freebsd-nq/lib/Target/CBackend/CBackend.cpp

3592 lines
120 KiB
C++

//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This library converts LLVM code to C code, compilable by GCC and other C
// compilers.
//
//===----------------------------------------------------------------------===//
#include "CTargetMachine.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
#include "llvm/TypeSymbolTable.h"
#include "llvm/Intrinsics.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/InlineAsm.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/ConstantsScanner.h"
#include "llvm/Analysis/FindUsedTypes.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/Target/Mangler.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Host.h"
#include "llvm/Config/config.h"
#include <algorithm>
// Some ms header decided to define setjmp as _setjmp, undo this for this file.
#ifdef _MSC_VER
#undef setjmp
#endif
using namespace llvm;
extern "C" void LLVMInitializeCBackendTarget() {
// Register the target.
RegisterTargetMachine<CTargetMachine> X(TheCBackendTarget);
}
namespace {
class CBEMCAsmInfo : public MCAsmInfo {
public:
CBEMCAsmInfo() {
GlobalPrefix = "";
PrivateGlobalPrefix = "";
}
};
/// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
/// any unnamed structure types that are used by the program, and merges
/// external functions with the same name.
///
class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
public:
static char ID;
CBackendNameAllUsedStructsAndMergeFunctions()
: ModulePass(ID) {
initializeFindUsedTypesPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<FindUsedTypes>();
}
virtual const char *getPassName() const {
return "C backend type canonicalizer";
}
virtual bool runOnModule(Module &M);
};
char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
/// CWriter - This class is the main chunk of code that converts an LLVM
/// module to a C translation unit.
class CWriter : public FunctionPass, public InstVisitor<CWriter> {
formatted_raw_ostream &Out;
IntrinsicLowering *IL;
Mangler *Mang;
LoopInfo *LI;
const Module *TheModule;
const MCAsmInfo* TAsm;
MCContext *TCtx;
const TargetData* TD;
std::map<const Type *, std::string> TypeNames;
std::map<const ConstantFP *, unsigned> FPConstantMap;
std::set<Function*> intrinsicPrototypesAlreadyGenerated;
std::set<const Argument*> ByValParams;
unsigned FPCounter;
unsigned OpaqueCounter;
DenseMap<const Value*, unsigned> AnonValueNumbers;
unsigned NextAnonValueNumber;
public:
static char ID;
explicit CWriter(formatted_raw_ostream &o)
: FunctionPass(ID), Out(o), IL(0), Mang(0), LI(0),
TheModule(0), TAsm(0), TCtx(0), TD(0), OpaqueCounter(0),
NextAnonValueNumber(0) {
initializeLoopInfoPass(*PassRegistry::getPassRegistry());
FPCounter = 0;
}
virtual const char *getPassName() const { return "C backend"; }
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LoopInfo>();
AU.setPreservesAll();
}
virtual bool doInitialization(Module &M);
bool runOnFunction(Function &F) {
// Do not codegen any 'available_externally' functions at all, they have
// definitions outside the translation unit.
if (F.hasAvailableExternallyLinkage())
return false;
LI = &getAnalysis<LoopInfo>();
// Get rid of intrinsics we can't handle.
lowerIntrinsics(F);
// Output all floating point constants that cannot be printed accurately.
printFloatingPointConstants(F);
printFunction(F);
return false;
}
virtual bool doFinalization(Module &M) {
// Free memory...
delete IL;
delete TD;
delete Mang;
delete TCtx;
delete TAsm;
FPConstantMap.clear();
TypeNames.clear();
ByValParams.clear();
intrinsicPrototypesAlreadyGenerated.clear();
return false;
}
raw_ostream &printType(raw_ostream &Out, const Type *Ty,
bool isSigned = false,
const std::string &VariableName = "",
bool IgnoreName = false,
const AttrListPtr &PAL = AttrListPtr());
raw_ostream &printSimpleType(raw_ostream &Out, const Type *Ty,
bool isSigned,
const std::string &NameSoFar = "");
void printStructReturnPointerFunctionType(raw_ostream &Out,
const AttrListPtr &PAL,
const PointerType *Ty);
/// writeOperandDeref - Print the result of dereferencing the specified
/// operand with '*'. This is equivalent to printing '*' then using
/// writeOperand, but avoids excess syntax in some cases.
void writeOperandDeref(Value *Operand) {
if (isAddressExposed(Operand)) {
// Already something with an address exposed.
writeOperandInternal(Operand);
} else {
Out << "*(";
writeOperand(Operand);
Out << ")";
}
}
void writeOperand(Value *Operand, bool Static = false);
void writeInstComputationInline(Instruction &I);
void writeOperandInternal(Value *Operand, bool Static = false);
void writeOperandWithCast(Value* Operand, unsigned Opcode);
void writeOperandWithCast(Value* Operand, const ICmpInst &I);
bool writeInstructionCast(const Instruction &I);
void writeMemoryAccess(Value *Operand, const Type *OperandType,
bool IsVolatile, unsigned Alignment);
private :
std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
void lowerIntrinsics(Function &F);
void printModuleTypes(const TypeSymbolTable &ST);
void printContainedStructs(const Type *Ty, std::set<const Type *> &);
void printFloatingPointConstants(Function &F);
void printFloatingPointConstants(const Constant *C);
void printFunctionSignature(const Function *F, bool Prototype);
void printFunction(Function &);
void printBasicBlock(BasicBlock *BB);
void printLoop(Loop *L);
void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
void printConstant(Constant *CPV, bool Static);
void printConstantWithCast(Constant *CPV, unsigned Opcode);
bool printConstExprCast(const ConstantExpr *CE, bool Static);
void printConstantArray(ConstantArray *CPA, bool Static);
void printConstantVector(ConstantVector *CV, bool Static);
/// isAddressExposed - Return true if the specified value's name needs to
/// have its address taken in order to get a C value of the correct type.
/// This happens for global variables, byval parameters, and direct allocas.
bool isAddressExposed(const Value *V) const {
if (const Argument *A = dyn_cast<Argument>(V))
return ByValParams.count(A);
return isa<GlobalVariable>(V) || isDirectAlloca(V);
}
// isInlinableInst - Attempt to inline instructions into their uses to build
// trees as much as possible. To do this, we have to consistently decide
// what is acceptable to inline, so that variable declarations don't get
// printed and an extra copy of the expr is not emitted.
//
static bool isInlinableInst(const Instruction &I) {
// Always inline cmp instructions, even if they are shared by multiple
// expressions. GCC generates horrible code if we don't.
if (isa<CmpInst>(I))
return true;
// Must be an expression, must be used exactly once. If it is dead, we
// emit it inline where it would go.
if (I.getType() == Type::getVoidTy(I.getContext()) || !I.hasOneUse() ||
isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) ||
isa<InsertValueInst>(I))
// Don't inline a load across a store or other bad things!
return false;
// Must not be used in inline asm, extractelement, or shufflevector.
if (I.hasOneUse()) {
const Instruction &User = cast<Instruction>(*I.use_back());
if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
isa<ShuffleVectorInst>(User))
return false;
}
// Only inline instruction it if it's use is in the same BB as the inst.
return I.getParent() == cast<Instruction>(I.use_back())->getParent();
}
// isDirectAlloca - Define fixed sized allocas in the entry block as direct
// variables which are accessed with the & operator. This causes GCC to
// generate significantly better code than to emit alloca calls directly.
//
static const AllocaInst *isDirectAlloca(const Value *V) {
const AllocaInst *AI = dyn_cast<AllocaInst>(V);
if (!AI) return 0;
if (AI->isArrayAllocation())
return 0; // FIXME: we can also inline fixed size array allocas!
if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
return 0;
return AI;
}
// isInlineAsm - Check if the instruction is a call to an inline asm chunk
static bool isInlineAsm(const Instruction& I) {
if (const CallInst *CI = dyn_cast<CallInst>(&I))
return isa<InlineAsm>(CI->getCalledValue());
return false;
}
// Instruction visitation functions
friend class InstVisitor<CWriter>;
void visitReturnInst(ReturnInst &I);
void visitBranchInst(BranchInst &I);
void visitSwitchInst(SwitchInst &I);
void visitIndirectBrInst(IndirectBrInst &I);
void visitInvokeInst(InvokeInst &I) {
llvm_unreachable("Lowerinvoke pass didn't work!");
}
void visitUnwindInst(UnwindInst &I) {
llvm_unreachable("Lowerinvoke pass didn't work!");
}
void visitUnreachableInst(UnreachableInst &I);
void visitPHINode(PHINode &I);
void visitBinaryOperator(Instruction &I);
void visitICmpInst(ICmpInst &I);
void visitFCmpInst(FCmpInst &I);
void visitCastInst (CastInst &I);
void visitSelectInst(SelectInst &I);
void visitCallInst (CallInst &I);
void visitInlineAsm(CallInst &I);
bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
void visitAllocaInst(AllocaInst &I);
void visitLoadInst (LoadInst &I);
void visitStoreInst (StoreInst &I);
void visitGetElementPtrInst(GetElementPtrInst &I);
void visitVAArgInst (VAArgInst &I);
void visitInsertElementInst(InsertElementInst &I);
void visitExtractElementInst(ExtractElementInst &I);
void visitShuffleVectorInst(ShuffleVectorInst &SVI);
void visitInsertValueInst(InsertValueInst &I);
void visitExtractValueInst(ExtractValueInst &I);
void visitInstruction(Instruction &I) {
#ifndef NDEBUG
errs() << "C Writer does not know about " << I;
#endif
llvm_unreachable(0);
}
void outputLValue(Instruction *I) {
Out << " " << GetValueName(I) << " = ";
}
bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
void printPHICopiesForSuccessor(BasicBlock *CurBlock,
BasicBlock *Successor, unsigned Indent);
void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
unsigned Indent);
void printGEPExpression(Value *Ptr, gep_type_iterator I,
gep_type_iterator E, bool Static);
std::string GetValueName(const Value *Operand);
};
}
char CWriter::ID = 0;
static std::string CBEMangle(const std::string &S) {
std::string Result;
for (unsigned i = 0, e = S.size(); i != e; ++i)
if (isalnum(S[i]) || S[i] == '_') {
Result += S[i];
} else {
Result += '_';
Result += 'A'+(S[i]&15);
Result += 'A'+((S[i]>>4)&15);
Result += '_';
}
return Result;
}
/// This method inserts names for any unnamed structure types that are used by
/// the program, and removes names from structure types that are not used by the
/// program.
///
bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
// Get a set of types that are used by the program...
std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
// Loop over the module symbol table, removing types from UT that are
// already named, and removing names for types that are not used.
//
TypeSymbolTable &TST = M.getTypeSymbolTable();
for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
TI != TE; ) {
TypeSymbolTable::iterator I = TI++;
// If this isn't a struct or array type, remove it from our set of types
// to name. This simplifies emission later.
if (!I->second->isStructTy() && !I->second->isOpaqueTy() &&
!I->second->isArrayTy()) {
TST.remove(I);
} else {
// If this is not used, remove it from the symbol table.
std::set<const Type *>::iterator UTI = UT.find(I->second);
if (UTI == UT.end())
TST.remove(I);
else
UT.erase(UTI); // Only keep one name for this type.
}
}
// UT now contains types that are not named. Loop over it, naming
// structure types.
//
bool Changed = false;
unsigned RenameCounter = 0;
for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
I != E; ++I)
if ((*I)->isStructTy() || (*I)->isArrayTy()) {
while (M.addTypeName("unnamed"+utostr(RenameCounter), *I))
++RenameCounter;
Changed = true;
}
// Loop over all external functions and globals. If we have two with
// identical names, merge them.
// FIXME: This code should disappear when we don't allow values with the same
// names when they have different types!
std::map<std::string, GlobalValue*> ExtSymbols;
for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
Function *GV = I++;
if (GV->isDeclaration() && GV->hasName()) {
std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
= ExtSymbols.insert(std::make_pair(GV->getName(), GV));
if (!X.second) {
// Found a conflict, replace this global with the previous one.
GlobalValue *OldGV = X.first->second;
GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
GV->eraseFromParent();
Changed = true;
}
}
}
// Do the same for globals.
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E;) {
GlobalVariable *GV = I++;
if (GV->isDeclaration() && GV->hasName()) {
std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
= ExtSymbols.insert(std::make_pair(GV->getName(), GV));
if (!X.second) {
// Found a conflict, replace this global with the previous one.
GlobalValue *OldGV = X.first->second;
GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
GV->eraseFromParent();
Changed = true;
}
}
}
return Changed;
}
/// printStructReturnPointerFunctionType - This is like printType for a struct
/// return type, except, instead of printing the type as void (*)(Struct*, ...)
