freebsd-nq/stand/efi/loader/main.c
Warner Losh 6bc860372d Interact is always called with NULL. Simplify code a little by
removing this argument, and expanding when rc is NULL. This
effectively completes the back out of custom scripts for tftp booted
loaders from r269153 that was started in r292344 with the new path
tricks that obsoleted it.

Submitted by: Netflix
2017-12-19 04:05:55 +00:00

937 lines
23 KiB
C

/*-
* Copyright (c) 2008-2010 Rui Paulo
* Copyright (c) 2006 Marcel Moolenaar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/disk.h>
#include <sys/param.h>
#include <sys/reboot.h>
#include <sys/boot.h>
#include <stdint.h>
#include <stand.h>
#include <string.h>
#include <setjmp.h>
#include <disk.h>
#include <efi.h>
#include <efilib.h>
#include <uuid.h>
#include <bootstrap.h>
#include <smbios.h>
#ifdef EFI_ZFS_BOOT
#include <libzfs.h>
#include "efizfs.h"
#endif
#include "loader_efi.h"
extern char bootprog_info[];
struct arch_switch archsw; /* MI/MD interface boundary */
EFI_GUID acpi = ACPI_TABLE_GUID;
EFI_GUID acpi20 = ACPI_20_TABLE_GUID;
EFI_GUID devid = DEVICE_PATH_PROTOCOL;
EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
EFI_GUID mps = MPS_TABLE_GUID;
EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL;
EFI_GUID smbios = SMBIOS_TABLE_GUID;
EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID;
EFI_GUID fdtdtb = FDT_TABLE_GUID;
EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL;
static EFI_LOADED_IMAGE *img;
#ifdef EFI_ZFS_BOOT
bool
efi_zfs_is_preferred(EFI_HANDLE *h)
{
return (h == img->DeviceHandle);
}
#endif
static int
has_keyboard(void)
{
EFI_STATUS status;
EFI_DEVICE_PATH *path;
EFI_HANDLE *hin, *hin_end, *walker;
UINTN sz;
int retval = 0;
/*
* Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and
* do the typical dance to get the right sized buffer.
*/
sz = 0;
hin = NULL;
status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
if (status == EFI_BUFFER_TOO_SMALL) {
hin = (EFI_HANDLE *)malloc(sz);
status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
hin);
if (EFI_ERROR(status))
free(hin);
}
if (EFI_ERROR(status))
return retval;
/*
* Look at each of the handles. If it supports the device path protocol,
* use it to get the device path for this handle. Then see if that
* device path matches either the USB device path for keyboards or the
* legacy device path for keyboards.
*/
hin_end = &hin[sz / sizeof(*hin)];
for (walker = hin; walker < hin_end; walker++) {
status = BS->HandleProtocol(*walker, &devid, (VOID **)&path);
if (EFI_ERROR(status))
continue;
while (!IsDevicePathEnd(path)) {
/*
* Check for the ACPI keyboard node. All PNP3xx nodes
* are keyboards of different flavors. Note: It is
* unclear of there's always a keyboard node when
* there's a keyboard controller, or if there's only one
* when a keyboard is detected at boot.
*/
if (DevicePathType(path) == ACPI_DEVICE_PATH &&
(DevicePathSubType(path) == ACPI_DP ||
DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
ACPI_HID_DEVICE_PATH *acpi;
acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
(acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
retval = 1;
goto out;
}
/*
* Check for USB keyboard node, if present. Unlike a
* PS/2 keyboard, these definitely only appear when
* connected to the system.
