2017-05-25 20:52:16 +00:00

1001 lines
34 KiB
C

/* ssl/s3_enc.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE.
*/
#include <stdio.h>
#include "ssl_locl.h"
#include <openssl/evp.h>
#include <openssl/md5.h>
static unsigned char ssl3_pad_1[48] = {
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36
};
static unsigned char ssl3_pad_2[48] = {
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c
};
static int ssl3_handshake_mac(SSL *s, int md_nid,
const char *sender, int len, unsigned char *p);
static int ssl3_generate_key_block(SSL *s, unsigned char *km, int num)
{
EVP_MD_CTX m5;
EVP_MD_CTX s1;
unsigned char buf[16], smd[SHA_DIGEST_LENGTH];
unsigned char c = 'A';
unsigned int i, j, k;
#ifdef CHARSET_EBCDIC
c = os_toascii[c]; /* 'A' in ASCII */
#endif
k = 0;
EVP_MD_CTX_init(&m5);
EVP_MD_CTX_set_flags(&m5, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
EVP_MD_CTX_init(&s1);
for (i = 0; (int)i < num; i += MD5_DIGEST_LENGTH) {
k++;
if (k > sizeof(buf))
/* bug: 'buf' is too small for this ciphersuite */
goto err;
for (j = 0; j < k; j++)
buf[j] = c;
c++;
if (!EVP_DigestInit_ex(&s1, EVP_sha1(), NULL) ||
!EVP_DigestUpdate(&s1, buf, k) ||
!EVP_DigestUpdate(&s1, s->session->master_key,
s->session->master_key_length) ||
!EVP_DigestUpdate(&s1, s->s3->server_random, SSL3_RANDOM_SIZE) ||
!EVP_DigestUpdate(&s1, s->s3->client_random, SSL3_RANDOM_SIZE) ||
!EVP_DigestFinal_ex(&s1, smd, NULL))
goto err2;
if (!EVP_DigestInit_ex(&m5, EVP_md5(), NULL) ||
!EVP_DigestUpdate(&m5, s->session->master_key,
s->session->master_key_length) ||
!EVP_DigestUpdate(&m5, smd, SHA_DIGEST_LENGTH))
goto err2;
if ((int)(i + MD5_DIGEST_LENGTH) > num) {
if (!EVP_DigestFinal_ex(&m5, smd, NULL))
goto err2;
memcpy(km, smd, (num - i));
} else
if (!EVP_DigestFinal_ex(&m5, km, NULL))
goto err2;
km += MD5_DIGEST_LENGTH;
}
OPENSSL_cleanse(smd, SHA_DIGEST_LENGTH);
EVP_MD_CTX_cleanup(&m5);
EVP_MD_CTX_cleanup(&s1);
return 1;
err:
SSLerr(SSL_F_SSL3_GENERATE_KEY_BLOCK, ERR_R_INTERNAL_ERROR);
err2:
EVP_MD_CTX_cleanup(&m5);
EVP_MD_CTX_cleanup(&s1);
return 0;
}
int ssl3_change_cipher_state(SSL *s, int which)
{
unsigned char *p, *mac_secret;
unsigned char exp_key[EVP_MAX_KEY_LENGTH];
unsigned char exp_iv[EVP_MAX_IV_LENGTH];
unsigned char *ms, *key, *iv, *er1, *er2;
EVP_CIPHER_CTX *dd;
const EVP_CIPHER *c;
#ifndef OPENSSL_NO_COMP
COMP_METHOD *comp;
#endif
const EVP_MD *m;
EVP_MD_CTX md;
int is_exp, n, i, j, k, cl;
int reuse_dd = 0;
is_exp = SSL_C_IS_EXPORT(s->s3->tmp.new_cipher);
c = s->s3->tmp.new_sym_enc;
m = s->s3->tmp.new_hash;
/* m == NULL will lead to a crash later */
OPENSSL_assert(m);
#ifndef OPENSSL_NO_COMP
if (s->s3->tmp.new_compression == NULL)
comp = NULL;
else
comp = s->s3->tmp.new_compression->method;
#endif
if (which & SSL3_CC_READ) {
if (s->enc_read_ctx != NULL)
reuse_dd = 1;
