_apic_irq(0, 0, 0);
|
|
break;
|
|
}
|
|
}
|
|
/* PCI interrupt assignment is deferred */
|
|
}
|
|
|
|
|
|
static int
|
|
processor_entry(proc_entry_ptr entry, int cpu)
|
|
{
|
|
/* check for usability */
|
|
if (!(entry->cpu_flags & PROCENTRY_FLAG_EN))
|
|
return 0;
|
|
|
|
if(entry->apic_id >= NAPICID)
|
|
panic("CPU APIC ID out of range (0..%d)", NAPICID - 1);
|
|
/* check for BSP flag */
|
|
if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
|
|
boot_cpu_id = entry->apic_id;
|
|
CPU_TO_ID(0) = entry->apic_id;
|
|
ID_TO_CPU(entry->apic_id) = 0;
|
|
return 0; /* its already been counted */
|
|
}
|
|
|
|
/* add another AP to list, if less than max number of CPUs */
|
|
else if (cpu < MAXCPU) {
|
|
CPU_TO_ID(cpu) = entry->apic_id;
|
|
ID_TO_CPU(entry->apic_id) = cpu;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
bus_entry(bus_entry_ptr entry, int bus)
|
|
{
|
|
int x;
|
|
char c, name[8];
|
|
|
|
/* encode the name into an index */
|
|
for (x = 0; x < 6; ++x) {
|
|
if ((c = entry->bus_type[x]) == ' ')
|
|
break;
|
|
name[x] = c;
|
|
}
|
|
name[x] = '\0';
|
|
|
|
if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
|
|
panic("unknown bus type: '%s'", name);
|
|
|
|
bus_data[bus].bus_id = entry->bus_id;
|
|
bus_data[bus].bus_type = x;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int
|
|
io_apic_entry(io_apic_entry_ptr entry, int apic)
|
|
{
|
|
if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
|
|
return 0;
|
|
|
|
IO_TO_ID(apic) = entry->apic_id;
|
|
if (entry->apic_id < NAPICID)
|
|
ID_TO_IO(entry->apic_id) = apic;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int
|
|
lookup_bus_type(char *name)
|
|
{
|
|
int x;
|
|
|
|
for (x = 0; x < MAX_BUSTYPE; ++x)
|
|
if (strcmp(bus_type_table[x].name, name) == 0)
|
|
return bus_type_table[x].type;
|
|
|
|
return UNKNOWN_BUSTYPE;
|
|
}
|
|
|
|
|
|
static int
|
|
int_entry(int_entry_ptr entry, int intr)
|
|
{
|
|
int apic;
|
|
|
|
io_apic_ints[intr].int_type = entry->int_type;
|
|
io_apic_ints[intr].int_flags = entry->int_flags;
|
|
io_apic_ints[intr].src_bus_id = entry->src_bus_id;
|
|
io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
|
|
if (entry->dst_apic_id == 255) {
|
|
/* This signal goes to all IO APICS. Select an IO APIC
|
|
with sufficient number of interrupt pins */
|
|
for (apic = 0; apic < mp_napics; apic++)
|
|
if (((io_apic_read(apic, IOAPIC_VER) &
|
|
IOART_VER_MAXREDIR) >> MAXREDIRSHIFT) >=
|
|
entry->dst_apic_int)
|
|
break;
|
|
if (apic < mp_napics)
|
|
io_apic_ints[intr].dst_apic_id = IO_TO_ID(apic);
|
|
else
|
|
io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
|
|
} else
|
|
io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
|
|
io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int
|
|
apic_int_is_bus_type(int intr, int bus_type)
|
|
{
|
|
int bus;
|
|
|
|
for (bus = 0; bus < mp_nbusses; ++bus)
|
|
if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
|
|
&& ((int) bus_data[bus].bus_type == bus_type))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Given a traditional ISA INT mask, return an APIC mask.
|
|
*/
|
|
u_int
|
|
isa_apic_mask(u_int isa_mask)
|
|
{
|
|
int isa_irq;
|
|
int apic_pin;
|
|
|
|
#if defined(SKIP_IRQ15_REDIRECT)
|
|
if (isa_mask == (1 << 15)) {
|
|
printf("skipping ISA IRQ15 redirect\n");
|
|
return isa_mask;
|
|
}
|
|
#endif /* SKIP_IRQ15_REDIRECT */
|
|
|
|
isa_irq = ffs(isa_mask); /* find its bit position */
|
|
if (isa_irq == 0) /* doesn't exist */
|
|
return 0;
|
|
--isa_irq; /* make it zero based */
|
|
|
|
apic_pin = isa_apic_irq(isa_irq); /* look for APIC connection */
|
|
if (apic_pin == -1)
|
|
return 0;
|
|
|
|
return (1 << apic_pin); /* convert pin# to a mask */
|
|
}
|
|
|
|
|
|
/*
|
|
* Determine which APIC pin an ISA/EISA INT is attached to.
|
|
*/
|
|
#define INTTYPE(I) (io_apic_ints[(I)].int_type)
|
|
#define INTPIN(I) (io_apic_ints[(I)].dst_apic_int)
|
|
#define INTIRQ(I) (io_apic_ints[(I)].int_vector)
|
|
#define INTAPIC(I) (ID_TO_IO(io_apic_ints[(I)].dst_apic_id))
|
|
|
|
#define SRCBUSIRQ(I) (io_apic_ints[(I)].src_bus_irq)
|
|
int
|
|
isa_apic_irq(int isa_irq)
|
|
{
|
|
int intr;
|
|
|
|
for (intr = 0; intr < nintrs; ++intr) { /* check each record */
|
|
if (INTTYPE(intr) == 0) { /* standard INT */
|
|
if (SRCBUSIRQ(intr) == isa_irq) {
|
|
if (apic_int_is_bus_type(intr, ISA) ||
|
|
apic_int_is_bus_type(intr, EISA)) {
|
|
if (INTIRQ(intr) == 0xff)
|
|
return -1; /* unassigned */
|
|
return INTIRQ(intr); /* found */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return -1; /* NOT found */
|
|
}
|
|
|
|
|
|
/*
|
|
* Determine which APIC pin a PCI INT is attached to.