*/
} else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
DevicePathSubType(path) == MSG_USB_CLASS_DP) {
USB_CLASS_DEVICE_PATH *usb;
usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
if (usb->DeviceClass == 3 && /* HID */
usb->DeviceSubClass == 1 && /* Boot devices */
usb->DeviceProtocol == 1) { /* Boot keyboards */
retval = 1;
goto out;
}
}
path = NextDevicePathNode(path);
}
}
out:
free(hin);
return retval;
}
static void
set_devdesc_currdev(struct devsw *dev, int unit)
{
struct devdesc currdev;
char *devname;
currdev.d_dev = dev;
currdev.d_type = currdev.d_dev->dv_type;
currdev.d_unit = unit;
currdev.d_opendata = NULL;
devname = efi_fmtdev(&currdev);
env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev,
env_nounset);
env_setenv("loaddev", EV_VOLATILE, devname, env_noset, env_nounset);
}
static int
find_currdev(EFI_LOADED_IMAGE *img)
{
pdinfo_list_t *pdi_list;
pdinfo_t *dp, *pp;
EFI_DEVICE_PATH *devpath, *copy;
EFI_HANDLE h;
char *devname;
struct devsw *dev;
int unit;
uint64_t extra;
#ifdef EFI_ZFS_BOOT
/* Did efi_zfs_probe() detect the boot pool? */
if (pool_guid != 0) {
struct zfs_devdesc currdev;
currdev.d_dev = &zfs_dev;
currdev.d_unit = 0;
currdev.d_type = currdev.d_dev->dv_type;
currdev.d_opendata = NULL;
currdev.pool_guid = pool_guid;
currdev.root_guid = 0;
devname = efi_fmtdev(&currdev);
env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev,
env_nounset);
env_setenv("loaddev", EV_VOLATILE, devname, env_noset,
env_nounset);
init_zfs_bootenv(devname);
return (0);
}
#endif /* EFI_ZFS_BOOT */
/* We have device lists for hd, cd, fd, walk them all. */
pdi_list = efiblk_get_pdinfo_list(&efipart_hddev);
STAILQ_FOREACH(dp, pdi_list, pd_link) {
struct disk_devdesc currdev;
currdev.d_dev = &efipart_hddev;
currdev.d_type = currdev.d_dev->dv_type;
currdev.d_unit = dp->pd_unit;
currdev.d_opendata = NULL;
currdev.d_slice = -1;
currdev.d_partition = -1;
if (dp->pd_handle == img->DeviceHandle) {
devname = efi_fmtdev(&currdev);
env_setenv("currdev", EV_VOLATILE, devname,
efi_setcurrdev, env_nounset);
env_setenv("loaddev", EV_VOLATILE, devname,
env_noset, env_nounset);
return (0);
}
/* Assuming GPT partitioning. */
STAILQ_FOREACH(pp, &dp->pd_part, pd_link) {
if (pp->pd_handle == img->DeviceHandle) {
currdev.d_slice = pp->pd_unit;
currdev.d_partition = 255;
devname = efi_fmtdev(&currdev);
env_setenv("currdev", EV_VOLATILE, devname,
efi_setcurrdev, env_nounset);
env_setenv("loaddev", EV_VOLATILE, devname,
env_noset, env_nounset);
return (0);
}
}
}
pdi_list = efiblk_get_pdinfo_list(&efipart_cddev);
STAILQ_FOREACH(dp, pdi_list, pd_link) {
if (dp->pd_handle == img->DeviceHandle ||
dp->pd_alias == img->DeviceHandle) {
set_devdesc_currdev(&efipart_cddev, dp->pd_unit);
return (0);
}
}
pdi_list = efiblk_get_pdinfo_list(&efipart_fddev);
STAILQ_FOREACH(dp, pdi_list, pd_link) {
if (dp->pd_handle == img->DeviceHandle) {
set_devdesc_currdev(&efipart_fddev, dp->pd_unit);
return (0);
}
}
/*
* Try the device handle from our loaded image first. If that
* fails, use the device path from the loaded image and see if
* any of the nodes in that path match one of the enumerated
* handles.