else if ((s->enc_read_ctx =
OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))) == NULL)
goto err;
else
/*
* make sure it's intialized in case we exit later with an error
*/
EVP_CIPHER_CTX_init(s->enc_read_ctx);
dd = s->enc_read_ctx;
if (ssl_replace_hash(&s->read_hash, m) == NULL) {
SSLerr(SSL_F_SSL3_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
goto err2;
}
#ifndef OPENSSL_NO_COMP
/* COMPRESS */
if (s->expand != NULL) {
COMP_CTX_free(s->expand);
s->expand = NULL;
}
if (comp != NULL) {
s->expand = COMP_CTX_new(comp);
if (s->expand == NULL) {
SSLerr(SSL_F_SSL3_CHANGE_CIPHER_STATE,
SSL_R_COMPRESSION_LIBRARY_ERROR);
goto err2;
}
if (s->s3->rrec.comp == NULL)
s->s3->rrec.comp = (unsigned char *)
OPENSSL_malloc(SSL3_RT_MAX_PLAIN_LENGTH);
if (s->s3->rrec.comp == NULL)
goto err;
}
#endif
memset(&(s->s3->read_sequence[0]), 0, 8);
mac_secret = &(s->s3->read_mac_secret[0]);
} else {
if (s->enc_write_ctx != NULL)
reuse_dd = 1;
else if ((s->enc_write_ctx =
OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))) == NULL)
goto err;
else
/*
* make sure it's intialized in case we exit later with an error
*/
EVP_CIPHER_CTX_init(s->enc_write_ctx);
dd = s->enc_write_ctx;
if (ssl_replace_hash(&s->write_hash, m) == NULL) {
SSLerr(SSL_F_SSL3_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
goto err2;
}
#ifndef OPENSSL_NO_COMP
/* COMPRESS */
if (s->compress != NULL) {
COMP_CTX_free(s->compress);
s->compress = NULL;
}
if (comp != NULL) {
s->compress = COMP_CTX_new(comp);
if (s->compress == NULL) {
SSLerr(SSL_F_SSL3_CHANGE_CIPHER_STATE,
SSL_R_COMPRESSION_LIBRARY_ERROR);
goto err2;
}
}
#endif
memset(&(s->s3->write_sequence[0]), 0, 8);
mac_secret = &(s->s3->write_mac_secret[0]);
}
if (reuse_dd)
EVP_CIPHER_CTX_cleanup(dd);
p = s->s3->tmp.key_block;
i = EVP_MD_size(m);
if (i < 0)
goto err2;
cl = EVP_CIPHER_key_length(c);
j = is_exp ? (cl < SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher) ?
cl : SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher)) : cl;
/* Was j=(is_exp)?5:EVP_CIPHER_key_length(c); */
k = EVP_CIPHER_iv_length(c);
if ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) ||
(which == SSL3_CHANGE_CIPHER_SERVER_READ)) {
ms = &(p[0]);
n = i + i;
key = &(p[n]);
n += j + j;
iv = &(p[n]);
n += k + k;
er1 = &(s->s3->client_random[0]);
er2 = &(s->s3->server_random[0]);
} else {
n = i;
ms = &(p[n]);
n += i + j;
key = &(p[n]);
n += j + k;
iv = &(p[n]);
n += k;
er1 = &(s->s3->server_random[0]);
er2 = &(s->s3->client_random[0]);
}
if (n > s->s3->tmp.key_block_length) {
SSLerr(SSL_F_SSL3_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
goto err2;
}
EVP_MD_CTX_init(&md);
memcpy(mac_secret, ms, i);
if (is_exp) {
/*
* In here I set both the read and write key/iv to the same value
* since only the correct one will be used :-).