|
|
*/
|
|
#define SRCBUSID(I) (io_apic_ints[(I)].src_bus_id)
|
|
#define SRCBUSDEVICE(I) ((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
|
|
#define SRCBUSLINE(I) (io_apic_ints[(I)].src_bus_irq & 0x03)
|
|
int
|
|
pci_apic_irq(int pciBus, int pciDevice, int pciInt)
|
|
{
|
|
int intr;
|
|
|
|
--pciInt; /* zero based */
|
|
|
|
for (intr = 0; intr < nintrs; ++intr) /* check each record */
|
|
if ((INTTYPE(intr) == 0) /* standard INT */
|
|
&& (SRCBUSID(intr) == pciBus)
|
|
&& (SRCBUSDEVICE(intr) == pciDevice)
|
|
&& (SRCBUSLINE(intr) == pciInt)) /* a candidate IRQ */
|
|
if (apic_int_is_bus_type(intr, PCI)) {
|
|
if (INTIRQ(intr) == 0xff)
|
|
allocate_apic_irq(intr);
|
|
if (INTIRQ(intr) == 0xff)
|
|
return -1; /* unassigned */
|
|
return INTIRQ(intr); /* exact match */
|
|
}
|
|
|
|
return -1; /* NOT found */
|
|
}
|
|
|
|
int
|
|
next_apic_irq(int irq)
|
|
{
|
|
int intr, ointr;
|
|
int bus, bustype;
|
|
|
|
bus = 0;
|
|
bustype = 0;
|
|
for (intr = 0; intr < nintrs; intr++) {
|
|
if (INTIRQ(intr) != irq || INTTYPE(intr) != 0)
|
|
continue;
|
|
bus = SRCBUSID(intr);
|
|
bustype = apic_bus_type(bus);
|
|
if (bustype != ISA &&
|
|
bustype != EISA &&
|
|
bustype != PCI)
|
|
continue;
|
|
break;
|
|
}
|
|
if (intr >= nintrs) {
|
|
return -1;
|
|
}
|
|
for (ointr = intr + 1; ointr < nintrs; ointr++) {
|
|
if (INTTYPE(ointr) != 0)
|
|
continue;
|
|
if (bus != SRCBUSID(ointr))
|
|
continue;
|
|
if (bustype == PCI) {
|
|
if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr))
|
|
continue;
|
|
if (SRCBUSLINE(intr) != SRCBUSLINE(ointr))
|
|
continue;
|
|
}
|
|
if (bustype == ISA || bustype == EISA) {
|
|
if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr))
|
|
continue;
|
|
}
|
|
if (INTPIN(intr) == INTPIN(ointr))
|
|
continue;
|
|
break;
|
|
}
|
|
if (ointr >= nintrs) {
|
|
return -1;
|
|
}
|
|
return INTIRQ(ointr);
|
|
}
|
|
#undef SRCBUSLINE
|
|
#undef SRCBUSDEVICE
|
|
#undef SRCBUSID
|
|
#undef SRCBUSIRQ
|
|
|
|
#undef INTPIN
|
|
#undef INTIRQ
|
|
#undef INTAPIC
|
|
#undef INTTYPE
|
|
|
|
|
|
/*
|
|
* Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
|
|
*
|
|
* XXX FIXME:
|
|
* Exactly what this means is unclear at this point. It is a solution
|
|
* for motherboards that redirect the MBIRQ0 pin. Generically a motherboard
|
|
* could route any of the ISA INTs to upper (>15) IRQ values. But most would
|
|
* NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
|
|
* option.
|
|
*/
|
|
int
|
|
undirect_isa_irq(int rirq)
|
|
{
|
|
#if defined(READY)
|
|
if (bootverbose)
|
|
printf("Freeing redirected ISA irq %d.\n", rirq);
|
|
/** FIXME: tickle the MB redirector chip */
|
|
return -1;
|
|
#else
|
|
if (bootverbose)
|
|
printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
|
|
return 0;
|
|
#endif /* READY */
|
|
}
|
|
|
|
|
|
/*
|
|
* Reprogram the MB chipset to NOT redirect a PCI INTerrupt
|
|
*/
|
|
int
|
|
undirect_pci_irq(int rirq)
|
|
{
|
|
#if defined(READY)
|
|
if (bootverbose)
|
|
printf("Freeing redirected PCI irq %d.\n", rirq);
|
|
|
|
/** FIXME: tickle the MB redirector chip */
|
|
return -1;
|
|
#else
|
|
if (bootverbose)
|
|
printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
|
|
rirq);
|
|
return 0;
|
|
#endif /* READY */
|
|
}
|
|
|
|
|
|
/*
|
|
* given a bus ID, return:
|
|
* the bus type if found
|
|
* -1 if NOT found
|
|
*/
|
|
int
|
|
apic_bus_type(int id)
|
|
{
|
|
int x;
|
|
|
|
for (x = 0; x < mp_nbusses; ++x)
|
|
if (bus_data[x].bus_id == id)
|
|
return bus_data[x].bus_type;
|
|
|
|
return -1;
|
|
}
|
|
|
|
|
|
/*
|
|
* given a LOGICAL APIC# and pin#, return:
|
|
* the associated src bus ID if found
|
|
* -1 if NOT found
|
|
*/
|
|
int
|
|
apic_src_bus_id(int apic, int pin)
|
|
{
|
|
int x;
|
|
|
|
/* search each of the possible INTerrupt sources */
|
|
for (x = 0; x < nintrs; ++x)
|
|
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
|
|
(pin == io_apic_ints[x].dst_apic_int))
|
|
return (io_apic_ints[x].src_bus_id);
|
|
|
|
return -1; /* NOT found */
|
|
}
|
|
|
|
|
|
/*
|
|
* given a LOGICAL APIC# and pin#, return:
|
|
* the associated src bus IRQ if found
|
|
* -1 if NOT found
|
|
*/
|
|
int
|
|
apic_src_bus_irq(int apic, int pin)
|
|
{
|
|
int x;
|
|
|
|
for (x = 0; x < nintrs; x++)
|
|
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
|
|
(pin == io_apic_ints[x].dst_apic_int))
|
|
return (io_apic_ints[x].src_bus_irq);
|
|
|
|
return -1; /* NOT found */
|
|
}
|
|
|
|
|
|
/*
|
|
* given a LOGICAL APIC# and pin#, return:
|
|
* the associated INTerrupt type if found
|
|
* -1 if NOT found
|
|
*/
|
|
int
|
|
apic_int_type(int apic, int pin)
|
|
{
|
|
int x;
|
|
|
|
/* search each of the possible INTerrupt sources */
|
|
for (x = 0; x < nintrs; ++x)
|
|
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
|
|
(pin == io_apic_ints[x].dst_apic_int))
|
|
return (io_apic_ints[x].int_type);
|
|
|
|
return -1; /* NOT found */
|
|
}
|
|
|
|
int
|
|
apic_irq(int apic, int pin)
|
|
{
|
|
int x;
|
|
int res;
|
|
|
|
for (x = 0; x < nintrs; ++x)
|
|
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
|
|
(pin == io_apic_ints[x].dst_apic_int)) {
|
|
res = io_apic_ints[x].int_vector;
|
|
if (res == 0xff)
|
|
return -1;
|
|
if (apic != int_to_apicintpin[res].ioapic)
|
|
panic("apic_irq: inconsistent table");
|
|
if (pin != int_to_apicintpin[res].int_pin)
|
|
panic("apic_irq inconsistent table (2)");
|
|
return res;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
/*
|
|
* given a LOGICAL APIC# and pin#, return:
|
|
* the associated trigger mode if found
|
|
* -1 if NOT found
|
|
*/
|
|
int
|
|
apic_trigger(int apic, int pin)
|
|
{
|
|
int x;
|
|
|
|
/* search each of the possible INTerrupt sources */
|
|
for (x = 0; x < nintrs; ++x)
|
|
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
|
|
(pin == io_apic_ints[x].dst_apic_int))
|
|
return ((io_apic_ints[x].int_flags >> 2) & 0x03);
|
|
|
|
return -1; /* NOT found */
|
|
}
|
|
|
|
|
|
/*
|
|
* given a LOGICAL APIC# and pin#, return:
|
|
* the associated 'active' level if found
|
|
* -1 if NOT found
|
|
*/
|
|
int
|
|
apic_polarity(int apic, int pin)
|
|
{
|
|
int x;
|
|
|
|
/* search each of the possible INTerrupt sources */
|
|
for (x = 0; x < nintrs; ++x)
|
|
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
|
|
(pin == io_apic_ints[x].dst_apic_int))
|
|
return (io_apic_ints[x].int_flags & 0x03);
|
|
|
|
return -1; /* NOT found */
|
|
}
|
|
|
|
|
|
/*
|
|
* set data according to MP defaults
|
|
* FIXME: probably not complete yet...
