freebsd-nq/module/zfs/range_tree.c
Brian Behlendorf dce63135ae Sequential scrub and resilver updated comments
Commit d4a72f2 which introduced multi-phase scrubs and resilvers
continued the work presented by Nexenta at the 2016 ZFS developer
summit.  Update the source to reflect their contribution.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2020-09-04 10:51:51 -07:00

923 lines
25 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright (c) 2013, 2019 by Delphix. All rights reserved.
* Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/dmu.h>
#include <sys/dnode.h>
#include <sys/zio.h>
#include <sys/range_tree.h>
/*
* Range trees are tree-based data structures that can be used to
* track free space or generally any space allocation information.
* A range tree keeps track of individual segments and automatically
* provides facilities such as adjacent extent merging and extent
* splitting in response to range add/remove requests.
*
* A range tree starts out completely empty, with no segments in it.
* Adding an allocation via range_tree_add to the range tree can either:
* 1) create a new extent
* 2) extend an adjacent extent
* 3) merge two adjacent extents
* Conversely, removing an allocation via range_tree_remove can:
* 1) completely remove an extent
* 2) shorten an extent (if the allocation was near one of its ends)
* 3) split an extent into two extents, in effect punching a hole
*
* A range tree is also capable of 'bridging' gaps when adding
* allocations. This is useful for cases when close proximity of
* allocations is an important detail that needs to be represented
* in the range tree. See range_tree_set_gap(). The default behavior
* is not to bridge gaps (i.e. the maximum allowed gap size is 0).
*
* In order to traverse a range tree, use either the range_tree_walk()
* or range_tree_vacate() functions.
*
* To obtain more accurate information on individual segment
* operations that the range tree performs "under the hood", you can
* specify a set of callbacks by passing a range_tree_ops_t structure
* to the range_tree_create function. Any callbacks that are non-NULL
* are then called at the appropriate times.
*
* The range tree code also supports a special variant of range trees
* that can bridge small gaps between segments. This kind of tree is used
* by the dsl scanning code to group I/Os into mostly sequential chunks to
* optimize disk performance. The code here attempts to do this with as
* little memory and computational overhead as possible. One limitation of
* this implementation is that segments of range trees with gaps can only
* support removing complete segments.
*/
static inline void
rs_copy(range_seg_t *src, range_seg_t *dest, range_tree_t *rt)
{
ASSERT3U(rt->rt_type, <=, RANGE_SEG_NUM_TYPES);
size_t size = 0;
switch (rt->rt_type) {
case RANGE_SEG32:
size = sizeof (range_seg32_t);
break;
case RANGE_SEG64:
size = sizeof (range_seg64_t);
break;
case RANGE_SEG_GAP:
size = sizeof (range_seg_gap_t);
break;
default:
VERIFY(0);
}
bcopy(src, dest, size);
}
void
range_tree_stat_verify(range_tree_t *rt)
{
range_seg_t *rs;
zfs_btree_index_t where;
uint64_t hist[RANGE_TREE_HISTOGRAM_SIZE] = { 0 };
int i;
for (rs = zfs_btree_first(&rt->rt_root, &where); rs != NULL;
rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
int idx = highbit64(size) - 1;
hist[idx]++;
ASSERT3U(hist[idx], !=, 0);
}
for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
if (hist[i] != rt->rt_histogram[i]) {
zfs_dbgmsg("i=%d, hist=%px, hist=%llu, rt_hist=%llu",
i, hist, hist[i], rt->rt_histogram[i]);
}
VERIFY3U(hist[i], ==, rt->rt_histogram[i]);
}
}
static void
range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs)
{
uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
int idx = highbit64(size) - 1;
ASSERT(size != 0);
ASSERT3U(idx, <,
sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
rt->rt_histogram[idx]++;
ASSERT3U(rt->rt_histogram[idx], !=, 0);
}
static void
range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs)
{
uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
int idx = highbit64(size) - 1;