*/
if (efi_handle_lookup(img->DeviceHandle, &dev, &unit, &extra) == 0) {
set_devdesc_currdev(dev, unit);
return (0);
}
copy = NULL;
devpath = efi_lookup_image_devpath(IH);
while (devpath != NULL) {
h = efi_devpath_handle(devpath);
if (h == NULL)
break;
free(copy);
copy = NULL;
if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) {
set_devdesc_currdev(dev, unit);
return (0);
}
devpath = efi_lookup_devpath(h);
if (devpath != NULL) {
copy = efi_devpath_trim(devpath);
devpath = copy;
}
}
free(copy);
return (ENOENT);
}
EFI_STATUS
main(int argc, CHAR16 *argv[])
{
char var[128];
EFI_GUID *guid;
int i, j, vargood, howto;
UINTN k;
int has_kbd;
#if !defined(__arm__)
char buf[40];
#endif
archsw.arch_autoload = efi_autoload;
archsw.arch_getdev = efi_getdev;
archsw.arch_copyin = efi_copyin;
archsw.arch_copyout = efi_copyout;
archsw.arch_readin = efi_readin;
#ifdef EFI_ZFS_BOOT
/* Note this needs to be set before ZFS init. */
archsw.arch_zfs_probe = efi_zfs_probe;
#endif
/* Get our loaded image protocol interface structure. */
BS->HandleProtocol(IH, &imgid, (VOID**)&img);
/* Init the time source */
efi_time_init();
has_kbd = has_keyboard();
/*
* XXX Chicken-and-egg problem; we want to have console output
* early, but some console attributes may depend on reading from
* eg. the boot device, which we can't do yet. We can use
* printf() etc. once this is done.
*/
cons_probe();
/*
* Initialise the block cache. Set the upper limit.
*/
bcache_init(32768, 512);
/*
* Parse the args to set the console settings, etc
* boot1.efi passes these in, if it can read /boot.config or /boot/config
* or iPXE may be setup to pass these in.
*
* Loop through the args, and for each one that contains an '=' that is
* not the first character, add it to the environment. This allows
* loader and kernel env vars to be passed on the command line. Convert
* args from UCS-2 to ASCII (16 to 8 bit) as they are copied.
*/
howto = 0;
for (i = 1; i < argc; i++) {
if (argv[i][0] == '-') {
for (j = 1; argv[i][j] != 0; j++) {
int ch;
ch = argv[i][j];
switch (ch) {
case 'a':
howto |= RB_ASKNAME;
break;
case 'd':
howto |= RB_KDB;
break;
case 'D':
howto |= RB_MULTIPLE;
break;
case 'h':
howto |= RB_SERIAL;
break;
case 'm':
howto |= RB_MUTE;
break;
case 'p':
howto |= RB_PAUSE;
break;
case 'P':
if (!has_kbd)
howto |= RB_SERIAL | RB_MULTIPLE;
break;
case 'r':
howto |= RB_DFLTROOT;
break;
case 's':
howto |= RB_SINGLE;
break;
case 'S':
if (argv[i][j + 1] == 0) {
if (i + 1 == argc) {
setenv("comconsole_speed", "115200", 1);
} else {
cpy16to8(&argv[i + 1][0], var,
sizeof(var));
setenv("comconsole_speed", var, 1);
}
i++;
break;
} else {
cpy16to8(&argv[i][j + 1], var,
sizeof(var));
setenv("comconsole_speed", var, 1);
break;
}
case 'v':
howto |= RB_VERBOSE;
break;
}
}
} else {
vargood = 0;
for (j = 0; argv[i][j] != 0; j++) {
if (j == sizeof(var)) {
vargood = 0;
break;
}
if (j > 0 && argv[i][j] == '=')
vargood = 1;
var[j] = (char)argv[i][j];
}
if (vargood) {
var[j] = 0;
putenv(var);
}
}
}
for (i = 0; howto_names[i].ev != NULL; i++)
if (howto & howto_names[i].mask)
setenv(howto_names[i].ev, "YES", 1);
if (howto & RB_MULTIPLE) {
if (howto & RB_SERIAL)
setenv("console", "comconsole efi" , 1);
else
setenv("console", "efi comconsole" , 1);
} else if (howto & RB_SERIAL) {
setenv("console", "comconsole" , 1);
}
if (efi_copy_init()) {
printf("failed to allocate staging area\n");
return (EFI_BUFFER_TOO_SMALL);
}
/*
* March through the device switch probing for things.
*/
for (i = 0; devsw[i] != NULL; i++)
if (devsw[i]->dv_init != NULL)
(devsw[i]->dv_init)();
printf("Command line arguments:");
for (i = 0; i < argc; i++)
printf(" %S", argv[i]);
printf("\n");
printf("Image base: 0x%lx\n", (u_long)img->ImageBase);
printf("EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
ST->Hdr.Revision & 0xffff);
printf("EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor,
ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff);
printf("\n%s", bootprog_info);
/*
* Disable the watchdog timer. By default the boot manager sets
* the timer to 5 minutes before invoking a boot option. If we
* want to return to the boot manager, we have to disable the
* watchdog timer and since we're an interactive program, we don't
* want to wait until the user types "quit". The timer may have
* fired by then. We don't care if this fails. It does not prevent
* normal functioning in any way...