|
|
*/
|
|
static void
|
|
default_mp_table(int type)
|
|
{
|
|
int ap_cpu_id;
|
|
#if defined(APIC_IO)
|
|
int io_apic_id;
|
|
int pin;
|
|
#endif /* APIC_IO */
|
|
|
|
#if 0
|
|
printf(" MP default config type: %d\n", type);
|
|
switch (type) {
|
|
case 1:
|
|
printf(" bus: ISA, APIC: 82489DX\n");
|
|
break;
|
|
case 2:
|
|
printf(" bus: EISA, APIC: 82489DX\n");
|
|
break;
|
|
case 3:
|
|
printf(" bus: EISA, APIC: 82489DX\n");
|
|
break;
|
|
case 4:
|
|
printf(" bus: MCA, APIC: 82489DX\n");
|
|
break;
|
|
case 5:
|
|
printf(" bus: ISA+PCI, APIC: Integrated\n");
|
|
break;
|
|
case 6:
|
|
printf(" bus: EISA+PCI, APIC: Integrated\n");
|
|
break;
|
|
case 7:
|
|
printf(" bus: MCA+PCI, APIC: Integrated\n");
|
|
break;
|
|
default:
|
|
printf(" future type\n");
|
|
break;
|
|
/* NOTREACHED */
|
|
}
|
|
#endif /* 0 */
|
|
|
|
boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
|
|
ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
|
|
|
|
/* BSP */
|
|
CPU_TO_ID(0) = boot_cpu_id;
|
|
ID_TO_CPU(boot_cpu_id) = 0;
|
|
|
|
/* one and only AP */
|
|
CPU_TO_ID(1) = ap_cpu_id;
|
|
ID_TO_CPU(ap_cpu_id) = 1;
|
|
|
|
#if defined(APIC_IO)
|
|
/* one and only IO APIC */
|
|
io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
|
|
|
|
/*
|
|
* sanity check, refer to MP spec section 3.6.6, last paragraph
|
|
* necessary as some hardware isn't properly setting up the IO APIC
|
|
*/
|
|
#if defined(REALLY_ANAL_IOAPICID_VALUE)
|
|
if (io_apic_id != 2) {
|
|
#else
|
|
if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
|
|
#endif /* REALLY_ANAL_IOAPICID_VALUE */
|
|
io_apic_set_id(0, 2);
|
|
io_apic_id = 2;
|
|
}
|
|
IO_TO_ID(0) = io_apic_id;
|
|
ID_TO_IO(io_apic_id) = 0;
|
|
#endif /* APIC_IO */
|
|
|
|
/* fill out bus entries */
|
|
switch (type) {
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
case 4:
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
bus_data[0].bus_id = default_data[type - 1][1];
|
|
bus_data[0].bus_type = default_data[type - 1][2];
|
|
bus_data[1].bus_id = default_data[type - 1][3];
|
|
bus_data[1].bus_type = default_data[type - 1][4];
|
|
break;
|
|
|
|
/* case 4: case 7: MCA NOT supported */
|
|
default: /* illegal/reserved */
|
|
panic("BAD default MP config: %d", type);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
#if defined(APIC_IO)
|
|
/* general cases from MP v1.4, table 5-2 */
|
|
for (pin = 0; pin < 16; ++pin) {
|
|
io_apic_ints[pin].int_type = 0;
|
|
io_apic_ints[pin].int_flags = 0x05; /* edge/active-hi */
|
|
io_apic_ints[pin].src_bus_id = 0;
|
|
io_apic_ints[pin].src_bus_irq = pin; /* IRQ2 caught below */
|
|
io_apic_ints[pin].dst_apic_id = io_apic_id;
|
|
io_apic_ints[pin].dst_apic_int = pin; /* 1-to-1 */
|
|
}
|
|
|
|
/* special cases from MP v1.4, table 5-2 */
|
|
if (type == 2) {
|
|
io_apic_ints[2].int_type = 0xff; /* N/C */
|
|
io_apic_ints[13].int_type = 0xff; /* N/C */
|
|
#if !defined(APIC_MIXED_MODE)
|
|
/** FIXME: ??? */
|
|
panic("sorry, can't support type 2 default yet");
|
|
#endif /* APIC_MIXED_MODE */
|
|
}
|
|
else
|
|
io_apic_ints[2].src_bus_irq = 0; /* ISA IRQ0 is on APIC INT 2 */
|
|
|
|
if (type == 7)
|
|
io_apic_ints[0].int_type = 0xff; /* N/C */
|
|
else
|
|
io_apic_ints[0].int_type = 3; /* vectored 8259 */
|
|
#endif /* APIC_IO */
|
|
}
|
|
|
|
|
|
/*
|
|
* start each AP in our list
|
|
*/
|
|
static int
|
|
start_all_aps(u_int boot_addr)
|
|
{
|
|
int x, i, pg;
|
|
u_char mpbiosreason;
|
|
u_long mpbioswarmvec;
|
|
struct globaldata *gd;
|
|
char *stack;
|
|
uintptr_t kptbase;
|
|
|
|
POSTCODE(START_ALL_APS_POST);
|
|
|
|
/* initialize BSP's local APIC */
|
|
apic_initialize();
|
|
bsp_apic_ready = 1;
|
|
|
|
/* install the AP 1st level boot code */
|
|
install_ap_tramp(boot_addr);
|
|
|
|
|
|
/* save the current value of the warm-start vector */
|
|
mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
|
|
#ifndef PC98
|
|
outb(CMOS_REG, BIOS_RESET);
|
|
mpbiosreason = inb(CMOS_DATA);
|
|
#endif
|
|
|
|
/* record BSP in CPU map */
|
|
all_cpus = 1;
|
|
|
|
/* set up temporary P==V mapping for AP boot */
|
|
/* XXX this is a hack, we should boot the AP on its own stack/PTD */
|
|
kptbase = (uintptr_t)(void *)KPTphys;
|
|
for (x = 0; x < NKPT; x++)
|
|
PTD[x] = (pd_entry_t)(PG_V | PG_RW |
|
|
((kptbase + x * PAGE_SIZE) & PG_FRAME));
|
|
invltlb();
|
|
|
|
/* start each AP */
|
|
for (x = 1; x <= mp_naps; ++x) {
|
|
|
|
/* This is a bit verbose, it will go away soon. */
|
|
|
|
/* first page of AP's private space */
|
|
pg = x * i386_btop(sizeof(struct privatespace));
|
|
|
|
/* allocate a new private data page */
|
|
gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE);
|
|
|