*/
if (!EVP_DigestInit_ex(&md, EVP_md5(), NULL) ||
!EVP_DigestUpdate(&md, key, j) ||
!EVP_DigestUpdate(&md, er1, SSL3_RANDOM_SIZE) ||
!EVP_DigestUpdate(&md, er2, SSL3_RANDOM_SIZE) ||
!EVP_DigestFinal_ex(&md, &(exp_key[0]), NULL)) {
EVP_MD_CTX_cleanup(&md);
goto err2;
}
key = &(exp_key[0]);
if (k > 0) {
if (!EVP_DigestInit_ex(&md, EVP_md5(), NULL) ||
!EVP_DigestUpdate(&md, er1, SSL3_RANDOM_SIZE) ||
!EVP_DigestUpdate(&md, er2, SSL3_RANDOM_SIZE) ||
!EVP_DigestFinal_ex(&md, &(exp_iv[0]), NULL)) {
EVP_MD_CTX_cleanup(&md);
goto err2;
}
iv = &(exp_iv[0]);
}
}
EVP_MD_CTX_cleanup(&md);
s->session->key_arg_length = 0;
if (!EVP_CipherInit_ex(dd, c, NULL, key, iv, (which & SSL3_CC_WRITE)))
goto err2;
#ifdef OPENSSL_SSL_TRACE_CRYPTO
if (s->msg_callback) {
int wh = which & SSL3_CC_WRITE ?
TLS1_RT_CRYPTO_WRITE : TLS1_RT_CRYPTO_READ;
s->msg_callback(2, s->version, wh | TLS1_RT_CRYPTO_MAC,
mac_secret, EVP_MD_size(m), s, s->msg_callback_arg);
if (c->key_len)
s->msg_callback(2, s->version, wh | TLS1_RT_CRYPTO_KEY,
key, c->key_len, s, s->msg_callback_arg);
if (k) {
s->msg_callback(2, s->version, wh | TLS1_RT_CRYPTO_IV,
iv, k, s, s->msg_callback_arg);
}
}
#endif
OPENSSL_cleanse(&(exp_key[0]), sizeof(exp_key));
OPENSSL_cleanse(&(exp_iv[0]), sizeof(exp_iv));
return (1);
err:
SSLerr(SSL_F_SSL3_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE);
err2:
return (0);
}
int ssl3_setup_key_block(SSL *s)
{
unsigned char *p;
const EVP_CIPHER *c;
const EVP_MD *hash;
int num;
int ret = 0;
SSL_COMP *comp;
if (s->s3->tmp.key_block_length != 0)
return (1);
if (!ssl_cipher_get_evp(s->session, &c, &hash, NULL, NULL, &comp)) {
SSLerr(SSL_F_SSL3_SETUP_KEY_BLOCK, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
return (0);
}
s->s3->tmp.new_sym_enc = c;
s->s3->tmp.new_hash = hash;
#ifdef OPENSSL_NO_COMP
s->s3->tmp.new_compression = NULL;
#else
s->s3->tmp.new_compression = comp;
#endif
num = EVP_MD_size(hash);
if (num < 0)
return 0;
num = EVP_CIPHER_key_length(c) + num + EVP_CIPHER_iv_length(c);
num *= 2;
ssl3_cleanup_key_block(s);
if ((p = OPENSSL_malloc(num)) == NULL)
goto err;
s->s3->tmp.key_block_length = num;
s->s3->tmp.key_block = p;
ret = ssl3_generate_key_block(s, p, num);
if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS)) {
/*
* enable vulnerability countermeasure for CBC ciphers with known-IV
* problem (http://www.openssl.org/~bodo/tls-cbc.txt)
*/
s->s3->need_empty_fragments = 1;
if (s->session->cipher != NULL) {
if (s->session->cipher->algorithm_enc == SSL_eNULL)
s->s3->need_empty_fragments = 0;
#ifndef OPENSSL_NO_RC4
if (s->session->cipher->algorithm_enc == SSL_RC4)
s->s3->need_empty_fragments = 0;
#endif
}
}
return ret;
err:
SSLerr(SSL_F_SSL3_SETUP_KEY_BLOCK, ERR_R_MALLOC_FAILURE);
return (0);
}
void ssl3_cleanup_key_block(SSL *s)
{
if (s->s3->tmp.key_block != NULL) {
OPENSSL_cleanse(s->s3->tmp.key_block, s->s3->tmp.key_block_length);
OPENSSL_free(s->s3->tmp.key_block);
s->s3->tmp.key_block = NULL;
}
s->s3->tmp.key_block_length = 0;
}
/*-
* ssl3_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively.
