Dimitry Andric 97d40d3d4a Merge ^/vendor/binutils/dist@214571 into contrib/binutils, which brings
us up to version 2.17.50.20070703, at the last GPLv2 commit.

Amongst others, this added upstream support for some FreeBSD-specific
things that we previously had to manually hack in, such as the OSABI
label support, and so on.

There are also quite a number of new files, some for cpu's (e.g. SPU)
that we may or may not be interested in, but those can be cleaned up
later on, if needed.
2010-11-01 19:35:33 +00:00

3155 lines
83 KiB
C

/* SPU specific support for 32-bit ELF
Copyright 2006, 2007 Free Software Foundation, Inc.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
#include "sysdep.h"
#include "bfd.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf/spu.h"
#include "elf32-spu.h"
/* We use RELA style relocs. Don't define USE_REL. */
static bfd_reloc_status_type spu_elf_rel9 (bfd *, arelent *, asymbol *,
void *, asection *,
bfd *, char **);
/* Values of type 'enum elf_spu_reloc_type' are used to index this
array, so it must be declared in the order of that type. */
static reloc_howto_type elf_howto_table[] = {
HOWTO (R_SPU_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
bfd_elf_generic_reloc, "SPU_NONE",
FALSE, 0, 0x00000000, FALSE),
HOWTO (R_SPU_ADDR10, 4, 2, 10, FALSE, 14, complain_overflow_bitfield,
bfd_elf_generic_reloc, "SPU_ADDR10",
FALSE, 0, 0x00ffc000, FALSE),
HOWTO (R_SPU_ADDR16, 2, 2, 16, FALSE, 7, complain_overflow_bitfield,
bfd_elf_generic_reloc, "SPU_ADDR16",
FALSE, 0, 0x007fff80, FALSE),
HOWTO (R_SPU_ADDR16_HI, 16, 2, 16, FALSE, 7, complain_overflow_bitfield,
bfd_elf_generic_reloc, "SPU_ADDR16_HI",
FALSE, 0, 0x007fff80, FALSE),
HOWTO (R_SPU_ADDR16_LO, 0, 2, 16, FALSE, 7, complain_overflow_dont,
bfd_elf_generic_reloc, "SPU_ADDR16_LO",
FALSE, 0, 0x007fff80, FALSE),
HOWTO (R_SPU_ADDR18, 0, 2, 18, FALSE, 7, complain_overflow_bitfield,
bfd_elf_generic_reloc, "SPU_ADDR18",
FALSE, 0, 0x01ffff80, FALSE),
HOWTO (R_SPU_ADDR32, 0, 2, 32, FALSE, 0, complain_overflow_dont,
bfd_elf_generic_reloc, "SPU_ADDR32",
FALSE, 0, 0xffffffff, FALSE),
HOWTO (R_SPU_REL16, 2, 2, 16, TRUE, 7, complain_overflow_bitfield,
bfd_elf_generic_reloc, "SPU_REL16",
FALSE, 0, 0x007fff80, TRUE),
HOWTO (R_SPU_ADDR7, 0, 2, 7, FALSE, 14, complain_overflow_dont,
bfd_elf_generic_reloc, "SPU_ADDR7",
FALSE, 0, 0x001fc000, FALSE),
HOWTO (R_SPU_REL9, 2, 2, 9, TRUE, 0, complain_overflow_signed,
spu_elf_rel9, "SPU_REL9",
FALSE, 0, 0x0180007f, TRUE),
HOWTO (R_SPU_REL9I, 2, 2, 9, TRUE, 0, complain_overflow_signed,
spu_elf_rel9, "SPU_REL9I",
FALSE, 0, 0x0000c07f, TRUE),
HOWTO (R_SPU_ADDR10I, 0, 2, 10, FALSE, 14, complain_overflow_signed,
bfd_elf_generic_reloc, "SPU_ADDR10I",
FALSE, 0, 0x00ffc000, FALSE),
HOWTO (R_SPU_ADDR16I, 0, 2, 16, FALSE, 7, complain_overflow_signed,
bfd_elf_generic_reloc, "SPU_ADDR16I",
FALSE, 0, 0x007fff80, FALSE),
HOWTO (R_SPU_REL32, 0, 2, 32, TRUE, 0, complain_overflow_dont,
bfd_elf_generic_reloc, "SPU_REL32",
FALSE, 0, 0xffffffff, TRUE),
HOWTO (R_SPU_ADDR16X, 0, 2, 16, FALSE, 7, complain_overflow_bitfield,
bfd_elf_generic_reloc, "SPU_ADDR16X",
FALSE, 0, 0x007fff80, FALSE),
HOWTO (R_SPU_PPU32, 0, 2, 32, FALSE, 0, complain_overflow_dont,
bfd_elf_generic_reloc, "SPU_PPU32",
FALSE, 0, 0xffffffff, FALSE),
HOWTO (R_SPU_PPU64, 0, 4, 64, FALSE, 0, complain_overflow_dont,
bfd_elf_generic_reloc, "SPU_PPU64",
FALSE, 0, -1, FALSE),
};
static struct bfd_elf_special_section const spu_elf_special_sections[] = {
{ ".toe", 4, 0, SHT_NOBITS, SHF_ALLOC },
{ NULL, 0, 0, 0, 0 }
};
static enum elf_spu_reloc_type
spu_elf_bfd_to_reloc_type (bfd_reloc_code_real_type code)
{
switch (code)
{
default:
return R_SPU_NONE;
case BFD_RELOC_SPU_IMM10W:
return R_SPU_ADDR10;
case BFD_RELOC_SPU_IMM16W:
return R_SPU_ADDR16;
case BFD_RELOC_SPU_LO16:
return R_SPU_ADDR16_LO;
case BFD_RELOC_SPU_HI16:
return R_SPU_ADDR16_HI;
case BFD_RELOC_SPU_IMM18:
return R_SPU_ADDR18;
case BFD_RELOC_SPU_PCREL16:
return R_SPU_REL16;
case BFD_RELOC_SPU_IMM7:
return R_SPU_ADDR7;
case BFD_RELOC_SPU_IMM8:
return R_SPU_NONE;
case BFD_RELOC_SPU_PCREL9a:
return R_SPU_REL9;
case BFD_RELOC_SPU_PCREL9b:
return R_SPU_REL9I;
case BFD_RELOC_SPU_IMM10:
return R_SPU_ADDR10I;
case BFD_RELOC_SPU_IMM16:
return R_SPU_ADDR16I;
case BFD_RELOC_32:
return R_SPU_ADDR32;
case BFD_RELOC_32_PCREL:
return R_SPU_REL32;
case BFD_RELOC_SPU_PPU32:
return R_SPU_PPU32;
case BFD_RELOC_SPU_PPU64:
return R_SPU_PPU64;
}
}
static void
spu_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
arelent *cache_ptr,
Elf_Internal_Rela *dst)
{
enum elf_spu_reloc_type r_type;
r_type = (enum elf_spu_reloc_type) ELF32_R_TYPE (dst->r_info);
BFD_ASSERT (r_type < R_SPU_max);
cache_ptr->howto = &elf_howto_table[(int) r_type];
}
static reloc_howto_type *
spu_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
bfd_reloc_code_real_type code)
{
enum elf_spu_reloc_type r_type = spu_elf_bfd_to_reloc_type (code);
if (r_type == R_SPU_NONE)
return NULL;
return elf_howto_table + r_type;
}
static reloc_howto_type *
spu_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
const char *r_name)
{
unsigned int i;
for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
if (elf_howto_table[i].name != NULL
&& strcasecmp (elf_howto_table[i].name, r_name) == 0)
return &elf_howto_table[i];
return NULL;
}
/* Apply R_SPU_REL9 and R_SPU_REL9I relocs. */
static bfd_reloc_status_type
spu_elf_rel9 (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
void *data, asection *input_section,
bfd *output_bfd, char **error_message)
{
bfd_size_type octets;
bfd_vma val;
long insn;
/* If this is a relocatable link (output_bfd test tells us), just
call the generic function. Any adjustment will be done at final
link time. */
if (output_bfd != NULL)
return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, error_message);
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
return bfd_reloc_outofrange;
octets = reloc_entry->address * bfd_octets_per_byte (abfd);
/* Get symbol value. */
val = 0;
if (!bfd_is_com_section (symbol->section))
val = symbol->value;
if (symbol->section->output_section)
val += symbol->section->output_section->vma;
val += reloc_entry->addend;
/* Make it pc-relative. */
val -= input_section->output_section->vma + input_section->output_offset;
val >>= 2;
if (val + 256 >= 512)
return bfd_reloc_overflow;
insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
/* Move two high bits of value to REL9I and REL9 position.