|
/* wire it into the private page table page */
|
|
SMPpt[pg] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd));
|
|
|
|
/* allocate and set up an idle stack data page */
|
|
stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
|
|
for (i = 0; i < UPAGES; i++)
|
|
SMPpt[pg + 1 + i] = (pt_entry_t)
|
|
(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
|
|
|
|
/* prime data page for it to use */
|
|
SLIST_INSERT_HEAD(&cpuhead, gd, gd_allcpu);
|
|
gd->gd_cpuid = x;
|
|
|
|
/* setup a vector to our boot code */
|
|
*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
|
|
*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
|
|
#ifndef PC98
|
|
outb(CMOS_REG, BIOS_RESET);
|
|
outb(CMOS_DATA, BIOS_WARM); /* 'warm-start' */
|
|
#endif
|
|
|
|
bootSTK = &SMP_prvspace[x].idlestack[UPAGES*PAGE_SIZE];
|
|
bootAP = x;
|
|
|
|
/* attempt to start the Application Processor */
|
|
CHECK_INIT(99); /* setup checkpoints */
|
|
if (!start_ap(x, boot_addr)) {
|
|
printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
|
|
CHECK_PRINT("trace"); /* show checkpoints */
|
|
/* better panic as the AP may be running loose */
|
|
printf("panic y/n? [y] ");
|
|
if (cngetc() != 'n')
|
|
panic("bye-bye");
|
|
}
|
|
CHECK_PRINT("trace"); /* show checkpoints */
|
|
|
|
/* record its version info */
|
|
cpu_apic_versions[x] = cpu_apic_versions[0];
|
|
|
|
all_cpus |= (1 << x); /* record AP in CPU map */
|
|
}
|
|
|
|
/* build our map of 'other' CPUs */
|
|
PCPU_SET(other_cpus, all_cpus & ~(1 << PCPU_GET(cpuid)));
|
|
|
|
/* fill in our (BSP) APIC version */
|
|
cpu_apic_versions[0] = lapic.version;
|
|
|
|
/* restore the warmstart vector */
|
|
*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
|
|
#ifndef PC98
|
|
outb(CMOS_REG, BIOS_RESET);
|
|
outb(CMOS_DATA, mpbiosreason);
|
|
#endif
|
|
|
|
/*
|
|
* Set up the idle context for the BSP. Similar to above except
|
|
* that some was done by locore, some by pmap.c and some is implicit
|
|
* because the BSP is cpu#0 and the page is initially zero, and also
|
|
* because we can refer to variables by name on the BSP..
|
|
*/
|
|
|
|
/* Allocate and setup BSP idle stack */
|
|
stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
|
|
for (i = 0; i < UPAGES; i++)
|
|
SMPpt[1 + i] = (pt_entry_t)
|
|
(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
|
|
|
|
for (x = 0; x < NKPT; x++)
|
|
PTD[x] = 0;
|
|
pmap_set_opt();
|
|
|
|
/* number of APs actually started */
|
|
return mp_ncpus - 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* load the 1st level AP boot code into base memory.
|
|
*/
|
|
|
|
/* targets for relocation */
|
|
extern void bigJump(void);
|
|
extern void bootCodeSeg(void);
|
|
extern void bootDataSeg(void);
|
|
extern void MPentry(void);
|
|
extern u_int MP_GDT;
|
|
extern u_int mp_gdtbase;
|
|
|
|
static void
|
|
install_ap_tramp(u_int boot_addr)
|
|
{
|
|
int x;
|
|
int size = *(int *) ((u_long) & bootMP_size);
|
|
u_char *src = (u_char *) ((u_long) bootMP);
|
|
u_char *dst = (u_char *) boot_addr + KERNBASE;
|
|
u_int boot_base = (u_int) bootMP;
|
|
u_int8_t *dst8;
|
|
u_int16_t *dst16;
|
|
u_int32_t *dst32;
|
|
|
|
POSTCODE(INSTALL_AP_TRAMP_POST);
|
|
|
|
for (x = 0; x < size; ++x)
|
|
*dst++ = *src++;
|
|
|
|
/*
|
|
* modify addresses in code we just moved to basemem. unfortunately we
|
|
* need fairly detailed info about mpboot.s for this to work. changes
|
|
* to mpboot.s might require changes here.
|
|
*/
|
|
|
|
/* boot code is located in KERNEL space */
|
|
dst = (u_char *) boot_addr + KERNBASE;
|
|
|
|
/* modify the lgdt arg */
|
|
dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
|
|
*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
|
|
|
|
/* modify the ljmp target for MPentry() */
|
|
dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
|
|
*dst32 = ((u_int) MPentry - KERNBASE);
|
|
|
|
/* modify the target for boot code segment */
|
|
dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
|
|
dst8 = (u_int8_t *) (dst16 + 1);
|
|
*dst16 = (u_int) boot_addr & 0xffff;
|
|
*dst8 = ((u_int) boot_addr >> 16) & 0xff;
|
|
|
|
/* modify the target for boot data segment */
|
|
dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
|
|
dst8 = (u_int8_t *) (dst16 + 1);
|
|
*dst16 = (u_int) boot_addr & 0xffff;
|
|
*dst8 = ((u_int) boot_addr >> 16) & 0xff;
|
|
}
|
|
|
|
|
|
/*
|
|
* this function starts the AP (application processor) identified
|
|
* by the APIC ID 'physicalCpu'. It does quite a "song and dance"
|
|
* to accomplish this. This is necessary because of the nuances
|
|
* of the different hardware we might encounter. It ain't pretty,
|
|
* but it seems to work.