*
* Returns:
* 0: (in non-constant time) if the record is publically invalid (i.e. too
* short etc).
* 1: if the record's padding is valid / the encryption was successful.
* -1: if the record's padding is invalid or, if sending, an internal error
* occured.
*/
int ssl3_enc(SSL *s, int send)
{
SSL3_RECORD *rec;
EVP_CIPHER_CTX *ds;
unsigned long l;
int bs, i, mac_size = 0;
const EVP_CIPHER *enc;
if (send) {
ds = s->enc_write_ctx;
rec = &(s->s3->wrec);
if (s->enc_write_ctx == NULL)
enc = NULL;
else
enc = EVP_CIPHER_CTX_cipher(s->enc_write_ctx);
} else {
ds = s->enc_read_ctx;
rec = &(s->s3->rrec);
if (s->enc_read_ctx == NULL)
enc = NULL;
else
enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx);
}
if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) {
memmove(rec->data, rec->input, rec->length);
rec->input = rec->data;
} else {
l = rec->length;
bs = EVP_CIPHER_block_size(ds->cipher);
/* COMPRESS */
if ((bs != 1) && send) {
i = bs - ((int)l % bs);
/* we need to add 'i-1' padding bytes */
l += i;
/*
* the last of these zero bytes will be overwritten with the
* padding length.
*/
memset(&rec->input[rec->length], 0, i);
rec->length += i;
rec->input[l - 1] = (i - 1);
}
if (!send) {
if (l == 0 || l % bs != 0)
return 0;
/* otherwise, rec->length >= bs */
}
if (EVP_Cipher(ds, rec->data, rec->input, l) < 1)
return -1;
if (EVP_MD_CTX_md(s->read_hash) != NULL)
mac_size = EVP_MD_CTX_size(s->read_hash);
if ((bs != 1) && !send)
return ssl3_cbc_remove_padding(s, rec, bs, mac_size);
}
return 1;
}
int ssl3_init_finished_mac(SSL *s)
{
if (s->s3->handshake_buffer)
BIO_free(s->s3->handshake_buffer);
if (s->s3->handshake_dgst)
ssl3_free_digest_list(s);
s->s3->handshake_buffer = BIO_new(BIO_s_mem());
if (s->s3->handshake_buffer == NULL)
return 0;
(void)BIO_set_close(s->s3->handshake_buffer, BIO_CLOSE);
return 1;
}
void ssl3_free_digest_list(SSL *s)
{
int i;
if (!s->s3->handshake_dgst)
return;
for (i = 0; i < SSL_MAX_DIGEST; i++) {
if (s->s3->handshake_dgst[i])
EVP_MD_CTX_destroy(s->s3->handshake_dgst[i]);
}
OPENSSL_free(s->s3->handshake_dgst);
s->s3->handshake_dgst = NULL;
}
void ssl3_finish_mac(SSL *s, const unsigned char *buf, int len)
{
if (s->s3->handshake_buffer
&& !(s->s3->flags & TLS1_FLAGS_KEEP_HANDSHAKE)) {
BIO_write(s->s3->handshake_buffer, (void *)buf, len);
} else {
int i;
for (i = 0; i < SSL_MAX_DIGEST; i++) {
if (s->s3->handshake_dgst[i] != NULL)
