d2734cce68
Details about the motivation of this feature and its usage can be found in this blogpost: https://sdimitro.github.io/post/zpool-checkpoint/ A lightning talk of this feature can be found here: https://www.youtube.com/watch?v=fPQA8K40jAM Implementation details can be found in big block comment of spa_checkpoint.c Side-changes that are relevant to this commit but not explained elsewhere: * renames members of "struct metaslab trees to be shorter without losing meaning * space_map_{alloc,truncate}() accept a block size as a parameter. The reason is that in the current state all space maps that we allocate through the DMU use a global tunable (space_map_blksz) which defauls to 4KB. This is ok for metaslab space maps in terms of bandwirdth since they are scattered all over the disk. But for other space maps this default is probably not what we want. Examples are device removal's vdev_obsolete_sm or vdev_chedkpoint_sm from this review. Both of these have a 1:1 relationship with each vdev and could benefit from a bigger block size. Porting notes: * The part of dsl_scan_sync() which handles async destroys has been moved into the new dsl_process_async_destroys() function. * Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write to block device backed pools. * ZTS: * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg". * Don't use large dd block sizes on /dev/urandom under Linux in checkpoint_capacity. * Adopt Delphix-OS's setting of 4 (spa_asize_inflation = SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed its attempts to fill the pool * Create the base and nested pools with sync=disabled to speed up the "setup" phase. * Clear labels in test pool between checkpoint tests to avoid duplicate pool issues. * The import_rewind_device_replaced test has been marked as "known to fail" for the reasons listed in its DISCLAIMER. * New module parameters: zfs_spa_discard_memory_limit, zfs_remove_max_bytes_pause (not documented - debugging only) vdev_max_ms_count (formerly metaslabs_per_vdev) vdev_min_ms_count Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: John Kennedy <john.kennedy@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Richard Lowe <richlowe@richlowe.net> Ported-by: Tim Chase <tim@chase2k.com> Signed-off-by: Tim Chase <tim@chase2k.com> OpenZFS-issue: https://illumos.org/issues/9166 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8 Closes #7570
699 lines
18 KiB
C
699 lines
18 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
/*
|
|
* Copyright (c) 2012, 2017 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/space_map.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/zfeature.h>
|
|
|
|
/*
|
|
* Note on space map block size:
|
|
*
|
|
* The data for a given space map can be kept on blocks of any size.
|
|
* Larger blocks entail fewer i/o operations, but they also cause the
|
|
* DMU to keep more data in-core, and also to waste more i/o bandwidth
|
|
* when only a few blocks have changed since the last transaction group.
|
|
*/
|
|
|
|
/*
|
|
* Iterate through the space map, invoking the callback on each (non-debug)
|
|
* space map entry.
|
|
*/
|
|
int
|
|
space_map_iterate(space_map_t *sm, sm_cb_t callback, void *arg)
|
|
{
|
|
uint64_t *entry, *entry_map, *entry_map_end;
|
|
uint64_t bufsize, size, offset, end;
|
|
int error = 0;
|
|
|
|
end = space_map_length(sm);
|
|
|
|
bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
|
|
entry_map = vmem_alloc(bufsize, KM_SLEEP);
|
|
|
|
if (end > bufsize) {
|
|
dmu_prefetch(sm->sm_os, space_map_object(sm), 0, bufsize,
|
|
end - bufsize, ZIO_PRIORITY_SYNC_READ);
|
|
}
|
|
|
|
for (offset = 0; offset < end && error == 0; offset += bufsize) {
|
|
size = MIN(end - offset, bufsize);
|
|
VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
|
|
VERIFY(size != 0);
|
|
ASSERT3U(sm->sm_blksz, !=, 0);
|
|
|
|
dprintf("object=%llu offset=%llx size=%llx\n",
|
|
space_map_object(sm), offset, size);
|
|
|
|
error = dmu_read(sm->sm_os, space_map_object(sm), offset, size,
|
|
entry_map, DMU_READ_PREFETCH);
|
|
if (error != 0)
|
|
break;
|
|
|
|
entry_map_end = entry_map + (size / sizeof (uint64_t));
|
|
for (entry = entry_map; entry < entry_map_end && error == 0;
|
|
entry++) {
|
|
uint64_t e = *entry;
|
|
uint64_t offset, size;
|
|
|
|
if (SM_DEBUG_DECODE(e)) /* Skip debug entries */
|
|
continue;
|
|
|
|
offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) +
|
|
sm->sm_start;
|
|
size = SM_RUN_DECODE(e) << sm->sm_shift;
|
|
|
|
VERIFY0(P2PHASE(offset, 1ULL << sm->sm_shift));
|
|
VERIFY0(P2PHASE(size, 1ULL << sm->sm_shift));
|
|
VERIFY3U(offset, >=, sm->sm_start);
|
|
VERIFY3U(offset + size, <=, sm->sm_start + sm->sm_size);
|
|
error = callback(SM_TYPE_DECODE(e), offset, size, arg);
|
|
}
|
|
}
|
|
|
|
vmem_free(entry_map, bufsize);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Note: This function performs destructive actions - specifically
|
|
* it deletes entries from the end of the space map. Thus, callers
|
|
* should ensure that they are holding the appropriate locks for
|
|
* the space map that they provide.