The mask will take care of selecting the right field. */
val = (val & 0x7f) | ((val & 0x180) << 7) | ((val & 0x180) << 16);
insn &= ~reloc_entry->howto->dst_mask;
insn |= val & reloc_entry->howto->dst_mask;
bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
return bfd_reloc_ok;
}
static bfd_boolean
spu_elf_new_section_hook (bfd *abfd, asection *sec)
{
if (!sec->used_by_bfd)
{
struct _spu_elf_section_data *sdata;
sdata = bfd_zalloc (abfd, sizeof (*sdata));
if (sdata == NULL)
return FALSE;
sec->used_by_bfd = sdata;
}
return _bfd_elf_new_section_hook (abfd, sec);
}
/* Specially mark defined symbols named _EAR_* with BSF_KEEP so that
strip --strip-unneeded will not remove them. */
static void
spu_elf_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *sym)
{
if (sym->name != NULL
&& sym->section != bfd_abs_section_ptr
&& strncmp (sym->name, "_EAR_", 5) == 0)
sym->flags |= BSF_KEEP;
}
/* SPU ELF linker hash table. */
struct spu_link_hash_table
{
struct elf_link_hash_table elf;
/* The stub hash table. */
struct bfd_hash_table stub_hash_table;
/* Shortcuts to overlay sections. */
asection *stub;
asection *ovtab;
struct elf_link_hash_entry *ovly_load;
/* An array of two output sections per overlay region, chosen such that
the first section vma is the overlay buffer vma (ie. the section has
the lowest vma in the group that occupy the region), and the second
section vma+size specifies the end of the region. We keep pointers
to sections like this because section vmas may change when laying
them out. */
asection **ovl_region;
/* Number of overlay buffers. */
unsigned int num_buf;
/* Total number of overlays. */
unsigned int num_overlays;
/* Set if we should emit symbols for stubs. */
unsigned int emit_stub_syms:1;
/* Set if we want stubs on calls out of overlay regions to
non-overlay regions. */
unsigned int non_overlay_stubs : 1;
/* Set on error. */
unsigned int stub_overflow : 1;
/* Set if stack size analysis should be done. */
unsigned int stack_analysis : 1;
/* Set if __stack_* syms will be emitted. */
unsigned int emit_stack_syms : 1;
};
#define spu_hash_table(p) \
((struct spu_link_hash_table *) ((p)->hash))
struct spu_stub_hash_entry
{
struct bfd_hash_entry root;
/* Destination of this stub. */
asection *target_section;
bfd_vma target_off;
/* Offset of entry in stub section. */
bfd_vma off;
/* Offset from this stub to stub that loads the overlay index. */
bfd_vma delta;
};
/* Create an entry in a spu stub hash table. */
static struct bfd_hash_entry *
stub_hash_newfunc (struct bfd_hash_entry *entry,
struct bfd_hash_table *table,
const char *string)
{
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (entry == NULL)
{
entry = bfd_hash_allocate (table, sizeof (struct spu_stub_hash_entry));
if (entry == NULL)
return entry;
}
/* Call the allocation method of the superclass. */
entry = bfd_hash_newfunc (entry, table, string);
if (entry != NULL)
{
struct spu_stub_hash_entry *sh = (struct spu_stub_hash_entry *) entry;
sh->target_section = NULL;
sh->target_off = 0;
sh->off = 0;
sh->delta = 0;
}
return entry;
}
/* Create a spu ELF linker hash table. */
static struct bfd_link_hash_table *
spu_elf_link_hash_table_create (bfd *abfd)
{
struct spu_link_hash_table *htab;
htab = bfd_malloc (sizeof (*htab));
if (htab == NULL)
return NULL;
if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd,
_bfd_elf_link_hash_newfunc,
sizeof (struct elf_link_hash_entry)))
{
free (htab);
return NULL;
}
/* Init the stub hash table too. */
if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
sizeof (struct spu_stub_hash_entry)))
return NULL;
memset (&htab->stub, 0,
sizeof (*htab) - offsetof (struct spu_link_hash_table, stub));
return &htab->elf.root;
}
/* Free the derived linker hash table. */
static void
spu_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
{
struct spu_link_hash_table *ret = (struct spu_link_hash_table *) hash;
bfd_hash_table_free (&ret->stub_hash_table);
_bfd_generic_link_hash_table_free (hash);
}
/* Find the symbol for the given R_SYMNDX in IBFD and set *HP and *SYMP
to (hash, NULL) for global symbols, and (NULL, sym) for locals. Set
*SYMSECP to the symbol's section. *LOCSYMSP caches local syms. */
static bfd_boolean
get_sym_h (struct elf_link_hash_entry **hp,
Elf_Internal_Sym **symp,
asection **symsecp,
Elf_Internal_Sym **locsymsp,
unsigned long r_symndx,
bfd *ibfd)
{
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
if (r_symndx >= symtab_hdr->sh_info)
{
struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
struct elf_link_hash_entry *h;
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
if (hp != NULL)
*hp = h;
if (symp != NULL)
*symp = NULL;
if (symsecp != NULL)
{
asection *symsec = NULL;
if (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
symsec = h->root.u.def.section;
*symsecp = symsec;
}
}
else
{
Elf_Internal_Sym *sym;
Elf_Internal_Sym *locsyms = *locsymsp;
if (locsyms == NULL)
{
locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
if (locsyms == NULL)
{
size_t symcount = symtab_hdr->sh_info;
/* If we are reading symbols into the contents, then
read the global syms too. This is done to cache
syms for later stack analysis. */
if ((unsigned char **) locsymsp == &symtab_hdr->contents)
symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr, symcount, 0,
NULL, NULL, NULL);
}
if (locsyms == NULL)
return FALSE;
*locsymsp = locsyms;
}
sym = locsyms + r_symndx;
if (hp != NULL)
*hp = NULL;
if (symp != NULL)
*symp = sym;
if (symsecp != NULL)
{
asection *symsec = NULL;
if ((sym->st_shndx != SHN_UNDEF
&& sym->st_shndx < SHN_LORESERVE)
|| sym->st_shndx > SHN_HIRESERVE)
symsec = bfd_section_from_elf_index (ibfd, sym->st_shndx);
*symsecp = symsec;
}
}
return TRUE;
}
/* Build a name for an entry in the stub hash table. We can't use a
local symbol name because ld -r might generate duplicate local symbols. */
static char *
spu_stub_name (const asection *sym_sec,
const struct elf_link_hash_entry *h,
const Elf_Internal_Rela *rel)
{
char *stub_name;
bfd_size_type len;
if (h)
{
len = strlen (h->root.root.string) + 1 + 8 + 1;
stub_name = bfd_malloc (len);
if (stub_name == NULL)
return stub_name;
sprintf (stub_name, "%s+%x",
h->root.root.string,
(int) rel->r_addend & 0xffffffff);
len -= 8;
}
else
{
len = 8 + 1 + 8 + 1 + 8 + 1;
stub_name = bfd_malloc (len);
if (stub_name == NULL)
return stub_name;
sprintf (stub_name, "%x:%x+%x",
sym_sec->id & 0xffffffff,
(int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
(int) rel->r_addend & 0xffffffff);
len = strlen (stub_name);
}
if (stub_name[len - 2] == '+'
&& stub_name[len - 1] == '0'
&& stub_name[len] == 0)
stub_name[len - 2] = 0;
return stub_name;
}
/* Create the note section if not already present. This is done early so
that the linker maps the sections to the right place in the output. */
bfd_boolean
spu_elf_create_sections (bfd *output_bfd,
struct bfd_link_info *info,
int stack_analysis,
int emit_stack_syms)
{
bfd *ibfd;
struct spu_link_hash_table *htab = spu_hash_table (info);
/* Stash some options away where we can get at them later. */
htab->stack_analysis = stack_analysis;
htab->emit_stack_syms = emit_stack_syms;
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
if (bfd_get_section_by_name (ibfd, SPU_PTNOTE_SPUNAME) != NULL)
break;
if (ibfd == NULL)
{
/* Make SPU_PTNOTE_SPUNAME section. */
asection *s;
size_t name_len;
size_t size;
bfd_byte *data;
flagword flags;
ibfd = info->input_bfds;
flags = SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
s = bfd_make_section_anyway_with_flags (ibfd, SPU_PTNOTE_SPUNAME, flags);
if (s == NULL
|| !bfd_set_section_alignment (ibfd, s, 4))
return FALSE;
name_len = strlen (bfd_get_filename (output_bfd)) + 1;
size = 12 + ((sizeof (SPU_PLUGIN_NAME) + 3) & -4);
size += (name_len + 3) & -4;
if (!bfd_set_section_size (ibfd, s, size))
return FALSE;
data = bfd_zalloc (ibfd, size);
if (data == NULL)
return FALSE;
bfd_put_32 (ibfd, sizeof (SPU_PLUGIN_NAME), data + 0);
bfd_put_32 (ibfd, name_len, data + 4);
bfd_put_32 (ibfd, 1, data + 8);
memcpy (data + 12, SPU_PLUGIN_NAME, sizeof (SPU_PLUGIN_NAME));
memcpy (data + 12 + ((sizeof (SPU_PLUGIN_NAME) + 3) & -4),
bfd_get_filename (output_bfd), name_len);
s->contents = data;
}
return TRUE;
}
/* qsort predicate to sort sections by vma. */
static int
sort_sections (const void *a, const void *b)
{
const asection *const *s1 = a;
const asection *const *s2 = b;
bfd_signed_vma delta = (*s1)->vma - (*s2)->vma;
if (delta != 0)
return delta < 0 ? -1 : 1;
return (*s1)->index - (*s2)->index;
}
/* Identify overlays in the output bfd, and number them. */
bfd_boolean
spu_elf_find_overlays (bfd *output_bfd, struct bfd_link_info *info)
{
struct spu_link_hash_table *htab = spu_hash_table (info);
asection **alloc_sec;
unsigned int i, n, ovl_index, num_buf;
asection *s;
bfd_vma ovl_end;
if (output_bfd->section_count < 2)
return FALSE;
alloc_sec = bfd_malloc (output_bfd->section_count * sizeof (*alloc_sec));
if (alloc_sec == NULL)
return FALSE;
/* Pick out all the alloced sections. */
for (n = 0, s = output_bfd->sections; s != NULL; s = s->next)
if ((s->flags & SEC_ALLOC) != 0
&& (s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != SEC_THREAD_LOCAL
&& s->size != 0)
alloc_sec[n++] = s;
if (n == 0)
{
free (alloc_sec);
return FALSE;
}
/* Sort them by vma. */
qsort (alloc_sec, n, sizeof (*alloc_sec), sort_sections);
/* Look for overlapping vmas. Any with overlap must be overlays.
Count them. Also count the number of overlay regions and for
each region save a section from that region with the lowest vma
and another section with the highest end vma. */
ovl_end = alloc_sec[0]->vma + alloc_sec[0]->size;
for (ovl_index = 0, num_buf = 0, i = 1; i < n; i++)
{
s = alloc_sec[i];
if (s->vma < ovl_end)
{
asection *s0 = alloc_sec[i - 1];
if (spu_elf_section_data (s0)->ovl_index == 0)
{
spu_elf_section_data (s0)->ovl_index = ++ovl_index;
alloc_sec[num_buf * 2] = s0;
alloc_sec[num_buf * 2 + 1] = s0;
num_buf++;
}
spu_elf_section_data (s)->ovl_index = ++ovl_index;
if (ovl_end < s->vma + s->size)
{
ovl_end = s->vma + s->size;
alloc_sec[num_buf * 2 - 1] = s;
}
}
else
ovl_end = s->vma + s->size;
}
htab->num_overlays = ovl_index;
htab->num_buf = num_buf;
if (ovl_index == 0)
{
free (alloc_sec);
return FALSE;
}
alloc_sec = bfd_realloc (alloc_sec, num_buf * 2 * sizeof (*alloc_sec));
if (alloc_sec == NULL)
return FALSE;
htab->ovl_region = alloc_sec;
return TRUE;
}
/* One of these per stub. */
#define SIZEOF_STUB1 8
#define ILA_79 0x4200004f /* ila $79,function_address */
#define BR 0x32000000 /* br stub2 */
/* One of these per overlay. */
#define SIZEOF_STUB2 8
#define ILA_78 0x4200004e /* ila $78,overlay_number */
/* br __ovly_load */
#define NOP 0x40200000
/* Return true for all relative and absolute branch instructions.
bra 00110000 0..
brasl 00110001 0..
br 00110010 0..
brsl 00110011 0..
brz 00100000 0..
brnz 00100001 0..
brhz 00100010 0..
brhnz 00100011 0.. */
static bfd_boolean
is_branch (const unsigned char *insn)
{
return (insn[0] & 0xec) == 0x20 && (insn[1] & 0x80) == 0;
}
/* Return true for branch hint instructions.
hbra 0001000..