EVP_DigestUpdate(s->s3->handshake_dgst[i], buf, len);
}
}
}
int ssl3_digest_cached_records(SSL *s)
{
int i;
long mask;
const EVP_MD *md;
long hdatalen;
void *hdata;
/* Allocate handshake_dgst array */
ssl3_free_digest_list(s);
s->s3->handshake_dgst =
OPENSSL_malloc(SSL_MAX_DIGEST * sizeof(EVP_MD_CTX *));
if (s->s3->handshake_dgst == NULL) {
SSLerr(SSL_F_SSL3_DIGEST_CACHED_RECORDS, ERR_R_MALLOC_FAILURE);
return 0;
}
memset(s->s3->handshake_dgst, 0, SSL_MAX_DIGEST * sizeof(EVP_MD_CTX *));
hdatalen = BIO_get_mem_data(s->s3->handshake_buffer, &hdata);
if (hdatalen <= 0) {
SSLerr(SSL_F_SSL3_DIGEST_CACHED_RECORDS, SSL_R_BAD_HANDSHAKE_LENGTH);
return 0;
}
/* Loop through bitso of algorithm2 field and create MD_CTX-es */
for (i = 0; ssl_get_handshake_digest(i, &mask, &md); i++) {
if ((mask & ssl_get_algorithm2(s)) && md) {
s->s3->handshake_dgst[i] = EVP_MD_CTX_create();
if (s->s3->handshake_dgst[i] == NULL) {
SSLerr(SSL_F_SSL3_DIGEST_CACHED_RECORDS, ERR_R_MALLOC_FAILURE);
return 0;
}
#ifdef OPENSSL_FIPS
if (EVP_MD_nid(md) == NID_md5) {
EVP_MD_CTX_set_flags(s->s3->handshake_dgst[i],
EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
}
#endif
if (!EVP_DigestInit_ex(s->s3->handshake_dgst[i], md, NULL)
|| !EVP_DigestUpdate(s->s3->handshake_dgst[i], hdata,
hdatalen)) {
SSLerr(SSL_F_SSL3_DIGEST_CACHED_RECORDS, ERR_R_INTERNAL_ERROR);
return 0;
}
} else {
s->s3->handshake_dgst[i] = NULL;
}
}
if (!(s->s3->flags & TLS1_FLAGS_KEEP_HANDSHAKE)) {
/* Free handshake_buffer BIO */
BIO_free(s->s3->handshake_buffer);
s->s3->handshake_buffer = NULL;
}
return 1;
}
int ssl3_cert_verify_mac(SSL *s, int md_nid, unsigned char *p)
{
return (ssl3_handshake_mac(s, md_nid, NULL, 0, p));
}
int ssl3_final_finish_mac(SSL *s,
const char *sender, int len, unsigned char *p)
{
int ret, sha1len;
ret = ssl3_handshake_mac(s, NID_md5, sender, len, p);
if (ret == 0)
return 0;
p += ret;
sha1len = ssl3_handshake_mac(s, NID_sha1, sender, len, p);
if (sha1len == 0)
return 0;
ret += sha1len;
return (ret);
}
static int ssl3_handshake_mac(SSL *s, int md_nid,
const char *sender, int len, unsigned char *p)
{
unsigned int ret;
int npad, n;
unsigned int i;
unsigned char md_buf[EVP_MAX_MD_SIZE];
EVP_MD_CTX ctx, *d = NULL;
if (s->s3->handshake_buffer)
if (!ssl3_digest_cached_records(s))
return 0;
/*
* Search for digest of specified type in the handshake_dgst array
*/