|
|
*/
|
|
int
|
|
space_map_incremental_destroy(space_map_t *sm, sm_cb_t callback, void *arg,
|
|
dmu_tx_t *tx)
|
|
{
|
|
uint64_t bufsize, len;
|
|
uint64_t *entry_map;
|
|
int error = 0;
|
|
|
|
len = space_map_length(sm);
|
|
bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
|
|
entry_map = zio_buf_alloc(bufsize);
|
|
|
|
dmu_buf_will_dirty(sm->sm_dbuf, tx);
|
|
|
|
/*
|
|
* Since we can't move the starting offset of the space map
|
|
* (e.g there are reference on-disk pointing to it), we destroy
|
|
* its entries incrementally starting from the end.
|
|
*
|
|
* The logic that follows is basically the same as the one used
|
|
* in space_map_iterate() but it traverses the space map
|
|
* backwards:
|
|
*
|
|
* 1] We figure out the size of the buffer that we want to use
|
|
* to read the on-disk space map entries.
|
|
* 2] We figure out the offset at the end of the space map where
|
|
* we will start reading entries into our buffer.
|
|
* 3] We read the on-disk entries into the buffer.
|
|
* 4] We iterate over the entries from end to beginning calling
|
|
* the callback function on each one. As we move from entry
|
|
* to entry we decrease the size of the space map, deleting
|
|
* effectively each entry.
|
|
* 5] If there are no more entries in the space map or the
|
|
* callback returns a value other than 0, we stop iterating
|
|
* over the space map. If there are entries remaining and
|
|
* the callback returned zero we go back to step [1].
|
|
*/
|
|
uint64_t offset = 0, size = 0;
|
|
while (len > 0 && error == 0) {
|
|
size = MIN(bufsize, len);
|
|
|
|
VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
|
|
VERIFY3U(size, >, 0);
|
|
ASSERT3U(sm->sm_blksz, !=, 0);
|
|
|
|
offset = len - size;
|
|
|
|
IMPLY(bufsize > len, offset == 0);
|
|
IMPLY(bufsize == len, offset == 0);
|
|
IMPLY(bufsize < len, offset > 0);
|
|
|
|
|
|
EQUIV(size == len, offset == 0);
|
|
IMPLY(size < len, bufsize < len);
|
|
|
|
dprintf("object=%llu offset=%llx size=%llx\n",
|
|
space_map_object(sm), offset, size);
|
|
|
|
error = dmu_read(sm->sm_os, space_map_object(sm),
|
|
offset, size, entry_map, DMU_READ_PREFETCH);
|
|
if (error != 0)
|
|
break;
|
|
|
|
uint64_t num_entries = size / sizeof (uint64_t);
|
|
|
|
ASSERT3U(num_entries, >, 0);
|
|
|
|
while (num_entries > 0) {
|
|
uint64_t e, entry_offset, entry_size;
|
|
maptype_t type;
|
|
|
|
e = entry_map[num_entries - 1];
|
|
|
|
ASSERT3U(num_entries, >, 0);
|
|
ASSERT0(error);
|
|
|
|
if (SM_DEBUG_DECODE(e)) {
|
|
sm->sm_phys->smp_objsize -= sizeof (uint64_t);
|
|
space_map_update(sm);
|
|
len -= sizeof (uint64_t);
|
|
num_entries--;
|
|
continue;
|
|
}
|
|
|
|
type = SM_TYPE_DECODE(e);
|
|
entry_offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) +
|
|
sm->sm_start;
|
|
entry_size = SM_RUN_DECODE(e) << sm->sm_shift;
|
|
|
|
VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
|
|
VERIFY0(P2PHASE(entry_size, 1ULL << sm->sm_shift));
|
|
VERIFY3U(entry_offset, >=, sm->sm_start);
|
|
VERIFY3U(entry_offset + entry_size, <=,
|
|
sm->sm_start + sm->sm_size);
|
|
|
|
error = callback(type, entry_offset, entry_size, arg);
|
|
if (error != 0)
|
|
break;
|
|
|
|
if (type == SM_ALLOC)
|
|
sm->sm_phys->smp_alloc -= entry_size;
|
|
else
|
|