hbrr 0001001.. */
static bfd_boolean
is_hint (const unsigned char *insn)
{
return (insn[0] & 0xfc) == 0x10;
}
/* Return TRUE if this reloc symbol should possibly go via an overlay stub. */
static bfd_boolean
needs_ovl_stub (const char *sym_name,
asection *sym_sec,
asection *input_section,
struct spu_link_hash_table *htab,
bfd_boolean is_branch)
{
if (htab->num_overlays == 0)
return FALSE;
if (sym_sec == NULL
|| sym_sec->output_section == NULL
|| spu_elf_section_data (sym_sec->output_section) == NULL)
return FALSE;
/* setjmp always goes via an overlay stub, because then the return
and hence the longjmp goes via __ovly_return. That magically
makes setjmp/longjmp between overlays work. */
if (strncmp (sym_name, "setjmp", 6) == 0
&& (sym_name[6] == '\0' || sym_name[6] == '@'))
return TRUE;
/* Usually, symbols in non-overlay sections don't need stubs. */
if (spu_elf_section_data (sym_sec->output_section)->ovl_index == 0
&& !htab->non_overlay_stubs)
return FALSE;
/* A reference from some other section to a symbol in an overlay
section needs a stub. */
if (spu_elf_section_data (sym_sec->output_section)->ovl_index
!= spu_elf_section_data (input_section->output_section)->ovl_index)
return TRUE;
/* If this insn isn't a branch then we are possibly taking the
address of a function and passing it out somehow. */
return !is_branch;
}
struct stubarr {
struct bfd_hash_table *stub_hash_table;
struct spu_stub_hash_entry **sh;
unsigned int count;
int err;
};
/* Called via elf_link_hash_traverse to allocate stubs for any _SPUEAR_
symbols. */
static bfd_boolean
allocate_spuear_stubs (struct elf_link_hash_entry *h, void *inf)
{
/* Symbols starting with _SPUEAR_ need a stub because they may be
invoked by the PPU. */
if ((h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& h->def_regular
&& strncmp (h->root.root.string, "_SPUEAR_", 8) == 0)
{
struct stubarr *stubs = inf;
static Elf_Internal_Rela zero_rel;
char *stub_name = spu_stub_name (h->root.u.def.section, h, &zero_rel);
struct spu_stub_hash_entry *sh;
if (stub_name == NULL)
{
stubs->err = 1;
return FALSE;
}
sh = (struct spu_stub_hash_entry *)
bfd_hash_lookup (stubs->stub_hash_table, stub_name, TRUE, FALSE);
if (sh == NULL)
{
free (stub_name);
return FALSE;
}
/* If this entry isn't new, we already have a stub. */
if (sh->target_section != NULL)
{
free (stub_name);
return TRUE;
}
sh->target_section = h->root.u.def.section;
sh->target_off = h->root.u.def.value;
stubs->count += 1;
}
return TRUE;
}
/* Called via bfd_hash_traverse to set up pointers to all symbols
in the stub hash table. */
static bfd_boolean
populate_stubs (struct bfd_hash_entry *bh, void *inf)
{
struct stubarr *stubs = inf;
stubs->sh[--stubs->count] = (struct spu_stub_hash_entry *) bh;
return TRUE;
}
/* qsort predicate to sort stubs by overlay number. */
static int
sort_stubs (const void *a, const void *b)
{
const struct spu_stub_hash_entry *const *sa = a;
const struct spu_stub_hash_entry *const *sb = b;
int i;
bfd_signed_vma d;
i = spu_elf_section_data ((*sa)->target_section->output_section)->ovl_index;
i -= spu_elf_section_data ((*sb)->target_section->output_section)->ovl_index;
if (i != 0)
return i;
d = ((*sa)->target_section->output_section->vma
+ (*sa)->target_section->output_offset
+ (*sa)->target_off
- (*sb)->target_section->output_section->vma
- (*sb)->target_section->output_offset
- (*sb)->target_off);
if (d != 0)
return d < 0 ? -1 : 1;
/* Two functions at the same address. Aliases perhaps. */
i = strcmp ((*sb)->root.string, (*sa)->root.string);
BFD_ASSERT (i != 0);
return i;
}
/* Allocate space for overlay call and return stubs. */
bfd_boolean
spu_elf_size_stubs (bfd *output_bfd,
struct bfd_link_info *info,
int non_overlay_stubs,
int stack_analysis,
asection **stub,
asection **ovtab,
asection **toe)
{
struct spu_link_hash_table *htab = spu_hash_table (info);
bfd *ibfd;
struct stubarr stubs;
unsigned i, group;
flagword flags;
htab->non_overlay_stubs = non_overlay_stubs;
stubs.stub_hash_table = &htab->stub_hash_table;
stubs.count = 0;
stubs.err = 0;
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
{
extern const bfd_target bfd_elf32_spu_vec;
Elf_Internal_Shdr *symtab_hdr;
asection *section;
Elf_Internal_Sym *local_syms = NULL;
void *psyms;
if (ibfd->xvec != &bfd_elf32_spu_vec)
continue;
/* We'll need the symbol table in a second. */
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
if (symtab_hdr->sh_info == 0)
continue;
/* Arrange to read and keep global syms for later stack analysis. */
psyms = &local_syms;
if (stack_analysis)
psyms = &symtab_hdr->contents;
/* Walk over each section attached to the input bfd. */
for (section = ibfd->sections; section != NULL; section = section->next)
{
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
/* If there aren't any relocs, then there's nothing more to do. */
if ((section->flags & SEC_RELOC) == 0
|| (section->flags & SEC_ALLOC) == 0
|| (section->flags & SEC_LOAD) == 0
|| section->reloc_count == 0)
continue;
/* If this section is a link-once section that will be
discarded, then don't create any stubs. */
if (section->output_section == NULL
|| section->output_section->owner != output_bfd)
continue;
/* Get the relocs. */
internal_relocs
= _bfd_elf_link_read_relocs (ibfd, section, NULL, NULL,
info->keep_memory);
if (internal_relocs == NULL)
goto error_ret_free_local;
/* Now examine each relocation. */
irela = internal_relocs;
irelaend = irela + section->reloc_count;
for (; irela < irelaend; irela++)
{
enum elf_spu_reloc_type r_type;
unsigned int r_indx;
asection *sym_sec;
Elf_Internal_Sym *sym;
struct elf_link_hash_entry *h;
const char *sym_name;
char *stub_name;
struct spu_stub_hash_entry *sh;
unsigned int sym_type;
enum _insn_type { non_branch, branch, call } insn_type;
r_type = ELF32_R_TYPE (irela->r_info);
r_indx = ELF32_R_SYM (irela->r_info);
if (r_type >= R_SPU_max)
{
bfd_set_error (bfd_error_bad_value);
goto error_ret_free_internal;
}
/* Determine the reloc target section. */
if (!get_sym_h (&h, &sym, &sym_sec, psyms, r_indx, ibfd))
goto error_ret_free_internal;
if (sym_sec == NULL
|| sym_sec->output_section == NULL
|| sym_sec->output_section->owner != output_bfd)
continue;
/* Ensure no stubs for user supplied overlay manager syms. */
if (h != NULL
&& (strcmp (h->root.root.string, "__ovly_load") == 0
|| strcmp (h->root.root.string, "__ovly_return") == 0))
continue;
insn_type = non_branch;
if (r_type == R_SPU_REL16
|| r_type == R_SPU_ADDR16)
{
unsigned char insn[4];
if (!bfd_get_section_contents (ibfd, section, insn,
irela->r_offset, 4))
goto error_ret_free_internal;
if (is_branch (insn) || is_hint (insn))
{
insn_type = branch;
if ((insn[0] & 0xfd) == 0x31)
insn_type = call;
}
}
/* We are only interested in function symbols. */
if (h != NULL)
{
sym_type = h->type;
sym_name = h->root.root.string;
}
else
{
sym_type = ELF_ST_TYPE (sym->st_info);
sym_name = bfd_elf_sym_name (sym_sec->owner,
symtab_hdr,
sym,
sym_sec);
}
if (sym_type != STT_FUNC)
{
/* It's common for people to write assembly and forget
to give function symbols the right type. Handle
calls to such symbols, but warn so that (hopefully)
people will fix their code. We need the symbol
type to be correct to distinguish function pointer
initialisation from other pointer initialisation. */
if (insn_type == call)
(*_bfd_error_handler) (_("warning: call to non-function"
" symbol %s defined in %B"),
sym_sec->owner, sym_name);
else
continue;
}
if (!needs_ovl_stub (sym_name, sym_sec, section, htab,
insn_type != non_branch))
continue;
stub_name = spu_stub_name (sym_sec, h, irela);
if (stub_name == NULL)
goto error_ret_free_internal;
sh = (struct spu_stub_hash_entry *)
bfd_hash_lookup (&htab->stub_hash_table, stub_name,
TRUE, FALSE);
if (sh == NULL)
{
free (stub_name);
error_ret_free_internal:
if (elf_section_data (section)->relocs != internal_relocs)
free (internal_relocs);
error_ret_free_local:
if (local_syms != NULL
&& (symtab_hdr->contents
!= (unsigned char *) local_syms))
free (local_syms);
return FALSE;
}
/* If this entry isn't new, we already have a stub. */
if (sh->target_section != NULL)
{
free (stub_name);
continue;
}
sh->target_section = sym_sec;
if (h != NULL)
sh->target_off = h->root.u.def.value;
else
sh->target_off = sym->st_value;
sh->target_off += irela->r_addend;
stubs.count += 1;
}
/* We're done with the internal relocs, free them. */
if (elf_section_data (section)->relocs != internal_relocs)
free (internal_relocs);
}
if (local_syms != NULL
&& symtab_hdr->contents != (unsigned char *) local_syms)
{
if (!info->keep_memory)
free (local_syms);
else
symtab_hdr->contents = (unsigned char *) local_syms;
}
}
elf_link_hash_traverse (&htab->elf, allocate_spuear_stubs, &stubs);
if (stubs.err)
return FALSE;
*stub = NULL;
if (stubs.count == 0)
return TRUE;
ibfd = info->input_bfds;
flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
| SEC_HAS_CONTENTS | SEC_IN_MEMORY);
htab->stub = bfd_make_section_anyway_with_flags (ibfd, ".stub", flags);
*stub = htab->stub;
if (htab->stub == NULL
|| !bfd_set_section_alignment (ibfd, htab->stub, 2))
return FALSE;
flags = (SEC_ALLOC | SEC_LOAD
| SEC_HAS_CONTENTS | SEC_IN_MEMORY);
htab->ovtab = bfd_make_section_anyway_with_flags (ibfd, ".ovtab", flags);
*ovtab = htab->ovtab;
if (htab->ovtab == NULL
|| !bfd_set_section_alignment (ibfd, htab->stub, 4))
return FALSE;
*toe = bfd_make_section_anyway_with_flags (ibfd, ".toe", SEC_ALLOC);
if (*toe == NULL
|| !bfd_set_section_alignment (ibfd, *toe, 4))
return FALSE;
(*toe)->size = 16;
/* Retrieve all the stubs and sort. */
stubs.sh = bfd_malloc (stubs.count * sizeof (*stubs.sh));
if (stubs.sh == NULL)
return FALSE;
i = stubs.count;
bfd_hash_traverse (&htab->stub_hash_table, populate_stubs, &stubs);
BFD_ASSERT (stubs.count == 0);
stubs.count = i;
qsort (stubs.sh, stubs.count, sizeof (*stubs.sh), sort_stubs);
/* Now that the stubs are sorted, place them in the stub section.
Stubs are grouped per overlay
. ila $79,func1
. br 1f
. ila $79,func2
. br 1f
.
.
. ila $79,funcn
. nop
. 1:
. ila $78,ovl_index
. br __ovly_load */
group = 0;
for (i = 0; i < stubs.count; i++)
{
if (spu_elf_section_data (stubs.sh[group]->target_section
->output_section)->ovl_index
!= spu_elf_section_data (stubs.sh[i]->target_section
->output_section)->ovl_index)
{
htab->stub->size += SIZEOF_STUB2;
for (; group != i; group++)
stubs.sh[group]->delta
= stubs.sh[i - 1]->off - stubs.sh[group]->off;
}
if (group == i
|| ((stubs.sh[i - 1]->target_section->output_section->vma
+ stubs.sh[i - 1]->target_section->output_offset
+ stubs.sh[i - 1]->target_off)
!= (stubs.sh[i]->target_section->output_section->vma
+ stubs.sh[i]->target_section->output_offset
+ stubs.sh[i]->target_off)))
{
stubs.sh[i]->off = htab->stub->size;
htab->stub->size += SIZEOF_STUB1;
}
else
stubs.sh[i]->off = stubs.sh[i - 1]->off;
}
if (group != i)
htab->stub->size += SIZEOF_STUB2;
for (; group != i; group++)
stubs.sh[group]->delta = stubs.sh[i - 1]->off - stubs.sh[group]->off;
/* htab->ovtab consists of two arrays.