/// print it as "Struct (*)(...)", for struct return functions.
void CWriter::printStructReturnPointerFunctionType(raw_ostream &Out,
const AttrListPtr &PAL,
const PointerType *TheTy) {
const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
std::string tstr;
raw_string_ostream FunctionInnards(tstr);
FunctionInnards << " (*) (";
bool PrintedType = false;
FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
const Type *RetTy = cast<PointerType>(I->get())->getElementType();
unsigned Idx = 1;
for (++I, ++Idx; I != E; ++I, ++Idx) {
if (PrintedType)
FunctionInnards << ", ";
const Type *ArgTy = *I;
if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
assert(ArgTy->isPointerTy());
ArgTy = cast<PointerType>(ArgTy)->getElementType();
}
printType(FunctionInnards, ArgTy,
/*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
PrintedType = true;
}
if (FTy->isVarArg()) {
if (!PrintedType)
FunctionInnards << " int"; //dummy argument for empty vararg functs
FunctionInnards << ", ...";
} else if (!PrintedType) {
FunctionInnards << "void";
}
FunctionInnards << ')';
printType(Out, RetTy,
/*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str());
}
raw_ostream &
CWriter::printSimpleType(raw_ostream &Out, const Type *Ty, bool isSigned,
const std::string &NameSoFar) {
assert((Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) &&
"Invalid type for printSimpleType");
switch (Ty->getTypeID()) {
case Type::VoidTyID: return Out << "void " << NameSoFar;
case Type::IntegerTyID: {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
if (NumBits == 1)
return Out << "bool " << NameSoFar;
else if (NumBits <= 8)
return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
else if (NumBits <= 16)
return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
else if (NumBits <= 32)
return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
else if (NumBits <= 64)
return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
else {
assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
}
}
case Type::FloatTyID: return Out << "float " << NameSoFar;
case Type::DoubleTyID: return Out << "double " << NameSoFar;
// Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
// present matches host 'long double'.
case Type::X86_FP80TyID:
case Type::PPC_FP128TyID:
case Type::FP128TyID: return Out << "long double " << NameSoFar;
case Type::X86_MMXTyID:
return printSimpleType(Out, Type::getInt32Ty(Ty->getContext()), isSigned,
" __attribute__((vector_size(64))) " + NameSoFar);
case Type::VectorTyID: {
const VectorType *VTy = cast<VectorType>(Ty);
return printSimpleType(Out, VTy->getElementType(), isSigned,
" __attribute__((vector_size(" +
utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar);
}
default:
#ifndef NDEBUG
errs() << "Unknown primitive type: " << *Ty << "\n";
#endif
llvm_unreachable(0);
}
}
// Pass the Type* and the variable name and this prints out the variable
// declaration.
//
raw_ostream &CWriter::printType(raw_ostream &Out, const Type *Ty,
bool isSigned, const std::string &NameSoFar,
bool IgnoreName, const AttrListPtr &PAL) {
if (Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) {
printSimpleType(Out, Ty, isSigned, NameSoFar);
return Out;
}
// Check to see if the type is named.
if (!IgnoreName || Ty->isOpaqueTy()) {
std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
}
switch (Ty->getTypeID()) {
case Type::FunctionTyID: {
const FunctionType *FTy = cast<FunctionType>(Ty);
std::string tstr;
raw_string_ostream FunctionInnards(tstr);
FunctionInnards << " (" << NameSoFar << ") (";
unsigned Idx = 1;
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I) {
const Type *ArgTy = *I;
if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
assert(ArgTy->isPointerTy());
ArgTy = cast<PointerType>(ArgTy)->getElementType();
}
if (I != FTy->param_begin())
FunctionInnards << ", ";
printType(FunctionInnards, ArgTy,
/*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
++Idx;
}
if (FTy->isVarArg()) {
if (!FTy->getNumParams())
FunctionInnards << " int"; //dummy argument for empty vaarg functs
FunctionInnards << ", ...";
} else if (!FTy->getNumParams()) {
FunctionInnards << "void";
}
FunctionInnards << ')';
printType(Out, FTy->getReturnType(),
/*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str());
return Out;
}
case Type::StructTyID: {
const StructType *STy = cast<StructType>(Ty);
Out << NameSoFar + " {\n";
unsigned Idx = 0;
for (StructType::element_iterator I = STy->element_begin(),
E = STy->element_end(); I != E; ++I) {
Out << " ";
printType(Out, *I, false, "field" + utostr(Idx++));
Out << ";\n";
}
Out << '}';
if (STy->isPacked())
Out << " __attribute__ ((packed))";
return Out;
}
case Type::PointerTyID: {
const PointerType *PTy = cast<PointerType>(Ty);
std::string ptrName = "*" + NameSoFar;
if (PTy->getElementType()->isArrayTy() ||
PTy->getElementType()->isVectorTy())
ptrName = "(" + ptrName + ")";
if (!PAL.isEmpty())
// Must be a function ptr cast!
return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
return printType(Out, PTy->getElementType(), false, ptrName);
}
case Type::ArrayTyID: {
const ArrayType *ATy = cast<ArrayType>(Ty);
unsigned NumElements = ATy->getNumElements();
if (NumElements == 0) NumElements = 1;
// Arrays are wrapped in structs to allow them to have normal
// value semantics (avoiding the array "decay").
Out << NameSoFar << " { ";
printType(Out, ATy->getElementType(), false,
"array[" + utostr(NumElements) + "]");
return Out << "; }";
}
case Type::OpaqueTyID: {
std::string TyName = "struct opaque_" + itostr(OpaqueCounter++);
assert(TypeNames.find(Ty) == TypeNames.end());
TypeNames[Ty] = TyName;
return Out << TyName << ' ' << NameSoFar;
}
default:
llvm_unreachable("Unhandled case in getTypeProps!");
}
return Out;
}
void CWriter::printConstantArray(ConstantArray *CPA, bool Static) {
// As a special case, print the array as a string if it is an array of
// ubytes or an array of sbytes with positive values.
//
const Type *ETy = CPA->getType()->getElementType();
bool isString = (ETy == Type::getInt8Ty(CPA->getContext()) ||
ETy == Type::getInt8Ty(CPA->getContext()));
// Make sure the last character is a null char, as automatically added by C
if (isString && (CPA->getNumOperands() == 0 ||
!cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
isString = false;
if (isString) {
Out << '\"';
// Keep track of whether the last number was a hexadecimal escape
bool LastWasHex = false;
// Do not include the last character, which we know is null
for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
// Print it out literally if it is a printable character. The only thing
// to be careful about is when the last letter output was a hex escape
// code, in which case we have to be careful not to print out hex digits
// explicitly (the C compiler thinks it is a continuation of the previous
// character, sheesh...)
//
if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
LastWasHex = false;
if (C == '"' || C == '\\')
Out << "\\" << (char)C;
else
Out << (char)C;
} else {
LastWasHex = false;
switch (C) {
case '\n': Out << "\\n"; break;
case '\t': Out << "\\t"; break;
case '\r': Out << "\\r"; break;
case '\v': Out << "\\v"; break;
case '\a': Out << "\\a"; break;
case '\"': Out << "\\\""; break;
case '\'': Out << "\\\'"; break;
default:
Out << "\\x";
Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
LastWasHex = true;
break;
}
}
}
Out << '\"';
} else {
Out << '{';
if (CPA->getNumOperands()) {
Out << ' ';
printConstant(cast<Constant>(CPA->getOperand(0)), Static);
for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
Out << ", ";
printConstant(cast<Constant>(CPA->getOperand(i)), Static);
}
}
Out << " }";
}
}
void CWriter::printConstantVector(ConstantVector *CP, bool Static) {
Out << '{';
if (CP->getNumOperands()) {
Out << ' ';
printConstant(cast<Constant>(CP->getOperand(0)), Static);
for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
Out << ", ";
printConstant(cast<Constant>(CP->getOperand(i)), Static);
}
}
Out << " }";
}
// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
// textually as a double (rather than as a reference to a stack-allocated
// variable). We decide this by converting CFP to a string and back into a
// double, and then checking whether the conversion results in a bit-equal
// double to the original value of CFP. This depends on us and the target C
// compiler agreeing on the conversion process (which is pretty likely since we
// only deal in IEEE FP).
//
static bool isFPCSafeToPrint(const ConstantFP *CFP) {
bool ignored;
// Do long doubles in hex for now.
if (CFP->getType() != Type::getFloatTy(CFP->getContext()) &&
CFP->getType() != Type::getDoubleTy(CFP->getContext()))
return false;
APFloat APF = APFloat(CFP->getValueAPF()); // copy
if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
char Buffer[100];
sprintf(Buffer, "%a", APF.convertToDouble());
if (!strncmp(Buffer, "0x", 2) ||
!strncmp(Buffer, "-0x", 3) ||
!strncmp(Buffer, "+0x", 3))
return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
return false;
#else
std::string StrVal = ftostr(APF);
while (StrVal[0] == ' ')
StrVal.erase(StrVal.begin());
// Check to make sure that the stringized number is not some string like "Inf"
// or NaN. Check that the string matches the "[-+]?[0-9]" regex.
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9')))
// Reparse stringized version!
return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
return false;
#endif
}
/// Print out the casting for a cast operation. This does the double casting
/// necessary for conversion to the destination type, if necessary.
/// @brief Print a cast
void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
// Print the destination type cast
switch (opc) {
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::IntToPtr:
case Instruction::Trunc:
case Instruction::BitCast:
case Instruction::FPExt:
case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
Out << '(';
printType(Out, DstTy);
Out << ')';
break;
case Instruction::ZExt:
case Instruction::PtrToInt:
case Instruction::FPToUI: // For these, make sure we get an unsigned dest
Out << '(';
printSimpleType(Out, DstTy, false);
Out << ')';
break;
case Instruction::SExt:
case Instruction::FPToSI: // For these, make sure we get a signed dest
Out << '(';
printSimpleType(Out, DstTy, true);
Out << ')';
break;
default:
llvm_unreachable("Invalid cast opcode");
}
// Print the source type cast
switch (opc) {
case Instruction::UIToFP:
case Instruction::ZExt:
Out << '(';
printSimpleType(Out, SrcTy, false);
Out << ')';
break;
case Instruction::SIToFP:
case Instruction::SExt:
Out << '(';
printSimpleType(Out, SrcTy, true);
Out << ')';
break;
case Instruction::IntToPtr:
case Instruction::PtrToInt:
// Avoid "cast to pointer from integer of different size" warnings
Out << "(unsigned long)";
break;
case Instruction::Trunc:
case Instruction::BitCast:
case Instruction::FPExt:
case Instruction::FPTrunc:
case Instruction::FPToSI:
case Instruction::FPToUI:
break; // These don't need a source cast.
default:
llvm_unreachable("Invalid cast opcode");
break;
}
}
// printConstant - The LLVM Constant to C Constant converter.