ASSERT(size != 0);
ASSERT3U(idx, <,
sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
ASSERT3U(rt->rt_histogram[idx], !=, 0);
rt->rt_histogram[idx]--;
}
static int
range_tree_seg32_compare(const void *x1, const void *x2)
{
const range_seg32_t *r1 = x1;
const range_seg32_t *r2 = x2;
ASSERT3U(r1->rs_start, <=, r1->rs_end);
ASSERT3U(r2->rs_start, <=, r2->rs_end);
return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
}
static int
range_tree_seg64_compare(const void *x1, const void *x2)
{
const range_seg64_t *r1 = x1;
const range_seg64_t *r2 = x2;
ASSERT3U(r1->rs_start, <=, r1->rs_end);
ASSERT3U(r2->rs_start, <=, r2->rs_end);
return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
}
static int
range_tree_seg_gap_compare(const void *x1, const void *x2)
{
const range_seg_gap_t *r1 = x1;
const range_seg_gap_t *r2 = x2;
ASSERT3U(r1->rs_start, <=, r1->rs_end);
ASSERT3U(r2->rs_start, <=, r2->rs_end);
return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
}
range_tree_t *
range_tree_create_impl(range_tree_ops_t *ops, range_seg_type_t type, void *arg,
uint64_t start, uint64_t shift,
int (*zfs_btree_compare) (const void *, const void *),
uint64_t gap)
{
range_tree_t *rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP);
ASSERT3U(shift, <, 64);
ASSERT3U(type, <=, RANGE_SEG_NUM_TYPES);
size_t size;
int (*compare) (const void *, const void *);
switch (type) {
case RANGE_SEG32:
size = sizeof (range_seg32_t);
compare = range_tree_seg32_compare;
break;
case RANGE_SEG64:
size = sizeof (range_seg64_t);
compare = range_tree_seg64_compare;
break;
case RANGE_SEG_GAP:
size = sizeof (range_seg_gap_t);
compare = range_tree_seg_gap_compare;
break;
default:
panic("Invalid range seg type %d", type);
}
zfs_btree_create(&rt->rt_root, compare, size);
rt->rt_ops = ops;
rt->rt_gap = gap;
rt->rt_arg = arg;
rt->rt_type = type;
rt->rt_start = start;
rt->rt_shift = shift;
rt->rt_btree_compare = zfs_btree_compare;
if (rt->rt_ops != NULL && rt->rt_ops->rtop_create != NULL)
rt->rt_ops->rtop_create(rt, rt->rt_arg);
return (rt);
}
range_tree_t *
range_tree_create(range_tree_ops_t *ops, range_seg_type_t type,
void *arg, uint64_t start, uint64_t shift)
{
return (range_tree_create_impl(ops, type, arg, start, shift, NULL, 0));
}
void
range_tree_destroy(range_tree_t *rt)
{
VERIFY0(rt->rt_space);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_destroy != NULL)
rt->rt_ops->rtop_destroy(rt, rt->rt_arg);
zfs_btree_destroy(&rt->rt_root);
kmem_free(rt, sizeof (*rt));
}
void
range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta)
{
if (delta < 0 && delta * -1 >= rs_get_fill(rs, rt)) {
zfs_panic_recover("zfs: attempting to decrease fill to or "
"below 0; probable double remove in segment [%llx:%llx]",
(longlong_t)rs_get_start(rs, rt),
(longlong_t)rs_get_end(rs, rt));
}
if (rs_get_fill(rs, rt) + delta > rs_get_end(rs, rt) -
rs_get_start(rs, rt)) {
zfs_panic_recover("zfs: attempting to increase fill beyond "
"max; probable double add in segment [%llx:%llx]",
(longlong_t)rs_get_start(rs, rt),
(longlong_t)rs_get_end(rs, rt));
}
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
rs_set_fill(rs, rt, rs_get_fill(rs, rt) + delta);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
}
static void
range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill)
{
range_tree_t *rt = arg;
zfs_btree_index_t where;
range_seg_t *rs_before, *rs_after, *rs;
range_seg_max_t tmp, rsearch;
uint64_t end = start + size, gap = rt->rt_gap;
uint64_t bridge_size = 0;
boolean_t merge_before, merge_after;
ASSERT3U(size, !=, 0);
ASSERT3U(fill, <=, size);
ASSERT3U(start + size, >, start);
rs_set_start(&rsearch, rt, start);
rs_set_end(&rsearch, rt, end);
rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
/*
* If this is a gap-supporting range tree, it is possible that we
* are inserting into an existing segment. In this case simply
* bump the fill count and call the remove / add callbacks. If the
* new range will extend an existing segment, we remove the
* existing one, apply the new extent to it and re-insert it using
* the normal code paths.