. struct {
. u32 vma;
. u32 size;
. u32 file_off;
. u32 buf;
. } _ovly_table[];
.
. struct {
. u32 mapped;
. } _ovly_buf_table[]; */
htab->ovtab->alignment_power = 4;
htab->ovtab->size = htab->num_overlays * 16 + htab->num_buf * 4;
return TRUE;
}
/* Functions to handle embedded spu_ovl.o object. */
static void *
ovl_mgr_open (struct bfd *nbfd ATTRIBUTE_UNUSED, void *stream)
{
return stream;
}
static file_ptr
ovl_mgr_pread (struct bfd *abfd ATTRIBUTE_UNUSED,
void *stream,
void *buf,
file_ptr nbytes,
file_ptr offset)
{
struct _ovl_stream *os;
size_t count;
size_t max;
os = (struct _ovl_stream *) stream;
max = (const char *) os->end - (const char *) os->start;
if ((ufile_ptr) offset >= max)
return 0;
count = nbytes;
if (count > max - offset)
count = max - offset;
memcpy (buf, (const char *) os->start + offset, count);
return count;
}
bfd_boolean
spu_elf_open_builtin_lib (bfd **ovl_bfd, const struct _ovl_stream *stream)
{
*ovl_bfd = bfd_openr_iovec ("builtin ovl_mgr",
"elf32-spu",
ovl_mgr_open,
(void *) stream,
ovl_mgr_pread,
NULL,
NULL);
return *ovl_bfd != NULL;
}
/* Fill in the ila and br for a stub. On the last stub for a group,
write the stub that sets the overlay number too. */
static bfd_boolean
write_one_stub (struct bfd_hash_entry *bh, void *inf)
{
struct spu_stub_hash_entry *ent = (struct spu_stub_hash_entry *) bh;
struct spu_link_hash_table *htab = inf;
asection *sec = htab->stub;
asection *s = ent->target_section;
unsigned int ovl;
bfd_vma val;
val = ent->target_off + s->output_offset + s->output_section->vma;
bfd_put_32 (sec->owner, ILA_79 + ((val << 7) & 0x01ffff80),
sec->contents + ent->off);
val = ent->delta + 4;
bfd_put_32 (sec->owner, BR + ((val << 5) & 0x007fff80),
sec->contents + ent->off + 4);
/* If this is the last stub of this group, write stub2. */
if (ent->delta == 0)
{
bfd_put_32 (sec->owner, NOP,
sec->contents + ent->off + 4);
ovl = spu_elf_section_data (s->output_section)->ovl_index;
bfd_put_32 (sec->owner, ILA_78 + ((ovl << 7) & 0x01ffff80),
sec->contents + ent->off + 8);
val = (htab->ovly_load->root.u.def.section->output_section->vma
+ htab->ovly_load->root.u.def.section->output_offset
+ htab->ovly_load->root.u.def.value
- (sec->output_section->vma
+ sec->output_offset
+ ent->off + 12));
if (val + 0x20000 >= 0x40000)
htab->stub_overflow = TRUE;
bfd_put_32 (sec->owner, BR + ((val << 5) & 0x007fff80),
sec->contents + ent->off + 12);
}
if (htab->emit_stub_syms)
{
struct elf_link_hash_entry *h;
size_t len1, len2;
char *name;
len1 = sizeof ("00000000.ovl_call.") - 1;
len2 = strlen (ent->root.string);
name = bfd_malloc (len1 + len2 + 1);
if (name == NULL)
return FALSE;
memcpy (name, "00000000.ovl_call.", len1);
memcpy (name + len1, ent->root.string, len2 + 1);
h = elf_link_hash_lookup (&htab->elf, name, TRUE, TRUE, FALSE);
free (name);
if (h == NULL)
return FALSE;
if (h->root.type == bfd_link_hash_new)
{
h->root.type = bfd_link_hash_defined;
h->root.u.def.section = sec;
h->root.u.def.value = ent->off;
h->size = (ent->delta == 0
? SIZEOF_STUB1 + SIZEOF_STUB2 : SIZEOF_STUB1);
h->type = STT_FUNC;
h->ref_regular = 1;
h->def_regular = 1;
h->ref_regular_nonweak = 1;
h->forced_local = 1;
h->non_elf = 0;
}
}
return TRUE;
}
/* Define an STT_OBJECT symbol. */
static struct elf_link_hash_entry *
define_ovtab_symbol (struct spu_link_hash_table *htab, const char *name)
{
struct elf_link_hash_entry *h;
h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
if (h == NULL)
return NULL;
if (h->root.type != bfd_link_hash_defined
|| !h->def_regular)
{
h->root.type = bfd_link_hash_defined;
h->root.u.def.section = htab->ovtab;
h->type = STT_OBJECT;
h->ref_regular = 1;
h->def_regular = 1;
h->ref_regular_nonweak = 1;
h->non_elf = 0;
}
else
{
(*_bfd_error_handler) (_("%B is not allowed to define %s"),
h->root.u.def.section->owner,
h->root.root.string);
bfd_set_error (bfd_error_bad_value);
return NULL;
}
return h;
}
/* Fill in all stubs and the overlay tables. */
bfd_boolean
spu_elf_build_stubs (struct bfd_link_info *info, int emit_syms, asection *toe)
{
struct spu_link_hash_table *htab = spu_hash_table (info);
struct elf_link_hash_entry *h;
bfd_byte *p;
asection *s;
bfd *obfd;
unsigned int i;
htab->emit_stub_syms = emit_syms;
htab->stub->contents = bfd_zalloc (htab->stub->owner, htab->stub->size);
if (htab->stub->contents == NULL)
return FALSE;
h = elf_link_hash_lookup (&htab->elf, "__ovly_load", FALSE, FALSE, FALSE);
htab->ovly_load = h;
BFD_ASSERT (h != NULL
&& (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& h->def_regular);
s = h->root.u.def.section->output_section;
if (spu_elf_section_data (s)->ovl_index)
{
(*_bfd_error_handler) (_("%s in overlay section"),
h->root.u.def.section->owner);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
/* Write out all the stubs. */
bfd_hash_traverse (&htab->stub_hash_table, write_one_stub, htab);
if (htab->stub_overflow)
{
(*_bfd_error_handler) (_("overlay stub relocation overflow"));
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
htab->ovtab->contents = bfd_zalloc (htab->ovtab->owner, htab->ovtab->size);
if (htab->ovtab->contents == NULL)
return FALSE;
/* Write out _ovly_table. */
p = htab->ovtab->contents;
obfd = htab->ovtab->output_section->owner;
for (s = obfd->sections; s != NULL; s = s->next)
{
unsigned int ovl_index = spu_elf_section_data (s)->ovl_index;
if (ovl_index != 0)
{
unsigned int lo, hi, mid;
unsigned long off = (ovl_index - 1) * 16;
bfd_put_32 (htab->ovtab->owner, s->vma, p + off);
bfd_put_32 (htab->ovtab->owner, (s->size + 15) & -16, p + off + 4);
/* file_off written later in spu_elf_modify_program_headers. */
lo = 0;
hi = htab->num_buf;
while (lo < hi)
{
mid = (lo + hi) >> 1;
if (htab->ovl_region[2 * mid + 1]->vma
+ htab->ovl_region[2 * mid + 1]->size <= s->vma)
lo = mid + 1;
else if (htab->ovl_region[2 * mid]->vma > s->vma)
hi = mid;
else
{
bfd_put_32 (htab->ovtab->owner, mid + 1, p + off + 12);
break;
}
}
BFD_ASSERT (lo < hi);
}
}
/* Write out _ovly_buf_table. */
p = htab->ovtab->contents + htab->num_overlays * 16;
for (i = 0; i < htab->num_buf; i++)
{
bfd_put_32 (htab->ovtab->owner, 0, p);
p += 4;
}
h = define_ovtab_symbol (htab, "_ovly_table");
if (h == NULL)
return FALSE;
h->root.u.def.value = 0;
h->size = htab->num_overlays * 16;
h = define_ovtab_symbol (htab, "_ovly_table_end");
if (h == NULL)
return FALSE;
h->root.u.def.value = htab->num_overlays * 16;
h->size = 0;
h = define_ovtab_symbol (htab, "_ovly_buf_table");
if (h == NULL)
return FALSE;
h->root.u.def.value = htab->num_overlays * 16;
h->size = htab->num_buf * 4;
h = define_ovtab_symbol (htab, "_ovly_buf_table_end");
if (h == NULL)
return FALSE;
h->root.u.def.value = htab->num_overlays * 16 + htab->num_buf * 4;
h->size = 0;
h = define_ovtab_symbol (htab, "_EAR_");
if (h == NULL)
return FALSE;
h->root.u.def.section = toe;
h->root.u.def.value = 0;
h->size = 16;
return TRUE;
}
/* OFFSET in SEC (presumably) is the beginning of a function prologue.