void CWriter::printConstant(Constant *CPV, bool Static) {
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
switch (CE->getOpcode()) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
Out << "(";
printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
if (CE->getOpcode() == Instruction::SExt &&
CE->getOperand(0)->getType() == Type::getInt1Ty(CPV->getContext())) {
// Make sure we really sext from bool here by subtracting from 0
Out << "0-";
}
printConstant(CE->getOperand(0), Static);
if (CE->getType() == Type::getInt1Ty(CPV->getContext()) &&
(CE->getOpcode() == Instruction::Trunc ||
CE->getOpcode() == Instruction::FPToUI ||
CE->getOpcode() == Instruction::FPToSI ||
CE->getOpcode() == Instruction::PtrToInt)) {
// Make sure we really truncate to bool here by anding with 1
Out << "&1u";
}
Out << ')';
return;
case Instruction::GetElementPtr:
Out << "(";
printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
gep_type_end(CPV), Static);
Out << ")";
return;
case Instruction::Select:
Out << '(';
printConstant(CE->getOperand(0), Static);
Out << '?';
printConstant(CE->getOperand(1), Static);
Out << ':';
printConstant(CE->getOperand(2), Static);
Out << ')';
return;
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::SDiv:
case Instruction::UDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::ICmp:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
{
Out << '(';
bool NeedsClosingParens = printConstExprCast(CE, Static);
printConstantWithCast(CE->getOperand(0), CE->getOpcode());
switch (CE->getOpcode()) {
case Instruction::Add:
case Instruction::FAdd: Out << " + "; break;
case Instruction::Sub:
case Instruction::FSub: Out << " - "; break;
case Instruction::Mul:
case Instruction::FMul: Out << " * "; break;
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem: Out << " % "; break;
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv: Out << " / "; break;
case Instruction::And: Out << " & "; break;
case Instruction::Or: Out << " | "; break;
case Instruction::Xor: Out << " ^ "; break;
case Instruction::Shl: Out << " << "; break;
case Instruction::LShr:
case Instruction::AShr: Out << " >> "; break;
case Instruction::ICmp:
switch (CE->getPredicate()) {
case ICmpInst::ICMP_EQ: Out << " == "; break;
case ICmpInst::ICMP_NE: Out << " != "; break;
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_ULT: Out << " < "; break;
case ICmpInst::ICMP_SLE:
case ICmpInst::ICMP_ULE: Out << " <= "; break;
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_UGT: Out << " > "; break;
case ICmpInst::ICMP_SGE:
case ICmpInst::ICMP_UGE: Out << " >= "; break;
default: llvm_unreachable("Illegal ICmp predicate");
}
break;
default: llvm_unreachable("Illegal opcode here!");
}
printConstantWithCast(CE->getOperand(1), CE->getOpcode());
if (NeedsClosingParens)
Out << "))";
Out << ')';
return;
}
case Instruction::FCmp: {
Out << '(';
bool NeedsClosingParens = printConstExprCast(CE, Static);
if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
Out << "0";
else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
Out << "1";
else {
const char* op = 0;
switch (CE->getPredicate()) {
default: llvm_unreachable("Illegal FCmp predicate");
case FCmpInst::FCMP_ORD: op = "ord"; break;
case FCmpInst::FCMP_UNO: op = "uno"; break;
case FCmpInst::FCMP_UEQ: op = "ueq"; break;
case FCmpInst::FCMP_UNE: op = "une"; break;
case FCmpInst::FCMP_ULT: op = "ult"; break;
case FCmpInst::FCMP_ULE: op = "ule"; break;
case FCmpInst::FCMP_UGT: op = "ugt"; break;
case FCmpInst::FCMP_UGE: op = "uge"; break;
case FCmpInst::FCMP_OEQ: op = "oeq"; break;
case FCmpInst::FCMP_ONE: op = "one"; break;
case FCmpInst::FCMP_OLT: op = "olt"; break;
case FCmpInst::FCMP_OLE: op = "ole"; break;
case FCmpInst::FCMP_OGT: op = "ogt"; break;
case FCmpInst::FCMP_OGE: op = "oge"; break;
}
Out << "llvm_fcmp_" << op << "(";
printConstantWithCast(CE->getOperand(0), CE->getOpcode());
Out << ", ";
printConstantWithCast(CE->getOperand(1), CE->getOpcode());
Out << ")";
}
if (NeedsClosingParens)
Out << "))";
Out << ')';
return;
}
default:
#ifndef NDEBUG
errs() << "CWriter Error: Unhandled constant expression: "
<< *CE << "\n";
#endif
llvm_unreachable(0);
}
} else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) {
Out << "((";
printType(Out, CPV->getType()); // sign doesn't matter
Out << ")/*UNDEF*/";
if (!CPV->getType()->isVectorTy()) {
Out << "0)";
} else {
Out << "{})";
}
return;
}
if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
const Type* Ty = CI->getType();
if (Ty == Type::getInt1Ty(CPV->getContext()))
Out << (CI->getZExtValue() ? '1' : '0');
else if (Ty == Type::getInt32Ty(CPV->getContext()))
Out << CI->getZExtValue() << 'u';
else if (Ty->getPrimitiveSizeInBits() > 32)
Out << CI->getZExtValue() << "ull";
else {
Out << "((";
printSimpleType(Out, Ty, false) << ')';
if (CI->isMinValue(true))
Out << CI->getZExtValue() << 'u';
else
Out << CI->getSExtValue();
Out << ')';
}
return;
}
switch (CPV->getType()->getTypeID()) {
case Type::FloatTyID:
case Type::DoubleTyID:
case Type::X86_FP80TyID:
case Type::PPC_FP128TyID:
case Type::FP128TyID: {
ConstantFP *FPC = cast<ConstantFP>(CPV);
std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
if (I != FPConstantMap.end()) {
// Because of FP precision problems we must load from a stack allocated
// value that holds the value in hex.
Out << "(*(" << (FPC->getType() == Type::getFloatTy(CPV->getContext()) ?
"float" :
FPC->getType() == Type::getDoubleTy(CPV->getContext()) ?
"double" :
"long double")
<< "*)&FPConstant" << I->second << ')';
} else {
double V;
if (FPC->getType() == Type::getFloatTy(CPV->getContext()))
V = FPC->getValueAPF().convertToFloat();
else if (FPC->getType() == Type::getDoubleTy(CPV->getContext()))
V = FPC->getValueAPF().convertToDouble();
else {
// Long double. Convert the number to double, discarding precision.
// This is not awesome, but it at least makes the CBE output somewhat
// useful.
APFloat Tmp = FPC->getValueAPF();
bool LosesInfo;
Tmp.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &LosesInfo);
V = Tmp.convertToDouble();
}
if (IsNAN(V)) {
// The value is NaN
// FIXME the actual NaN bits should be emitted.
// The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
// it's 0x7ff4.
const unsigned long QuietNaN = 0x7ff8UL;
//const unsigned long SignalNaN = 0x7ff4UL;
// We need to grab the first part of the FP #
char Buffer[100];
uint64_t ll = DoubleToBits(V);
sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
std::string Num(&Buffer[0], &Buffer[6]);
unsigned long Val = strtoul(Num.c_str(), 0, 16);
if (FPC->getType() == Type::getFloatTy(FPC->getContext()))
Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
<< Buffer << "\") /*nan*/ ";
else
Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
<< Buffer << "\") /*nan*/ ";
} else if (IsInf(V)) {
// The value is Inf
if (V < 0) Out << '-';
Out << "LLVM_INF" <<
(FPC->getType() == Type::getFloatTy(FPC->getContext()) ? "F" : "")
<< " /*inf*/ ";
} else {
std::string Num;
#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
// Print out the constant as a floating point number.
char Buffer[100];
sprintf(Buffer, "%a", V);
Num = Buffer;
#else
Num = ftostr(FPC->getValueAPF());
#endif
Out << Num;
}
}
break;
}
case Type::ArrayTyID:
// Use C99 compound expression literal initializer syntax.
if (!Static) {
Out << "(";
printType(Out, CPV->getType());
Out << ")";
}
Out << "{ "; // Arrays are wrapped in struct types.
if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
printConstantArray(CA, Static);
} else {
assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
const ArrayType *AT = cast<ArrayType>(CPV->getType());
Out << '{';
if (AT->getNumElements()) {
Out << ' ';
Constant *CZ = Constant::getNullValue(AT->getElementType());
printConstant(CZ, Static);
for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
Out << ", ";
printConstant(CZ, Static);
}
}
Out << " }";
}
Out << " }"; // Arrays are wrapped in struct types.
break;
case Type::VectorTyID:
// Use C99 compound expression literal initializer syntax.
if (!Static) {
Out << "(";
printType(Out, CPV->getType());
Out << ")";
}
if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
printConstantVector(CV, Static);
} else {
assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
const VectorType *VT = cast<VectorType>(CPV->getType());
Out << "{ ";
Constant *CZ = Constant::getNullValue(VT->getElementType());
printConstant(CZ, Static);
for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
Out << ", ";
printConstant(CZ, Static);
}
Out << " }";
}
break;
case Type::StructTyID:
// Use C99 compound expression literal initializer syntax.
if (!Static) {
Out << "(";
printType(Out, CPV->getType());
Out << ")";
}
if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
const StructType *ST = cast<StructType>(CPV->getType());
Out << '{';
if (ST->getNumElements()) {
Out << ' ';
printConstant(Constant::getNullValue(ST->getElementType(0)), Static);
for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
Out << ", ";
printConstant(Constant::getNullValue(ST->getElementType(i)), Static);
}
}
Out << " }";
} else {
Out << '{';
if (CPV->getNumOperands()) {
Out << ' ';
printConstant(cast<Constant>(CPV->getOperand(0)), Static);
for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
Out << ", ";
printConstant(cast<Constant>(CPV->getOperand(i)), Static);
}
}
Out << " }";
}
break;
case Type::PointerTyID:
if (isa<ConstantPointerNull>(CPV)) {
Out << "((";
printType(Out, CPV->getType()); // sign doesn't matter
Out << ")/*NULL*/0)";
break;
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
writeOperand(GV, Static);
break;
}
// FALL THROUGH
default:
#ifndef NDEBUG
errs() << "Unknown constant type: " << *CPV << "\n";
#endif
llvm_unreachable(0);
}
}
// Some constant expressions need to be casted back to the original types
// because their operands were casted to the expected type. This function takes
// care of detecting that case and printing the cast for the ConstantExpr.
bool CWriter::printConstExprCast(const ConstantExpr* CE, bool Static) {
bool NeedsExplicitCast = false;
const Type *Ty = CE->getOperand(0)->getType();
bool TypeIsSigned = false;
switch (CE->getOpcode()) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
// We need to cast integer arithmetic so that it is always performed
// as unsigned, to avoid undefined behavior on overflow.
case Instruction::LShr:
case Instruction::URem:
case Instruction::UDiv: NeedsExplicitCast = true; break;
case Instruction::AShr:
case Instruction::SRem:
case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
case Instruction::SExt:
Ty = CE->getType();
NeedsExplicitCast = true;
TypeIsSigned = true;
break;
case Instruction::ZExt:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
Ty = CE->getType();
NeedsExplicitCast = true;
break;
default: break;
}
if (NeedsExplicitCast) {
Out << "((";
if (Ty->isIntegerTy() && Ty != Type::getInt1Ty(Ty->getContext()))
printSimpleType(Out, Ty, TypeIsSigned);
else
printType(Out, Ty); // not integer, sign doesn't matter
Out << ")(";
}
return NeedsExplicitCast;
}
// Print a constant assuming that it is the operand for a given Opcode. The
// opcodes that care about sign need to cast their operands to the expected
// type before the operation proceeds. This function does the casting.
void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
// Extract the operand's type, we'll need it.
const Type* OpTy = CPV->getType();
// Indicate whether to do the cast or not.
bool shouldCast = false;
bool typeIsSigned = false;
// Based on the Opcode for which this Constant is being written, determine
// the new type to which the operand should be casted by setting the value
// of OpTy. If we change OpTy, also set shouldCast to true so it gets
// casted below.
switch (Opcode) {
default:
// for most instructions, it doesn't matter
break;
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
// We need to cast integer arithmetic so that it is always performed
// as unsigned, to avoid undefined behavior on overflow.
case Instruction::LShr:
case Instruction::UDiv:
case Instruction::URem:
shouldCast = true;
break;
case Instruction::AShr:
case Instruction::SDiv:
case Instruction::SRem:
shouldCast = true;
typeIsSigned = true;
break;
}
// Write out the casted constant if we should, otherwise just write the
// operand.
if (shouldCast) {
Out << "((";
printSimpleType(Out, OpTy, typeIsSigned);
Out << ")";
printConstant(CPV, false);
Out << ")";
} else
printConstant(CPV, false);
}
std::string CWriter::GetValueName(const Value *Operand) {
// Resolve potential alias.
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Operand)) {
if (const Value *V = GA->resolveAliasedGlobal(false))
Operand = V;
}
// Mangle globals with the standard mangler interface for LLC compatibility.
if (const GlobalValue *GV = dyn_cast<GlobalValue>(Operand)) {
SmallString<128> Str;
Mang->getNameWithPrefix(Str, GV, false);
return CBEMangle(Str.str().str());
}
std::string Name = Operand->getName();
if (Name.empty()) { // Assign unique names to local temporaries.
unsigned &No = AnonValueNumbers[Operand];
if (No == 0)
No = ++NextAnonValueNumber;
Name = "tmp__" + utostr(No);
}
std::string VarName;
VarName.reserve(Name.capacity());
for (std::string::iterator I = Name.begin(), E = Name.end();
I != E; ++I) {
char ch = *I;
if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
(ch >= '0' && ch <= '9') || ch == '_')) {
char buffer[5];
sprintf(buffer, "_%x_", ch);
VarName += buffer;
} else
VarName += ch;
}
return "llvm_cbe_" + VarName;
}
/// writeInstComputationInline - Emit the computation for the specified
/// instruction inline, with no destination provided.
void CWriter::writeInstComputationInline(Instruction &I) {
// We can't currently support integer types other than 1, 8, 16, 32, 64.
