freebsd-nq/sys/contrib/octeon-sdk/cvmx-llm.h
Juli Mallett 219d14fe5f Import the Cavium Simple Executive from the Cavium Octeon SDK. The Simple
Executive is a library that can be used by standalone applications and kernels
to abstract access to Octeon SoC and board-specific hardware and facilities.
The FreeBSD port to Octeon will be updated to use this where possible.
2010-07-20 07:19:43 +00:00

402 lines
12 KiB
C

/***********************license start***************
* Copyright (c) 2003-2008 Cavium Networks (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* * Neither the name of Cavium Networks nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS
* OR WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH
* RESPECT TO THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY
* REPRESENTATION OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT
* DEFECTS, AND CAVIUM SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES
* OF TITLE, MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR
* PURPOSE, LACK OF VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET
* POSSESSION OR CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT
* OF USE OR PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
*
*
* For any questions regarding licensing please contact marketing@caviumnetworks.com
*
***********************license end**************************************/
/**
* @file
*
* interface to the low latency DRAM
*
* <hr>$Revision: 41586 $<hr>
*
*/
#ifndef __CVMX_LLM_H__
#define __CVMX_LLM_H__
#ifdef __cplusplus
extern "C" {
#endif
#define ENABLE_DEPRECATED /* Set to enable the old 18/36 bit names */
typedef enum
{
CVMX_LLM_REPLICATION_NONE = 0,
CVMX_LLM_REPLICATION_2X = 1, // on both interfaces, or 2x if only one interface
CVMX_LLM_REPLICATION_4X = 2, // both interfaces, 2x, or 4x if only one interface
CVMX_LLM_REPLICATION_8X = 3, // both interfaces, 4x, or 8x if only one interface
} cvmx_llm_replication_t;
/**
* This structure defines the address used to the low-latency memory.
* This address format is used for both loads and stores.
*/
typedef union
{
uint64_t u64;
struct
{
uint64_t mbz :30;
cvmx_llm_replication_t repl : 2;
uint64_t address :32; // address<1:0> mbz, address<31:30> mbz
} s;
} cvmx_llm_address_t;
/**
* This structure defines the data format in the low-latency memory
*/
typedef union
{
uint64_t u64;
/**
* this format defines the format returned on a load
* a load returns the 32/36-bits in memory, plus xxor = even_parity(dat<35:0>)
* typically, dat<35> = parity(dat<34:0>), so the xor bit directly indicates parity error
* Note that the data field size is 36 bits on the 36XX/38XX, and 32 bits on the 31XX
*/
struct
{
uint64_t mbz1 :27;
uint64_t xxor : 1;
uint64_t mbz : 4;
uint64_t dat :32;
} cn31xx;
struct
{
uint64_t mbz :27;
uint64_t xxor : 1;
uint64_t dat :36;
} s;
/**
* This format defines what should be used if parity is desired. Hardware returns
* the XOR of all the bits in the 36/32 bit data word, so for parity software must use
* one of the data field bits as a parity bit.
