Tim Chase 5284f43a1e Avoid Linux hung task message in ZTHR
Use an interruptible to avoid Linux hung task message in
ZTHR and to prevent inflating the load average.

Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes #7440 
Closes #7441
2018-04-15 15:12:28 -07:00

320 lines
8.6 KiB
C

/*
* CDDL HEADER START
*
* This file and its contents are supplied under the terms of the
* Common Development and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terms of version
* 1.0 of the CDDL.
*
* A full copy of the text of the CDDL should have accompanied this
* source. A copy of the CDDL is also available via the Internet at
* http://www.illumos.org/license/CDDL.
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2017 by Delphix. All rights reserved.
*/
/*
* ZTHR Infrastructure
* ===================
*
* ZTHR threads are used for isolated operations that span multiple txgs
* within a SPA. They generally exist from SPA creation/loading and until
* the SPA is exported/destroyed. The ideal requirements for an operation
* to be modeled with a zthr are the following:
*
* 1] The operation needs to run over multiple txgs.
* 2] There is be a single point of reference in memory or on disk that
* indicates whether the operation should run/is running or is
* stopped.
*
* If the operation satisfies the above then the following rules guarantee
* a certain level of correctness:
*
* 1] Any thread EXCEPT the zthr changes the work indicator from stopped
* to running but not the opposite.
* 2] Only the zthr can change the work indicator from running to stopped
* (e.g. when it is done) but not the opposite.
*
* This way a normal zthr cycle should go like this:
*
* 1] An external thread changes the work indicator from stopped to
* running and wakes up the zthr.
* 2] The zthr wakes up, checks the indicator and starts working.
* 3] When the zthr is done, it changes the indicator to stopped, allowing
* a new cycle to start.
*
* == ZTHR creation
*
* Every zthr needs three inputs to start running:
*
* 1] A user-defined checker function (checkfunc) that decides whether
* the zthr should start working or go to sleep. The function should
* return TRUE when the zthr needs to work or FALSE to let it sleep,
* and should adhere to the following signature:
* boolean_t checkfunc_name(void *args, zthr_t *t);
*
* 2] A user-defined ZTHR function (func) which the zthr executes when
* it is not sleeping. The function should adhere to the following
* signature type:
* int func_name(void *args, zthr_t *t);
*
* 3] A void args pointer that will be passed to checkfunc and func
* implicitly by the infrastructure.
*
* The reason why the above API needs two different functions,
* instead of one that both checks and does the work, has to do with
* the zthr's internal lock (zthr_lock) and the allowed cancellation
* windows. We want to hold the zthr_lock while running checkfunc
* but not while running func. This way the zthr can be cancelled
* while doing work and not while checking for work.
*
* To start a zthr:
* zthr_t *zthr_pointer = zthr_create(checkfunc, func, args);
*
* After that you should be able to wakeup, cancel, and resume the
* zthr from another thread using zthr_pointer.
*
* NOTE: ZTHR threads could potentially wake up spuriously and the
* user should take this into account when writing a checkfunc.
* [see ZTHR state transitions]
*
* == ZTHR cancellation
*
* ZTHR threads must be cancelled when their SPA is being exported
* or when they need to be paused so they don't interfere with other
* operations.
*
* To cancel a zthr:
* zthr_cancel(zthr_pointer);
*
* To resume it:
* zthr_resume(zthr_pointer);
*
* A zthr will implicitly check if it has received a cancellation
* signal every time func returns and everytime it wakes up [see ZTHR
* state transitions below].
*
* At times, waiting for the zthr's func to finish its job may take
* time. This may be very time-consuming for some operations that
* need to cancel the SPA's zthrs (e.g spa_export). For this scenario
* the user can explicitly make their ZTHR function aware of incoming
* cancellation signals using zthr_iscancelled(). A common pattern for
* that looks like this:
*
* int
* func_name(void *args, zthr_t *t)