*/
BS->SetWatchdogTimer(0, 0, 0, NULL);
if (find_currdev(img) != 0)
return (EFI_NOT_FOUND);
efi_init_environment();
setenv("LINES", "24", 1); /* optional */
for (k = 0; k < ST->NumberOfTableEntries; k++) {
guid = &ST->ConfigurationTable[k].VendorGuid;
#if !defined(__arm__)
if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) {
snprintf(buf, sizeof(buf), "%p",
ST->ConfigurationTable[k].VendorTable);
setenv("hint.smbios.0.mem", buf, 1);
smbios_detect(ST->ConfigurationTable[k].VendorTable);
break;
}
#endif
}
interact(); /* doesn't return */
return (EFI_SUCCESS); /* keep compiler happy */
}
COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
static int
command_reboot(int argc, char *argv[])
{
int i;
for (i = 0; devsw[i] != NULL; ++i)
if (devsw[i]->dv_cleanup != NULL)
(devsw[i]->dv_cleanup)();
RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL);
/* NOTREACHED */
return (CMD_ERROR);
}
COMMAND_SET(quit, "quit", "exit the loader", command_quit);
static int
command_quit(int argc, char *argv[])
{
exit(0);
return (CMD_OK);
}
COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
static int
command_memmap(int argc, char *argv[])
{
UINTN sz;
EFI_MEMORY_DESCRIPTOR *map, *p;
UINTN key, dsz;
UINT32 dver;
EFI_STATUS status;
int i, ndesc;
char line[80];
static char *types[] = {
"Reserved",
"LoaderCode",
"LoaderData",
"BootServicesCode",
"BootServicesData",
"RuntimeServicesCode",
"RuntimeServicesData",
"ConventionalMemory",
"UnusableMemory",
"ACPIReclaimMemory",
"ACPIMemoryNVS",
"MemoryMappedIO",
"MemoryMappedIOPortSpace",
"PalCode"
};
sz = 0;
status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
if (status != EFI_BUFFER_TOO_SMALL) {
printf("Can't determine memory map size\n");
return (CMD_ERROR);
}
map = malloc(sz);
status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
if (EFI_ERROR(status)) {
printf("Can't read memory map\n");
return (CMD_ERROR);
}
ndesc = sz / dsz;
snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n",
"Type", "Physical", "Virtual", "#Pages", "Attr");
pager_open();
if (pager_output(line)) {
pager_close();
return (CMD_OK);
}
for (i = 0, p = map; i < ndesc;
i++, p = NextMemoryDescriptor(p, dsz)) {
printf("%23s %012jx %012jx %08jx ", types[p->Type],
(uintmax_t)p->PhysicalStart, (uintmax_t)p->VirtualStart,
(uintmax_t)p->NumberOfPages);
if (p->Attribute & EFI_MEMORY_UC)
printf("UC ");
if (p->Attribute & EFI_MEMORY_WC)
printf("WC ");
if (p->Attribute & EFI_MEMORY_WT)
printf("WT ");
if (p->Attribute & EFI_MEMORY_WB)
printf("WB ");
if (p->Attribute & EFI_MEMORY_UCE)
printf("UCE ");
if (p->Attribute & EFI_MEMORY_WP)
printf("WP ");
if (p->Attribute & EFI_MEMORY_RP)
printf("RP ");
if (p->Attribute & EFI_MEMORY_XP)
printf("XP ");
if (pager_output("\n"))
break;
}
pager_close();
return (CMD_OK);
}
COMMAND_SET(configuration, "configuration", "print configuration tables",
command_configuration);
static const char *
guid_to_string(EFI_GUID *guid)
{
static char buf[40];
sprintf(buf, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",
guid->Data1, guid->Data2, guid->Data3, guid->Data4[0],
guid->Data4[1], guid->Data4[2], guid->Data4[3], guid->Data4[4],
guid->Data4[5], guid->Data4[6], guid->Data4[7]);
return (buf);
}
static int
command_configuration(int argc, char *argv[])
{
char line[80];
UINTN i;
snprintf(line, sizeof(line), "NumberOfTableEntries=%lu\n",
(unsigned long)ST->NumberOfTableEntries);
pager_open();
if (pager_output(line)) {
pager_close();
