Warner Losh f36cfd49ad Remove advertising clause from University of California Regent's
license, per letter dated July 22, 1999 and email from Peter Wemm,
Alan Cox and Robert Watson.

Approved by: core, peter, alc, rwatson
2004-04-07 20:46:16 +00:00

691 lines
14 KiB
C

/*-
* Copyright (c) 1993 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Functions to provide access to special i386 instructions.
* This in included in sys/systm.h, and that file should be
* used in preference to this.
*/
#ifndef _MACHINE_CPUFUNC_H_
#define _MACHINE_CPUFUNC_H_
struct region_descriptor;
#define readb(va) (*(volatile u_int8_t *) (va))
#define readw(va) (*(volatile u_int16_t *) (va))
#define readl(va) (*(volatile u_int32_t *) (va))
#define writeb(va, d) (*(volatile u_int8_t *) (va) = (d))
#define writew(va, d) (*(volatile u_int16_t *) (va) = (d))
#define writel(va, d) (*(volatile u_int32_t *) (va) = (d))
#if defined(__GNUC__) || defined(__INTEL_COMPILER)
static __inline void
breakpoint(void)
{
__asm __volatile("int $3");
}
static __inline u_int
bsfl(u_int mask)
{
u_int result;
__asm __volatile("bsfl %1,%0" : "=r" (result) : "rm" (mask));
return (result);
}
static __inline u_int
bsrl(u_int mask)
{
u_int result;
__asm __volatile("bsrl %1,%0" : "=r" (result) : "rm" (mask));
return (result);
}
static __inline void
disable_intr(void)
{
__asm __volatile("cli" : : : "memory");
}
static __inline void
do_cpuid(u_int ax, u_int *p)
{
__asm __volatile("cpuid"
: "=a" (p[0]), "=b" (p[1]), "=c" (p[2]), "=d" (p[3])
: "0" (ax));
}
static __inline void
enable_intr(void)
{
__asm __volatile("sti");
}
#ifdef _KERNEL
#define HAVE_INLINE_FFS
static __inline int
ffs(int mask)
{
/*
* Note that gcc-2's builtin ffs would be used if we didn't declare
* this inline or turn off the builtin. The builtin is faster but
* broken in gcc-2.4.5 and slower but working in gcc-2.5 and later
* versions.
*/
return (mask == 0 ? mask : (int)bsfl((u_int)mask) + 1);
}
#define HAVE_INLINE_FLS
static __inline int
fls(int mask)
{
return (mask == 0 ? mask : (int)bsrl((u_int)mask) + 1);
}
#endif /* _KERNEL */
static __inline void
halt(void)
{
__asm __volatile("hlt");
}
#if __GNUC__ < 2
#define inb(port) inbv(port)
#define outb(port, data) outbv(port, data)
#else /* __GNUC >= 2 */
/*
* The following complications are to get around gcc not having a
* constraint letter for the range 0..255. We still put "d" in the
* constraint because "i" isn't a valid constraint when the port
* isn't constant. This only matters for -O0 because otherwise
* the non-working version gets optimized away.
*
* Use an expression-statement instead of a conditional expression
* because gcc-2.6.0 would promote the operands of the conditional
* and produce poor code for "if ((inb(var) & const1) == const2)".
*
* The unnecessary test `(port) < 0x10000' is to generate a warning if
* the `port' has type u_short or smaller. Such types are pessimal.
* This actually only works for signed types. The range check is
* careful to avoid generating warnings.
*/
#define inb(port) __extension__ ({ \
u_char _data; \
if (__builtin_constant_p(port) && ((port) & 0xffff) < 0x100 \
&& (port) < 0x10000) \
_data = inbc(port); \
else \
_data = inbv(port); \
_data; })
#define outb(port, data) ( \
__builtin_constant_p(port) && ((port) & 0xffff) < 0x100 \
&& (port) < 0x10000 \
? outbc(port, data) : outbv(port, data))
static __inline u_char
inbc(u_int port)
{
u_char data;
__asm __volatile("inb %1,%0" : "=a" (data) : "id" ((u_short)(port)));
return (data);
}
static __inline void
outbc(u_int port, u_char data)
{
__asm __volatile("outb %0,%1" : : "a" (data), "id" ((u_short)(port)));
}
#endif /* __GNUC <= 2 */
static __inline u_char
inbv(u_int port)
{
u_char data;
/*
* We use %%dx and not %1 here because i/o is done at %dx and not at
* %edx, while gcc generates inferior code (movw instead of movl)
* if we tell it to load (u_short) port.