// Validate this.
const Type *Ty = I.getType();
if (Ty->isIntegerTy() && (Ty!=Type::getInt1Ty(I.getContext()) &&
Ty!=Type::getInt8Ty(I.getContext()) &&
Ty!=Type::getInt16Ty(I.getContext()) &&
Ty!=Type::getInt32Ty(I.getContext()) &&
Ty!=Type::getInt64Ty(I.getContext()))) {
report_fatal_error("The C backend does not currently support integer "
"types of widths other than 1, 8, 16, 32, 64.\n"
"This is being tracked as PR 4158.");
}
// If this is a non-trivial bool computation, make sure to truncate down to
// a 1 bit value. This is important because we want "add i1 x, y" to return
// "0" when x and y are true, not "2" for example.
bool NeedBoolTrunc = false;
if (I.getType() == Type::getInt1Ty(I.getContext()) &&
!isa<ICmpInst>(I) && !isa<FCmpInst>(I))
NeedBoolTrunc = true;
if (NeedBoolTrunc)
Out << "((";
visit(I);
if (NeedBoolTrunc)
Out << ")&1)";
}
void CWriter::writeOperandInternal(Value *Operand, bool Static) {
if (Instruction *I = dyn_cast<Instruction>(Operand))
// Should we inline this instruction to build a tree?
if (isInlinableInst(*I) && !isDirectAlloca(I)) {
Out << '(';
writeInstComputationInline(*I);
Out << ')';
return;
}
Constant* CPV = dyn_cast<Constant>(Operand);
if (CPV && !isa<GlobalValue>(CPV))
printConstant(CPV, Static);
else
Out << GetValueName(Operand);
}
void CWriter::writeOperand(Value *Operand, bool Static) {
bool isAddressImplicit = isAddressExposed(Operand);
if (isAddressImplicit)
Out << "(&"; // Global variables are referenced as their addresses by llvm
writeOperandInternal(Operand, Static);
if (isAddressImplicit)
Out << ')';
}
// Some instructions need to have their result value casted back to the
// original types because their operands were casted to the expected type.
// This function takes care of detecting that case and printing the cast
// for the Instruction.
bool CWriter::writeInstructionCast(const Instruction &I) {
const Type *Ty = I.getOperand(0)->getType();
switch (I.getOpcode()) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
// We need to cast integer arithmetic so that it is always performed
// as unsigned, to avoid undefined behavior on overflow.
case Instruction::LShr:
case Instruction::URem:
case Instruction::UDiv:
Out << "((";
printSimpleType(Out, Ty, false);
Out << ")(";
return true;
case Instruction::AShr:
case Instruction::SRem:
case Instruction::SDiv:
Out << "((";
printSimpleType(Out, Ty, true);
Out << ")(";
return true;
default: break;
}
return false;
}
// Write the operand with a cast to another type based on the Opcode being used.
// This will be used in cases where an instruction has specific type
// requirements (usually signedness) for its operands.
void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
// Extract the operand's type, we'll need it.
const Type* OpTy = Operand->getType();
// Indicate whether to do the cast or not.
bool shouldCast = false;
// Indicate whether the cast should be to a signed type or not.
bool castIsSigned = false;
// Based on the Opcode for which this Operand is being written, determine
// the new type to which the operand should be casted by setting the value
// of OpTy. If we change OpTy, also set shouldCast to true.
switch (Opcode) {
default:
// for most instructions, it doesn't matter
break;
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
// We need to cast integer arithmetic so that it is always performed
// as unsigned, to avoid undefined behavior on overflow.
case Instruction::LShr:
case Instruction::UDiv:
case Instruction::URem: // Cast to unsigned first
shouldCast = true;
castIsSigned = false;
break;
case Instruction::GetElementPtr:
case Instruction::AShr:
case Instruction::SDiv:
case Instruction::SRem: // Cast to signed first
shouldCast = true;
castIsSigned = true;
break;
}
// Write out the casted operand if we should, otherwise just write the
// operand.
if (shouldCast) {
Out << "((";
printSimpleType(Out, OpTy, castIsSigned);
Out << ")";
writeOperand(Operand);
Out << ")";
} else
writeOperand(Operand);
}
// Write the operand with a cast to another type based on the icmp predicate
// being used.
void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
// This has to do a cast to ensure the operand has the right signedness.
// Also, if the operand is a pointer, we make sure to cast to an integer when
// doing the comparison both for signedness and so that the C compiler doesn't
// optimize things like "p < NULL" to false (p may contain an integer value
// f.e.).
bool shouldCast = Cmp.isRelational();
// Write out the casted operand if we should, otherwise just write the
// operand.
if (!shouldCast) {
writeOperand(Operand);
return;
}
// Should this be a signed comparison? If so, convert to signed.
bool castIsSigned = Cmp.isSigned();
// If the operand was a pointer, convert to a large integer type.
const Type* OpTy = Operand->getType();
if (OpTy->isPointerTy())
OpTy = TD->getIntPtrType(Operand->getContext());
Out << "((";
printSimpleType(Out, OpTy, castIsSigned);
Out << ")";
writeOperand(Operand);
Out << ")";
}
// generateCompilerSpecificCode - This is where we add conditional compilation
// directives to cater to specific compilers as need be.
//
static void generateCompilerSpecificCode(formatted_raw_ostream& Out,
const TargetData *TD) {
// Alloca is hard to get, and we don't want to include stdlib.h here.
Out << "/* get a declaration for alloca */\n"
<< "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
<< "#define alloca(x) __builtin_alloca((x))\n"
<< "#define _alloca(x) __builtin_alloca((x))\n"
<< "#elif defined(__APPLE__)\n"
<< "extern void *__builtin_alloca(unsigned long);\n"
<< "#define alloca(x) __builtin_alloca(x)\n"
<< "#define longjmp _longjmp\n"
<< "#define setjmp _setjmp\n"
<< "#elif defined(__sun__)\n"
<< "#if defined(__sparcv9)\n"
<< "extern void *__builtin_alloca(unsigned long);\n"
<< "#else\n"
<< "extern void *__builtin_alloca(unsigned int);\n"
<< "#endif\n"
<< "#define alloca(x) __builtin_alloca(x)\n"
<< "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) || defined(__arm__)\n"
<< "#define alloca(x) __builtin_alloca(x)\n"
<< "#elif defined(_MSC_VER)\n"
<< "#define inline _inline\n"
<< "#define alloca(x) _alloca(x)\n"
<< "#else\n"
<< "#include <alloca.h>\n"
<< "#endif\n\n";
// We output GCC specific attributes to preserve 'linkonce'ness on globals.
// If we aren't being compiled with GCC, just drop these attributes.
Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
<< "#define __attribute__(X)\n"
<< "#endif\n\n";
// On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
<< "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
<< "#elif defined(__GNUC__)\n"
<< "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
<< "#else\n"
<< "#define __EXTERNAL_WEAK__\n"
<< "#endif\n\n";
// For now, turn off the weak linkage attribute on Mac OS X. (See above.)
Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
<< "#define __ATTRIBUTE_WEAK__\n"
<< "#elif defined(__GNUC__)\n"
<< "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
<< "#else\n"
<< "#define __ATTRIBUTE_WEAK__\n"
<< "#endif\n\n";
// Add hidden visibility support. FIXME: APPLE_CC?
Out << "#if defined(__GNUC__)\n"
<< "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
<< "#endif\n\n";
// Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
// From the GCC documentation:
//
// double __builtin_nan (const char *str)
//
// This is an implementation of the ISO C99 function nan.
//
// Since ISO C99 defines this function in terms of strtod, which we do
// not implement, a description of the parsing is in order. The string is
// parsed as by strtol; that is, the base is recognized by leading 0 or
// 0x prefixes. The number parsed is placed in the significand such that
// the least significant bit of the number is at the least significant
// bit of the significand. The number is truncated to fit the significand
// field provided. The significand is forced to be a quiet NaN.
//
// This function, if given a string literal, is evaluated early enough
// that it is considered a compile-time constant.
//
// float __builtin_nanf (const char *str)
//
// Similar to __builtin_nan, except the return type is float.
//
// double __builtin_inf (void)
//
// Similar to __builtin_huge_val, except a warning is generated if the
// target floating-point format does not support infinities. This
// function is suitable for implementing the ISO C99 macro INFINITY.
//
// float __builtin_inff (void)
//
// Similar to __builtin_inf, except the return type is float.
Out << "#ifdef __GNUC__\n"
<< "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
<< "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
<< "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
<< "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
<< "#define LLVM_INF __builtin_inf() /* Double */\n"
<< "#define LLVM_INFF __builtin_inff() /* Float */\n"
<< "#define LLVM_PREFETCH(addr,rw,locality) "
"__builtin_prefetch(addr,rw,locality)\n"
<< "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
<< "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
<< "#define LLVM_ASM __asm__\n"
<< "#else\n"
<< "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
<< "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
<< "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
<< "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
<< "#define LLVM_INF ((double)0.0) /* Double */\n"
<< "#define LLVM_INFF 0.0F /* Float */\n"
<< "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
<< "#define __ATTRIBUTE_CTOR__\n"
<< "#define __ATTRIBUTE_DTOR__\n"
<< "#define LLVM_ASM(X)\n"
<< "#endif\n\n";
Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
<< "#define __builtin_stack_save() 0 /* not implemented */\n"
<< "#define __builtin_stack_restore(X) /* noop */\n"
<< "#endif\n\n";
// Output typedefs for 128-bit integers. If these are needed with a
// 32-bit target or with a C compiler that doesn't support mode(TI),
// more drastic measures will be needed.
Out << "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n"
<< "typedef int __attribute__((mode(TI))) llvmInt128;\n"
<< "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
<< "#endif\n\n";
// Output target-specific code that should be inserted into main.
Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
}
/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
/// the StaticTors set.
static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
if (!InitList) return;
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
if (CS->getOperand(1)->isNullValue())
return; // Found a null terminator, exit printing.
Constant *FP = CS->getOperand(1);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
if (CE->isCast())
FP = CE->getOperand(0);
if (Function *F = dyn_cast<Function>(FP))
StaticTors.insert(F);
}
}
enum SpecialGlobalClass {
NotSpecial = 0,
GlobalCtors, GlobalDtors,
NotPrinted
};
/// getGlobalVariableClass - If this is a global that is specially recognized
/// by LLVM, return a code that indicates how we should handle it.
static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
// If this is a global ctors/dtors list, handle it now.
if (GV->hasAppendingLinkage() && GV->use_empty()) {
if (GV->getName() == "llvm.global_ctors")
return GlobalCtors;
else if (GV->getName() == "llvm.global_dtors")
return GlobalDtors;
}
// Otherwise, if it is other metadata, don't print it. This catches things
// like debug information.
if (GV->getSection() == "llvm.metadata")
return NotPrinted;
return NotSpecial;
}
// PrintEscapedString - Print each character of the specified string, escaping
// it if it is not printable or if it is an escape char.
static void PrintEscapedString(const char *Str, unsigned Length,
raw_ostream &Out) {
for (unsigned i = 0; i != Length; ++i) {
unsigned char C = Str[i];
if (isprint(C) && C != '\\' && C != '"')
Out << C;
else if (C == '\\')
Out << "\\\\";
else if (C == '\"')
Out << "\\\"";
else if (C == '\t')
Out << "\\t";
else
Out << "\\x" << hexdigit(C >> 4) << hexdigit(C & 0x0F);
}
}
// PrintEscapedString - Print each character of the specified string, escaping
// it if it is not printable or if it is an escape char.
static void PrintEscapedString(const std::string &Str, raw_ostream &Out) {
PrintEscapedString(Str.c_str(), Str.size(), Out);
}
bool CWriter::doInitialization(Module &M) {
FunctionPass::doInitialization(M);
// Initialize
TheModule = &M;
TD = new TargetData(&M);
IL = new IntrinsicLowering(*TD);
IL->AddPrototypes(M);
#if 0
std::string Triple = TheModule->getTargetTriple();
if (Triple.empty())
Triple = llvm::sys::getHostTriple();
std::string E;
if (const Target *Match = TargetRegistry::lookupTarget(Triple, E))
TAsm = Match->createAsmInfo(Triple);
#endif
TAsm = new CBEMCAsmInfo();
TCtx = new MCContext(*TAsm, NULL);
Mang = new Mangler(*TCtx, *TD);
// Keep track of which functions are static ctors/dtors so they can have
// an attribute added to their prototypes.
std::set<Function*> StaticCtors, StaticDtors;
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
switch (getGlobalVariableClass(I)) {
default: break;
case GlobalCtors:
FindStaticTors(I, StaticCtors);
break;
case GlobalDtors:
FindStaticTors(I, StaticDtors);
break;
}
}
// get declaration for alloca
Out << "/* Provide Declarations */\n";
Out << "#include <stdarg.h>\n"; // Varargs support
Out << "#include <setjmp.h>\n"; // Unwind support
generateCompilerSpecificCode(Out, TD);
// Provide a definition for `bool' if not compiling with a C++ compiler.