* {
* ... <unpack args> ...
* while (!work_done && !zthr_iscancelled(t)) {
* ... <do more work> ...
* }
* return (0);
* }
*
* == ZTHR exit
*
* For the rare cases where the zthr wants to stop running voluntarily
* while running its ZTHR function (func), we provide zthr_exit().
* When a zthr has voluntarily stopped running, it can be resumed with
* zthr_resume(), just like it would if it was cancelled by some other
* thread.
*
* == ZTHR cleanup
*
* Cancelling a zthr doesn't clean up its metadata (internal locks,
* function pointers to func and checkfunc, etc..). This is because
* we want to keep them around in case we want to resume the execution
* of the zthr later. Similarly for zthrs that exit themselves.
*
* To completely cleanup a zthr, cancel it first to ensure that it
* is not running and then use zthr_destroy().
*
* == ZTHR state transitions
*
* zthr creation
* +
* |
* | woke up
* | +--------------+ sleep
* | | ^
* | | |
* | | | FALSE
* | | |
* v v FALSE +
* cancelled? +---------> checkfunc?
* + ^ +
* | | |
* | | | TRUE
* | | |
* | | func returned v
* | +---------------+ func
* |
* | TRUE
* |
* v
* zthr stopped running
*
*/
#include <sys/zfs_context.h>
#include <sys/zthr.h>
void
zthr_exit(zthr_t *t, int rc)
{
ASSERT3P(t->zthr_thread, ==, curthread);
mutex_enter(&t->zthr_lock);
t->zthr_thread = NULL;
t->zthr_rc = rc;
cv_broadcast(&t->zthr_cv);
mutex_exit(&t->zthr_lock);
thread_exit();
}
static void
zthr_procedure(void *arg)
{
zthr_t *t = arg;
int rc = 0;
mutex_enter(&t->zthr_lock);
while (!t->zthr_cancel) {
if (t->zthr_checkfunc(t->zthr_arg, t)) {
mutex_exit(&t->zthr_lock);
rc = t->zthr_func(t->zthr_arg, t);
mutex_enter(&t->zthr_lock);
} else {
/* go to sleep */
cv_wait_sig(&t->zthr_cv, &t->zthr_lock);
}
}
mutex_exit(&t->zthr_lock);
zthr_exit(t, rc);
}
zthr_t *
zthr_create(zthr_checkfunc_t *checkfunc, zthr_func_t *func, void *arg)
{
zthr_t *t = kmem_zalloc(sizeof (*t), KM_SLEEP);
mutex_init(&t->zthr_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&t->zthr_cv, NULL, CV_DEFAULT, NULL);
mutex_enter(&t->zthr_lock);
t->zthr_checkfunc = checkfunc;
t->zthr_func = func;
t->zthr_arg = arg;
t->zthr_thread = thread_create(NULL, 0, zthr_procedure, t,
0, &p0, TS_RUN, minclsyspri);
mutex_exit(&t->zthr_lock);
return (t);
}
void
zthr_destroy(zthr_t *t)
{
VERIFY3P(t->zthr_thread, ==, NULL);
mutex_destroy(&t->zthr_lock);
cv_destroy(&t->zthr_cv);
kmem_free(t, sizeof (*t));
}
/*
* Note: If the zthr is not sleeping and misses the wakeup
* (e.g it is running its ZTHR function), it will check if
* there is work to do before going to sleep using its checker
* function [see ZTHR state transition in ZTHR block comment].
* Thus, missing the wakeup still yields the expected behavior.
*/
void
zthr_wakeup(zthr_t *t)
{
ASSERT3P(t->zthr_thread, !=, NULL);
mutex_enter(&t->zthr_lock);
cv_broadcast(&t->zthr_cv);
mutex_exit(&t->zthr_lock);
}
/*
* Note: If the zthr is not running (e.g. has been cancelled
* already), this is a no-op.
*/
int
zthr_cancel(zthr_t *t)
{
int rc = 0;
mutex_enter(&t->zthr_lock);
/* broadcast in case the zthr is sleeping */
cv_broadcast(&t->zthr_cv);
t->zthr_cancel = B_TRUE;
while (t->zthr_thread != NULL)
cv_wait(&t->zthr_cv, &t->zthr_lock);
t->zthr_cancel = B_FALSE;
rc = t->zthr_rc;
mutex_exit(&t->zthr_lock);
return (rc);
}
void
zthr_resume(zthr_t *t)
{
ASSERT3P(t->zthr_thread, ==, NULL);
mutex_enter(&t->zthr_lock);
ASSERT3P(&t->zthr_checkfunc, !=, NULL);
ASSERT3P(&t->zthr_func, !=, NULL);
ASSERT(!t->zthr_cancel);
t->zthr_thread = thread_create(NULL, 0, zthr_procedure, t,
0, &p0, TS_RUN, minclsyspri);
mutex_exit(&t->zthr_lock);
}
/*
* This function is intended to be used by the zthr itself
* to check if another thread has signal it to stop running.
*
* returns TRUE if we are in the middle of trying to cancel
* this thread.
*
* returns FALSE otherwise.
*/
boolean_t
zthr_iscancelled(zthr_t *t)
{
boolean_t cancelled;
ASSERT3P(t->zthr_thread, ==, curthread);
mutex_enter(&t->zthr_lock);
cancelled = t->zthr_cancel;
mutex_exit(&t->zthr_lock);
return (cancelled);
}
boolean_t
zthr_isrunning(zthr_t *t)
{
boolean_t running;
mutex_enter(&t->zthr_lock);
running = (t->zthr_thread != NULL);
mutex_exit(&t->zthr_lock);
return (running);
}