for (i = 0; i < SSL_MAX_DIGEST; i++) {
if (s->s3->handshake_dgst[i]
&& EVP_MD_CTX_type(s->s3->handshake_dgst[i]) == md_nid) {
d = s->s3->handshake_dgst[i];
break;
}
}
if (!d) {
SSLerr(SSL_F_SSL3_HANDSHAKE_MAC, SSL_R_NO_REQUIRED_DIGEST);
return 0;
}
EVP_MD_CTX_init(&ctx);
EVP_MD_CTX_set_flags(&ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
EVP_MD_CTX_copy_ex(&ctx, d);
n = EVP_MD_CTX_size(&ctx);
if (n < 0)
return 0;
npad = (48 / n) * n;
if ((sender != NULL && EVP_DigestUpdate(&ctx, sender, len) <= 0)
|| EVP_DigestUpdate(&ctx, s->session->master_key,
s->session->master_key_length) <= 0
|| EVP_DigestUpdate(&ctx, ssl3_pad_1, npad) <= 0
|| EVP_DigestFinal_ex(&ctx, md_buf, &i) <= 0
|| EVP_DigestInit_ex(&ctx, EVP_MD_CTX_md(&ctx), NULL) <= 0
|| EVP_DigestUpdate(&ctx, s->session->master_key,
s->session->master_key_length) <= 0
|| EVP_DigestUpdate(&ctx, ssl3_pad_2, npad) <= 0
|| EVP_DigestUpdate(&ctx, md_buf, i) <= 0
|| EVP_DigestFinal_ex(&ctx, p, &ret) <= 0) {
SSLerr(SSL_F_SSL3_HANDSHAKE_MAC, ERR_R_INTERNAL_ERROR);
ret = 0;
}
EVP_MD_CTX_cleanup(&ctx);
return ((int)ret);
}
int n_ssl3_mac(SSL *ssl, unsigned char *md, int send)
{
SSL3_RECORD *rec;
unsigned char *mac_sec, *seq;
EVP_MD_CTX md_ctx;
const EVP_MD_CTX *hash;
unsigned char *p, rec_char;
size_t md_size, orig_len;
int npad;
int t;
if (send) {
rec = &(ssl->s3->wrec);
mac_sec = &(ssl->s3->write_mac_secret[0]);
seq = &(ssl->s3->write_sequence[0]);
hash = ssl->write_hash;
} else {
rec = &(ssl->s3->rrec);
mac_sec = &(ssl->s3->read_mac_secret[0]);
seq = &(ssl->s3->read_sequence[0]);
hash = ssl->read_hash;
}
t = EVP_MD_CTX_size(hash);
if (t < 0)
return -1;
md_size = t;
npad = (48 / md_size) * md_size;
/*
* kludge: ssl3_cbc_remove_padding passes padding length in rec->type
*/
orig_len = rec->length + md_size + ((unsigned int)rec->type >> 8);
rec->type &= 0xff;
if (!send &&
EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
ssl3_cbc_record_digest_supported(hash)) {
/*
* This is a CBC-encrypted record. We must avoid leaking any
* timing-side channel information about how many blocks of data we
* are hashing because that gives an attacker a timing-oracle.
*/
/*-
* npad is, at most, 48 bytes and that's with MD5:
* 16 + 48 + 8 (sequence bytes) + 1 + 2 = 75.
*
* With SHA-1 (the largest hash speced for SSLv3) the hash size
* goes up 4, but npad goes down by 8, resulting in a smaller
* total size.