*/
__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
return (data);
}
static __inline u_int
inl(u_int port)
{
u_int data;
__asm __volatile("inl %%dx,%0" : "=a" (data) : "d" (port));
return (data);
}
static __inline void
insb(u_int port, void *addr, size_t cnt)
{
__asm __volatile("cld; rep; insb"
: "+D" (addr), "+c" (cnt)
: "d" (port)
: "memory");
}
static __inline void
insw(u_int port, void *addr, size_t cnt)
{
__asm __volatile("cld; rep; insw"
: "+D" (addr), "+c" (cnt)
: "d" (port)
: "memory");
}
static __inline void
insl(u_int port, void *addr, size_t cnt)
{
__asm __volatile("cld; rep; insl"
: "+D" (addr), "+c" (cnt)
: "d" (port)
: "memory");
}
static __inline void
invd(void)
{
__asm __volatile("invd");
}
static __inline u_short
inw(u_int port)
{
u_short data;
__asm __volatile("inw %%dx,%0" : "=a" (data) : "d" (port));
return (data);
}
static __inline void
outbv(u_int port, u_char data)
{
u_char al;
/*
* Use an unnecessary assignment to help gcc's register allocator.
* This make a large difference for gcc-1.40 and a tiny difference
* for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
* best results. gcc-2.6.0 can't handle this.
*/
al = data;
__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
}
static __inline void
outl(u_int port, u_int data)
{
/*
* outl() and outw() aren't used much so we haven't looked at
* possible micro-optimizations such as the unnecessary
* assignment for them.
*/
__asm __volatile("outl %0,%%dx" : : "a" (data), "d" (port));
}
static __inline void
outsb(u_int port, const void *addr, size_t cnt)
{
__asm __volatile("cld; rep; outsb"
: "+S" (addr), "+c" (cnt)
: "d" (port));
}
static __inline void
outsw(u_int port, const void *addr, size_t cnt)
{
__asm __volatile("cld; rep; outsw"
: "+S" (addr), "+c" (cnt)
: "d" (port));
}
static __inline void
outsl(u_int port, const void *addr, size_t cnt)
{
__asm __volatile("cld; rep; outsl"
: "+S" (addr), "+c" (cnt)
: "d" (port));
}
static __inline void
outw(u_int port, u_short data)
{
__asm __volatile("outw %0,%%dx" : : "a" (data), "d" (port));
}
static __inline void
ia32_pause(void)
{
__asm __volatile("pause");
}
static __inline u_int
read_eflags(void)
{
u_int ef;
__asm __volatile("pushfl; popl %0" : "=r" (ef));
return (ef);
}
static __inline u_int64_t
rdmsr(u_int msr)
{
u_int64_t rv;
__asm __volatile("rdmsr" : "=A" (rv) : "c" (msr));
return (rv);
}
static __inline u_int64_t
rdpmc(u_int pmc)
{
u_int64_t rv;
__asm __volatile("rdpmc" : "=A" (rv) : "c" (pmc));
return (rv);
}
static __inline u_int64_t
rdtsc(void)
{
u_int64_t rv;
__asm __volatile("rdtsc" : "=A" (rv));
return (rv);
}
static __inline void
wbinvd(void)
{
__asm __volatile("wbinvd");
}
static __inline void
write_eflags(u_int ef)
{
__asm __volatile("pushl %0; popfl" : : "r" (ef));
}
static __inline void
wrmsr(u_int msr, u_int64_t newval)
{
__asm __volatile("wrmsr" : : "A" (newval), "c" (msr));
}
static __inline void
load_cr0(u_int data)
{
__asm __volatile("movl %0,%%cr0" : : "r" (data));
}
static __inline u_int
rcr0(void)
{
u_int data;
__asm __volatile("movl %%cr0,%0" : "=r" (data));
return (data);
}
static __inline u_int
rcr2(void)
{
u_int data;
__asm __volatile("movl %%cr2,%0" : "=r" (data));
return (data);
}
static __inline void
load_cr3(u_int data)
{
__asm __volatile("movl %0,%%cr3" : : "r" (data) : "memory");
}
static __inline u_int
rcr3(void)
{
u_int data;
__asm __volatile("movl %%cr3,%0" : "=r" (data));
return (data);
}
static __inline void
load_cr4(u_int data)
{
__asm __volatile("movl %0,%%cr4" : : "r" (data));
}
static __inline u_int
rcr4(void)
{
u_int data;
__asm __volatile("movl %%cr4,%0" : "=r" (data));
return (data);
}
/*
* Global TLB flush (except for thise for pages marked PG_G)
*/
static __inline void
invltlb(void)
{
load_cr3(rcr3());
}
/*
* TLB flush for an individual page (even if it has PG_G).
* Only works on 486+ CPUs (i386 does not have PG_G).