|
|
*/
|
|
static int
|
|
start_ap(int logical_cpu, u_int boot_addr)
|
|
{
|
|
int physical_cpu;
|
|
int vector;
|
|
int cpus;
|
|
u_long icr_lo, icr_hi;
|
|
|
|
POSTCODE(START_AP_POST);
|
|
|
|
/* get the PHYSICAL APIC ID# */
|
|
physical_cpu = CPU_TO_ID(logical_cpu);
|
|
|
|
/* calculate the vector */
|
|
vector = (boot_addr >> 12) & 0xff;
|
|
|
|
/* used as a watchpoint to signal AP startup */
|
|
cpus = mp_ncpus;
|
|
|
|
/*
|
|
* first we do an INIT/RESET IPI this INIT IPI might be run, reseting
|
|
* and running the target CPU. OR this INIT IPI might be latched (P5
|
|
* bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
|
|
* ignored.
|
|
*/
|
|
|
|
/* setup the address for the target AP */
|
|
icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
|
|
icr_hi |= (physical_cpu << 24);
|
|
lapic.icr_hi = icr_hi;
|
|
|
|
/* do an INIT IPI: assert RESET */
|
|
icr_lo = lapic.icr_lo & 0xfff00000;
|
|
lapic.icr_lo = icr_lo | 0x0000c500;
|
|
|
|
/* wait for pending status end */
|
|
while (lapic.icr_lo & APIC_DELSTAT_MASK)
|
|
/* spin */ ;
|
|
|
|
/* do an INIT IPI: deassert RESET */
|
|
lapic.icr_lo = icr_lo | 0x00008500;
|
|
|
|
/* wait for pending status end */
|
|
u_sleep(10000); /* wait ~10mS */
|
|
while (lapic.icr_lo & APIC_DELSTAT_MASK)
|
|
/* spin */ ;
|
|
|
|
/*
|
|
* next we do a STARTUP IPI: the previous INIT IPI might still be
|
|
* latched, (P5 bug) this 1st STARTUP would then terminate
|
|
* immediately, and the previously started INIT IPI would continue. OR
|
|
* the previous INIT IPI has already run. and this STARTUP IPI will
|
|
* run. OR the previous INIT IPI was ignored. and this STARTUP IPI
|
|
* will run.
|
|
*/
|
|
|
|
/* do a STARTUP IPI */
|
|
lapic.icr_lo = icr_lo | 0x00000600 | vector;
|
|
while (lapic.icr_lo & APIC_DELSTAT_MASK)
|
|
/* spin */ ;
|
|
u_sleep(200); /* wait ~200uS */
|
|
|
|
/*
|
|
* finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
|
|
* the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
|
|
* this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
|
|
* recognized after hardware RESET or INIT IPI.
|
|
*/
|
|
|
|
lapic.icr_lo = icr_lo | 0x00000600 | vector;
|
|
while (lapic.icr_lo & APIC_DELSTAT_MASK)
|
|
/* spin */ ;
|
|
u_sleep(200); /* wait ~200uS */
|
|
|
|
/* wait for it to start */
|
|
set_apic_timer(5000000);/* == 5 seconds */
|
|
while (read_apic_timer())
|
|
if (mp_ncpus > cpus)
|
|
return 1; /* return SUCCESS */
|
|
|
|
return 0; /* return FAILURE */
|
|
}
|
|
|
|
/*
|
|
* Flush the TLB on all other CPU's
|
|
*
|
|
* XXX: Needs to handshake and wait for completion before proceding.
|
|
*/
|
|
void
|
|
smp_invltlb(void)
|
|
{
|
|
#if defined(APIC_IO)
|
|
if (smp_started && invltlb_ok)
|
|
all_but_self_ipi(XINVLTLB_OFFSET);
|
|
#endif /* APIC_IO */
|
|
}
|
|
|
|
void
|
|
invlpg(u_int addr)
|
|
{
|
|
__asm __volatile("invlpg (%0)"::"r"(addr):"memory");
|
|
|
|
/* send a message to the other CPUs */
|
|
smp_invltlb();
|
|
}
|
|
|
|
void
|
|
invltlb(void)
|
|
{
|
|
u_long temp;
|
|
|
|
/*
|
|
* This should be implemented as load_cr3(rcr3()) when load_cr3() is
|
|
* inlined.
|
|
*/
|
|
__asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
|
|
|
|
/* send a message to the other CPUs */
|
|
smp_invltlb();
|
|
}
|
|
|
|
|
|
/*
|
|
* This is called once the rest of the system is up and running and we're
|
|
* ready to let the AP's out of the pen.
|
|
*/
|
|
void
|
|
ap_init(void)
|
|
{
|
|
u_int apic_id;
|
|
|
|
/* spin until all the AP's are ready */
|
|
while (!aps_ready)
|
|
/* spin */ ;
|
|
|
|
/*
|
|
* Set curproc to our per-cpu idleproc so that mutexes have
|
|
* something unique to lock with.
|
|
*/
|
|
PCPU_SET(curproc, PCPU_GET(idleproc));
|
|
|
|
/* lock against other AP's that are waking up */
|
|
mtx_lock_spin(&ap_boot_mtx);
|
|
|
|
/* BSP may have changed PTD while we're waiting for the lock */
|
|
cpu_invltlb();
|
|
|
|
smp_cpus++;
|
|
|
|
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
|
|
lidt(&r_idt);
|
|
#endif
|
|
|
|
/* Build our map of 'other' CPUs. */
|
|
PCPU_SET(other_cpus, all_cpus & ~(1 << PCPU_GET(cpuid)));
|
|
|
|
printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
|
|
|
|
/* set up CPU registers and state */
|
|
cpu_setregs();
|
|
|
|
/* set up FPU state on the AP */
|
|
npxinit(__INITIAL_NPXCW__);
|
|
|
|
/* A quick check from sanity claus */
|
|
apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
|
|
if (PCPU_GET(cpuid) != apic_id) {
|
|
printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
|
|
printf("SMP: apic_id = %d\n", apic_id);
|
|
printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
|
|
panic("cpuid mismatch! boom!!");
|
|
}
|
|
|
|
/* Init local apic for irq's */
|
|
apic_initialize();
|
|
|
|
/* Set memory range attributes for this CPU to match the BSP */
|
|
mem_range_AP_init();
|
|
|
|
/*
|
|
* Activate smp_invltlb, although strictly speaking, this isn't
|
|
* quite correct yet. We should have a bitfield for cpus willing
|
|
* to accept TLB flush IPI's or something and sync them.