Search for stack adjusting insns, and return the sp delta. */
static int
find_function_stack_adjust (asection *sec, bfd_vma offset)
{
int unrecog;
int reg[128];
memset (reg, 0, sizeof (reg));
for (unrecog = 0; offset + 4 <= sec->size && unrecog < 32; offset += 4)
{
unsigned char buf[4];
int rt, ra;
int imm;
/* Assume no relocs on stack adjusing insns. */
if (!bfd_get_section_contents (sec->owner, sec, buf, offset, 4))
break;
if (buf[0] == 0x24 /* stqd */)
continue;
rt = buf[3] & 0x7f;
ra = ((buf[2] & 0x3f) << 1) | (buf[3] >> 7);
/* Partly decoded immediate field. */
imm = (buf[1] << 9) | (buf[2] << 1) | (buf[3] >> 7);
if (buf[0] == 0x1c /* ai */)
{
imm >>= 7;
imm = (imm ^ 0x200) - 0x200;
reg[rt] = reg[ra] + imm;
if (rt == 1 /* sp */)
{
if (imm > 0)
break;
return reg[rt];
}
}
else if (buf[0] == 0x18 && (buf[1] & 0xe0) == 0 /* a */)
{
int rb = ((buf[1] & 0x1f) << 2) | ((buf[2] & 0xc0) >> 6);
reg[rt] = reg[ra] + reg[rb];
if (rt == 1)
return reg[rt];
}
else if ((buf[0] & 0xfc) == 0x40 /* il, ilh, ilhu, ila */)
{
if (buf[0] >= 0x42 /* ila */)
imm |= (buf[0] & 1) << 17;
else
{
imm &= 0xffff;
if (buf[0] == 0x40 /* il */)
{
if ((buf[1] & 0x80) == 0)
goto unknown_insn;
imm = (imm ^ 0x8000) - 0x8000;
}
else if ((buf[1] & 0x80) == 0 /* ilhu */)
imm <<= 16;
}
reg[rt] = imm;
continue;
}
else if (buf[0] == 0x60 && (buf[1] & 0x80) != 0 /* iohl */)
{
reg[rt] |= imm & 0xffff;
continue;
}
else if (buf[0] == 0x04 /* ori */)
{
imm >>= 7;
imm = (imm ^ 0x200) - 0x200;
reg[rt] = reg[ra] | imm;
continue;
}
else if ((buf[0] == 0x33 && imm == 1 /* brsl .+4 */)
|| (buf[0] == 0x08 && (buf[1] & 0xe0) == 0 /* sf */))
{
/* Used in pic reg load. Say rt is trashed. */
reg[rt] = 0;
continue;
}
else if (is_branch (buf))
/* If we hit a branch then we must be out of the prologue. */
break;
unknown_insn:
++unrecog;
}
return 0;
}
/* qsort predicate to sort symbols by section and value. */
static Elf_Internal_Sym *sort_syms_syms;
static asection **sort_syms_psecs;
static int
sort_syms (const void *a, const void *b)
{
Elf_Internal_Sym *const *s1 = a;
Elf_Internal_Sym *const *s2 = b;
asection *sec1,*sec2;
bfd_signed_vma delta;
sec1 = sort_syms_psecs[*s1 - sort_syms_syms];
sec2 = sort_syms_psecs[*s2 - sort_syms_syms];
if (sec1 != sec2)
return sec1->index - sec2->index;
delta = (*s1)->st_value - (*s2)->st_value;
if (delta != 0)
return delta < 0 ? -1 : 1;
delta = (*s2)->st_size - (*s1)->st_size;
if (delta != 0)
return delta < 0 ? -1 : 1;
return *s1 < *s2 ? -1 : 1;
}
struct call_info
{
struct function_info *fun;
struct call_info *next;
int is_tail;
};
struct function_info
{
/* List of functions called. Also branches to hot/cold part of
function. */
struct call_info *call_list;
/* For hot/cold part of function, point to owner. */
struct function_info *start;
/* Symbol at start of function. */
union {
Elf_Internal_Sym *sym;
struct elf_link_hash_entry *h;
} u;
/* Function section. */
asection *sec;
/* Address range of (this part of) function. */
bfd_vma lo, hi;
/* Stack usage. */
int stack;
/* Set if global symbol. */
unsigned int global : 1;
/* Set if known to be start of function (as distinct from a hunk
in hot/cold section. */
unsigned int is_func : 1;
/* Flags used during call tree traversal. */
unsigned int visit1 : 1;
unsigned int non_root : 1;
unsigned int visit2 : 1;
unsigned int marking : 1;
unsigned int visit3 : 1;
};
struct spu_elf_stack_info
{
int num_fun;
int max_fun;
/* Variable size array describing functions, one per contiguous
address range belonging to a function. */
struct function_info fun[1];
};
/* Allocate a struct spu_elf_stack_info with MAX_FUN struct function_info
entries for section SEC. */
static struct spu_elf_stack_info *
alloc_stack_info (asection *sec, int max_fun)
{
struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
bfd_size_type amt;
amt = sizeof (struct spu_elf_stack_info);
amt += (max_fun - 1) * sizeof (struct function_info);
sec_data->stack_info = bfd_zmalloc (amt);
if (sec_data->stack_info != NULL)
sec_data->stack_info->max_fun = max_fun;
return sec_data->stack_info;
}
/* Add a new struct function_info describing a (part of a) function
starting at SYM_H. Keep the array sorted by address. */
static struct function_info *
maybe_insert_function (asection *sec,
void *sym_h,
bfd_boolean global,
bfd_boolean is_func)
{
struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
struct spu_elf_stack_info *sinfo = sec_data->stack_info;
int i;
bfd_vma off, size;
if (sinfo == NULL)
{
sinfo = alloc_stack_info (sec, 20);
if (sinfo == NULL)
return NULL;
}
if (!global)
{
Elf_Internal_Sym *sym = sym_h;
off = sym->st_value;
size = sym->st_size;
}
else
{
struct elf_link_hash_entry *h = sym_h;
off = h->root.u.def.value;
size = h->size;
}
for (i = sinfo->num_fun; --i >= 0; )
if (sinfo->fun[i].lo <= off)
break;
if (i >= 0)
{
/* Don't add another entry for an alias, but do update some
info. */
if (sinfo->fun[i].lo == off)
{
/* Prefer globals over local syms. */
if (global && !sinfo->fun[i].global)
{
sinfo->fun[i].global = TRUE;
sinfo->fun[i].u.h = sym_h;
}
if (is_func)
sinfo->fun[i].is_func = TRUE;
return &sinfo->fun[i];
}
/* Ignore a zero-size symbol inside an existing function. */
else if (sinfo->fun[i].hi > off && size == 0)
return &sinfo->fun[i];
}
if (++i < sinfo->num_fun)
memmove (&sinfo->fun[i + 1], &sinfo->fun[i],
(sinfo->num_fun - i) * sizeof (sinfo->fun[i]));
else if (i >= sinfo->max_fun)
{
bfd_size_type amt = sizeof (struct spu_elf_stack_info);
bfd_size_type old = amt;
old += (sinfo->max_fun - 1) * sizeof (struct function_info);
sinfo->max_fun += 20 + (sinfo->max_fun >> 1);
amt += (sinfo->max_fun - 1) * sizeof (struct function_info);
sinfo = bfd_realloc (sinfo, amt);
if (sinfo == NULL)
return NULL;
memset ((char *) sinfo + old, 0, amt - old);
sec_data->stack_info = sinfo;
}
sinfo->fun[i].is_func = is_func;
sinfo->fun[i].global = global;
sinfo->fun[i].sec = sec;
if (global)
sinfo->fun[i].u.h = sym_h;
else
sinfo->fun[i].u.sym = sym_h;
sinfo->fun[i].lo = off;
sinfo->fun[i].hi = off + size;
sinfo->fun[i].stack = -find_function_stack_adjust (sec, off);
sinfo->num_fun += 1;
return &sinfo->fun[i];
}
/* Return the name of FUN. */
static const char *
func_name (struct function_info *fun)
{
asection *sec;
bfd *ibfd;
Elf_Internal_Shdr *symtab_hdr;
while (fun->start != NULL)
fun = fun->start;
if (fun->global)
return fun->u.h->root.root.string;
sec = fun->sec;
if (fun->u.sym->st_name == 0)
{
size_t len = strlen (sec->name);
char *name = bfd_malloc (len + 10);
if (name == NULL)
return "(null)";
sprintf (name, "%s+%lx", sec->name,
(unsigned long) fun->u.sym->st_value & 0xffffffff);
return name;
}
ibfd = sec->owner;
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
return bfd_elf_sym_name (ibfd, symtab_hdr, fun->u.sym, sec);
}
/* Read the instruction at OFF in SEC. Return true iff the instruction
is a nop, lnop, or stop 0 (all zero insn). */
static bfd_boolean
is_nop (asection *sec, bfd_vma off)
{
unsigned char insn[4];
if (off + 4 > sec->size
|| !bfd_get_section_contents (sec->owner, sec, insn, off, 4))
return FALSE;
if ((insn[0] & 0xbf) == 0 && (insn[1] & 0xe0) == 0x20)
return TRUE;
if (insn[0] == 0 && insn[1] == 0 && insn[2] == 0 && insn[3] == 0)
return TRUE;
return FALSE;
}
/* Extend the range of FUN to cover nop padding up to LIMIT.
Return TRUE iff some instruction other than a NOP was found. */
static bfd_boolean
insns_at_end (struct function_info *fun, bfd_vma limit)
{
bfd_vma off = (fun->hi + 3) & -4;
while (off < limit && is_nop (fun->sec, off))
off += 4;
if (off < limit)
{
fun->hi = off;
return TRUE;
}
fun->hi = limit;
return FALSE;
}
/* Check and fix overlapping function ranges. Return TRUE iff there
are gaps in the current info we have about functions in SEC. */
static bfd_boolean
check_function_ranges (asection *sec, struct bfd_link_info *info)
{
struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
struct spu_elf_stack_info *sinfo = sec_data->stack_info;
int i;
bfd_boolean gaps = FALSE;
if (sinfo == NULL)
return FALSE;
for (i = 1; i < sinfo->num_fun; i++)
if (sinfo->fun[i - 1].hi > sinfo->fun[i].lo)
{
/* Fix overlapping symbols. */
const char *f1 = func_name (&sinfo->fun[i - 1]);
const char *f2 = func_name (&sinfo->fun[i]);
info->callbacks->einfo (_("warning: %s overlaps %s\n"), f1, f2);
sinfo->fun[i - 1].hi = sinfo->fun[i].lo;
}
else if (insns_at_end (&sinfo->fun[i - 1], sinfo->fun[i].lo))
gaps = TRUE;
if (sinfo->num_fun == 0)
gaps = TRUE;
else
{
if (sinfo->fun[0].lo != 0)
gaps = TRUE;
if (sinfo->fun[sinfo->num_fun - 1].hi > sec->size)
{
const char *f1 = func_name (&sinfo->fun[sinfo->num_fun - 1]);
info->callbacks->einfo (_("warning: %s exceeds section size\n"), f1);
sinfo->fun[sinfo->num_fun - 1].hi = sec->size;
}
else if (insns_at_end (&sinfo->fun[sinfo->num_fun - 1], sec->size))
gaps = TRUE;
}
return gaps;
}
/* Search current function info for a function that contains address
OFFSET in section SEC. */
static struct function_info *
find_function (asection *sec, bfd_vma offset, struct bfd_link_info *info)
{
struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
struct spu_elf_stack_info *sinfo = sec_data->stack_info;
int lo, hi, mid;
lo = 0;
hi = sinfo->num_fun;
while (lo < hi)
{
mid = (lo + hi) / 2;
if (offset < sinfo->fun[mid].lo)
hi = mid;
else if (offset >= sinfo->fun[mid].hi)
lo = mid + 1;
else
return &sinfo->fun[mid];
}
info->callbacks->einfo (_("%A:0x%v not found in function table\n"),
sec, offset);
return NULL;
}
/* Add CALLEE to CALLER call list if not already present. */
static bfd_boolean
insert_callee (struct function_info *caller, struct call_info *callee)
{
struct call_info *p;
for (p = caller->call_list; p != NULL; p = p->next)
if (p->fun == callee->fun)
{
/* Tail calls use less stack than normal calls. Retain entry
for normal call over one for tail call. */
if (p->is_tail > callee->is_tail)
p->is_tail = callee->is_tail;
return FALSE;
}
callee->next = caller->call_list;
caller->call_list = callee;
return TRUE;
}
/* Rummage through the relocs for SEC, looking for function calls.