sm->sm_phys->smp_alloc += entry_size;
|
|
|
|
sm->sm_phys->smp_objsize -= sizeof (uint64_t);
|
|
space_map_update(sm);
|
|
len -= sizeof (uint64_t);
|
|
num_entries--;
|
|
}
|
|
IMPLY(error == 0, num_entries == 0);
|
|
EQUIV(offset == 0 && error == 0, len == 0 && num_entries == 0);
|
|
}
|
|
|
|
if (len == 0) {
|
|
ASSERT0(error);
|
|
ASSERT0(offset);
|
|
ASSERT0(sm->sm_length);
|
|
ASSERT0(sm->sm_phys->smp_objsize);
|
|
ASSERT0(sm->sm_alloc);
|
|
}
|
|
|
|
zio_buf_free(entry_map, bufsize);
|
|
return (error);
|
|
}
|
|
|
|
typedef struct space_map_load_arg {
|
|
space_map_t *smla_sm;
|
|
range_tree_t *smla_rt;
|
|
maptype_t smla_type;
|
|
} space_map_load_arg_t;
|
|
|
|
static int
|
|
space_map_load_callback(maptype_t type, uint64_t offset, uint64_t size,
|
|
void *arg)
|
|
{
|
|
space_map_load_arg_t *smla = arg;
|
|
if (type == smla->smla_type) {
|
|
VERIFY3U(range_tree_space(smla->smla_rt) + size, <=,
|
|
smla->smla_sm->sm_size);
|
|
range_tree_add(smla->smla_rt, offset, size);
|
|
} else {
|
|
range_tree_remove(smla->smla_rt, offset, size);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Load the space map disk into the specified range tree. Segments of maptype
|
|
* are added to the range tree, other segment types are removed.
|
|
*/
|
|
int
|
|
space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
|
|
{
|
|
uint64_t space;
|
|
int err;
|
|
space_map_load_arg_t smla;
|
|
|
|
VERIFY0(range_tree_space(rt));
|
|
space = space_map_allocated(sm);
|
|
|
|
if (maptype == SM_FREE) {
|
|
range_tree_add(rt, sm->sm_start, sm->sm_size);
|
|
space = sm->sm_size - space;
|
|
}
|
|
|
|
smla.smla_rt = rt;
|
|
smla.smla_sm = sm;
|
|
smla.smla_type = maptype;
|
|
err = space_map_iterate(sm, space_map_load_callback, &smla);
|
|
|
|
if (err == 0) {
|
|
VERIFY3U(range_tree_space(rt), ==, space);
|
|
} else {
|
|
range_tree_vacate(rt, NULL, NULL);
|
|
}
|
|
|
|
return (err);
|
|
}
|
|
|
|
void
|
|
space_map_histogram_clear(space_map_t *sm)
|
|
{
|
|
if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
|
|
return;
|
|
|
|
bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram));
|
|
}
|
|
|
|
boolean_t
|
|
space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
|
|
{
|
|
/*
|
|
* Verify that the in-core range tree does not have any
|
|
* ranges smaller than our sm_shift size.
|
|
*/
|
|
for (int i = 0; i < sm->sm_shift; i++) {
|
|
if (rt->rt_histogram[i] != 0)
|
|
return (B_FALSE);
|
|
}
|
|
return (B_TRUE);
|
|
}
|
|
|
|
void
|
|
space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
|
|
{
|
|
int idx = 0;
|
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
VERIFY3U(space_map_object(sm), !=, 0);
|
|
|
|
if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
|
|
return;
|
|
|
|
dmu_buf_will_dirty(sm->sm_dbuf, tx);
|
|
|
|
ASSERT(space_map_histogram_verify(sm, rt));
|
|
/*
|
|
* Transfer the content of the range tree histogram to the space
|
|
* map histogram. The space map histogram contains 32 buckets ranging
|
|
* between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
|
|
* however, can represent ranges from 2^0 to 2^63. Since the space
|
|
* map only cares about allocatable blocks (minimum of sm_shift) we
|
|
* can safely ignore all ranges in the range tree smaller than sm_shift.
