freebsd-nq/sys/contrib/octeon-sdk/cvmx-compactflash.c
Juli Mallett 219d14fe5f Import the Cavium Simple Executive from the Cavium Octeon SDK. The Simple
Executive is a library that can be used by standalone applications and kernels
to abstract access to Octeon SoC and board-specific hardware and facilities.
The FreeBSD port to Octeon will be updated to use this where possible.
2010-07-20 07:19:43 +00:00

432 lines
13 KiB
C

/***********************license start***************
* Copyright (c) 2008 Cavium Networks (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* * Neither the name of Cavium Networks nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS
* OR WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH
* RESPECT TO THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY
* REPRESENTATION OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT
* DEFECTS, AND CAVIUM SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES
* OF TITLE, MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR
* PURPOSE, LACK OF VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET
* POSSESSION OR CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT
* OF USE OR PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
*
*
* For any questions regarding licensing please contact marketing@caviumnetworks.com
*
***********************license end**************************************/
#include "cvmx.h"
#include "cvmx-sysinfo.h"
#include "cvmx-compactflash.h"
#ifndef MAX
#define MAX(a,b) (((a)>(b))?(a):(b))
#endif
#define FLASH_RoundUP(_Dividend, _Divisor) (((_Dividend)+(_Divisor-1))/(_Divisor))
/**
* Convert nanosecond based time to setting used in the
* boot bus timing register, based on timing multiple
*
*
*/
static uint32_t ns_to_tim_reg(int tim_mult, uint32_t nsecs)
{
uint32_t val;
/* Compute # of eclock periods to get desired duration in nanoseconds */
val = FLASH_RoundUP(nsecs * (cvmx_sysinfo_get()->cpu_clock_hz/1000000), 1000);
/* Factor in timing multiple, if not 1 */
if (tim_mult != 1)
val = FLASH_RoundUP(val, tim_mult);
return (val);
}
uint64_t cvmx_compactflash_generate_dma_tim(int tim_mult, uint16_t *ident_data, int *mwdma_mode_ptr)
{
cvmx_mio_boot_dma_timx_t dma_tim;
int oe_a;
int oe_n;
int dma_acks;
int dma_ackh;
int dma_arq;
int pause;
int To,Tkr,Td;
int mwdma_mode = -1;
uint16_t word53_field_valid;
uint16_t word63_mwdma;
uint16_t word163_adv_timing_info;
if (!ident_data)
return 0;
word53_field_valid = ident_data[53];
word63_mwdma = ident_data[63];
word163_adv_timing_info = ident_data[163];
dma_tim.u64 = 0;
/* Check for basic MWDMA modes */
if (word53_field_valid & 0x2)
{
if (word63_mwdma & 0x4)
mwdma_mode = 2;
else if (word63_mwdma & 0x2)
mwdma_mode = 1;
else if (word63_mwdma & 0x1)
mwdma_mode = 0;
}
/* Check for advanced MWDMA modes */
switch ((word163_adv_timing_info >> 3) & 0x7)
{
case 1:
mwdma_mode = 3;
break;
case 2:
mwdma_mode = 4;
break;
default:
break;
}
/* DMA is not supported by this card */
if (mwdma_mode < 0)
return 0;
/* Now set up the DMA timing */
switch (tim_mult)
{
case 1:
dma_tim.s.tim_mult = 1;
break;
case 2:
dma_tim.s.tim_mult = 2;
break;
case 4:
dma_tim.s.tim_mult = 0;
break;
case 8:
dma_tim.s.tim_mult = 3;
break;
default:
cvmx_dprintf("ERROR: invalid boot bus dma tim_mult setting\n");
break;
}
switch (mwdma_mode)
{
case 4:
To = 80;
Td = 55;
Tkr = 20;
oe_a = Td + 20; // Td (Seem to need more margin here....
oe_n = MAX(To - oe_a, Tkr); // Tkr from cf spec, lengthened to meet To
// oe_n + oe_h must be >= To (cycle time)
dma_acks = 0; //Ti
dma_ackh = 5; // Tj
dma_arq = 8; // not spec'ed, value in eclocks, not affected by tim_mult
pause = 25 - dma_arq * 1000/(cvmx_sysinfo_get()->cpu_clock_hz/1000000); // Tz
break;
case 3:
To = 100;
Td = 65;
Tkr = 20;
oe_a = Td + 20; // Td (Seem to need more margin here....