If CALL_TREE is true, fill in call graph. If CALL_TREE is false,
mark destination symbols on calls as being functions. Also
look at branches, which may be tail calls or go to hot/cold
section part of same function. */
static bfd_boolean
mark_functions_via_relocs (asection *sec,
struct bfd_link_info *info,
int call_tree)
{
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (sec->owner)->symtab_hdr;
Elf_Internal_Sym *syms;
void *psyms;
static bfd_boolean warned;
internal_relocs = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL,
info->keep_memory);
if (internal_relocs == NULL)
return FALSE;
symtab_hdr = &elf_tdata (sec->owner)->symtab_hdr;
psyms = &symtab_hdr->contents;
syms = *(Elf_Internal_Sym **) psyms;
irela = internal_relocs;
irelaend = irela + sec->reloc_count;
for (; irela < irelaend; irela++)
{
enum elf_spu_reloc_type r_type;
unsigned int r_indx;
asection *sym_sec;
Elf_Internal_Sym *sym;
struct elf_link_hash_entry *h;
bfd_vma val;
unsigned char insn[4];
bfd_boolean is_call;
struct function_info *caller;
struct call_info *callee;
r_type = ELF32_R_TYPE (irela->r_info);
if (r_type != R_SPU_REL16
&& r_type != R_SPU_ADDR16)
continue;
r_indx = ELF32_R_SYM (irela->r_info);
if (!get_sym_h (&h, &sym, &sym_sec, psyms, r_indx, sec->owner))
return FALSE;
if (sym_sec == NULL
|| sym_sec->output_section == NULL
|| sym_sec->output_section->owner != sec->output_section->owner)
continue;
if (!bfd_get_section_contents (sec->owner, sec, insn,
irela->r_offset, 4))
return FALSE;
if (!is_branch (insn))
continue;
if ((sym_sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_CODE))
!= (SEC_ALLOC | SEC_LOAD | SEC_CODE))
{
if (!call_tree)
warned = TRUE;
if (!call_tree || !warned)
info->callbacks->einfo (_("%B(%A+0x%v): call to non-code section"
" %B(%A), stack analysis incomplete\n"),
sec->owner, sec, irela->r_offset,
sym_sec->owner, sym_sec);
continue;
}
is_call = (insn[0] & 0xfd) == 0x31;
if (h)
val = h->root.u.def.value;
else
val = sym->st_value;
val += irela->r_addend;
if (!call_tree)
{
struct function_info *fun;
if (irela->r_addend != 0)
{
Elf_Internal_Sym *fake = bfd_zmalloc (sizeof (*fake));
if (fake == NULL)
return FALSE;
fake->st_value = val;
fake->st_shndx
= _bfd_elf_section_from_bfd_section (sym_sec->owner, sym_sec);
sym = fake;
}
if (sym)
fun = maybe_insert_function (sym_sec, sym, FALSE, is_call);
else
fun = maybe_insert_function (sym_sec, h, TRUE, is_call);
if (fun == NULL)
return FALSE;
if (irela->r_addend != 0
&& fun->u.sym != sym)
free (sym);
continue;
}
caller = find_function (sec, irela->r_offset, info);
if (caller == NULL)
return FALSE;
callee = bfd_malloc (sizeof *callee);
if (callee == NULL)
return FALSE;
callee->fun = find_function (sym_sec, val, info);
if (callee->fun == NULL)
return FALSE;
callee->is_tail = !is_call;
if (!insert_callee (caller, callee))
free (callee);
else if (!is_call
&& !callee->fun->is_func
&& callee->fun->stack == 0)
{
/* This is either a tail call or a branch from one part of
the function to another, ie. hot/cold section. If the
destination has been called by some other function then
it is a separate function. We also assume that functions
are not split across input files. */
if (callee->fun->start != NULL
|| sec->owner != sym_sec->owner)
{
callee->fun->start = NULL;
callee->fun->is_func = TRUE;
}
else
callee->fun->start = caller;
}
}
return TRUE;
}
/* Handle something like .init or .fini, which has a piece of a function.
These sections are pasted together to form a single function. */
static bfd_boolean
pasted_function (asection *sec, struct bfd_link_info *info)
{
struct bfd_link_order *l;
struct _spu_elf_section_data *sec_data;
struct spu_elf_stack_info *sinfo;
Elf_Internal_Sym *fake;
struct function_info *fun, *fun_start;
fake = bfd_zmalloc (sizeof (*fake));
if (fake == NULL)
return FALSE;
fake->st_value = 0;
fake->st_size = sec->size;
fake->st_shndx
= _bfd_elf_section_from_bfd_section (sec->owner, sec);
fun = maybe_insert_function (sec, fake, FALSE, FALSE);
if (!fun)
return FALSE;
/* Find a function immediately preceding this section. */
fun_start = NULL;
for (l = sec->output_section->map_head.link_order; l != NULL; l = l->next)
{
if (l->u.indirect.section == sec)
{
if (fun_start != NULL)
{
if (fun_start->start)
fun_start = fun_start->start;
fun->start = fun_start;
}
return TRUE;
}
if (l->type == bfd_indirect_link_order
&& (sec_data = spu_elf_section_data (l->u.indirect.section)) != NULL
&& (sinfo = sec_data->stack_info) != NULL
&& sinfo->num_fun != 0)
fun_start = &sinfo->fun[sinfo->num_fun - 1];
}
info->callbacks->einfo (_("%A link_order not found\n"), sec);
return FALSE;
}
/* We're only interested in code sections. */
static bfd_boolean
interesting_section (asection *s, bfd *obfd, struct spu_link_hash_table *htab)
{
return (s != htab->stub
&& s->output_section != NULL
&& s->output_section->owner == obfd
&& ((s->flags & (SEC_ALLOC | SEC_LOAD | SEC_CODE))
== (SEC_ALLOC | SEC_LOAD | SEC_CODE))
&& s->size != 0);
}
/* Map address ranges in code sections to functions. */
static bfd_boolean
discover_functions (bfd *output_bfd, struct bfd_link_info *info)
{
struct spu_link_hash_table *htab = spu_hash_table (info);
bfd *ibfd;
int bfd_idx;
Elf_Internal_Sym ***psym_arr;
asection ***sec_arr;
bfd_boolean gaps = FALSE;
bfd_idx = 0;
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
bfd_idx++;
psym_arr = bfd_zmalloc (bfd_idx * sizeof (*psym_arr));
if (psym_arr == NULL)
return FALSE;
sec_arr = bfd_zmalloc (bfd_idx * sizeof (*sec_arr));
if (sec_arr == NULL)
return FALSE;
for (ibfd = info->input_bfds, bfd_idx = 0;
ibfd != NULL;
ibfd = ibfd->link_next, bfd_idx++)
{
extern const bfd_target bfd_elf32_spu_vec;
Elf_Internal_Shdr *symtab_hdr;
asection *sec;
size_t symcount;
Elf_Internal_Sym *syms, *sy, **psyms, **psy;
asection **psecs, **p;
if (ibfd->xvec != &bfd_elf32_spu_vec)
continue;
/* Read all the symbols. */
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
if (symcount == 0)
continue;
syms = (Elf_Internal_Sym *) symtab_hdr->contents;
if (syms == NULL)
{
syms = bfd_elf_get_elf_syms (ibfd, symtab_hdr, symcount, 0,
NULL, NULL, NULL);
symtab_hdr->contents = (void *) syms;
if (syms == NULL)
return FALSE;
}
/* Select defined function symbols that are going to be output. */
psyms = bfd_malloc ((symcount + 1) * sizeof (*psyms));
if (psyms == NULL)
return FALSE;
psym_arr[bfd_idx] = psyms;
psecs = bfd_malloc (symcount * sizeof (*psecs));
if (psecs == NULL)
return FALSE;
sec_arr[bfd_idx] = psecs;
for (psy = psyms, p = psecs, sy = syms; sy < syms + symcount; ++p, ++sy)
if (ELF_ST_TYPE (sy->st_info) == STT_NOTYPE
|| ELF_ST_TYPE (sy->st_info) == STT_FUNC)
{
asection *s;
*p = s = bfd_section_from_elf_index (ibfd, sy->st_shndx);
if (s != NULL && interesting_section (s, output_bfd, htab))
*psy++ = sy;
}
symcount = psy - psyms;
*psy = NULL;
/* Sort them by section and offset within section. */
sort_syms_syms = syms;
sort_syms_psecs = psecs;
qsort (psyms, symcount, sizeof (*psyms), sort_syms);
/* Now inspect the function symbols. */
for (psy = psyms; psy < psyms + symcount; )
{
asection *s = psecs[*psy - syms];
Elf_Internal_Sym **psy2;
for (psy2 = psy; ++psy2 < psyms + symcount; )
if (psecs[*psy2 - syms] != s)
break;
if (!alloc_stack_info (s, psy2 - psy))
return FALSE;
psy = psy2;
}
/* First install info about properly typed and sized functions.