*/
if (rs != NULL) {
if (gap == 0) {
zfs_panic_recover("zfs: adding existent segment to "
"range tree (offset=%llx size=%llx)",
(longlong_t)start, (longlong_t)size);
return;
}
uint64_t rstart = rs_get_start(rs, rt);
uint64_t rend = rs_get_end(rs, rt);
if (rstart <= start && rend >= end) {
range_tree_adjust_fill(rt, rs, fill);
return;
}
zfs_btree_remove(&rt->rt_root, rs);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
range_tree_stat_decr(rt, rs);
rt->rt_space -= rend - rstart;
fill += rs_get_fill(rs, rt);
start = MIN(start, rstart);
end = MAX(end, rend);
size = end - start;
range_tree_add_impl(rt, start, size, fill);
return;
}
ASSERT3P(rs, ==, NULL);
/*
* Determine whether or not we will have to merge with our neighbors.
* If gap != 0, we might need to merge with our neighbors even if we
* aren't directly touching.
*/
zfs_btree_index_t where_before, where_after;
rs_before = zfs_btree_prev(&rt->rt_root, &where, &where_before);
rs_after = zfs_btree_next(&rt->rt_root, &where, &where_after);
merge_before = (rs_before != NULL && rs_get_end(rs_before, rt) >=
start - gap);
merge_after = (rs_after != NULL && rs_get_start(rs_after, rt) <= end +
gap);
if (merge_before && gap != 0)
bridge_size += start - rs_get_end(rs_before, rt);
if (merge_after && gap != 0)
bridge_size += rs_get_start(rs_after, rt) - end;
if (merge_before && merge_after) {
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) {
rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
}
range_tree_stat_decr(rt, rs_before);
range_tree_stat_decr(rt, rs_after);
rs_copy(rs_after, &tmp, rt);
uint64_t before_start = rs_get_start_raw(rs_before, rt);
uint64_t before_fill = rs_get_fill(rs_before, rt);
uint64_t after_fill = rs_get_fill(rs_after, rt);
zfs_btree_remove_idx(&rt->rt_root, &where_before);
/*
* We have to re-find the node because our old reference is
* invalid as soon as we do any mutating btree operations.
*/
rs_after = zfs_btree_find(&rt->rt_root, &tmp, &where_after);
rs_set_start_raw(rs_after, rt, before_start);
rs_set_fill(rs_after, rt, after_fill + before_fill + fill);
rs = rs_after;
} else if (merge_before) {
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
range_tree_stat_decr(rt, rs_before);
uint64_t before_fill = rs_get_fill(rs_before, rt);
rs_set_end(rs_before, rt, end);
rs_set_fill(rs_before, rt, before_fill + fill);
rs = rs_before;
} else if (merge_after) {
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
range_tree_stat_decr(rt, rs_after);
uint64_t after_fill = rs_get_fill(rs_after, rt);
rs_set_start(rs_after, rt, start);
rs_set_fill(rs_after, rt, after_fill + fill);
rs = rs_after;
} else {
rs = &tmp;
rs_set_start(rs, rt, start);
rs_set_end(rs, rt, end);
rs_set_fill(rs, rt, fill);
zfs_btree_add_idx(&rt->rt_root, rs, &where);
}
if (gap != 0) {
ASSERT3U(rs_get_fill(rs, rt), <=, rs_get_end(rs, rt) -
rs_get_start(rs, rt));
} else {
ASSERT3U(rs_get_fill(rs, rt), ==, rs_get_end(rs, rt) -
rs_get_start(rs, rt));
}
if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
range_tree_stat_incr(rt, rs);
rt->rt_space += size + bridge_size;
}
void
range_tree_add(void *arg, uint64_t start, uint64_t size)
{
range_tree_add_impl(arg, start, size, size);
}
static void
range_tree_remove_impl(range_tree_t *rt, uint64_t start, uint64_t size,
boolean_t do_fill)
{
zfs_btree_index_t where;
range_seg_t *rs;
range_seg_max_t rsearch, rs_tmp;
uint64_t end = start + size;
boolean_t left_over, right_over;
VERIFY3U(size, !=, 0);
VERIFY3U(size, <=, rt->rt_space);
if (rt->rt_type == RANGE_SEG64)
ASSERT3U(start + size, >, start);
rs_set_start(&rsearch, rt, start);
rs_set_end(&rsearch, rt, end);
rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
/* Make sure we completely overlap with someone */
if (rs == NULL) {
zfs_panic_recover("zfs: removing nonexistent segment from "
"range tree (offset=%llx size=%llx)",
(longlong_t)start, (longlong_t)size);
return;
}
/*
* Range trees with gap support must only remove complete segments
* from the tree. This allows us to maintain accurate fill accounting
* and to ensure that bridged sections are not leaked. If we need to
* remove less than the full segment, we can only adjust the fill count.