|
|
*/
|
|
for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
|
|
|
|
/*
|
|
* Since the largest histogram bucket in the space map is
|
|
* 2^(32+sm_shift-1), we need to normalize the values in
|
|
* the range tree for any bucket larger than that size. For
|
|
* example given an sm_shift of 9, ranges larger than 2^40
|
|
* would get normalized as if they were 1TB ranges. Assume
|
|
* the range tree had a count of 5 in the 2^44 (16TB) bucket,
|
|
* the calculation below would normalize this to 5 * 2^4 (16).
|
|
*/
|
|
ASSERT3U(i, >=, idx + sm->sm_shift);
|
|
sm->sm_phys->smp_histogram[idx] +=
|
|
rt->rt_histogram[i] << (i - idx - sm->sm_shift);
|
|
|
|
/*
|
|
* Increment the space map's index as long as we haven't
|
|
* reached the maximum bucket size. Accumulate all ranges
|
|
* larger than the max bucket size into the last bucket.
|
|
*/
|
|
if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
|
|
ASSERT3U(idx + sm->sm_shift, ==, i);
|
|
idx++;
|
|
ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
|
|
}
|
|
}
|
|
}
|
|
|
|
uint64_t
|
|
space_map_entries(space_map_t *sm, range_tree_t *rt)
|
|
{
|
|
avl_tree_t *t = &rt->rt_root;
|
|
range_seg_t *rs;
|
|
uint64_t size, entries;
|
|
|
|
/*
|
|
* All space_maps always have a debug entry so account for it here.
|
|
*/
|
|
entries = 1;
|
|
|
|
/*
|
|
* Traverse the range tree and calculate the number of space map
|
|
* entries that would be required to write out the range tree.
|
|
*/
|
|
for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
|
|
size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
|
|
entries += howmany(size, SM_RUN_MAX);
|
|
}
|
|
return (entries);
|
|
}
|
|
|
|
void
|
|
space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
|
|
dmu_tx_t *tx)
|
|
{
|
|
objset_t *os = sm->sm_os;
|
|
spa_t *spa = dmu_objset_spa(os);
|
|
avl_tree_t *t = &rt->rt_root;
|
|
range_seg_t *rs;
|
|
uint64_t size, total, rt_space, nodes;
|
|
uint64_t *entry, *entry_map, *entry_map_end;
|
|
uint64_t expected_entries, actual_entries = 1;
|
|
|
|
ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
|
|
VERIFY3U(space_map_object(sm), !=, 0);
|
|
dmu_buf_will_dirty(sm->sm_dbuf, tx);
|
|
|
|
/*
|
|
* This field is no longer necessary since the in-core space map
|
|
* now contains the object number but is maintained for backwards
|
|
* compatibility.
|
|
*/
|
|
sm->sm_phys->smp_object = sm->sm_object;
|
|
|
|
if (range_tree_is_empty(rt)) {
|
|
VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
|
|
return;
|
|
}
|
|
|
|
if (maptype == SM_ALLOC)
|
|
sm->sm_phys->smp_alloc += range_tree_space(rt);
|
|
else
|
|
sm->sm_phys->smp_alloc -= range_tree_space(rt);
|
|
|
|
expected_entries = space_map_entries(sm, rt);
|
|
|
|
entry_map = vmem_alloc(sm->sm_blksz, KM_SLEEP);
|
|
entry_map_end = entry_map + (sm->sm_blksz / sizeof (uint64_t));
|
|
entry = entry_map;
|
|
|
|
*entry++ = SM_DEBUG_ENCODE(1) |
|
|
SM_DEBUG_ACTION_ENCODE(maptype) |
|
|
SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
|
|
SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
|
|
|
|
total = 0;
|
|
nodes = avl_numnodes(&rt->rt_root);
|
|
rt_space = range_tree_space(rt);
|
|
for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
|
|
uint64_t start;
|
|
|
|
size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
|
|
start = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
|
|
|
|
total += size << sm->sm_shift;
|
|
|
|
while (size != 0) {
|
|
uint64_t run_len;
|
|
|
|
run_len = MIN(size, SM_RUN_MAX);
|
|
|
|
if (entry == entry_map_end) {
|
|
dmu_write(os, space_map_object(sm),
|
|
sm->sm_phys->smp_objsize, sm->sm_blksz,
|
|
entry_map, tx);
|
|
sm->sm_phys->smp_objsize += sm->sm_blksz;
|
|
entry = entry_map;
|
|
}
|
|
|
|
*entry++ = SM_OFFSET_ENCODE(start) |
|
|
SM_TYPE_ENCODE(maptype) |
|
|
SM_RUN_ENCODE(run_len);
|
|
|
|
start += run_len;
|
|
size -= run_len;
|
|
actual_entries++;
|
|
}
|
|
}
|
|
|
|
if (entry != entry_map) {
|
|
size = (entry - entry_map) * sizeof (uint64_t);
|
|
dmu_write(os, space_map_object(sm), sm->sm_phys->smp_objsize,
|
|
size, entry_map, tx);
|
|
sm->sm_phys->smp_objsize += size;
|
|
}
|
|
ASSERT3U(expected_entries, ==, actual_entries);
|
|
|
|
/*
|
|
* Ensure that the space_map's accounting wasn't changed
|
|
* while we were in the middle of writing it out.