In an ideal world this will cover all code sections, except
when partitioning functions into hot and cold sections,
and the horrible pasted together .init and .fini functions. */
for (psy = psyms; psy < psyms + symcount; ++psy)
{
sy = *psy;
if (ELF_ST_TYPE (sy->st_info) == STT_FUNC)
{
asection *s = psecs[sy - syms];
if (!maybe_insert_function (s, sy, FALSE, TRUE))
return FALSE;
}
}
for (sec = ibfd->sections; sec != NULL && !gaps; sec = sec->next)
if (interesting_section (sec, output_bfd, htab))
gaps |= check_function_ranges (sec, info);
}
if (gaps)
{
/* See if we can discover more function symbols by looking at
relocations. */
for (ibfd = info->input_bfds, bfd_idx = 0;
ibfd != NULL;
ibfd = ibfd->link_next, bfd_idx++)
{
asection *sec;
if (psym_arr[bfd_idx] == NULL)
continue;
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
if (interesting_section (sec, output_bfd, htab)
&& sec->reloc_count != 0)
{
if (!mark_functions_via_relocs (sec, info, FALSE))
return FALSE;
}
}
for (ibfd = info->input_bfds, bfd_idx = 0;
ibfd != NULL;
ibfd = ibfd->link_next, bfd_idx++)
{
Elf_Internal_Shdr *symtab_hdr;
asection *sec;
Elf_Internal_Sym *syms, *sy, **psyms, **psy;
asection **psecs;
if ((psyms = psym_arr[bfd_idx]) == NULL)
continue;
psecs = sec_arr[bfd_idx];
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
syms = (Elf_Internal_Sym *) symtab_hdr->contents;
gaps = FALSE;
for (sec = ibfd->sections; sec != NULL && !gaps; sec = sec->next)
if (interesting_section (sec, output_bfd, htab))
gaps |= check_function_ranges (sec, info);
if (!gaps)
continue;
/* Finally, install all globals. */
for (psy = psyms; (sy = *psy) != NULL; ++psy)
{
asection *s;
s = psecs[sy - syms];
/* Global syms might be improperly typed functions. */
if (ELF_ST_TYPE (sy->st_info) != STT_FUNC
&& ELF_ST_BIND (sy->st_info) == STB_GLOBAL)
{
if (!maybe_insert_function (s, sy, FALSE, FALSE))
return FALSE;
}
}
/* Some of the symbols we've installed as marking the
beginning of functions may have a size of zero. Extend
the range of such functions to the beginning of the
next symbol of interest. */
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
if (interesting_section (sec, output_bfd, htab))
{
struct _spu_elf_section_data *sec_data;
struct spu_elf_stack_info *sinfo;
sec_data = spu_elf_section_data (sec);
sinfo = sec_data->stack_info;
if (sinfo != NULL)
{
int fun_idx;
bfd_vma hi = sec->size;
for (fun_idx = sinfo->num_fun; --fun_idx >= 0; )
{
sinfo->fun[fun_idx].hi = hi;
hi = sinfo->fun[fun_idx].lo;
}
}
/* No symbols in this section. Must be .init or .fini
or something similar. */
else if (!pasted_function (sec, info))
return FALSE;
}
}
}
for (ibfd = info->input_bfds, bfd_idx = 0;
ibfd != NULL;
ibfd = ibfd->link_next, bfd_idx++)
{
if (psym_arr[bfd_idx] == NULL)
continue;
free (psym_arr[bfd_idx]);
free (sec_arr[bfd_idx]);
}
free (psym_arr);
free (sec_arr);
return TRUE;
}
/* Mark nodes in the call graph that are called by some other node. */
static void
mark_non_root (struct function_info *fun)
{
struct call_info *call;
fun->visit1 = TRUE;
for (call = fun->call_list; call; call = call->next)
{
call->fun->non_root = TRUE;
if (!call->fun->visit1)
mark_non_root (call->fun);
}
}
/* Remove cycles from the call graph. */
static void
call_graph_traverse (struct function_info *fun, struct bfd_link_info *info)
{
struct call_info **callp, *call;
fun->visit2 = TRUE;
fun->marking = TRUE;
callp = &fun->call_list;
while ((call = *callp) != NULL)
{
if (!call->fun->visit2)
call_graph_traverse (call->fun, info);
else if (call->fun->marking)
{
const char *f1 = func_name (fun);
const char *f2 = func_name (call->fun);
info->callbacks->info (_("Stack analysis will ignore the call "
"from %s to %s\n"),
f1, f2);
*callp = call->next;
continue;
}
callp = &call->next;
}
fun->marking = FALSE;
}
/* Populate call_list for each function. */
static bfd_boolean
build_call_tree (bfd *output_bfd, struct bfd_link_info *info)
{
struct spu_link_hash_table *htab = spu_hash_table (info);
bfd *ibfd;
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
{
extern const bfd_target bfd_elf32_spu_vec;
asection *sec;
if (ibfd->xvec != &bfd_elf32_spu_vec)
continue;
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
{
if (!interesting_section (sec, output_bfd, htab)
|| sec->reloc_count == 0)
continue;
if (!mark_functions_via_relocs (sec, info, TRUE))
return FALSE;
}
/* Transfer call info from hot/cold section part of function
to main entry. */
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
{
struct _spu_elf_section_data *sec_data;
struct spu_elf_stack_info *sinfo;
if ((sec_data = spu_elf_section_data (sec)) != NULL
&& (sinfo = sec_data->stack_info) != NULL)
{
int i;
for (i = 0; i < sinfo->num_fun; ++i)
{
if (sinfo->fun[i].start != NULL)
{
struct call_info *call = sinfo->fun[i].call_list;
while (call != NULL)
{
struct call_info *call_next = call->next;
if (!insert_callee (sinfo->fun[i].start, call))
free (call);
call = call_next;
}
sinfo->fun[i].call_list = NULL;
sinfo->fun[i].non_root = TRUE;
}
}
}
}
}
/* Find the call graph root(s). */
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
{
extern const bfd_target bfd_elf32_spu_vec;
asection *sec;
if (ibfd->xvec != &bfd_elf32_spu_vec)
continue;
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
{
struct _spu_elf_section_data *sec_data;
struct spu_elf_stack_info *sinfo;
if ((sec_data = spu_elf_section_data (sec)) != NULL
&& (sinfo = sec_data->stack_info) != NULL)
{
int i;
for (i = 0; i < sinfo->num_fun; ++i)
if (!sinfo->fun[i].visit1)
mark_non_root (&sinfo->fun[i]);
}
}
}
/* Remove cycles from the call graph. We start from the root node(s)
so that we break cycles in a reasonable place. */
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
{
extern const bfd_target bfd_elf32_spu_vec;
asection *sec;
if (ibfd->xvec != &bfd_elf32_spu_vec)
continue;
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
{
struct _spu_elf_section_data *sec_data;
struct spu_elf_stack_info *sinfo;
if ((sec_data = spu_elf_section_data (sec)) != NULL
&& (sinfo = sec_data->stack_info) != NULL)
{
int i;
for (i = 0; i < sinfo->num_fun; ++i)
if (!sinfo->fun[i].non_root)
call_graph_traverse (&sinfo->fun[i], info);
}
}
}
return TRUE;
}
/* Descend the call graph for FUN, accumulating total stack required. */
static bfd_vma
sum_stack (struct function_info *fun,
struct bfd_link_info *info,
int emit_stack_syms)
{
struct call_info *call;
struct function_info *max = NULL;
bfd_vma max_stack = fun->stack;
bfd_vma stack;
const char *f1;
if (fun->visit3)
return max_stack;
for (call = fun->call_list; call; call = call->next)
{
stack = sum_stack (call->fun, info, emit_stack_syms);
/* Include caller stack for normal calls, don't do so for
tail calls. fun->stack here is local stack usage for
this function. */
if (!call->is_tail)
stack += fun->stack;
if (max_stack < stack)
{
max_stack = stack;
max = call->fun;
}
}
f1 = func_name (fun);
info->callbacks->minfo (_("%s: 0x%v 0x%v\n"), f1, fun->stack, max_stack);
if (fun->call_list)
{
info->callbacks->minfo (_(" calls:\n"));
for (call = fun->call_list; call; call = call->next)
{
const char *f2 = func_name (call->fun);
const char *ann1 = call->fun == max ? "*" : " ";
const char *ann2 = call->is_tail ? "t" : " ";
info->callbacks->minfo (_(" %s%s %s\n"), ann1, ann2, f2);
}
}
/* Now fun->stack holds cumulative stack. */
fun->stack = max_stack;
fun->visit3 = TRUE;
if (emit_stack_syms)
{
struct spu_link_hash_table *htab = spu_hash_table (info);
char *name = bfd_malloc (18 + strlen (f1));
struct elf_link_hash_entry *h;
if (name != NULL)
{
if (fun->global || ELF_ST_BIND (fun->u.sym->st_info) == STB_GLOBAL)
sprintf (name, "__stack_%s", f1);
else
sprintf (name, "__stack_%x_%s", fun->sec->id & 0xffffffff, f1);
h = elf_link_hash_lookup (&htab->elf, name, TRUE, TRUE, FALSE);
free (name);
if (h != NULL
&& (h->root.type == bfd_link_hash_new
|| h->root.type == bfd_link_hash_undefined
|| h->root.type == bfd_link_hash_undefweak))
{
h->root.type = bfd_link_hash_defined;
h->root.u.def.section = bfd_abs_section_ptr;
h->root.u.def.value = max_stack;
h->size = 0;
h->type = 0;
h->ref_regular = 1;
h->def_regular = 1;
h->ref_regular_nonweak = 1;
h->forced_local = 1;
h->non_elf = 0;
}
}
}
return max_stack;
}
/* Provide an estimate of total stack required. */
static bfd_boolean
spu_elf_stack_analysis (bfd *output_bfd,
struct bfd_link_info *info,
int emit_stack_syms)
{
bfd *ibfd;
bfd_vma max_stack = 0;
if (!discover_functions (output_bfd, info))
return FALSE;
if (!build_call_tree (output_bfd, info))
return FALSE;
info->callbacks->info (_("Stack size for call graph root nodes.\n"));
info->callbacks->minfo (_("\nStack size for functions. "
"Annotations: '*' max stack, 't' tail call\n"));
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
{
extern const bfd_target bfd_elf32_spu_vec;
asection *sec;
if (ibfd->xvec != &bfd_elf32_spu_vec)
continue;
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
{
struct _spu_elf_section_data *sec_data;
struct spu_elf_stack_info *sinfo;
if ((sec_data = spu_elf_section_data (sec)) != NULL
&& (sinfo = sec_data->stack_info) != NULL)
{
int i;
for (i = 0; i < sinfo->num_fun; ++i)
{
if (!sinfo->fun[i].non_root)
{
bfd_vma stack;
const char *f1;
stack = sum_stack (&sinfo->fun[i], info,
emit_stack_syms);
f1 = func_name (&sinfo->fun[i]);
info->callbacks->info (_(" %s: 0x%v\n"),
f1, stack);
if (max_stack < stack)
max_stack = stack;
}
}
}
}
}
info->callbacks->info (_("Maximum stack required is 0x%v\n"), max_stack);
return TRUE;
}
/* Perform a final link. */
static bfd_boolean
spu_elf_final_link (bfd *output_bfd, struct bfd_link_info *info)
{
struct spu_link_hash_table *htab = spu_hash_table (info);
if (htab->stack_analysis
&& !spu_elf_stack_analysis (output_bfd, info, htab->emit_stack_syms))
info->callbacks->einfo ("%X%P: stack analysis error: %E\n");
return bfd_elf_final_link (output_bfd, info);
}
/* Called when not normally emitting relocs, ie. !info->relocatable
and !info->emitrelocations. Returns a count of special relocs
that need to be emitted. */
static unsigned int
spu_elf_count_relocs (asection *sec, Elf_Internal_Rela *relocs)
{
unsigned int count = 0;
Elf_Internal_Rela *relend = relocs + sec->reloc_count;
for (; relocs < relend; relocs++)
{
int r_type = ELF32_R_TYPE (relocs->r_info);
if (r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64)
++count;
}
return count;
}
/* Apply RELOCS to CONTENTS of INPUT_SECTION from INPUT_BFD. */
static bfd_boolean
spu_elf_relocate_section (bfd *output_bfd,
struct bfd_link_info *info,
bfd *input_bfd,
asection *input_section,
bfd_byte *contents,
Elf_Internal_Rela *relocs,
Elf_Internal_Sym *local_syms,
asection **local_sections)
{
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
Elf_Internal_Rela *rel, *relend;
struct spu_link_hash_table *htab;
bfd_boolean ret = TRUE;
bfd_boolean emit_these_relocs = FALSE;
htab = spu_hash_table (info);
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
sym_hashes = (struct elf_link_hash_entry **) (elf_sym_hashes (input_bfd));
rel = relocs;