*/
if (rt->rt_gap != 0) {
if (do_fill) {
if (rs_get_fill(rs, rt) == size) {
start = rs_get_start(rs, rt);
end = rs_get_end(rs, rt);
size = end - start;
} else {
range_tree_adjust_fill(rt, rs, -size);
return;
}
} else if (rs_get_start(rs, rt) != start ||
rs_get_end(rs, rt) != end) {
zfs_panic_recover("zfs: freeing partial segment of "
"gap tree (offset=%llx size=%llx) of "
"(offset=%llx size=%llx)",
(longlong_t)start, (longlong_t)size,
(longlong_t)rs_get_start(rs, rt),
(longlong_t)rs_get_end(rs, rt) - rs_get_start(rs,
rt));
return;
}
}
VERIFY3U(rs_get_start(rs, rt), <=, start);
VERIFY3U(rs_get_end(rs, rt), >=, end);
left_over = (rs_get_start(rs, rt) != start);
right_over = (rs_get_end(rs, rt) != end);
range_tree_stat_decr(rt, rs);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
if (left_over && right_over) {
range_seg_max_t newseg;
rs_set_start(&newseg, rt, end);
rs_set_end_raw(&newseg, rt, rs_get_end_raw(rs, rt));
rs_set_fill(&newseg, rt, rs_get_end(rs, rt) - end);
range_tree_stat_incr(rt, &newseg);
// This modifies the buffer already inside the range tree
rs_set_end(rs, rt, start);
rs_copy(rs, &rs_tmp, rt);
if (zfs_btree_next(&rt->rt_root, &where, &where) != NULL)
zfs_btree_add_idx(&rt->rt_root, &newseg, &where);
else
zfs_btree_add(&rt->rt_root, &newseg);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
rt->rt_ops->rtop_add(rt, &newseg, rt->rt_arg);
} else if (left_over) {
// This modifies the buffer already inside the range tree
rs_set_end(rs, rt, start);
rs_copy(rs, &rs_tmp, rt);
} else if (right_over) {
// This modifies the buffer already inside the range tree
rs_set_start(rs, rt, end);
rs_copy(rs, &rs_tmp, rt);
} else {
zfs_btree_remove_idx(&rt->rt_root, &where);
rs = NULL;
}
if (rs != NULL) {
/*
* The fill of the leftover segment will always be equal to
* the size, since we do not support removing partial segments
* of range trees with gaps.
*/
rs_set_fill_raw(rs, rt, rs_get_end_raw(rs, rt) -
rs_get_start_raw(rs, rt));
range_tree_stat_incr(rt, &rs_tmp);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
rt->rt_ops->rtop_add(rt, &rs_tmp, rt->rt_arg);
}
rt->rt_space -= size;
}
void
range_tree_remove(void *arg, uint64_t start, uint64_t size)
{
range_tree_remove_impl(arg, start, size, B_FALSE);
}
void
range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size)
{
range_tree_remove_impl(rt, start, size, B_TRUE);
}
void
range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs,
uint64_t newstart, uint64_t newsize)
{
int64_t delta = newsize - (rs_get_end(rs, rt) - rs_get_start(rs, rt));
range_tree_stat_decr(rt, rs);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
rs_set_start(rs, rt, newstart);
rs_set_end(rs, rt, newstart + newsize);
range_tree_stat_incr(rt, rs);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
rt->rt_space += delta;
}
static range_seg_t *
range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size)
{
range_seg_max_t rsearch;
uint64_t end = start + size;
VERIFY(size != 0);
rs_set_start(&rsearch, rt, start);
rs_set_end(&rsearch, rt, end);
return (zfs_btree_find(&rt->rt_root, &rsearch, NULL));
}
range_seg_t *
range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size)
{
if (rt->rt_type == RANGE_SEG64)
ASSERT3U(start + size, >, start);
range_seg_t *rs = range_tree_find_impl(rt, start, size);
if (rs != NULL && rs_get_start(rs, rt) <= start &&
rs_get_end(rs, rt) >= start + size) {
return (rs);
}
return (NULL);
}
void
range_tree_verify_not_present(range_tree_t *rt, uint64_t off, uint64_t size)
{
range_seg_t *rs = range_tree_find(rt, off, size);
if (rs != NULL)
panic("segment already in tree; rs=%p", (void *)rs);
}
boolean_t
range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size)
{
return (range_tree_find(rt, start, size) != NULL);
}
/*
* Returns the first subset of the given range which overlaps with the range
* tree. Returns true if there is a segment in the range, and false if there
* isn't.