return (CMD_OK);
}
for (i = 0; i < ST->NumberOfTableEntries; i++) {
EFI_GUID *guid;
printf(" ");
guid = &ST->ConfigurationTable[i].VendorGuid;
if (!memcmp(guid, &mps, sizeof(EFI_GUID)))
printf("MPS Table");
else if (!memcmp(guid, &acpi, sizeof(EFI_GUID)))
printf("ACPI Table");
else if (!memcmp(guid, &acpi20, sizeof(EFI_GUID)))
printf("ACPI 2.0 Table");
else if (!memcmp(guid, &smbios, sizeof(EFI_GUID)))
printf("SMBIOS Table %p",
ST->ConfigurationTable[i].VendorTable);
else if (!memcmp(guid, &dxe, sizeof(EFI_GUID)))
printf("DXE Table");
else if (!memcmp(guid, &hoblist, sizeof(EFI_GUID)))
printf("HOB List Table");
else if (!memcmp(guid, &memtype, sizeof(EFI_GUID)))
printf("Memory Type Information Table");
else if (!memcmp(guid, &debugimg, sizeof(EFI_GUID)))
printf("Debug Image Info Table");
else if (!memcmp(guid, &fdtdtb, sizeof(EFI_GUID)))
printf("FDT Table");
else
printf("Unknown Table (%s)", guid_to_string(guid));
snprintf(line, sizeof(line), " at %p\n",
ST->ConfigurationTable[i].VendorTable);
if (pager_output(line))
break;
}
pager_close();
return (CMD_OK);
}
COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
static int
command_mode(int argc, char *argv[])
{
UINTN cols, rows;
unsigned int mode;
int i;
char *cp;
char rowenv[8];
EFI_STATUS status;
SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
extern void HO(void);
conout = ST->ConOut;
if (argc > 1) {
mode = strtol(argv[1], &cp, 0);
if (cp[0] != '\0') {
printf("Invalid mode\n");
return (CMD_ERROR);
}
status = conout->QueryMode(conout, mode, &cols, &rows);
if (EFI_ERROR(status)) {
printf("invalid mode %d\n", mode);
return (CMD_ERROR);
}
status = conout->SetMode(conout, mode);
if (EFI_ERROR(status)) {
printf("couldn't set mode %d\n", mode);
return (CMD_ERROR);
}
sprintf(rowenv, "%u", (unsigned)rows);
setenv("LINES", rowenv, 1);
HO(); /* set cursor */
return (CMD_OK);
}
printf("Current mode: %d\n", conout->Mode->Mode);
for (i = 0; i <= conout->Mode->MaxMode; i++) {
status = conout->QueryMode(conout, i, &cols, &rows);
if (EFI_ERROR(status))
continue;
printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
(unsigned)rows);
}
if (i != 0)
printf("Select a mode with the command \"mode <number>\"\n");
return (CMD_OK);
}
#ifdef EFI_ZFS_BOOT
COMMAND_SET(lszfs, "lszfs", "list child datasets of a zfs dataset",
command_lszfs);
static int
command_lszfs(int argc, char *argv[])
{
int err;
if (argc != 2) {
command_errmsg = "wrong number of arguments";
return (CMD_ERROR);
}
err = zfs_list(argv[1]);
if (err != 0) {
command_errmsg = strerror(err);
return (CMD_ERROR);
}
return (CMD_OK);
}
COMMAND_SET(reloadbe, "reloadbe", "refresh the list of ZFS Boot Environments",
command_reloadbe);
static int
command_reloadbe(int argc, char *argv[])
{
int err;
char *root;
if (argc > 2) {
command_errmsg = "wrong number of arguments";
return (CMD_ERROR);
}
if (argc == 2) {
err = zfs_bootenv(argv[1]);
} else {
root = getenv("zfs_be_root");
if (root == NULL) {
return (CMD_OK);
}
err = zfs_bootenv(root);
}
if (err != 0) {
command_errmsg = strerror(err);
return (CMD_ERROR);
}
return (CMD_OK);
}
#endif
#ifdef LOADER_FDT_SUPPORT
extern int command_fdt_internal(int argc, char *argv[]);
/*
* Since proper fdt command handling function is defined in fdt_loader_cmd.c,
* and declaring it as extern is in contradiction with COMMAND_SET() macro
* (which uses static pointer), we're defining wrapper function, which
* calls the proper fdt handling routine.