relend = relocs + input_section->reloc_count;
for (; rel < relend; rel++)
{
int r_type;
reloc_howto_type *howto;
unsigned long r_symndx;
Elf_Internal_Sym *sym;
asection *sec;
struct elf_link_hash_entry *h;
const char *sym_name;
bfd_vma relocation;
bfd_vma addend;
bfd_reloc_status_type r;
bfd_boolean unresolved_reloc;
bfd_boolean warned;
bfd_boolean branch;
r_symndx = ELF32_R_SYM (rel->r_info);
r_type = ELF32_R_TYPE (rel->r_info);
if (r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64)
{
emit_these_relocs = TRUE;
continue;
}
howto = elf_howto_table + r_type;
unresolved_reloc = FALSE;
warned = FALSE;
h = NULL;
sym = NULL;
sec = NULL;
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
sec = local_sections[r_symndx];
sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
}
else
{
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
r_symndx, symtab_hdr, sym_hashes,
h, sec, relocation,
unresolved_reloc, warned);
sym_name = h->root.root.string;
}
if (sec != NULL && elf_discarded_section (sec))
{
/* For relocs against symbols from removed linkonce sections,
or sections discarded by a linker script, we just want the
section contents zeroed. Avoid any special processing. */
_bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
rel->r_info = 0;
rel->r_addend = 0;
continue;
}
if (info->relocatable)
continue;
if (unresolved_reloc)
{
(*_bfd_error_handler)
(_("%B(%s+0x%lx): unresolvable %s relocation against symbol `%s'"),
input_bfd,
bfd_get_section_name (input_bfd, input_section),
(long) rel->r_offset,
howto->name,
sym_name);
ret = FALSE;
}
/* If this symbol is in an overlay area, we may need to relocate
to the overlay stub. */
addend = rel->r_addend;
branch = (is_branch (contents + rel->r_offset)
|| is_hint (contents + rel->r_offset));
if (needs_ovl_stub (sym_name, sec, input_section, htab, branch))
{
char *stub_name;
struct spu_stub_hash_entry *sh;
stub_name = spu_stub_name (sec, h, rel);
if (stub_name == NULL)
return FALSE;
sh = (struct spu_stub_hash_entry *)
bfd_hash_lookup (&htab->stub_hash_table, stub_name, FALSE, FALSE);
if (sh != NULL)
{
relocation = (htab->stub->output_section->vma
+ htab->stub->output_offset
+ sh->off);
addend = 0;
}
free (stub_name);
}
r = _bfd_final_link_relocate (howto,
input_bfd,
input_section,
contents,
rel->r_offset, relocation, addend);
if (r != bfd_reloc_ok)
{
const char *msg = (const char *) 0;
switch (r)
{
case bfd_reloc_overflow:
if (!((*info->callbacks->reloc_overflow)
(info, (h ? &h->root : NULL), sym_name, howto->name,
(bfd_vma) 0, input_bfd, input_section, rel->r_offset)))
return FALSE;
break;
case bfd_reloc_undefined:
if (!((*info->callbacks->undefined_symbol)
(info, sym_name, input_bfd, input_section,
rel->r_offset, TRUE)))
return FALSE;
break;
case bfd_reloc_outofrange:
msg = _("internal error: out of range error");
goto common_error;
case bfd_reloc_notsupported:
msg = _("internal error: unsupported relocation error");
goto common_error;
case bfd_reloc_dangerous:
msg = _("internal error: dangerous error");
goto common_error;
default:
msg = _("internal error: unknown error");
/* fall through */
common_error:
if (!((*info->callbacks->warning)
(info, msg, sym_name, input_bfd, input_section,
rel->r_offset)))
return FALSE;
break;
}
}
}
if (ret
&& emit_these_relocs
&& !info->relocatable
&& !info->emitrelocations)
{
Elf_Internal_Rela *wrel;
Elf_Internal_Shdr *rel_hdr;
wrel = rel = relocs;
relend = relocs + input_section->reloc_count;
for (; rel < relend; rel++)
{
int r_type;
r_type = ELF32_R_TYPE (rel->r_info);
if (r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64)
*wrel++ = *rel;
}
input_section->reloc_count = wrel - relocs;
/* Backflips for _bfd_elf_link_output_relocs. */
rel_hdr = &elf_section_data (input_section)->rel_hdr;
rel_hdr->sh_size = input_section->reloc_count * rel_hdr->sh_entsize;
ret = 2;
}
return ret;
}
/* Adjust _SPUEAR_ syms to point at their overlay stubs. */
static bfd_boolean
spu_elf_output_symbol_hook (struct bfd_link_info *info,
const char *sym_name ATTRIBUTE_UNUSED,
Elf_Internal_Sym *sym,
asection *sym_sec ATTRIBUTE_UNUSED,
struct elf_link_hash_entry *h)
{
struct spu_link_hash_table *htab = spu_hash_table (info);
if (!info->relocatable
&& htab->num_overlays != 0
&& h != NULL
&& (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& h->def_regular
&& strncmp (h->root.root.string, "_SPUEAR_", 8) == 0)
{
static Elf_Internal_Rela zero_rel;
char *stub_name = spu_stub_name (h->root.u.def.section, h, &zero_rel);
struct spu_stub_hash_entry *sh;
if (stub_name == NULL)
return FALSE;
sh = (struct spu_stub_hash_entry *)
bfd_hash_lookup (&htab->stub_hash_table, stub_name, FALSE, FALSE);
free (stub_name);
if (sh == NULL)
return TRUE;
sym->st_shndx
= _bfd_elf_section_from_bfd_section (htab->stub->output_section->owner,
htab->stub->output_section);
sym->st_value = (htab->stub->output_section->vma
+ htab->stub->output_offset
+ sh->off);
}
return TRUE;
}
static int spu_plugin = 0;
void
spu_elf_plugin (int val)
{
spu_plugin = val;
}
/* Set ELF header e_type for plugins. */
static void
spu_elf_post_process_headers (bfd *abfd,
struct bfd_link_info *info ATTRIBUTE_UNUSED)
{
if (spu_plugin)
{
Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
i_ehdrp->e_type = ET_DYN;
}
}
/* We may add an extra PT_LOAD segment for .toe. We also need extra
segments for overlays. */
static int
spu_elf_additional_program_headers (bfd *abfd, struct bfd_link_info *info)
{
struct spu_link_hash_table *htab = spu_hash_table (info);
int extra = htab->num_overlays;
asection *sec;
if (extra)
++extra;
sec = bfd_get_section_by_name (abfd, ".toe");
if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
++extra;
return extra;
}
/* Remove .toe section from other PT_LOAD segments and put it in
a segment of its own. Put overlays in separate segments too. */
static bfd_boolean
spu_elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
{
asection *toe, *s;
struct elf_segment_map *m;
unsigned int i;
if (info == NULL)
return TRUE;
toe = bfd_get_section_by_name (abfd, ".toe");
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
if (m->p_type == PT_LOAD && m->count > 1)
for (i = 0; i < m->count; i++)
if ((s = m->sections[i]) == toe
|| spu_elf_section_data (s)->ovl_index != 0)
{
struct elf_segment_map *m2;
bfd_vma amt;
if (i + 1 < m->count)
{
amt = sizeof (struct elf_segment_map);
amt += (m->count - (i + 2)) * sizeof (m->sections[0]);
m2 = bfd_zalloc (abfd, amt);
if (m2 == NULL)
return FALSE;
m2->count = m->count - (i + 1);
memcpy (m2->sections, m->sections + i + 1,
m2->count * sizeof (m->sections[0]));
m2->p_type = PT_LOAD;
m2->next = m->next;
m->next = m2;
}
m->count = 1;
if (i != 0)
{
m->count = i;
amt = sizeof (struct elf_segment_map);
m2 = bfd_zalloc (abfd, amt);
if (m2 == NULL)
return FALSE;
m2->p_type = PT_LOAD;
m2->count = 1;
m2->sections[0] = s;
m2->next = m->next;
m->next = m2;
}
break;
}
return TRUE;
}
/* Check that all loadable section VMAs lie in the range
LO .. HI inclusive. */
asection *
spu_elf_check_vma (bfd *abfd, bfd_vma lo, bfd_vma hi)
{
struct elf_segment_map *m;
unsigned int i;
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
if (m->p_type == PT_LOAD)
for (i = 0; i < m->count; i++)
if (m->sections[i]->size != 0
&& (m->sections[i]->vma < lo
|| m->sections[i]->vma > hi
|| m->sections[i]->vma + m->sections[i]->size - 1 > hi))
return m->sections[i];
return NULL;
}
/* Tweak the section type of .note.spu_name. */
static bfd_boolean
spu_elf_fake_sections (bfd *obfd ATTRIBUTE_UNUSED,
Elf_Internal_Shdr *hdr,
asection *sec)
{
if (strcmp (sec->name, SPU_PTNOTE_SPUNAME) == 0)
hdr->sh_type = SHT_NOTE;
return TRUE;
}
/* Tweak phdrs before writing them out. */
static int
spu_elf_modify_program_headers (bfd *abfd, struct bfd_link_info *info)
{
const struct elf_backend_data *bed;
struct elf_obj_tdata *tdata;
Elf_Internal_Phdr *phdr, *last;
struct spu_link_hash_table *htab;
unsigned int count;
unsigned int i;
if (info == NULL)
return TRUE;
bed = get_elf_backend_data (abfd);
tdata = elf_tdata (abfd);
phdr = tdata->phdr;
count = tdata->program_header_size / bed->s->sizeof_phdr;
htab = spu_hash_table (info);
if (htab->num_overlays != 0)
{
struct elf_segment_map *m;
unsigned int o;
for (i = 0, m = elf_tdata (abfd)->segment_map; m; ++i, m = m->next)
if (m->count != 0
&& (o = spu_elf_section_data (m->sections[0])->ovl_index) != 0)
{
/* Mark this as an overlay header. */
phdr[i].p_flags |= PF_OVERLAY;
if (htab->ovtab != NULL && htab->ovtab->size != 0)
{
bfd_byte *p = htab->ovtab->contents;
unsigned int off = (o - 1) * 16 + 8;
/* Write file_off into _ovly_table. */
bfd_put_32 (htab->ovtab->owner, phdr[i].p_offset, p + off);
}
}
}
/* Round up p_filesz and p_memsz of PT_LOAD segments to multiples
of 16. This should always be possible when using the standard
linker scripts, but don't create overlapping segments if
someone is playing games with linker scripts. */
last = NULL;
for (i = count; i-- != 0; )
if (phdr[i].p_type == PT_LOAD)
{
unsigned adjust;
adjust = -phdr[i].p_filesz & 15;
if (adjust != 0
&& last != NULL
&& phdr[i].p_offset + phdr[i].p_filesz > last->p_offset - adjust)
break;
adjust = -phdr[i].p_memsz & 15;
if (adjust != 0
&& last != NULL
&& phdr[i].p_filesz != 0
&& phdr[i].p_vaddr + phdr[i].p_memsz > last->p_vaddr - adjust
&& phdr[i].p_vaddr + phdr[i].p_memsz <= last->p_vaddr)
break;
if (phdr[i].p_filesz != 0)
last = &phdr[i];
}
if (i == (unsigned int) -1)
for (i = count; i-- != 0; )
if (phdr[i].p_type == PT_LOAD)
{
unsigned adjust;
adjust = -phdr[i].p_filesz & 15;
phdr[i].p_filesz += adjust;
adjust = -phdr[i].p_memsz & 15;
phdr[i].p_memsz += adjust;
}
return TRUE;
}
#define TARGET_BIG_SYM bfd_elf32_spu_vec
#define TARGET_BIG_NAME "elf32-spu"
#define ELF_ARCH bfd_arch_spu
#define ELF_MACHINE_CODE EM_SPU
/* This matches the alignment need for DMA. */
#define ELF_MAXPAGESIZE 0x80
#define elf_backend_rela_normal 1
#define elf_backend_can_gc_sections 1
#define bfd_elf32_bfd_reloc_type_lookup spu_elf_reloc_type_lookup
#define bfd_elf32_bfd_reloc_name_lookup spu_elf_reloc_name_lookup
#define elf_info_to_howto spu_elf_info_to_howto
#define elf_backend_count_relocs spu_elf_count_relocs
#define elf_backend_relocate_section spu_elf_relocate_section
#define elf_backend_symbol_processing spu_elf_backend_symbol_processing
#define elf_backend_link_output_symbol_hook spu_elf_output_symbol_hook
#define bfd_elf32_new_section_hook spu_elf_new_section_hook
#define bfd_elf32_bfd_link_hash_table_create spu_elf_link_hash_table_create
#define bfd_elf32_bfd_link_hash_table_free spu_elf_link_hash_table_free
#define elf_backend_additional_program_headers spu_elf_additional_program_headers
#define elf_backend_modify_segment_map spu_elf_modify_segment_map
#define elf_backend_modify_program_headers spu_elf_modify_program_headers
#define elf_backend_post_process_headers spu_elf_post_process_headers
#define elf_backend_fake_sections spu_elf_fake_sections
#define elf_backend_special_sections spu_elf_special_sections
#define bfd_elf32_bfd_final_link spu_elf_final_link
#include "elf32-target.h"