|
|
*/
|
|
if (smp_cpus == mp_ncpus) {
|
|
invltlb_ok = 1;
|
|
smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */
|
|
smp_active = 1; /* historic */
|
|
}
|
|
|
|
/* let other AP's wake up now */
|
|
mtx_unlock_spin(&ap_boot_mtx);
|
|
|
|
/* wait until all the AP's are up */
|
|
while (smp_started == 0)
|
|
; /* nothing */
|
|
|
|
microuptime(PCPU_PTR(switchtime));
|
|
PCPU_SET(switchticks, ticks);
|
|
|
|
/* ok, now grab sched_lock and enter the scheduler */
|
|
enable_intr();
|
|
mtx_lock_spin(&sched_lock);
|
|
cpu_throw(); /* doesn't return */
|
|
|
|
panic("scheduler returned us to ap_init");
|
|
}
|
|
|
|
#ifdef BETTER_CLOCK
|
|
|
|
#define CHECKSTATE_USER 0
|
|
#define CHECKSTATE_SYS 1
|
|
#define CHECKSTATE_INTR 2
|
|
|
|
/* Do not staticize. Used from apic_vector.s */
|
|
struct proc* checkstate_curproc[MAXCPU];
|
|
int checkstate_cpustate[MAXCPU];
|
|
u_long checkstate_pc[MAXCPU];
|
|
|
|
#define PC_TO_INDEX(pc, prof) \
|
|
((int)(((u_quad_t)((pc) - (prof)->pr_off) * \
|
|
(u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
|
|
|
|
static void
|
|
addupc_intr_forwarded(struct proc *p, int id, int *astmap)
|
|
{
|
|
int i;
|
|
struct uprof *prof;
|
|
u_long pc;
|
|
|
|
pc = checkstate_pc[id];
|
|
prof = &p->p_stats->p_prof;
|
|
if (pc >= prof->pr_off &&
|
|
(i = PC_TO_INDEX(pc, prof)) < prof->pr_size) {
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
if ((p->p_sflag & PS_OWEUPC) == 0) {
|
|
prof->pr_addr = pc;
|
|
prof->pr_ticks = 1;
|
|
p->p_sflag |= PS_OWEUPC;
|
|
}
|
|
*astmap |= (1 << id);
|
|
}
|
|
}
|
|
|
|
static void
|
|
forwarded_statclock(int id, int pscnt, int *astmap)
|
|
{
|
|
struct pstats *pstats;
|
|
long rss;
|
|
struct rusage *ru;
|
|
struct vmspace *vm;
|
|
int cpustate;
|
|
struct proc *p;
|
|
#ifdef GPROF
|
|
register struct gmonparam *g;
|
|
int i;
|
|
#endif
|
|
|
|
mtx_assert(&sched_lock, MA_OWNED);
|
|
p = checkstate_curproc[id];
|
|
cpustate = checkstate_cpustate[id];
|
|
|
|
/* XXX */
|
|
if (p->p_ithd)
|
|
cpustate = CHECKSTATE_INTR;
|
|
else if (p == SMP_prvspace[id].globaldata.gd_idleproc)
|
|
cpustate = CHECKSTATE_SYS;
|
|
|
|
switch (cpustate) {
|
|
case CHECKSTATE_USER:
|
|
if (p->p_sflag & PS_PROFIL)
|
|
addupc_intr_forwarded(p, id, astmap);
|
|
if (pscnt > 1)
|
|
return;
|
|
p->p_uticks++;
|
|
if (p->p_nice > NZERO)
|
|
cp_time[CP_NICE]++;
|
|
else
|
|
cp_time[CP_USER]++;
|
|
break;
|
|
case CHECKSTATE_SYS:
|
|
#ifdef GPROF
|
|
/*
|
|
* Kernel statistics are just like addupc_intr, only easier.
|
|
*/
|
|
g = &_gmonparam;
|
|
if (g->state == GMON_PROF_ON) {
|
|
i = checkstate_pc[id] - g->lowpc;
|
|
if (i < g->textsize) {
|
|
i /= HISTFRACTION * sizeof(*g->kcount);
|
|
g->kcount[i]++;
|
|
}
|
|
}
|
|
#endif
|
|
if (pscnt > 1)
|
|
return;
|
|
|
|
p->p_sticks++;
|
|
if (p == SMP_prvspace[id].globaldata.gd_idleproc)
|
|
cp_time[CP_IDLE]++;
|
|
else
|
|
cp_time[CP_SYS]++;
|
|
break;
|
|
case CHECKSTATE_INTR:
|
|
default:
|
|
#ifdef GPROF
|
|
/*
|
|
* Kernel statistics are just like addupc_intr, only easier.
|
|
*/
|
|
g = &_gmonparam;
|
|
if (g->state == GMON_PROF_ON) {
|
|
i = checkstate_pc[id] - g->lowpc;
|
|
if (i < g->textsize) {
|
|
i /= HISTFRACTION * sizeof(*g->kcount);
|
|
g->kcount[i]++;
|
|
}
|
|
}
|
|
#endif
|
|
if (pscnt > 1)
|
|
return;
|
|
KASSERT(p != NULL, ("NULL process in interrupt state"));
|
|
p->p_iticks++;
|
|
cp_time[CP_INTR]++;
|
|
}
|
|
|
|
schedclock(p);
|
|
|
|
/* Update resource usage integrals and maximums. */
|
|
if ((pstats = p->p_stats) != NULL &&
|
|
(ru = &pstats->p_ru) != NULL &&
|
|
(vm = p->p_vmspace) != NULL) {
|
|
ru->ru_ixrss += pgtok(vm->vm_tsize);
|
|
ru->ru_idrss += pgtok(vm->vm_dsize);
|
|
ru->ru_isrss += pgtok(vm->vm_ssize);
|
|
rss = pgtok(vmspace_resident_count(vm));
|
|
if (ru->ru_maxrss < rss)
|
|
ru->ru_maxrss = rss;
|
|
}
|
|
}
|
|
|
|
void
|
|
forward_statclock(int pscnt)
|
|
{
|
|
int map;
|
|
int id;
|
|
int i;
|
|
|
|
/* Kludge. We don't yet have separate locks for the interrupts
|
|
* and the kernel. This means that we cannot let the other processors
|
|
* handle complex interrupts while inhibiting them from entering
|
|
* the kernel in a non-interrupt context.