oe_n = MAX(To - oe_a, Tkr); // Tkr from cf spec, lengthened to meet To
// oe_n + oe_h must be >= To (cycle time)
dma_acks = 0; //Ti
dma_ackh = 5; // Tj
dma_arq = 8; // not spec'ed, value in eclocks, not affected by tim_mult
pause = 25 - dma_arq * 1000/(cvmx_sysinfo_get()->cpu_clock_hz/1000000); // Tz
break;
case 2:
// +20 works
// +10 works
// + 10 + 0 fails
// n=40, a=80 works
To = 120;
Td = 70;
Tkr = 25;
// oe_a 0 fudge doesn't work; 10 seems to
oe_a = Td + 20 + 10; // Td (Seem to need more margin here....
oe_n = MAX(To - oe_a, Tkr) + 10; // Tkr from cf spec, lengthened to meet To
// oe_n 0 fudge fails;;; 10 boots
// 20 ns fudge needed on dma_acks
// oe_n + oe_h must be >= To (cycle time)
dma_acks = 0 + 20; //Ti
dma_ackh = 5; // Tj
dma_arq = 8; // not spec'ed, value in eclocks, not affected by tim_mult
pause = 25 - dma_arq * 1000/(cvmx_sysinfo_get()->cpu_clock_hz/1000000); // Tz
// no fudge needed on pause
break;
case 1:
case 0:
default:
cvmx_dprintf("ERROR: Unsupported DMA mode: %d\n", mwdma_mode);
return(-1);
break;
}
if (mwdma_mode_ptr)
*mwdma_mode_ptr = mwdma_mode;
dma_tim.s.dmack_pi = 1;
dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, dma_acks);
dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
dma_tim.s.dmarq = dma_arq;
dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
dma_tim.s.rd_dly = 0; /* Sample right on edge */
/* writes only */
dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
#if 0
cvmx_dprintf("ns to ticks (mult %d) of %d is: %d\n", TIM_MULT, 60, ns_to_tim_reg(60));
cvmx_dprintf("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n",
dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s, dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
#endif
return(dma_tim.u64);
}
/**
* Setup timing and region config to support a specific IDE PIO
* mode over the bootbus.
*
* @param cs0 Bootbus region number connected to CS0 on the IDE device
* @param cs1 Bootbus region number connected to CS1 on the IDE device
* @param pio_mode PIO mode to set (0-6)
*/
void cvmx_compactflash_set_piomode(int cs0, int cs1, int pio_mode)
{
cvmx_mio_boot_reg_cfgx_t mio_boot_reg_cfg;
cvmx_mio_boot_reg_timx_t mio_boot_reg_tim;
int cs;
int clocks_us; /* Number of clock cycles per microsec */
int tim_mult;
int use_iordy; /* Set for PIO0-4, not set for PIO5-6 */
int t1; /* These t names are timing parameters from the ATA spec */
int t2;
int t2i;
int t4;
int t6;
int t6z;
int t9;
/* PIO modes 0-4 all allow the device to deassert IORDY to slow down
the host */
use_iordy = 1;
/* Use the PIO mode to determine timing parameters */
switch(pio_mode) {
case 6:
/* CF spec say IORDY should be ignore in PIO 5 */
use_iordy = 0;
t1 = 10;
t2 = 55;
t2i = 20;
t4 = 5;
t6 = 5;
t6z = 20;
t9 = 10;
break;
case 5:
/* CF spec say IORDY should be ignore in PIO 6 */
use_iordy = 0;
t1 = 15;
t2 = 65;
t2i = 25;
t4 = 5;
t6 = 5;
t6z = 20;
t9 = 10;
break;
case 4:
t1 = 25;
t2 = 70;
t2i = 25;
t4 = 10;
t6 = 5;
t6z = 30;
t9 = 10;
break;
case 3:
t1 = 30;
t2 = 80;
t2i = 70;
t4 = 10;
t6 = 5;
t6z = 30;
t9 = 10;
break;
case 2:
t1 = 30;
t2 = 100;
t2i = 0;
t4 = 15;
t6 = 5;
t6z = 30;
t9 = 10;
break;
case 1:
t1 = 50;
t2 = 125;
t2i = 0;
t4 = 20;
t6 = 5;
t6z = 30;
t9 = 15;
break;
default:
t1 = 70;