*/
boolean_t
range_tree_find_in(range_tree_t *rt, uint64_t start, uint64_t size,
uint64_t *ostart, uint64_t *osize)
{
if (rt->rt_type == RANGE_SEG64)
ASSERT3U(start + size, >, start);
range_seg_max_t rsearch;
rs_set_start(&rsearch, rt, start);
rs_set_end_raw(&rsearch, rt, rs_get_start_raw(&rsearch, rt) + 1);
zfs_btree_index_t where;
range_seg_t *rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
if (rs != NULL) {
*ostart = start;
*osize = MIN(size, rs_get_end(rs, rt) - start);
return (B_TRUE);
}
rs = zfs_btree_next(&rt->rt_root, &where, &where);
if (rs == NULL || rs_get_start(rs, rt) > start + size)
return (B_FALSE);
*ostart = rs_get_start(rs, rt);
*osize = MIN(start + size, rs_get_end(rs, rt)) -
rs_get_start(rs, rt);
return (B_TRUE);
}
/*
* Ensure that this range is not in the tree, regardless of whether
* it is currently in the tree.
*/
void
range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size)
{
range_seg_t *rs;
if (size == 0)
return;
if (rt->rt_type == RANGE_SEG64)
ASSERT3U(start + size, >, start);
while ((rs = range_tree_find_impl(rt, start, size)) != NULL) {
uint64_t free_start = MAX(rs_get_start(rs, rt), start);
uint64_t free_end = MIN(rs_get_end(rs, rt), start + size);
range_tree_remove(rt, free_start, free_end - free_start);
}
}
void
range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst)
{
range_tree_t *rt;
ASSERT0(range_tree_space(*rtdst));
ASSERT0(zfs_btree_numnodes(&(*rtdst)->rt_root));
rt = *rtsrc;
*rtsrc = *rtdst;
*rtdst = rt;
}
void
range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg)
{
if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL)
rt->rt_ops->rtop_vacate(rt, rt->rt_arg);
if (func != NULL) {
range_seg_t *rs;
zfs_btree_index_t *cookie = NULL;
while ((rs = zfs_btree_destroy_nodes(&rt->rt_root, &cookie)) !=
NULL) {
func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
rs_get_start(rs, rt));
}
} else {
zfs_btree_clear(&rt->rt_root);
}
bzero(rt->rt_histogram, sizeof (rt->rt_histogram));
rt->rt_space = 0;
}
void
range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg)
{
zfs_btree_index_t where;
for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where);
rs != NULL; rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
rs_get_start(rs, rt));
}
}
range_seg_t *
range_tree_first(range_tree_t *rt)
{
return (zfs_btree_first(&rt->rt_root, NULL));
}
uint64_t
range_tree_space(range_tree_t *rt)
{
return (rt->rt_space);
}
uint64_t
range_tree_numsegs(range_tree_t *rt)
{
return ((rt == NULL) ? 0 : zfs_btree_numnodes(&rt->rt_root));
}
boolean_t
range_tree_is_empty(range_tree_t *rt)
{
ASSERT(rt != NULL);
return (range_tree_space(rt) == 0);
}
/* ARGSUSED */
void
rt_btree_create(range_tree_t *rt, void *arg)
{
zfs_btree_t *size_tree = arg;
size_t size;
switch (rt->rt_type) {
case RANGE_SEG32:
size = sizeof (range_seg32_t);
break;
case RANGE_SEG64:
size = sizeof (range_seg64_t);
break;
case RANGE_SEG_GAP:
size = sizeof (range_seg_gap_t);
break;
default:
panic("Invalid range seg type %d", rt->rt_type);
}
zfs_btree_create(size_tree, rt->rt_btree_compare, size);
}
/* ARGSUSED */
void
rt_btree_destroy(range_tree_t *rt, void *arg)
{
zfs_btree_t *size_tree = arg;
ASSERT0(zfs_btree_numnodes(size_tree));
zfs_btree_destroy(size_tree);
}
/* ARGSUSED */
void
rt_btree_add(range_tree_t *rt, range_seg_t *rs, void *arg)
{
zfs_btree_t *size_tree = arg;
zfs_btree_add(size_tree, rs);
}
/* ARGSUSED */
void
rt_btree_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
{
zfs_btree_t *size_tree = arg;
zfs_btree_remove(size_tree, rs);
}
/* ARGSUSED */
void
rt_btree_vacate(range_tree_t *rt, void *arg)
{
zfs_btree_t *size_tree = arg;
zfs_btree_clear(size_tree);
zfs_btree_destroy(size_tree);
rt_btree_create(rt, arg);
}
range_tree_ops_t rt_btree_ops = {
.rtop_create = rt_btree_create,
.rtop_destroy = rt_btree_destroy,
.rtop_add = rt_btree_add,
.rtop_remove = rt_btree_remove,
.rtop_vacate = rt_btree_vacate
};
/*
* Remove any overlapping ranges between the given segment [start, end)
* from removefrom. Add non-overlapping leftovers to addto.