*/
struct cn31xx_par_struct
{
uint64_t mbz :32;
uint64_t par : 1;
uint64_t dat :31;
} cn31xx_par;
struct cn38xx_par_struct
{
uint64_t mbz :28;
uint64_t par : 1;
uint64_t dat :35;
} cn38xx_par;
#if !OCTEON_IS_COMMON_BINARY()
#if CVMX_COMPILED_FOR(OCTEON_CN31XX)
struct cn31xx_par_struct spar;
#else
struct cn38xx_par_struct spar;
#endif
#endif
} cvmx_llm_data_t;
#define CVMX_LLM_NARROW_DATA_WIDTH ((CVMX_COMPILED_FOR(OCTEON_CN31XX)) ? 32 : 36)
/**
* Calculate the parity value of a number
*
* @param value
* @return parity value
*/
static inline uint64_t cvmx_llm_parity(uint64_t value)
{
uint64_t result;
CVMX_DPOP(result, value);
return result;
}
/**
* Calculate the ECC needed for 36b LLM mode
*
* @param value
* @return ECC value
*/
static inline int cvmx_llm_ecc(uint64_t value)
{
/* FIXME: This needs a re-write */
static const uint32_t ecc_code_29[7] = {
0x08962595,
0x112a4aaa,
0x024c934f,
0x04711c73,
0x0781e07c,
0x1801ff80,
0x1ffe0000};
uint64_t pop0, pop1, pop2, pop3, pop4, pop5, pop6;
pop0 = ecc_code_29[0];
pop1 = ecc_code_29[1];
pop2 = ecc_code_29[2];
pop0 &= value;
pop3 = ecc_code_29[3];
CVMX_DPOP(pop0, pop0);
pop4 = ecc_code_29[4];
pop1 &= value;
CVMX_DPOP(pop1, pop1);
pop2 &= value;
pop5 = ecc_code_29[5];
CVMX_DPOP(pop2, pop2);
pop6 = ecc_code_29[6];
pop3 &= value;
CVMX_DPOP(pop3, pop3);
pop4 &= value;
CVMX_DPOP(pop4, pop4);
pop5 &= value;
CVMX_DPOP(pop5, pop5);
pop6 &= value;
CVMX_DPOP(pop6, pop6);
return((pop6&1)<<6) | ((pop5&1)<<5) | ((pop4&1)<<4) | ((pop3&1)<<3) | ((pop2&1)<<2) | ((pop1&1)<<1) | (pop0&1);
}
#ifdef ENABLE_DEPRECATED
/* These macros are provided to provide compatibility with code that uses
** the old names for the llm access functions. The names were changed
** when support for the 31XX llm was added, as the widths differ between Octeon Models.
** The wide/narrow names are preferred, and should be used in all new code */
#define cvmx_llm_write36 cvmx_llm_write_narrow
#define cvmx_llm_read36 cvmx_llm_read_narrow
#define cvmx_llm_write64 cvmx_llm_write_wide
#define cvmx_llm_read64 cvmx_llm_read_wide
#endif
/**
* Write to LLM memory - 36 bit
*
* @param address Address in LLM to write. Consecutive writes increment the
* address by 4. The replication mode is also encoded in this
* address.
* @param value Value to write to LLM. Only the low 36 bits will be used.
* @param set Which of the two coprocessor 2 register sets to use for the
* write. May be used to get two outstanding LLM access at once
* per core. Range: 0-1
*/
static inline void cvmx_llm_write_narrow(cvmx_llm_address_t address, uint64_t value, int set)
{
cvmx_llm_data_t data;
data.s.mbz = 0;
if (cvmx_octeon_is_pass1())
data.s.dat = ((value & 0x3ffff) << 18) | ((value >> 18) & 0x3ffff);
else
data.s.dat = value;
data.s.xxor = 0;
if (set)
{
CVMX_MT_LLM_DATA(1, data.u64);
CVMX_MT_LLM_WRITE_ADDR_INTERNAL(1, address.u64);
}
else
{
CVMX_MT_LLM_DATA(0, data.u64);
CVMX_MT_LLM_WRITE_ADDR_INTERNAL(0, address.u64);
}
}
/**
* Write to LLM memory - 64 bit
*
* @param address Address in LLM to write. Consecutive writes increment the
* address by 8. The replication mode is also encoded in this
* address.
* @param value Value to write to LLM.
* @param set Which of the two coprocessor 2 register sets to use for the
* write. May be used to get two outstanding LLM access at once
* per core. Range: 0-1
*/
static inline void cvmx_llm_write_wide(cvmx_llm_address_t address, uint64_t value, int set)
{
if (cvmx_octeon_is_pass1())
{
cvmx_llm_write36(address, value & 0xfffffffffull, set);
address.s.address+=4;
cvmx_llm_write36(address, ((value>>36) & 0xfffffff) | (cvmx_llm_ecc(value) << 28), set);
}
else
{
if (set)
{
CVMX_MT_LLM_DATA(1, value);
CVMX_MT_LLM_WRITE64_ADDR_INTERNAL(1, address.u64);
}
else
{
CVMX_MT_LLM_DATA(0, value);
CVMX_MT_LLM_WRITE64_ADDR_INTERNAL(0, address.u64);
}
}
}
/**
* Read from LLM memory - 36 bit
*
* @param address Address in LLM to read. Consecutive reads increment the
* address by 4. The replication mode is also encoded in this
* address.