Out << "\n"
<< "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
<< "\n\n/* Support for floating point constants */\n"
<< "typedef unsigned long long ConstantDoubleTy;\n"
<< "typedef unsigned int ConstantFloatTy;\n"
<< "typedef struct { unsigned long long f1; unsigned short f2; "
"unsigned short pad[3]; } ConstantFP80Ty;\n"
// This is used for both kinds of 128-bit long double; meaning differs.
<< "typedef struct { unsigned long long f1; unsigned long long f2; }"
" ConstantFP128Ty;\n"
<< "\n\n/* Global Declarations */\n";
// First output all the declarations for the program, because C requires
// Functions & globals to be declared before they are used.
//
if (!M.getModuleInlineAsm().empty()) {
Out << "/* Module asm statements */\n"
<< "asm(";
// Split the string into lines, to make it easier to read the .ll file.
std::string Asm = M.getModuleInlineAsm();
size_t CurPos = 0;
size_t NewLine = Asm.find_first_of('\n', CurPos);
while (NewLine != std::string::npos) {
// We found a newline, print the portion of the asm string from the
// last newline up to this newline.
Out << "\"";
PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
Out);
Out << "\\n\"\n";
CurPos = NewLine+1;
NewLine = Asm.find_first_of('\n', CurPos);
}
Out << "\"";
PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
Out << "\");\n"
<< "/* End Module asm statements */\n";
}
// Loop over the symbol table, emitting all named constants...
printModuleTypes(M.getTypeSymbolTable());
// Global variable declarations...
if (!M.global_empty()) {
Out << "\n/* External Global Variable Declarations */\n";
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() ||
I->hasCommonLinkage())
Out << "extern ";
else if (I->hasDLLImportLinkage())
Out << "__declspec(dllimport) ";
else
continue; // Internal Global
// Thread Local Storage
if (I->isThreadLocal())
Out << "__thread ";
printType(Out, I->getType()->getElementType(), false, GetValueName(I));
if (I->hasExternalWeakLinkage())
Out << " __EXTERNAL_WEAK__";
Out << ";\n";
}
}
// Function declarations
Out << "\n/* Function Declarations */\n";
Out << "double fmod(double, double);\n"; // Support for FP rem
Out << "float fmodf(float, float);\n";
Out << "long double fmodl(long double, long double);\n";
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
// Don't print declarations for intrinsic functions.
if (!I->isIntrinsic() && I->getName() != "setjmp" &&
I->getName() != "longjmp" && I->getName() != "_setjmp") {
if (I->hasExternalWeakLinkage())
Out << "extern ";
printFunctionSignature(I, true);
if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
Out << " __ATTRIBUTE_WEAK__";
if (I->hasExternalWeakLinkage())
Out << " __EXTERNAL_WEAK__";
if (StaticCtors.count(I))
Out << " __ATTRIBUTE_CTOR__";
if (StaticDtors.count(I))
Out << " __ATTRIBUTE_DTOR__";
if (I->hasHiddenVisibility())
Out << " __HIDDEN__";
if (I->hasName() && I->getName()[0] == 1)
Out << " LLVM_ASM(\"" << I->getName().substr(1) << "\")";
Out << ";\n";
}
}
// Output the global variable declarations
if (!M.global_empty()) {
Out << "\n\n/* Global Variable Declarations */\n";
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
if (!I->isDeclaration()) {
// Ignore special globals, such as debug info.
if (getGlobalVariableClass(I))
continue;
if (I->hasLocalLinkage())
Out << "static ";
else
Out << "extern ";
// Thread Local Storage
if (I->isThreadLocal())
Out << "__thread ";
printType(Out, I->getType()->getElementType(), false,
GetValueName(I));
if (I->hasLinkOnceLinkage())
Out << " __attribute__((common))";
else if (I->hasCommonLinkage()) // FIXME is this right?
Out << " __ATTRIBUTE_WEAK__";
else if (I->hasWeakLinkage())
Out << " __ATTRIBUTE_WEAK__";
else if (I->hasExternalWeakLinkage())
Out << " __EXTERNAL_WEAK__";
if (I->hasHiddenVisibility())
Out << " __HIDDEN__";
Out << ";\n";
}
}
// Output the global variable definitions and contents...
if (!M.global_empty()) {
Out << "\n\n/* Global Variable Definitions and Initialization */\n";
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
if (!I->isDeclaration()) {
// Ignore special globals, such as debug info.
if (getGlobalVariableClass(I))
continue;
if (I->hasLocalLinkage())
Out << "static ";
else if (I->hasDLLImportLinkage())
Out << "__declspec(dllimport) ";
else if (I->hasDLLExportLinkage())
Out << "__declspec(dllexport) ";
// Thread Local Storage
if (I->isThreadLocal())
Out << "__thread ";
printType(Out, I->getType()->getElementType(), false,
GetValueName(I));
if (I->hasLinkOnceLinkage())
Out << " __attribute__((common))";
else if (I->hasWeakLinkage())
Out << " __ATTRIBUTE_WEAK__";
else if (I->hasCommonLinkage())
Out << " __ATTRIBUTE_WEAK__";
if (I->hasHiddenVisibility())
Out << " __HIDDEN__";
// If the initializer is not null, emit the initializer. If it is null,
// we try to avoid emitting large amounts of zeros. The problem with
// this, however, occurs when the variable has weak linkage. In this
// case, the assembler will complain about the variable being both weak
// and common, so we disable this optimization.
// FIXME common linkage should avoid this problem.
if (!I->getInitializer()->isNullValue()) {
Out << " = " ;
writeOperand(I->getInitializer(), true);
} else if (I->hasWeakLinkage()) {
// We have to specify an initializer, but it doesn't have to be
// complete. If the value is an aggregate, print out { 0 }, and let
// the compiler figure out the rest of the zeros.
Out << " = " ;
if (I->getInitializer()->getType()->isStructTy() ||
I->getInitializer()->getType()->isVectorTy()) {
Out << "{ 0 }";
} else if (I->getInitializer()->getType()->isArrayTy()) {
// As with structs and vectors, but with an extra set of braces
// because arrays are wrapped in structs.
Out << "{ { 0 } }";
} else {
// Just print it out normally.
writeOperand(I->getInitializer(), true);
}
}
Out << ";\n";
}
}
if (!M.empty())
Out << "\n\n/* Function Bodies */\n";
// Emit some helper functions for dealing with FCMP instruction's
// predicates
Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
Out << "return X == X && Y == Y; }\n";
Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
Out << "return X != X || Y != Y; }\n";
Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
Out << "return X != Y; }\n";
Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
Out << "return X == Y ; }\n";
Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
Out << "return X < Y ; }\n";
Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
Out << "return X > Y ; }\n";
Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
Out << "return X <= Y ; }\n";
Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
Out << "return X >= Y ; }\n";
return false;
}
/// Output all floating point constants that cannot be printed accurately...
void CWriter::printFloatingPointConstants(Function &F) {
// Scan the module for floating point constants. If any FP constant is used
// in the function, we want to redirect it here so that we do not depend on
// the precision of the printed form, unless the printed form preserves
// precision.
//
for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
I != E; ++I)
printFloatingPointConstants(*I);
Out << '\n';
}
void CWriter::printFloatingPointConstants(const Constant *C) {
// If this is a constant expression, recursively check for constant fp values.
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
printFloatingPointConstants(CE->getOperand(i));
return;
}
// Otherwise, check for a FP constant that we need to print.
const ConstantFP *FPC = dyn_cast<ConstantFP>(C);
if (FPC == 0 ||
// Do not put in FPConstantMap if safe.
isFPCSafeToPrint(FPC) ||
// Already printed this constant?
FPConstantMap.count(FPC))
return;
FPConstantMap[FPC] = FPCounter; // Number the FP constants
if (FPC->getType() == Type::getDoubleTy(FPC->getContext())) {
double Val = FPC->getValueAPF().convertToDouble();
uint64_t i = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
<< " = 0x" << utohexstr(i)
<< "ULL; /* " << Val << " */\n";
} else if (FPC->getType() == Type::getFloatTy(FPC->getContext())) {
float Val = FPC->getValueAPF().convertToFloat();
uint32_t i = (uint32_t)FPC->getValueAPF().bitcastToAPInt().
getZExtValue();
Out << "static const ConstantFloatTy FPConstant" << FPCounter++
<< " = 0x" << utohexstr(i)
<< "U; /* " << Val << " */\n";
} else if (FPC->getType() == Type::getX86_FP80Ty(FPC->getContext())) {
// api needed to prevent premature destruction
APInt api = FPC->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
<< " = { 0x" << utohexstr(p[0])
<< "ULL, 0x" << utohexstr((uint16_t)p[1]) << ",{0,0,0}"
<< "}; /* Long double constant */\n";
} else if (FPC->getType() == Type::getPPC_FP128Ty(FPC->getContext()) ||
FPC->getType() == Type::getFP128Ty(FPC->getContext())) {
APInt api = FPC->getValueAPF().bitcastToAPInt();
const uint64_t *p = api.getRawData();
Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
<< " = { 0x"
<< utohexstr(p[0]) << ", 0x" << utohexstr(p[1])
<< "}; /* Long double constant */\n";
} else {
llvm_unreachable("Unknown float type!");
}
}
/// printSymbolTable - Run through symbol table looking for type names. If a
/// type name is found, emit its declaration...
///
void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
Out << "/* Helper union for bitcasts */\n";
Out << "typedef union {\n";
Out << " unsigned int Int32;\n";
Out << " unsigned long long Int64;\n";
Out << " float Float;\n";
Out << " double Double;\n";
Out << "} llvmBitCastUnion;\n";
// We are only interested in the type plane of the symbol table.
TypeSymbolTable::const_iterator I = TST.begin();
TypeSymbolTable::const_iterator End = TST.end();
// If there are no type names, exit early.
if (I == End) return;
// Print out forward declarations for structure types before anything else!
Out << "/* Structure forward decls */\n";
for (; I != End; ++I) {
std::string Name = "struct " + CBEMangle("l_"+I->first);
Out << Name << ";\n";
TypeNames.insert(std::make_pair(I->second, Name));
}
Out << '\n';
// Now we can print out typedefs. Above, we guaranteed that this can only be
// for struct or opaque types.
Out << "/* Typedefs */\n";
for (I = TST.begin(); I != End; ++I) {
std::string Name = CBEMangle("l_"+I->first);
Out << "typedef ";
printType(Out, I->second, false, Name);
Out << ";\n";
}
Out << '\n';
// Keep track of which structures have been printed so far...
std::set<const Type *> StructPrinted;
// Loop over all structures then push them into the stack so they are
// printed in the correct order.
//
Out << "/* Structure contents */\n";
for (I = TST.begin(); I != End; ++I)
if (I->second->isStructTy() || I->second->isArrayTy())
// Only print out used types!
printContainedStructs(I->second, StructPrinted);
}
// Push the struct onto the stack and recursively push all structs
// this one depends on.
//
// TODO: Make this work properly with vector types
//
void CWriter::printContainedStructs(const Type *Ty,
std::set<const Type*> &StructPrinted) {
// Don't walk through pointers.
if (Ty->isPointerTy() || Ty->isPrimitiveType() || Ty->isIntegerTy())
return;
// Print all contained types first.
for (Type::subtype_iterator I = Ty->subtype_begin(),
E = Ty->subtype_end(); I != E; ++I)
printContainedStructs(*I, StructPrinted);
if (Ty->isStructTy() || Ty->isArrayTy()) {
// Check to see if we have already printed this struct.
if (StructPrinted.insert(Ty).second) {
// Print structure type out.
std::string Name = TypeNames[Ty];
printType(Out, Ty, false, Name, true);
Out << ";\n\n";
}
}
}
void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
/// isStructReturn - Should this function actually return a struct by-value?
bool isStructReturn = F->hasStructRetAttr();
if (F->hasLocalLinkage()) Out << "static ";
if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
switch (F->getCallingConv()) {
case CallingConv::X86_StdCall:
Out << "__attribute__((stdcall)) ";
break;
case CallingConv::X86_FastCall:
Out << "__attribute__((fastcall)) ";
break;
case CallingConv::X86_ThisCall:
Out << "__attribute__((thiscall)) ";
break;
default:
break;
}
// Loop over the arguments, printing them...
const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
const AttrListPtr &PAL = F->getAttributes();
std::string tstr;
raw_string_ostream FunctionInnards(tstr);
// Print out the name...
FunctionInnards << GetValueName(F) << '(';
bool PrintedArg = false;
if (!F->isDeclaration()) {
if (!F->arg_empty()) {
Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
unsigned Idx = 1;
// If this is a struct-return function, don't print the hidden
// struct-return argument.
if (isStructReturn) {
assert(I != E && "Invalid struct return function!");
++I;
++Idx;
}
std::string ArgName;
for (; I != E; ++I) {
if (PrintedArg) FunctionInnards << ", ";
if (I->hasName() || !Prototype)
ArgName = GetValueName(I);
else
ArgName = "";
const Type *ArgTy = I->getType();
if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
ArgTy = cast<PointerType>(ArgTy)->getElementType();
ByValParams.insert(I);
}
printType(FunctionInnards, ArgTy,
/*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt),
ArgName);
PrintedArg = true;
++Idx;
}
}
} else {
// Loop over the arguments, printing them.
FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
unsigned Idx = 1;
// If this is a struct-return function, don't print the hidden
// struct-return argument.
if (isStructReturn) {
assert(I != E && "Invalid struct return function!");
++I;
++Idx;
}
for (; I != E; ++I) {
if (PrintedArg) FunctionInnards << ", ";
const Type *ArgTy = *I;
if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
assert(ArgTy->isPointerTy());
ArgTy = cast<PointerType>(ArgTy)->getElementType();
}
printType(FunctionInnards, ArgTy,
/*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt));
PrintedArg = true;
++Idx;
}
}
if (!PrintedArg && FT->isVarArg()) {
FunctionInnards << "int vararg_dummy_arg";
PrintedArg = true;
}
// Finish printing arguments... if this is a vararg function, print the ...,
// unless there are no known types, in which case, we just emit ().
//
if (FT->isVarArg() && PrintedArg) {
FunctionInnards << ",..."; // Output varargs portion of signature!
} else if (!FT->isVarArg() && !PrintedArg) {
FunctionInnards << "void"; // ret() -> ret(void) in C.
}
FunctionInnards << ')';
// Get the return tpe for the function.
const Type *RetTy;
if (!isStructReturn)
RetTy = F->getReturnType();
else {
// If this is a struct-return function, print the struct-return type.
RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
}
// Print out the return type and the signature built above.
printType(Out, RetTy,
/*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt),
FunctionInnards.str());
}
static inline bool isFPIntBitCast(const Instruction &I) {
if (!isa<BitCastInst>(I))
return false;
const Type *SrcTy = I.getOperand(0)->getType();
const Type *DstTy = I.getType();
return (SrcTy->isFloatingPointTy() && DstTy->isIntegerTy()) ||
(DstTy->isFloatingPointTy() && SrcTy->isIntegerTy());
}
void CWriter::printFunction(Function &F) {
/// isStructReturn - Should this function actually return a struct by-value?
bool isStructReturn = F.hasStructRetAttr();
printFunctionSignature(&F, false);
Out << " {\n";
// If this is a struct return function, handle the result with magic.
if (isStructReturn) {
const Type *StructTy =
cast<PointerType>(F.arg_begin()->getType())->getElementType();
Out << " ";
printType(Out, StructTy, false, "StructReturn");
Out << "; /* Struct return temporary */\n";
Out << " ";
printType(Out, F.arg_begin()->getType(), false,
GetValueName(F.arg_begin()));
Out << " = &StructReturn;\n";
}
bool PrintedVar = false;
// print local variable information for the function
for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
if (const AllocaInst *AI = isDirectAlloca(&*I)) {
Out << " ";
printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
Out << "; /* Address-exposed local */\n";
PrintedVar = true;
} else if (I->getType() != Type::getVoidTy(F.getContext()) &&
!isInlinableInst(*I)) {
Out << " ";
printType(Out, I->getType(), false, GetValueName(&*I));
Out << ";\n";
if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
Out << " ";
printType(Out, I->getType(), false,
GetValueName(&*I)+"__PHI_TEMPORARY");
Out << ";\n";
}
PrintedVar = true;
}
// We need a temporary for the BitCast to use so it can pluck a value out
// of a union to do the BitCast. This is separate from the need for a
// variable to hold the result of the BitCast.
if (isFPIntBitCast(*I)) {
Out << " llvmBitCastUnion " << GetValueName(&*I)
<< "__BITCAST_TEMPORARY;\n";
PrintedVar = true;
}
}
if (PrintedVar)
Out << '\n';
if (F.hasExternalLinkage() && F.getName() == "main")
Out << " CODE_FOR_MAIN();\n";
// print the basic blocks
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
if (Loop *L = LI->getLoopFor(BB)) {
if (L->getHeader() == BB && L->getParentLoop() == 0)
printLoop(L);
} else {
printBasicBlock(BB);
}
}
Out << "}\n\n";
}
void CWriter::printLoop(Loop *L) {
Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
<< "' to make GCC happy */\n";
for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
BasicBlock *BB = L->getBlocks()[i];
Loop *BBLoop = LI->getLoopFor(BB);
if (BBLoop == L)
printBasicBlock(BB);
else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
printLoop(BBLoop);
}
Out << " } while (1); /* end of syntactic loop '"
<< L->getHeader()->getName() << "' */\n";
}
void CWriter::printBasicBlock(BasicBlock *BB) {
// Don't print the label for the basic block if there are no uses, or if
// the only terminator use is the predecessor basic block's terminator.
// We have to scan the use list because PHI nodes use basic blocks too but
// do not require a label to be generated.
//
bool NeedsLabel = false;
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
if (isGotoCodeNecessary(*PI, BB)) {
NeedsLabel = true;
break;
}
if (NeedsLabel) Out << GetValueName(BB) << ":\n";
// Output all of the instructions in the basic block...
for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
++II) {
if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
if (II->getType() != Type::getVoidTy(BB->getContext()) &&
!isInlineAsm(*II))
outputLValue(II);
else
Out << " ";
writeInstComputationInline(*II);
Out << ";\n";
}
}
// Don't emit prefix or suffix for the terminator.
visit(*BB->getTerminator());
}
// Specific Instruction type classes... note that all of the casts are
// necessary because we use the instruction classes as opaque types...
//
void CWriter::visitReturnInst(ReturnInst &I) {
// If this is a struct return function, return the temporary struct.
bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
if (isStructReturn) {
Out << " return StructReturn;\n";
return;
}
// Don't output a void return if this is the last basic block in the function
if (I.getNumOperands() == 0 &&
&*--I.getParent()->getParent()->end() == I.getParent() &&
!I.getParent()->size() == 1) {
return;
}
if (I.getNumOperands() > 1) {
Out << " {\n";
Out << " ";
printType(Out, I.getParent()->getParent()->getReturnType());
Out << " llvm_cbe_mrv_temp = {\n";
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
Out << " ";
writeOperand(I.getOperand(i));
if (i != e - 1)
Out << ",";
Out << "\n";
}
Out << " };\n";
Out << " return llvm_cbe_mrv_temp;\n";
Out << " }\n";
return;
}
Out << " return";
if (I.getNumOperands()) {
Out << ' ';
writeOperand(I.getOperand(0));
}
Out << ";\n";
}
void CWriter::visitSwitchInst(SwitchInst &SI) {
Out << " switch (";
writeOperand(SI.getOperand(0));
Out << ") {\n default:\n";
printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
Out << ";\n";
for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
Out << " case ";
writeOperand(SI.getOperand(i));
Out << ":\n";
BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
printBranchToBlock(SI.getParent(), Succ, 2);
if (Function::iterator(Succ) == llvm::next(Function::iterator(SI.getParent())))
Out << " break;\n";
}
Out << " }\n";
}
void CWriter::visitIndirectBrInst(IndirectBrInst &IBI) {
Out << " goto *(void*)(";
writeOperand(IBI.getOperand(0));
Out << ");\n";
}
void CWriter::visitUnreachableInst(UnreachableInst &I) {
Out << " /*UNREACHABLE*/;\n";
}
bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
/// FIXME: This should be reenabled, but loop reordering safe!!
return true;
if (llvm::next(Function::iterator(From)) != Function::iterator(To))
return true; // Not the direct successor, we need a goto.
//isa<SwitchInst>(From->getTerminator())
if (LI->getLoopFor(From) != LI->getLoopFor(To))
return true;
return false;
}
void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
BasicBlock *Successor,
unsigned Indent) {
for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
// Now we have to do the printing.
Value *IV = PN->getIncomingValueForBlock(CurBlock);
if (!isa<UndefValue>(IV)) {
Out << std::string(Indent, ' ');
Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
writeOperand(IV);
Out << "; /* for PHI node */\n";
}
}
}
void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
unsigned Indent) {
if (isGotoCodeNecessary(CurBB, Succ)) {
Out << std::string(Indent, ' ') << " goto ";
writeOperand(Succ);
Out << ";\n";
}
}
// Branch instruction printing - Avoid printing out a branch to a basic block
// that immediately succeeds the current one.
//
void CWriter::visitBranchInst(BranchInst &I) {
if (I.isConditional()) {
if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
Out << " if (";
writeOperand(I.getCondition());
Out << ") {\n";
printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
Out << " } else {\n";
printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
}
} else {
// First goto not necessary, assume second one is...
Out << " if (!";
writeOperand(I.getCondition());
Out << ") {\n";
printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
}
Out << " }\n";
} else {
printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
}
Out << "\n";
}
// PHI nodes get copied into temporary values at the end of predecessor basic
// blocks. We now need to copy these temporary values into the REAL value for
// the PHI.
void CWriter::visitPHINode(PHINode &I) {
writeOperand(&I);
Out << "__PHI_TEMPORARY";
}
void CWriter::visitBinaryOperator(Instruction &I) {
// binary instructions, shift instructions, setCond instructions.
assert(!I.getType()->isPointerTy());
// We must cast the results of binary operations which might be promoted.
bool needsCast = false;
if ((I.getType() == Type::getInt8Ty(I.getContext())) ||
(I.getType() == Type::getInt16Ty(I.getContext()))
|| (I.getType() == Type::getFloatTy(I.getContext()))) {
needsCast = true;
Out << "((";
printType(Out, I.getType(), false);
Out << ")(";
}
// If this is a negation operation, print it out as such. For FP, we don't
// want to print "-0.0 - X".
if (BinaryOperator::isNeg(&I)) {
Out << "-(";
writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
Out << ")";
} else if (BinaryOperator::isFNeg(&I)) {
Out << "-(";
writeOperand(BinaryOperator::getFNegArgument(cast<BinaryOperator>(&I)));
Out << ")";
} else if (I.getOpcode() == Instruction::FRem) {
// Output a call to fmod/fmodf instead of emitting a%b
if (I.getType() == Type::getFloatTy(I.getContext()))
Out << "fmodf(";
else if (I.getType() == Type::getDoubleTy(I.getContext()))
Out << "fmod(";
else // all 3 flavors of long double
Out << "fmodl(";
writeOperand(I.getOperand(0));
Out << ", ";
writeOperand(I.getOperand(1));
Out << ")";
} else {
// Write out the cast of the instruction's value back to the proper type
// if necessary.
bool NeedsClosingParens = writeInstructionCast(I);
// Certain instructions require the operand to be forced to a specific type
// so we use writeOperandWithCast here instead of writeOperand. Similarly
// below for operand 1
writeOperandWithCast(I.getOperand(0), I.getOpcode());
switch (I.getOpcode()) {
case Instruction::Add:
case Instruction::FAdd: Out << " + "; break;
case Instruction::Sub:
case Instruction::FSub: Out << " - "; break;
case Instruction::Mul:
case Instruction::FMul: Out << " * "; break;
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem: Out << " % "; break;
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv: Out << " / "; break;
case Instruction::And: Out << " & "; break;
case Instruction::Or: Out << " | "; break;
case Instruction::Xor: Out << " ^ "; break;
case Instruction::Shl : Out << " << "; break;
case Instruction::LShr:
case Instruction::AShr: Out << " >> "; break;
default:
#ifndef NDEBUG
errs() << "Invalid operator type!" << I;
#endif
llvm_unreachable(0);
}
writeOperandWithCast(I.getOperand(1), I.getOpcode());
if (NeedsClosingParens)
Out << "))";
}
if (needsCast) {
Out << "))";
}
}
void CWriter::visitICmpInst(ICmpInst &I) {
// We must cast the results of icmp which might be promoted.
bool needsCast = false;
// Write out the cast of the instruction's value back to the proper type
// if necessary.