*/
static __inline void
invlpg(u_int addr)
{
__asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory");
}
static __inline u_int
rfs(void)
{
u_int sel;
__asm __volatile("movl %%fs,%0" : "=rm" (sel));
return (sel);
}
static __inline u_int
rgs(void)
{
u_int sel;
__asm __volatile("movl %%gs,%0" : "=rm" (sel));
return (sel);
}
static __inline u_int
rss(void)
{
u_int sel;
__asm __volatile("movl %%ss,%0" : "=rm" (sel));
return (sel);
}
static __inline void
load_fs(u_int sel)
{
__asm __volatile("movl %0,%%fs" : : "rm" (sel));
}
static __inline void
load_gs(u_int sel)
{
__asm __volatile("movl %0,%%gs" : : "rm" (sel));
}
static __inline void
lidt(struct region_descriptor *addr)
{
__asm __volatile("lidt (%0)" : : "r" (addr));
}
static __inline void
lldt(u_short sel)
{
__asm __volatile("lldt %0" : : "r" (sel));
}
static __inline void
ltr(u_short sel)
{
__asm __volatile("ltr %0" : : "r" (sel));
}
static __inline u_int
rdr0(void)
{
u_int data;
__asm __volatile("movl %%dr0,%0" : "=r" (data));
return (data);
}
static __inline void
load_dr0(u_int dr0)
{
__asm __volatile("movl %0,%%dr0" : : "r" (dr0));
}
static __inline u_int
rdr1(void)
{
u_int data;
__asm __volatile("movl %%dr1,%0" : "=r" (data));
return (data);
}
static __inline void
load_dr1(u_int dr1)
{
__asm __volatile("movl %0,%%dr1" : : "r" (dr1));
}
static __inline u_int
rdr2(void)
{
u_int data;
__asm __volatile("movl %%dr2,%0" : "=r" (data));
return (data);
}
static __inline void
load_dr2(u_int dr2)
{
__asm __volatile("movl %0,%%dr2" : : "r" (dr2));
}
static __inline u_int
rdr3(void)
{
u_int data;
__asm __volatile("movl %%dr3,%0" : "=r" (data));
return (data);
}
static __inline void
load_dr3(u_int dr3)
{
__asm __volatile("movl %0,%%dr3" : : "r" (dr3));
}
static __inline u_int
rdr4(void)
{
u_int data;
__asm __volatile("movl %%dr4,%0" : "=r" (data));
return (data);
}
static __inline void
load_dr4(u_int dr4)
{
__asm __volatile("movl %0,%%dr4" : : "r" (dr4));
}
static __inline u_int
rdr5(void)
{
u_int data;
__asm __volatile("movl %%dr5,%0" : "=r" (data));
return (data);
}
static __inline void
load_dr5(u_int dr5)
{
__asm __volatile("movl %0,%%dr5" : : "r" (dr5));
}
static __inline u_int
rdr6(void)
{
u_int data;
__asm __volatile("movl %%dr6,%0" : "=r" (data));
return (data);
}
static __inline void
load_dr6(u_int dr6)
{
__asm __volatile("movl %0,%%dr6" : : "r" (dr6));
}
static __inline u_int
rdr7(void)
{
u_int data;
__asm __volatile("movl %%dr7,%0" : "=r" (data));
return (data);
}
static __inline void
load_dr7(u_int dr7)
{
__asm __volatile("movl %0,%%dr7" : : "r" (dr7));
}
static __inline register_t
intr_disable(void)
{
register_t eflags;
eflags = read_eflags();
disable_intr();
return (eflags);
}
static __inline void
intr_restore(register_t eflags)
{
write_eflags(eflags);
}
#else /* !(__GNUC__ || __INTEL_COMPILER) */
int breakpoint(void);
u_int bsfl(u_int mask);
u_int bsrl(u_int mask);
void disable_intr(void);
void do_cpuid(u_int ax, u_int *p);
void enable_intr(void);
void halt(void);
void ia32_pause(void);
u_char inb(u_int port);
u_int inl(u_int port);
void insb(u_int port, void *addr, size_t cnt);
void insl(u_int port, void *addr, size_t cnt);
void insw(u_int port, void *addr, size_t cnt);
register_t intr_disable(void);
void intr_restore(register_t ef);
void invd(void);
void invlpg(u_int addr);
void invltlb(void);
u_short inw(u_int port);
void lidt(struct region_descriptor *addr);
void lldt(u_short sel);
void load_cr0(u_int cr0);
void load_cr3(u_int cr3);
void load_cr4(u_int cr4);
void load_dr0(u_int dr0);
void load_dr1(u_int dr1);
void load_dr2(u_int dr2);
void load_dr3(u_int dr3);
void load_dr4(u_int dr4);
void load_dr5(u_int dr5);
void load_dr6(u_int dr6);
void load_dr7(u_int dr7);
void load_fs(u_int sel);
void load_gs(u_int sel);
void ltr(u_short sel);
void outb(u_int port, u_char data);
void outl(u_int port, u_int data);
void outsb(u_int port, const void *addr, size_t cnt);
void outsl(u_int port, const void *addr, size_t cnt);
void outsw(u_int port, const void *addr, size_t cnt);
void outw(u_int port, u_short data);
u_int rcr0(void);
u_int rcr2(void);
u_int rcr3(void);
u_int rcr4(void);
u_int64_t rdmsr(u_int msr);
u_int64_t rdpmc(u_int pmc);
u_int rdr0(void);
u_int rdr1(void);
u_int rdr2(void);
u_int rdr3(void);
u_int rdr4(void);
u_int rdr5(void);
u_int rdr6(void);
u_int rdr7(void);
u_int64_t rdtsc(void);
u_int read_eflags(void);
u_int rfs(void);
u_int rgs(void);
void wbinvd(void);
void write_eflags(u_int ef);
void wrmsr(u_int msr, u_int64_t newval);
#endif /* __GNUC__ || __INTEL_COMPILER */
void reset_dbregs(void);
#endif /* !_MACHINE_CPUFUNC_H_ */