*/
static int
command_fdt(int argc, char *argv[])
{
return (command_fdt_internal(argc, argv));
}
COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
#endif
/*
* Chain load another efi loader.
*/
static int
command_chain(int argc, char *argv[])
{
EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL;
EFI_HANDLE loaderhandle;
EFI_LOADED_IMAGE *loaded_image;
EFI_STATUS status;
struct stat st;
struct devdesc *dev;
char *name, *path;
void *buf;
int fd;
if (argc < 2) {
command_errmsg = "wrong number of arguments";
return (CMD_ERROR);
}
name = argv[1];
if ((fd = open(name, O_RDONLY)) < 0) {
command_errmsg = "no such file";
return (CMD_ERROR);
}
if (fstat(fd, &st) < -1) {
command_errmsg = "stat failed";
close(fd);
return (CMD_ERROR);
}
status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf);
if (status != EFI_SUCCESS) {
command_errmsg = "failed to allocate buffer";
close(fd);
return (CMD_ERROR);
}
if (read(fd, buf, st.st_size) != st.st_size) {
command_errmsg = "error while reading the file";
(void)BS->FreePool(buf);
close(fd);
return (CMD_ERROR);
}
close(fd);
status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle);
(void)BS->FreePool(buf);
if (status != EFI_SUCCESS) {
command_errmsg = "LoadImage failed";
return (CMD_ERROR);
}
status = BS->HandleProtocol(loaderhandle, &LoadedImageGUID,
(void **)&loaded_image);
if (argc > 2) {
int i, len = 0;
CHAR16 *argp;
for (i = 2; i < argc; i++)
len += strlen(argv[i]) + 1;
len *= sizeof (*argp);
loaded_image->LoadOptions = argp = malloc (len);
loaded_image->LoadOptionsSize = len;
for (i = 2; i < argc; i++) {
char *ptr = argv[i];
while (*ptr)
*(argp++) = *(ptr++);
*(argp++) = ' ';
}
*(--argv) = 0;
}
if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) {
#ifdef EFI_ZFS_BOOT
struct zfs_devdesc *z_dev;
#endif
struct disk_devdesc *d_dev;
pdinfo_t *hd, *pd;
switch (dev->d_type) {
#ifdef EFI_ZFS_BOOT
case DEVT_ZFS:
z_dev = (struct zfs_devdesc *)dev;
loaded_image->DeviceHandle =
efizfs_get_handle_by_guid(z_dev->pool_guid);
break;
#endif
case DEVT_NET:
loaded_image->DeviceHandle =
efi_find_handle(dev->d_dev, dev->d_unit);
break;
default:
hd = efiblk_get_pdinfo(dev);
if (STAILQ_EMPTY(&hd->pd_part)) {
loaded_image->DeviceHandle = hd->pd_handle;
break;
}
d_dev = (struct disk_devdesc *)dev;
STAILQ_FOREACH(pd, &hd->pd_part, pd_link) {
/*
* d_partition should be 255
*/
if (pd->pd_unit == (uint32_t)d_dev->d_slice) {
loaded_image->DeviceHandle =
pd->pd_handle;
break;
}
}
break;
}
}
dev_cleanup();
status = BS->StartImage(loaderhandle, NULL, NULL);
if (status != EFI_SUCCESS) {
command_errmsg = "StartImage failed";
free(loaded_image->LoadOptions);
loaded_image->LoadOptions = NULL;
status = BS->UnloadImage(loaded_image);
return (CMD_ERROR);
}
return (CMD_ERROR); /* not reached */
}
COMMAND_SET(chain, "chain", "chain load file", command_chain);