*/
unsigned char header[75];
unsigned j = 0;
memcpy(header + j, mac_sec, md_size);
j += md_size;
memcpy(header + j, ssl3_pad_1, npad);
j += npad;
memcpy(header + j, seq, 8);
j += 8;
header[j++] = rec->type;
header[j++] = rec->length >> 8;
header[j++] = rec->length & 0xff;
/* Final param == is SSLv3 */
if (ssl3_cbc_digest_record(hash,
md, &md_size,
header, rec->input,
rec->length + md_size, orig_len,
mac_sec, md_size, 1) <= 0)
return -1;
} else {
unsigned int md_size_u;
/* Chop the digest off the end :-) */
EVP_MD_CTX_init(&md_ctx);
rec_char = rec->type;
p = md;
s2n(rec->length, p);
if (EVP_MD_CTX_copy_ex(&md_ctx, hash) <= 0
|| EVP_DigestUpdate(&md_ctx, mac_sec, md_size) <= 0
|| EVP_DigestUpdate(&md_ctx, ssl3_pad_1, npad) <= 0
|| EVP_DigestUpdate(&md_ctx, seq, 8) <= 0
|| EVP_DigestUpdate(&md_ctx, &rec_char, 1) <= 0
|| EVP_DigestUpdate(&md_ctx, md, 2) <= 0
|| EVP_DigestUpdate(&md_ctx, rec->input, rec->length) <= 0
|| EVP_DigestFinal_ex(&md_ctx, md, NULL) <= 0
|| EVP_MD_CTX_copy_ex(&md_ctx, hash) <= 0
|| EVP_DigestUpdate(&md_ctx, mac_sec, md_size) <= 0
|| EVP_DigestUpdate(&md_ctx, ssl3_pad_2, npad) <= 0
|| EVP_DigestUpdate(&md_ctx, md, md_size) <= 0
|| EVP_DigestFinal_ex(&md_ctx, md, &md_size_u) <= 0) {
EVP_MD_CTX_cleanup(&md_ctx);
return -1;
}
md_size = md_size_u;
EVP_MD_CTX_cleanup(&md_ctx);
}
ssl3_record_sequence_update(seq);
return (md_size);
}
void ssl3_record_sequence_update(unsigned char *seq)
{
int i;
for (i = 7; i >= 0; i--) {
++seq[i];
if (seq[i] != 0)
break;
}
}
int ssl3_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p,
int len)
{
static const unsigned char *salt[3] = {
#ifndef CHARSET_EBCDIC
(const unsigned char *)"A",
(const unsigned char *)"BB",
(const unsigned char *)"CCC",
#else
(const unsigned char *)"\x41",
(const unsigned char *)"\x42\x42",
(const unsigned char *)"\x43\x43\x43",
#endif
};
unsigned char buf[EVP_MAX_MD_SIZE];
EVP_MD_CTX ctx;
int i, ret = 0;
unsigned int n;
#ifdef OPENSSL_SSL_TRACE_CRYPTO
unsigned char *tmpout = out;
#endif
EVP_MD_CTX_init(&ctx);
for (i = 0; i < 3; i++) {
if (EVP_DigestInit_ex(&ctx, s->ctx->sha1, NULL) <= 0
|| EVP_DigestUpdate(&ctx, salt[i],
strlen((const char *)salt[i])) <= 0
|| EVP_DigestUpdate(&ctx, p, len) <= 0
|| EVP_DigestUpdate(&ctx, &(s->s3->client_random[0]),
SSL3_RANDOM_SIZE) <= 0
|| EVP_DigestUpdate(&ctx, &(s->s3->server_random[0]),
SSL3_RANDOM_SIZE) <= 0
|| EVP_DigestFinal_ex(&ctx, buf, &n) <= 0
|| EVP_DigestInit_ex(&ctx, s->ctx->md5, NULL) <= 0
|| EVP_DigestUpdate(&ctx, p, len) <= 0
|| EVP_DigestUpdate(&ctx, buf, n) <= 0
|| EVP_DigestFinal_ex(&ctx, out, &n) <= 0) {
SSLerr(SSL_F_SSL3_GENERATE_MASTER_SECRET, ERR_R_INTERNAL_ERROR);
ret = 0;
break;
}
out += n;
ret += n;
}
EVP_MD_CTX_cleanup(&ctx);
#ifdef OPENSSL_SSL_TRACE_CRYPTO