t2 = 165;
t2i = 0;
t4 = 30;
t6 = 5;
t6z = 30;
t9 = 20;
break;
}
/* Convert times in ns to clock cycles, rounding up */
clocks_us = FLASH_RoundUP((uint64_t)cvmx_sysinfo_get()->cpu_clock_hz, 1000000);
/* Convert times in clock cycles, rounding up. Octeon parameters are in
minus one notation, so take off one after the conversion */
t1 = FLASH_RoundUP(t1 * clocks_us, 1000);
if (t1)
t1--;
t2 = FLASH_RoundUP(t2 * clocks_us, 1000);
if (t2)
t2--;
t2i = FLASH_RoundUP(t2i * clocks_us, 1000);
if (t2i)
t2i--;
t4 = FLASH_RoundUP(t4 * clocks_us, 1000);
if (t4)
t4--;
t6 = FLASH_RoundUP(t6 * clocks_us, 1000);
if (t6)
t6--;
t6z = FLASH_RoundUP(t6z * clocks_us, 1000);
if (t6z)
t6z--;
t9 = FLASH_RoundUP(t9 * clocks_us, 1000);
if (t9)
t9--;
/* Start using a scale factor of one cycle. Keep doubling it until
the parameters fit in their fields. Since t2 is the largest number,
we only need to check it */
tim_mult = 1;
while (t2 >= 1<<6)
{
t1 = FLASH_RoundUP(t1, 2);
t2 = FLASH_RoundUP(t2, 2);
t2i = FLASH_RoundUP(t2i, 2);
t4 = FLASH_RoundUP(t4, 2);
t6 = FLASH_RoundUP(t6, 2);
t6z = FLASH_RoundUP(t6z, 2);
t9 = FLASH_RoundUP(t9, 2);
tim_mult *= 2;
}
cs = cs0;
do {
mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
mio_boot_reg_cfg.s.dmack = 0; /* Don't assert DMACK on access */
switch(tim_mult) {
case 1:
mio_boot_reg_cfg.s.tim_mult = 1;
break;
case 2:
mio_boot_reg_cfg.s.tim_mult = 2;
break;
case 4:
mio_boot_reg_cfg.s.tim_mult = 0;
break;
case 8:
default:
mio_boot_reg_cfg.s.tim_mult = 3;
break;
}
mio_boot_reg_cfg.s.rd_dly = 0; /* Sample on falling edge of BOOT_OE */
mio_boot_reg_cfg.s.sam = 0; /* Don't combine write and output enable */
mio_boot_reg_cfg.s.we_ext = 0; /* No write enable extension */
mio_boot_reg_cfg.s.oe_ext = 0; /* No read enable extension */
mio_boot_reg_cfg.s.en = 1; /* Enable this region */
mio_boot_reg_cfg.s.orbit = 0; /* Don't combine with previos region */
mio_boot_reg_cfg.s.width = 1; /* 16 bits wide */
cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), mio_boot_reg_cfg.u64);
if(cs == cs0)
cs = cs1;
else
cs = cs0;
} while(cs != cs0);
mio_boot_reg_tim.u64 = 0;
mio_boot_reg_tim.s.pagem = 0; /* Disable page mode */
mio_boot_reg_tim.s.waitm = use_iordy; /* Enable dynamic timing */
mio_boot_reg_tim.s.pages = 0; /* Pages are disabled */
mio_boot_reg_tim.s.ale = 8; /* If someone uses ALE, this seems to work */
mio_boot_reg_tim.s.page = 0; /* Not used */
mio_boot_reg_tim.s.wait = 0; /* Time after IORDY to coninue to assert the data */
mio_boot_reg_tim.s.pause = 0; /* Time after CE that signals stay valid */
mio_boot_reg_tim.s.wr_hld = t9; /* How long to hold after a write */
mio_boot_reg_tim.s.rd_hld = t9; /* How long to wait after a read for device to tristate */
mio_boot_reg_tim.s.we = t2; /* How long write enable is asserted */
mio_boot_reg_tim.s.oe = t2; /* How long read enable is asserted */
mio_boot_reg_tim.s.ce = t1; /* Time after CE that read/write starts */
mio_boot_reg_tim.s.adr = 1; /* Time before CE that address is valid */
/* Program the bootbus region timing for both chip selects */
cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs0), mio_boot_reg_tim.u64);
cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs1), mio_boot_reg_tim.u64);
}