bool NeedsClosingParens = writeInstructionCast(I);
// Certain icmp predicate require the operand to be forced to a specific type
// so we use writeOperandWithCast here instead of writeOperand. Similarly
// below for operand 1
writeOperandWithCast(I.getOperand(0), I);
switch (I.getPredicate()) {
case ICmpInst::ICMP_EQ: Out << " == "; break;
case ICmpInst::ICMP_NE: Out << " != "; break;
case ICmpInst::ICMP_ULE:
case ICmpInst::ICMP_SLE: Out << " <= "; break;
case ICmpInst::ICMP_UGE:
case ICmpInst::ICMP_SGE: Out << " >= "; break;
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_SLT: Out << " < "; break;
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_SGT: Out << " > "; break;
default:
#ifndef NDEBUG
errs() << "Invalid icmp predicate!" << I;
#endif
llvm_unreachable(0);
}
writeOperandWithCast(I.getOperand(1), I);
if (NeedsClosingParens)
Out << "))";
if (needsCast) {
Out << "))";
}
}
void CWriter::visitFCmpInst(FCmpInst &I) {
if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
Out << "0";
return;
}
if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
Out << "1";
return;
}
const char* op = 0;
switch (I.getPredicate()) {
default: llvm_unreachable("Illegal FCmp predicate");
case FCmpInst::FCMP_ORD: op = "ord"; break;
case FCmpInst::FCMP_UNO: op = "uno"; break;
case FCmpInst::FCMP_UEQ: op = "ueq"; break;
case FCmpInst::FCMP_UNE: op = "une"; break;
case FCmpInst::FCMP_ULT: op = "ult"; break;
case FCmpInst::FCMP_ULE: op = "ule"; break;
case FCmpInst::FCMP_UGT: op = "ugt"; break;
case FCmpInst::FCMP_UGE: op = "uge"; break;
case FCmpInst::FCMP_OEQ: op = "oeq"; break;
case FCmpInst::FCMP_ONE: op = "one"; break;
case FCmpInst::FCMP_OLT: op = "olt"; break;
case FCmpInst::FCMP_OLE: op = "ole"; break;
case FCmpInst::FCMP_OGT: op = "ogt"; break;
case FCmpInst::FCMP_OGE: op = "oge"; break;
}
Out << "llvm_fcmp_" << op << "(";
// Write the first operand
writeOperand(I.getOperand(0));
Out << ", ";
// Write the second operand
writeOperand(I.getOperand(1));
Out << ")";
}
static const char * getFloatBitCastField(const Type *Ty) {
switch (Ty->getTypeID()) {
default: llvm_unreachable("Invalid Type");
case Type::FloatTyID: return "Float";
case Type::DoubleTyID: return "Double";
case Type::IntegerTyID: {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
if (NumBits <= 32)
return "Int32";
else
return "Int64";
}
}
}
void CWriter::visitCastInst(CastInst &I) {
const Type *DstTy = I.getType();
const Type *SrcTy = I.getOperand(0)->getType();
if (isFPIntBitCast(I)) {
Out << '(';
// These int<->float and long<->double casts need to be handled specially
Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
<< getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
writeOperand(I.getOperand(0));
Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
<< getFloatBitCastField(I.getType());
Out << ')';
return;
}
Out << '(';
printCast(I.getOpcode(), SrcTy, DstTy);
// Make a sext from i1 work by subtracting the i1 from 0 (an int).
if (SrcTy == Type::getInt1Ty(I.getContext()) &&
I.getOpcode() == Instruction::SExt)
Out << "0-";
writeOperand(I.getOperand(0));
if (DstTy == Type::getInt1Ty(I.getContext()) &&
(I.getOpcode() == Instruction::Trunc ||
I.getOpcode() == Instruction::FPToUI ||
I.getOpcode() == Instruction::FPToSI ||
I.getOpcode() == Instruction::PtrToInt)) {
// Make sure we really get a trunc to bool by anding the operand with 1
Out << "&1u";
}
Out << ')';
}
void CWriter::visitSelectInst(SelectInst &I) {
Out << "((";
writeOperand(I.getCondition());
Out << ") ? (";
writeOperand(I.getTrueValue());
Out << ") : (";
writeOperand(I.getFalseValue());
Out << "))";
}
void CWriter::lowerIntrinsics(Function &F) {
// This is used to keep track of intrinsics that get generated to a lowered
// function. We must generate the prototypes before the function body which
// will only be expanded on first use (by the loop below).
std::vector<Function*> prototypesToGen;
// Examine all the instructions in this function to find the intrinsics that
// need to be lowered.
for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
if (CallInst *CI = dyn_cast<CallInst>(I++))
if (Function *F = CI->getCalledFunction())
switch (F->getIntrinsicID()) {
case Intrinsic::not_intrinsic:
case Intrinsic::memory_barrier:
case Intrinsic::vastart:
case Intrinsic::vacopy:
case Intrinsic::vaend:
case Intrinsic::returnaddress:
case Intrinsic::frameaddress:
case Intrinsic::setjmp:
case Intrinsic::longjmp:
case Intrinsic::prefetch:
case Intrinsic::powi:
case Intrinsic::x86_sse_cmp_ss:
case Intrinsic::x86_sse_cmp_ps:
case Intrinsic::x86_sse2_cmp_sd:
case Intrinsic::x86_sse2_cmp_pd:
case Intrinsic::ppc_altivec_lvsl:
// We directly implement these intrinsics
break;
default:
// If this is an intrinsic that directly corresponds to a GCC
// builtin, we handle it.
const char *BuiltinName = "";
#define GET_GCC_BUILTIN_NAME
#include "llvm/Intrinsics.gen"
#undef GET_GCC_BUILTIN_NAME
// If we handle it, don't lower it.
if (BuiltinName[0]) break;
// All other intrinsic calls we must lower.
Instruction *Before = 0;
if (CI != &BB->front())
Before = prior(BasicBlock::iterator(CI));
IL->LowerIntrinsicCall(CI);
if (Before) { // Move iterator to instruction after call
I = Before; ++I;
} else {
I = BB->begin();
}
// If the intrinsic got lowered to another call, and that call has
// a definition then we need to make sure its prototype is emitted
// before any calls to it.
if (CallInst *Call = dyn_cast<CallInst>(I))
if (Function *NewF = Call->getCalledFunction())
if (!NewF->isDeclaration())
prototypesToGen.push_back(NewF);
break;
}
// We may have collected some prototypes to emit in the loop above.
// Emit them now, before the function that uses them is emitted. But,
// be careful not to emit them twice.
std::vector<Function*>::iterator I = prototypesToGen.begin();
std::vector<Function*>::iterator E = prototypesToGen.end();
for ( ; I != E; ++I) {
if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
Out << '\n';
printFunctionSignature(*I, true);
Out << ";\n";
}
}
}
void CWriter::visitCallInst(CallInst &I) {
if (isa<InlineAsm>(I.getCalledValue()))
return visitInlineAsm(I);
bool WroteCallee = false;
// Handle intrinsic function calls first...
if (Function *F = I.getCalledFunction())
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
if (visitBuiltinCall(I, ID, WroteCallee))
return;
Value *Callee = I.getCalledValue();
const PointerType *PTy = cast<PointerType>(Callee->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
// If this is a call to a struct-return function, assign to the first
// parameter instead of passing it to the call.
const AttrListPtr &PAL = I.getAttributes();
bool hasByVal = I.hasByValArgument();
bool isStructRet = I.hasStructRetAttr();
if (isStructRet) {
writeOperandDeref(I.getArgOperand(0));
Out << " = ";
}
if (I.isTailCall()) Out << " /*tail*/ ";
if (!WroteCallee) {
// If this is an indirect call to a struct return function, we need to cast
// the pointer. Ditto for indirect calls with byval arguments.
bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
// GCC is a real PITA. It does not permit codegening casts of functions to
// function pointers if they are in a call (it generates a trap instruction
// instead!). We work around this by inserting a cast to void* in between
// the function and the function pointer cast. Unfortunately, we can't just
// form the constant expression here, because the folder will immediately
// nuke it.
//
// Note finally, that this is completely unsafe. ANSI C does not guarantee
// that void* and function pointers have the same size. :( To deal with this
// in the common case, we handle casts where the number of arguments passed
// match exactly.
//
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
if (CE->isCast())
if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
NeedsCast = true;
Callee = RF;
}
if (NeedsCast) {
// Ok, just cast the pointer type.
Out << "((";
if (isStructRet)
printStructReturnPointerFunctionType(Out, PAL,
cast<PointerType>(I.getCalledValue()->getType()));
else if (hasByVal)
printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
else
printType(Out, I.getCalledValue()->getType());
Out << ")(void*)";
}
writeOperand(Callee);
if (NeedsCast) Out << ')';
}
Out << '(';
bool PrintedArg = false;
if(FTy->isVarArg() && !FTy->getNumParams()) {
Out << "0 /*dummy arg*/";
PrintedArg = true;
}
unsigned NumDeclaredParams = FTy->getNumParams();
CallSite CS(&I);
CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
unsigned ArgNo = 0;
if (isStructRet) { // Skip struct return argument.
++AI;
++ArgNo;
}
for (; AI != AE; ++AI, ++ArgNo) {
if (PrintedArg) Out << ", ";
if (ArgNo < NumDeclaredParams &&
(*AI)->getType() != FTy->getParamType(ArgNo)) {
Out << '(';
printType(Out, FTy->getParamType(ArgNo),
/*isSigned=*/PAL.paramHasAttr(ArgNo+1, Attribute::SExt));
Out << ')';
}
// Check if the argument is expected to be passed by value.
if (I.paramHasAttr(ArgNo+1, Attribute::ByVal))
writeOperandDeref(*AI);
else
writeOperand(*AI);
PrintedArg = true;
}
Out << ')';
}
/// visitBuiltinCall - Handle the call to the specified builtin. Returns true
/// if the entire call is handled, return false if it wasn't handled, and
/// optionally set 'WroteCallee' if the callee has already been printed out.
bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
bool &WroteCallee) {
switch (ID) {
default: {
// If this is an intrinsic that directly corresponds to a GCC
// builtin, we emit it here.
const char *BuiltinName = "";
Function *F = I.getCalledFunction();
#define GET_GCC_BUILTIN_NAME
#include "llvm/Intrinsics.gen"
#undef GET_GCC_BUILTIN_NAME
assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
Out << BuiltinName;
WroteCallee = true;
return false;
}
case Intrinsic::memory_barrier:
Out << "__sync_synchronize()";
return true;
case Intrinsic::vastart:
Out << "0; ";
Out << "va_start(*(va_list*)";
writeOperand(I.getArgOperand(0));
Out << ", ";
// Output the last argument to the enclosing function.
if (I.getParent()->getParent()->arg_empty())
Out << "vararg_dummy_arg";
else
writeOperand(--I.getParent()->getParent()->arg_end());
Out << ')';
return true;
case Intrinsic::vaend:
if (!isa<ConstantPointerNull>(I.getArgOperand(0))) {
Out << "0; va_end(*(va_list*)";
writeOperand(I.getArgOperand(0));
Out << ')';
} else {
Out << "va_end(*(va_list*)0)";
}
return true;
case Intrinsic::vacopy:
Out << "0; ";
Out << "va_copy(*(va_list*)";
writeOperand(I.getArgOperand(0));
Out << ", *(va_list*)";
writeOperand(I.getArgOperand(1));
Out << ')';
return true;
case Intrinsic::returnaddress:
Out << "__builtin_return_address(";
writeOperand(I.getArgOperand(0));
Out << ')';
return true;
case Intrinsic::frameaddress:
Out << "__builtin_frame_address(";
writeOperand(I.getArgOperand(0));
Out << ')';
return true;
case Intrinsic::powi:
Out << "__builtin_powi(";
writeOperand(I.getArgOperand(0));
Out << ", ";
writeOperand(I.getArgOperand(1));
Out << ')';
return true;
case Intrinsic::setjmp:
Out << "setjmp(*(jmp_buf*)";
writeOperand(I.getArgOperand(0));
Out << ')';
return true;
case Intrinsic::longjmp:
Out << "longjmp(*(jmp_buf*)";
writeOperand(I.getArgOperand(0));
Out << ", ";
writeOperand(I.getArgOperand(1));
Out << ')';
return true;
case Intrinsic::prefetch:
Out << "LLVM_PREFETCH((const void *)";
writeOperand(I.getArgOperand(0));
Out << ", ";
writeOperand(I.getArgOperand(1));
Out << ", ";
writeOperand(I.getArgOperand(2));
Out << ")";
return true;
case Intrinsic::stacksave:
// Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
// to work around GCC bugs (see PR1809).