if (ret > 0 && s->msg_callback) {
s->msg_callback(2, s->version, TLS1_RT_CRYPTO_PREMASTER,
p, len, s, s->msg_callback_arg);
s->msg_callback(2, s->version, TLS1_RT_CRYPTO_CLIENT_RANDOM,
s->s3->client_random, SSL3_RANDOM_SIZE,
s, s->msg_callback_arg);
s->msg_callback(2, s->version, TLS1_RT_CRYPTO_SERVER_RANDOM,
s->s3->server_random, SSL3_RANDOM_SIZE,
s, s->msg_callback_arg);
s->msg_callback(2, s->version, TLS1_RT_CRYPTO_MASTER,
tmpout, SSL3_MASTER_SECRET_SIZE,
s, s->msg_callback_arg);
}
#endif
OPENSSL_cleanse(buf, sizeof(buf));
return (ret);
}
int ssl3_alert_code(int code)
{
switch (code) {
case SSL_AD_CLOSE_NOTIFY:
return (SSL3_AD_CLOSE_NOTIFY);
case SSL_AD_UNEXPECTED_MESSAGE:
return (SSL3_AD_UNEXPECTED_MESSAGE);
case SSL_AD_BAD_RECORD_MAC:
return (SSL3_AD_BAD_RECORD_MAC);
case SSL_AD_DECRYPTION_FAILED:
return (SSL3_AD_BAD_RECORD_MAC);
case SSL_AD_RECORD_OVERFLOW:
return (SSL3_AD_BAD_RECORD_MAC);
case SSL_AD_DECOMPRESSION_FAILURE:
return (SSL3_AD_DECOMPRESSION_FAILURE);
case SSL_AD_HANDSHAKE_FAILURE:
return (SSL3_AD_HANDSHAKE_FAILURE);
case SSL_AD_NO_CERTIFICATE:
return (SSL3_AD_NO_CERTIFICATE);
case SSL_AD_BAD_CERTIFICATE:
return (SSL3_AD_BAD_CERTIFICATE);
case SSL_AD_UNSUPPORTED_CERTIFICATE:
return (SSL3_AD_UNSUPPORTED_CERTIFICATE);
case SSL_AD_CERTIFICATE_REVOKED:
return (SSL3_AD_CERTIFICATE_REVOKED);
case SSL_AD_CERTIFICATE_EXPIRED:
return (SSL3_AD_CERTIFICATE_EXPIRED);
case SSL_AD_CERTIFICATE_UNKNOWN:
return (SSL3_AD_CERTIFICATE_UNKNOWN);
case SSL_AD_ILLEGAL_PARAMETER:
return (SSL3_AD_ILLEGAL_PARAMETER);
case SSL_AD_UNKNOWN_CA:
return (SSL3_AD_BAD_CERTIFICATE);
case SSL_AD_ACCESS_DENIED:
return (SSL3_AD_HANDSHAKE_FAILURE);
case SSL_AD_DECODE_ERROR:
return (SSL3_AD_HANDSHAKE_FAILURE);
case SSL_AD_DECRYPT_ERROR:
return (SSL3_AD_HANDSHAKE_FAILURE);
case SSL_AD_EXPORT_RESTRICTION:
return (SSL3_AD_HANDSHAKE_FAILURE);
case SSL_AD_PROTOCOL_VERSION:
return (SSL3_AD_HANDSHAKE_FAILURE);
case SSL_AD_INSUFFICIENT_SECURITY:
return (SSL3_AD_HANDSHAKE_FAILURE);
case SSL_AD_INTERNAL_ERROR:
return (SSL3_AD_HANDSHAKE_FAILURE);
case SSL_AD_USER_CANCELLED:
return (SSL3_AD_HANDSHAKE_FAILURE);
case SSL_AD_NO_RENEGOTIATION:
return (-1); /* Don't send it :-) */
case SSL_AD_UNSUPPORTED_EXTENSION:
return (SSL3_AD_HANDSHAKE_FAILURE);
case SSL_AD_CERTIFICATE_UNOBTAINABLE:
return (SSL3_AD_HANDSHAKE_FAILURE);
case SSL_AD_UNRECOGNIZED_NAME:
return (SSL3_AD_HANDSHAKE_FAILURE);
case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE:
return (SSL3_AD_HANDSHAKE_FAILURE);
case SSL_AD_BAD_CERTIFICATE_HASH_VALUE:
return (SSL3_AD_HANDSHAKE_FAILURE);
case SSL_AD_UNKNOWN_PSK_IDENTITY:
return (TLS1_AD_UNKNOWN_PSK_IDENTITY);
case SSL_AD_INAPPROPRIATE_FALLBACK:
return (TLS1_AD_INAPPROPRIATE_FALLBACK);
default:
return (-1);
}
}