|
|
*
|
|
* What we can do, without changing the locking mechanisms yet,
|
|
* is letting the other processors handle a very simple interrupt
|
|
* (wich determines the processor states), and do the main
|
|
* work ourself.
|
|
*/
|
|
|
|
CTR1(KTR_SMP, "forward_statclock(%d)", pscnt);
|
|
|
|
if (!smp_started || !invltlb_ok || cold || panicstr)
|
|
return;
|
|
|
|
/* Step 1: Probe state (user, cpu, interrupt, spinlock, idle ) */
|
|
|
|
map = PCPU_GET(other_cpus) & ~stopped_cpus ;
|
|
checkstate_probed_cpus = 0;
|
|
if (map != 0)
|
|
selected_apic_ipi(map,
|
|
XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
|
|
|
|
i = 0;
|
|
while (checkstate_probed_cpus != map) {
|
|
/* spin */
|
|
i++;
|
|
if (i == 100000) {
|
|
#ifdef BETTER_CLOCK_DIAGNOSTIC
|
|
printf("forward_statclock: checkstate %x\n",
|
|
checkstate_probed_cpus);
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Step 2: walk through other processors processes, update ticks and
|
|
* profiling info.
|
|
*/
|
|
|
|
map = 0;
|
|
for (id = 0; id < mp_ncpus; id++) {
|
|
if (id == PCPU_GET(cpuid))
|
|
continue;
|
|
if (((1 << id) & checkstate_probed_cpus) == 0)
|
|
continue;
|
|
forwarded_statclock(id, pscnt, &map);
|
|
}
|
|
if (map != 0) {
|
|
checkstate_need_ast |= map;
|
|
selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
|
|
i = 0;
|
|
while ((checkstate_need_ast & map) != 0) {
|
|
/* spin */
|
|
i++;
|
|
if (i > 100000) {
|
|
#ifdef BETTER_CLOCK_DIAGNOSTIC
|
|
printf("forward_statclock: dropped ast 0x%x\n",
|
|
checkstate_need_ast & map);
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
forward_hardclock(int pscnt)
|
|
{
|
|
int map;
|
|
int id;
|
|
struct proc *p;
|
|
struct pstats *pstats;
|
|
int i;
|
|
|
|
/* Kludge. We don't yet have separate locks for the interrupts
|
|
* and the kernel. This means that we cannot let the other processors
|
|
* handle complex interrupts while inhibiting them from entering
|
|
* the kernel in a non-interrupt context.
|
|
*
|
|
* What we can do, without changing the locking mechanisms yet,
|
|
* is letting the other processors handle a very simple interrupt
|
|
* (wich determines the processor states), and do the main
|
|
* work ourself.
|
|
*/
|
|
|
|
CTR1(KTR_SMP, "forward_hardclock(%d)", pscnt);
|
|
|
|
if (!smp_started || !invltlb_ok || cold || panicstr)
|
|
return;
|
|
|
|
/* Step 1: Probe state (user, cpu, interrupt, spinlock, idle) */
|
|
|
|
map = PCPU_GET(other_cpus) & ~stopped_cpus ;
|
|
checkstate_probed_cpus = 0;
|
|
if (map != 0)
|
|
selected_apic_ipi(map,
|
|
XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
|
|
|
|
i = 0;
|
|
while (checkstate_probed_cpus != map) {
|
|
/* spin */
|
|
i++;
|
|
if (i == 100000) {
|
|
#ifdef BETTER_CLOCK_DIAGNOSTIC
|
|
printf("forward_hardclock: checkstate %x\n",
|
|
checkstate_probed_cpus);
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Step 2: walk through other processors processes, update virtual
|
|
* timer and profiling timer. If stathz == 0, also update ticks and
|
|
* profiling info.
|
|
*/
|
|
|
|
map = 0;
|
|
for (id = 0; id < mp_ncpus; id++) {
|
|
if (id == PCPU_GET(cpuid))
|
|
continue;
|
|
if (((1 << id) & checkstate_probed_cpus) == 0)
|
|
continue;
|
|
p = checkstate_curproc[id];
|
|
if (p) {
|
|
pstats = p->p_stats;
|
|
if (checkstate_cpustate[id] == CHECKSTATE_USER &&
|
|
timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
|
|
itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
|
|
p->p_sflag |= PS_ALRMPEND;
|
|
map |= (1 << id);
|
|
}
|
|
if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
|
|
itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
|
|
p->p_sflag |= PS_PROFPEND;
|
|
map |= (1 << id);
|
|
}
|
|
}
|
|
if (stathz == 0) {
|
|
forwarded_statclock( id, pscnt, &map);
|
|
}
|
|
}
|
|
if (map != 0) {
|
|
checkstate_need_ast |= map;
|
|
selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
|
|
i = 0;
|
|
while ((checkstate_need_ast & map) != 0) {
|
|
/* spin */
|
|
i++;
|
|
if (i > 100000) {
|
|
#ifdef BETTER_CLOCK_DIAGNOSTIC
|
|
printf("forward_hardclock: dropped ast 0x%x\n",
|
|
checkstate_need_ast & map);
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* BETTER_CLOCK */
|
|
|
|
void
|
|
forward_signal(struct proc *p)
|
|
{
|
|
int map;
|
|
int id;
|
|
int i;
|
|
|
|
/* Kludge. We don't yet have separate locks for the interrupts
|
|
* and the kernel. This means that we cannot let the other processors
|
|
* handle complex interrupts while inhibiting them from entering
|
|
* the kernel in a non-interrupt context.
|
|
*
|
|
* What we can do, without changing the locking mechanisms yet,
|
|
* is letting the other processors handle a very simple interrupt
|
|
* (wich determines the processor states), and do the main
|
|
* work ourself.