*/
void
range_tree_remove_xor_add_segment(uint64_t start, uint64_t end,
range_tree_t *removefrom, range_tree_t *addto)
{
zfs_btree_index_t where;
range_seg_max_t starting_rs;
rs_set_start(&starting_rs, removefrom, start);
rs_set_end_raw(&starting_rs, removefrom, rs_get_start_raw(&starting_rs,
removefrom) + 1);
range_seg_t *curr = zfs_btree_find(&removefrom->rt_root,
&starting_rs, &where);
if (curr == NULL)
curr = zfs_btree_next(&removefrom->rt_root, &where, &where);
range_seg_t *next;
for (; curr != NULL; curr = next) {
if (start == end)
return;
VERIFY3U(start, <, end);
/* there is no overlap */
if (end <= rs_get_start(curr, removefrom)) {
range_tree_add(addto, start, end - start);
return;
}
uint64_t overlap_start = MAX(rs_get_start(curr, removefrom),
start);
uint64_t overlap_end = MIN(rs_get_end(curr, removefrom),
end);
uint64_t overlap_size = overlap_end - overlap_start;
ASSERT3S(overlap_size, >, 0);
range_seg_max_t rs;
rs_copy(curr, &rs, removefrom);
range_tree_remove(removefrom, overlap_start, overlap_size);
if (start < overlap_start)
range_tree_add(addto, start, overlap_start - start);
start = overlap_end;
next = zfs_btree_find(&removefrom->rt_root, &rs, &where);
/*
* If we find something here, we only removed part of the
* curr segment. Either there's some left at the end
* because we've reached the end of the range we're removing,
* or there's some left at the start because we started
* partway through the range. Either way, we continue with
* the loop. If it's the former, we'll return at the start of
* the loop, and if it's the latter we'll see if there is more
* area to process.
*/
if (next != NULL) {
ASSERT(start == end || start == rs_get_end(&rs,
removefrom));
}
next = zfs_btree_next(&removefrom->rt_root, &where, &where);
}
VERIFY3P(curr, ==, NULL);
if (start != end) {
VERIFY3U(start, <, end);
range_tree_add(addto, start, end - start);
} else {
VERIFY3U(start, ==, end);
}
}
/*
* For each entry in rt, if it exists in removefrom, remove it
* from removefrom. Otherwise, add it to addto.
*/
void
range_tree_remove_xor_add(range_tree_t *rt, range_tree_t *removefrom,
range_tree_t *addto)
{
zfs_btree_index_t where;
for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); rs;
rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
range_tree_remove_xor_add_segment(rs_get_start(rs, rt),
rs_get_end(rs, rt), removefrom, addto);
}
}
uint64_t
range_tree_min(range_tree_t *rt)
{
range_seg_t *rs = zfs_btree_first(&rt->rt_root, NULL);
return (rs != NULL ? rs_get_start(rs, rt) : 0);
}
uint64_t
range_tree_max(range_tree_t *rt)
{
range_seg_t *rs = zfs_btree_last(&rt->rt_root, NULL);
return (rs != NULL ? rs_get_end(rs, rt) : 0);
}
uint64_t
range_tree_span(range_tree_t *rt)
{
return (range_tree_max(rt) - range_tree_min(rt));
}