* @param set Which of the two coprocessor 2 register sets to use for the
* write. May be used to get two outstanding LLM access at once
* per core. Range: 0-1
* @return The lower 36 bits contain the result of the read
*/
static inline cvmx_llm_data_t cvmx_llm_read_narrow(cvmx_llm_address_t address, int set)
{
cvmx_llm_data_t value;
if (set)
{
CVMX_MT_LLM_READ_ADDR(1, address.u64);
CVMX_MF_LLM_DATA(1, value.u64);
}
else
{
CVMX_MT_LLM_READ_ADDR(0, address.u64);
CVMX_MF_LLM_DATA(0, value.u64);
}
return value;
}
/**
* Read from LLM memory - 64 bit
*
* @param address Address in LLM to read. Consecutive reads increment the
* address by 8. The replication mode is also encoded in this
* address.
* @param set Which of the two coprocessor 2 register sets to use for the
* write. May be used to get two outstanding LLM access at once
* per core. Range: 0-1
* @return The result of the read
*/
static inline uint64_t cvmx_llm_read_wide(cvmx_llm_address_t address, int set)
{
uint64_t value;
if (set)
{
CVMX_MT_LLM_READ64_ADDR(1, address);
CVMX_MF_LLM_DATA(1, value);
}
else
{
CVMX_MT_LLM_READ64_ADDR(0, address);
CVMX_MF_LLM_DATA(0, value);
}
return value;
}
#define RLD_INIT_DELAY (1<<18)
/* This structure describes the RLDRAM configuration for a board. This structure
** must be populated with the correct values and passed to the initialization function.
*/
typedef struct
{
uint32_t cpu_hz; /* CPU frequency in Hz */
char addr_rld0_fb_str [100]; /* String describing RLDRAM connections on rld 0 front (0) bunk*/
char addr_rld0_bb_str [100]; /* String describing RLDRAM connections on rld 0 back (1) bunk*/
char addr_rld1_fb_str [100]; /* String describing RLDRAM connections on rld 1 front (0) bunk*/
char addr_rld1_bb_str [100]; /* String describing RLDRAM connections on rld 1 back (1) bunk*/
uint8_t rld0_bunks; /* Number of bunks on rld 0 (0 is disabled) */
uint8_t rld1_bunks; /* Number of bunks on rld 1 (0 is disabled) */
uint16_t rld0_mbytes; /* mbytes on rld 0 */
uint16_t rld1_mbytes; /* mbytes on rld 1 */
uint16_t max_rld_clock_mhz; /* Maximum RLD clock in MHz, only used for CN58XX */
} llm_descriptor_t;
/**
* Initialize LLM memory controller. This must be done
* before the low latency memory can be used.
* This is simply a wrapper around cvmx_llm_initialize_desc(),
* and is deprecated.
*
* @return -1 on error
* 0 on success
*/
int cvmx_llm_initialize(void);
/**
* Initialize LLM memory controller. This must be done
* before the low latency memory can be used.
*
* @param llm_desc_ptr
* Pointer to descriptor structure. If NULL
* is passed, a default setting is used if available.
*
* @return -1 on error
* Size of llm in bytes on success
*/
int cvmx_llm_initialize_desc(llm_descriptor_t *llm_desc_ptr);
/**
* Gets the default llm descriptor for the board code is being run on.
*
* @param llm_desc_ptr
* Pointer to descriptor structure to be filled in. Contents are only
* valid after successful completion. Must not be NULL.
*
* @return -1 on error
* 0 on success
*/
int cvmx_llm_get_default_descriptor(llm_descriptor_t *llm_desc_ptr);
#ifdef __cplusplus
}
#endif
#endif /* __CVM_LLM_H__ */