|
|
*/
|
|
|
|
CTR1(KTR_SMP, "forward_signal(%p)", p);
|
|
|
|
if (!smp_started || !invltlb_ok || cold || panicstr)
|
|
return;
|
|
if (!forward_signal_enabled)
|
|
return;
|
|
mtx_lock_spin(&sched_lock);
|
|
while (1) {
|
|
if (p->p_stat != SRUN) {
|
|
mtx_unlock_spin(&sched_lock);
|
|
return;
|
|
}
|
|
id = p->p_oncpu;
|
|
mtx_unlock_spin(&sched_lock);
|
|
if (id == 0xff)
|
|
return;
|
|
map = (1<<id);
|
|
checkstate_need_ast |= map;
|
|
selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
|
|
i = 0;
|
|
while ((checkstate_need_ast & map) != 0) {
|
|
/* spin */
|
|
i++;
|
|
if (i > 100000) {
|
|
#if 0
|
|
printf("forward_signal: dropped ast 0x%x\n",
|
|
checkstate_need_ast & map);
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
mtx_lock_spin(&sched_lock);
|
|
if (id == p->p_oncpu) {
|
|
mtx_unlock_spin(&sched_lock);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
forward_roundrobin(void)
|
|
{
|
|
u_int map;
|
|
int i;
|
|
|
|
CTR0(KTR_SMP, "forward_roundrobin()");
|
|
|
|
if (!smp_started || !invltlb_ok || cold || panicstr)
|
|
return;
|
|
if (!forward_roundrobin_enabled)
|
|
return;
|
|
resched_cpus |= PCPU_GET(other_cpus);
|
|
map = PCPU_GET(other_cpus) & ~stopped_cpus ;
|
|
#if 1
|
|
selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
|
|
#else
|
|
(void) all_but_self_ipi(XCPUAST_OFFSET);
|
|
#endif
|
|
i = 0;
|
|
while ((checkstate_need_ast & map) != 0) {
|
|
/* spin */
|
|
i++;
|
|
if (i > 100000) {
|
|
#if 0
|
|
printf("forward_roundrobin: dropped ast 0x%x\n",
|
|
checkstate_need_ast & map);
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When called the executing CPU will send an IPI to all other CPUs
|
|
* requesting that they halt execution.
|
|
*
|
|
* Usually (but not necessarily) called with 'other_cpus' as its arg.
|
|
*
|
|
* - Signals all CPUs in map to stop.
|
|
* - Waits for each to stop.
|
|
*
|
|
* Returns:
|
|
* -1: error
|
|
* 0: NA
|
|
* 1: ok
|
|
*
|
|
* XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
|
|
* from executing at same time.
|
|
*/
|
|
int
|
|
stop_cpus(u_int map)
|
|
{
|
|
int count = 0;
|
|
|
|
if (!smp_started)
|
|
return 0;
|
|
|
|
/* send the Xcpustop IPI to all CPUs in map */
|
|
selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
|
|
|
|
while (count++ < 100000 && (stopped_cpus & map) != map)
|
|
/* spin */ ;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if ((stopped_cpus & map) != map)
|
|
printf("Warning: CPUs 0x%x did not stop!\n",
|
|
(~(stopped_cpus & map)) & map);
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* Called by a CPU to restart stopped CPUs.
|
|
*
|
|
* Usually (but not necessarily) called with 'stopped_cpus' as its arg.
|
|
*
|
|
* - Signals all CPUs in map to restart.
|
|
* - Waits for each to restart.
|
|
*
|
|
* Returns:
|
|
* -1: error
|
|
* 0: NA
|
|
* 1: ok
|
|
*/
|
|
int
|
|
restart_cpus(u_int map)
|
|
{
|
|
int count = 0;
|
|
|
|
if (!smp_started)
|
|
return 0;
|
|
|
|
started_cpus = map; /* signal other cpus to restart */
|
|
|
|
/* wait for each to clear its bit */
|
|
while (count++ < 100000 && (stopped_cpus & map) != 0)
|
|
/* spin */ ;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if ((stopped_cpus & map) != 0)
|
|
printf("Warning: CPUs 0x%x did not restart!\n",
|
|
(~(stopped_cpus & map)) & map);
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
#ifdef APIC_INTR_REORDER
|
|
/*
|
|
* Maintain mapping from softintr vector to isr bit in local apic.
|
|
*/
|
|
void
|
|
set_lapic_isrloc(int intr, int vector)
|
|
{
|
|
if (intr < 0 || intr > 32)
|
|
panic("set_apic_isrloc: bad intr argument: %d",intr);
|
|
if (vector < ICU_OFFSET || vector > 255)
|
|
panic("set_apic_isrloc: bad vector argument: %d",vector);
|
|
apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2);
|
|
apic_isrbit_location[intr].bit = (1<<(vector & 31));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* All-CPU rendezvous. CPUs are signalled, all execute the setup function
|
|
* (if specified), rendezvous, execute the action function (if specified),
|
|
* rendezvous again, execute the teardown function (if specified), and then
|
|
* resume.
|
|
*
|
|
* Note that the supplied external functions _must_ be reentrant and aware
|
|
* that they are running in parallel and in an unknown lock context.
|
|
*/
|
|
static void (*smp_rv_setup_func)(void *arg);
|
|
static void (*smp_rv_action_func)(void *arg);
|
|
static void (*smp_rv_teardown_func)(void *arg);
|
|
static void *smp_rv_func_arg;
|
|
static volatile int smp_rv_waiters[2];
|
|
|
|
void
|
|
smp_rendezvous_action(void)
|
|
{
|
|
/* setup function */
|
|
if (smp_rv_setup_func != NULL)
|
|
smp_rv_setup_func(smp_rv_func_arg);
|
|
/* spin on entry rendezvous */
|
|
atomic_add_int(&smp_rv_waiters[0], 1);
|
|
while (smp_rv_waiters[0] < mp_ncpus)
|
|
;
|
|
/* action function */
|
|
if (smp_rv_action_func != NULL)
|
|
smp_rv_action_func(smp_rv_func_arg);
|
|
/* spin on exit rendezvous */
|
|
atomic_add_int(&smp_rv_waiters[1], 1);
|
|
while (smp_rv_waiters[1] < mp_ncpus)
|
|
;
|
|
/* teardown function */
|
|
if (smp_rv_teardown_func != NULL)
|
|
smp_rv_teardown_func(smp_rv_func_arg);
|
|
}
|
|
|
|
void
|
|
smp_rendezvous(void (* setup_func)(void *),
|
|
void (* action_func)(void *),
|
|
void (* teardown_func)(void *),
|
|
void *arg)
|
|
{
|
|
|
|
/* obtain rendezvous lock */
|
|
mtx_lock_spin(&smp_rv_mtx);
|
|
|
|
/* set static function pointers */
|
|
smp_rv_setup_func = setup_func;
|
|
smp_rv_action_func = action_func;
|
|
smp_rv_teardown_func = teardown_func;
|
|
smp_rv_func_arg = arg;
|
|
smp_rv_waiters[0] = 0;
|
|
smp_rv_waiters[1] = 0;
|
|
|
|
/*
|
|
* signal other processors, which will enter the IPI with interrupts off
|
|
*/
|
|
all_but_self_ipi(XRENDEZVOUS_OFFSET);
|
|
|
|
/* call executor function */
|
|
smp_rendezvous_action();
|
|
|
|
/* release lock */
|
|
mtx_unlock_spin(&smp_rv_mtx);
|
|
}
|
|
|
|
void
|
|
release_aps(void *dummy __unused)
|
|
{
|
|
atomic_store_rel_int(&aps_ready, 1);
|
|
}
|
|
|
|
SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);
|