Out << "0; *((void**)&" << GetValueName(&I)
<< ") = __builtin_stack_save()";
return true;
case Intrinsic::x86_sse_cmp_ss:
case Intrinsic::x86_sse_cmp_ps:
case Intrinsic::x86_sse2_cmp_sd:
case Intrinsic::x86_sse2_cmp_pd:
Out << '(';
printType(Out, I.getType());
Out << ')';
// Multiple GCC builtins multiplex onto this intrinsic.
switch (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()) {
default: llvm_unreachable("Invalid llvm.x86.sse.cmp!");
case 0: Out << "__builtin_ia32_cmpeq"; break;
case 1: Out << "__builtin_ia32_cmplt"; break;
case 2: Out << "__builtin_ia32_cmple"; break;
case 3: Out << "__builtin_ia32_cmpunord"; break;
case 4: Out << "__builtin_ia32_cmpneq"; break;
case 5: Out << "__builtin_ia32_cmpnlt"; break;
case 6: Out << "__builtin_ia32_cmpnle"; break;
case 7: Out << "__builtin_ia32_cmpord"; break;
}
if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
Out << 'p';
else
Out << 's';
if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
Out << 's';
else
Out << 'd';
Out << "(";
writeOperand(I.getArgOperand(0));
Out << ", ";
writeOperand(I.getArgOperand(1));
Out << ")";
return true;
case Intrinsic::ppc_altivec_lvsl:
Out << '(';
printType(Out, I.getType());
Out << ')';
Out << "__builtin_altivec_lvsl(0, (void*)";
writeOperand(I.getArgOperand(0));
Out << ")";
return true;
}
}
//This converts the llvm constraint string to something gcc is expecting.
//TODO: work out platform independent constraints and factor those out
// of the per target tables
// handle multiple constraint codes
std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
// Grab the translation table from MCAsmInfo if it exists.
const MCAsmInfo *TargetAsm;
std::string Triple = TheModule->getTargetTriple();
if (Triple.empty())
Triple = llvm::sys::getHostTriple();
std::string E;
if (const Target *Match = TargetRegistry::lookupTarget(Triple, E))
TargetAsm = Match->createAsmInfo(Triple);
else
return c.Codes[0];
const char *const *table = TargetAsm->getAsmCBE();
// Search the translation table if it exists.
for (int i = 0; table && table[i]; i += 2)
if (c.Codes[0] == table[i]) {
delete TargetAsm;
return table[i+1];
}
// Default is identity.
delete TargetAsm;
return c.Codes[0];
}
//TODO: import logic from AsmPrinter.cpp
static std::string gccifyAsm(std::string asmstr) {
for (std::string::size_type i = 0; i != asmstr.size(); ++i)
if (asmstr[i] == '\n')
asmstr.replace(i, 1, "\\n");
else if (asmstr[i] == '\t')
asmstr.replace(i, 1, "\\t");
else if (asmstr[i] == '$') {
if (asmstr[i + 1] == '{') {
std::string::size_type a = asmstr.find_first_of(':', i + 1);
std::string::size_type b = asmstr.find_first_of('}', i + 1);
std::string n = "%" +
asmstr.substr(a + 1, b - a - 1) +
asmstr.substr(i + 2, a - i - 2);
asmstr.replace(i, b - i + 1, n);
i += n.size() - 1;
} else
asmstr.replace(i, 1, "%");
}
else if (asmstr[i] == '%')//grr
{ asmstr.replace(i, 1, "%%"); ++i;}
return asmstr;
}
//TODO: assumptions about what consume arguments from the call are likely wrong
// handle communitivity
void CWriter::visitInlineAsm(CallInst &CI) {
InlineAsm* as = cast<InlineAsm>(CI.getCalledValue());
InlineAsm::ConstraintInfoVector Constraints = as->ParseConstraints();
std::vector<std::pair<Value*, int> > ResultVals;
if (CI.getType() == Type::getVoidTy(CI.getContext()))
;
else if (const StructType *ST = dyn_cast<StructType>(CI.getType())) {
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
ResultVals.push_back(std::make_pair(&CI, (int)i));
} else {
ResultVals.push_back(std::make_pair(&CI, -1));
}
// Fix up the asm string for gcc and emit it.
Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n";
Out << " :";
unsigned ValueCount = 0;
bool IsFirst = true;
// Convert over all the output constraints.
for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
E = Constraints.end(); I != E; ++I) {
if (I->Type != InlineAsm::isOutput) {
++ValueCount;
continue; // Ignore non-output constraints.
}
assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
std::string C = InterpretASMConstraint(*I);
if (C.empty()) continue;
if (!IsFirst) {
Out << ", ";
IsFirst = false;
}
// Unpack the dest.
Value *DestVal;
int DestValNo = -1;
if (ValueCount < ResultVals.size()) {
DestVal = ResultVals[ValueCount].first;
DestValNo = ResultVals[ValueCount].second;
} else
DestVal = CI.getArgOperand(ValueCount-ResultVals.size());
if (I->isEarlyClobber)
C = "&"+C;
Out << "\"=" << C << "\"(" << GetValueName(DestVal);
if (DestValNo != -1)
Out << ".field" << DestValNo; // Multiple retvals.
Out << ")";
++ValueCount;
}
// Convert over all the input constraints.
Out << "\n :";
IsFirst = true;
ValueCount = 0;
for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
E = Constraints.end(); I != E; ++I) {
if (I->Type != InlineAsm::isInput) {
++ValueCount;
continue; // Ignore non-input constraints.
}
assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
std::string C = InterpretASMConstraint(*I);
if (C.empty()) continue;
if (!IsFirst) {
Out << ", ";
IsFirst = false;
}
assert(ValueCount >= ResultVals.size() && "Input can't refer to result");
Value *SrcVal = CI.getArgOperand(ValueCount-ResultVals.size());
Out << "\"" << C << "\"(";
if (!I->isIndirect)
writeOperand(SrcVal);
else
writeOperandDeref(SrcVal);
Out << ")";
}
// Convert over the clobber constraints.
IsFirst = true;
for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
E = Constraints.end(); I != E; ++I) {
if (I->Type != InlineAsm::isClobber)
continue; // Ignore non-input constraints.
assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
std::string C = InterpretASMConstraint(*I);
if (C.empty()) continue;
if (!IsFirst) {
Out << ", ";
IsFirst = false;
}
Out << '\"' << C << '"';
}
Out << ")";
}
void CWriter::visitAllocaInst(AllocaInst &I) {
Out << '(';
printType(Out, I.getType());
Out << ") alloca(sizeof(";
printType(Out, I.getType()->getElementType());
Out << ')';
if (I.isArrayAllocation()) {
Out << " * " ;
writeOperand(I.getOperand(0));
}
Out << ')';
}
void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
gep_type_iterator E, bool Static) {
// If there are no indices, just print out the pointer.
if (I == E) {
writeOperand(Ptr);
return;
}
// Find out if the last index is into a vector. If so, we have to print this
// specially. Since vectors can't have elements of indexable type, only the
// last index could possibly be of a vector element.
const VectorType *LastIndexIsVector = 0;
{
for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
}
Out << "(";
// If the last index is into a vector, we can't print it as &a[i][j] because
// we can't index into a vector with j in GCC. Instead, emit this as
// (((float*)&a[i])+j)
if (LastIndexIsVector) {
Out << "((";
printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
Out << ")(";
}
Out << '&';
// If the first index is 0 (very typical) we can do a number of
// simplifications to clean up the code.
Value *FirstOp = I.getOperand();
if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
// First index isn't simple, print it the hard way.
writeOperand(Ptr);
} else {
++I; // Skip the zero index.
// Okay, emit the first operand. If Ptr is something that is already address
// exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
if (isAddressExposed(Ptr)) {
writeOperandInternal(Ptr, Static);
} else if (I != E && (*I)->isStructTy()) {
// If we didn't already emit the first operand, see if we can print it as
// P->f instead of "P[0].f"
writeOperand(Ptr);
Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
++I; // eat the struct index as well.
} else {
// Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
Out << "(*";
writeOperand(Ptr);
Out << ")";
}
}
for (; I != E; ++I) {
if ((*I)->isStructTy()) {
Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
} else if ((*I)->isArrayTy()) {
Out << ".array[";
writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Out << ']';
} else if (!(*I)->isVectorTy()) {
Out << '[';
writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Out << ']';
} else {
// If the last index is into a vector, then print it out as "+j)". This
// works with the 'LastIndexIsVector' code above.
if (isa<Constant>(I.getOperand()) &&
cast<Constant>(I.getOperand())->isNullValue()) {
Out << "))"; // avoid "+0".
} else {
Out << ")+(";
writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Out << "))";
}
}
}
Out << ")";
}
void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
bool IsVolatile, unsigned Alignment) {
bool IsUnaligned = Alignment &&
Alignment < TD->getABITypeAlignment(OperandType);
if (!IsUnaligned)
Out << '*';
if (IsVolatile || IsUnaligned) {
Out << "((";
if (IsUnaligned)
Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
if (IsUnaligned) {
Out << "; } ";
if (IsVolatile) Out << "volatile ";
Out << "*";
}
Out << ")";
}
writeOperand(Operand);
if (IsVolatile || IsUnaligned) {
Out << ')';
if (IsUnaligned)
Out << "->data";
}
}
void CWriter::visitLoadInst(LoadInst &I) {
writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
I.getAlignment());
}
void CWriter::visitStoreInst(StoreInst &I) {
writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
I.isVolatile(), I.getAlignment());
Out << " = ";
Value *Operand = I.getOperand(0);
Constant *BitMask = 0;
if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
if (!ITy->isPowerOf2ByteWidth())
// We have a bit width that doesn't match an even power-of-2 byte
// size. Consequently we must & the value with the type's bit mask
BitMask = ConstantInt::get(ITy, ITy->getBitMask());
if (BitMask)
Out << "((";
writeOperand(Operand);
if (BitMask) {
Out << ") & ";
printConstant(BitMask, false);
Out << ")";
}
}
void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
gep_type_end(I), false);
}
void CWriter::visitVAArgInst(VAArgInst &I) {
Out << "va_arg(*(va_list*)";
writeOperand(I.getOperand(0));
Out << ", ";
printType(Out, I.getType());
Out << ");\n ";
}
void CWriter::visitInsertElementInst(InsertElementInst &I) {
const Type *EltTy = I.getType()->getElementType();
writeOperand(I.getOperand(0));
Out << ";\n ";
Out << "((";
printType(Out, PointerType::getUnqual(EltTy));
Out << ")(&" << GetValueName(&I) << "))[";
writeOperand(I.getOperand(2));
Out << "] = (";
writeOperand(I.getOperand(1));
Out << ")";
}
void CWriter::visitExtractElementInst(ExtractElementInst &I) {
// We know that our operand is not inlined.
Out << "((";
const Type *EltTy =
cast<VectorType>(I.getOperand(0)->getType())->getElementType();
printType(Out, PointerType::getUnqual(EltTy));
Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
writeOperand(I.getOperand(1));
Out << "]";
}
void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
Out << "(";
printType(Out, SVI.getType());
Out << "){ ";
const VectorType *VT = SVI.getType();
unsigned NumElts = VT->getNumElements();
const Type *EltTy = VT->getElementType();
for (unsigned i = 0; i != NumElts; ++i) {
if (i) Out << ", ";
int SrcVal = SVI.getMaskValue(i);
if ((unsigned)SrcVal >= NumElts*2) {
Out << " 0/*undef*/ ";
} else {
Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
if (isa<Instruction>(Op)) {
// Do an extractelement of this value from the appropriate input.
Out << "((";
printType(Out, PointerType::getUnqual(EltTy));
Out << ")(&" << GetValueName(Op)
<< "))[" << (SrcVal & (NumElts-1)) << "]";
} else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
Out << "0";
} else {
printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal &
(NumElts-1)),
false);
}
}
}
Out << "}";
}
void CWriter::visitInsertValueInst(InsertValueInst &IVI) {
// Start by copying the entire aggregate value into the result variable.
writeOperand(IVI.getOperand(0));
Out << ";\n ";
// Then do the insert to update the field.
Out << GetValueName(&IVI);
for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end();
i != e; ++i) {
const Type *IndexedTy =
ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(), b, i+1);
if (IndexedTy->isArrayTy())
Out << ".array[" << *i << "]";
else
Out << ".field" << *i;
}
Out << " = ";
writeOperand(IVI.getOperand(1));
}
void CWriter::visitExtractValueInst(ExtractValueInst &EVI) {
Out << "(";
if (isa<UndefValue>(EVI.getOperand(0))) {
Out << "(";
printType(Out, EVI.getType());
Out << ") 0/*UNDEF*/";
} else {
Out << GetValueName(EVI.getOperand(0));
for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end();
i != e; ++i) {
const Type *IndexedTy =
ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(), b, i+1);
if (IndexedTy->isArrayTy())
Out << ".array[" << *i << "]";
else
Out << ".field" << *i;
}
}
Out << ")";
}
//===----------------------------------------------------------------------===//
// External Interface declaration
//===----------------------------------------------------------------------===//
bool CTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
formatted_raw_ostream &o,
CodeGenFileType FileType,
CodeGenOpt::Level OptLevel,
bool DisableVerify) {
if (FileType != TargetMachine::CGFT_AssemblyFile) return true;
PM.add(createGCLoweringPass());
PM.add(createLowerInvokePass());
PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
PM.add(new CWriter(o));
PM.add(createGCInfoDeleter());
return false;
}