|
|
*/
|
|
VERIFY3U(nodes, ==, avl_numnodes(&rt->rt_root));
|
|
VERIFY3U(range_tree_space(rt), ==, rt_space);
|
|
VERIFY3U(range_tree_space(rt), ==, total);
|
|
|
|
vmem_free(entry_map, sm->sm_blksz);
|
|
}
|
|
|
|
static int
|
|
space_map_open_impl(space_map_t *sm)
|
|
{
|
|
int error;
|
|
u_longlong_t blocks;
|
|
|
|
error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
|
|
if (error)
|
|
return (error);
|
|
|
|
dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
|
|
sm->sm_phys = sm->sm_dbuf->db_data;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
|
|
uint64_t start, uint64_t size, uint8_t shift)
|
|
{
|
|
space_map_t *sm;
|
|
int error;
|
|
|
|
ASSERT(*smp == NULL);
|
|
ASSERT(os != NULL);
|
|
ASSERT(object != 0);
|
|
|
|
sm = kmem_alloc(sizeof (space_map_t), KM_SLEEP);
|
|
|
|
sm->sm_start = start;
|
|
sm->sm_size = size;
|
|
sm->sm_shift = shift;
|
|
sm->sm_os = os;
|
|
sm->sm_object = object;
|
|
sm->sm_length = 0;
|
|
sm->sm_alloc = 0;
|
|
sm->sm_blksz = 0;
|
|
sm->sm_dbuf = NULL;
|
|
sm->sm_phys = NULL;
|
|
|
|
error = space_map_open_impl(sm);
|
|
if (error != 0) {
|
|
space_map_close(sm);
|
|
return (error);
|
|
}
|
|
|
|
*smp = sm;
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
space_map_close(space_map_t *sm)
|
|
{
|
|
if (sm == NULL)
|
|
return;
|
|
|
|
if (sm->sm_dbuf != NULL)
|
|
dmu_buf_rele(sm->sm_dbuf, sm);
|
|
sm->sm_dbuf = NULL;
|
|
sm->sm_phys = NULL;
|
|
|
|
kmem_free(sm, sizeof (*sm));
|
|
}
|
|
|
|
void
|
|
space_map_truncate(space_map_t *sm, int blocksize, dmu_tx_t *tx)
|
|
{
|
|
objset_t *os = sm->sm_os;
|
|
spa_t *spa = dmu_objset_spa(os);
|
|
dmu_object_info_t doi;
|
|
|
|
ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa));
|
|
|
|
dmu_object_info_from_db(sm->sm_dbuf, &doi);
|
|
|
|
/*
|
|
* If the space map has the wrong bonus size (because
|
|
* SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or
|
|
* the wrong block size (because space_map_blksz has changed),
|
|
* free and re-allocate its object with the updated sizes.
|
|
*
|
|
* Otherwise, just truncate the current object.
|
|
*/
|
|
if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
|
|
doi.doi_bonus_size != sizeof (space_map_phys_t)) ||
|
|
doi.doi_data_block_size != blocksize) {
|
|
zfs_dbgmsg("txg %llu, spa %s, sm %p, reallocating "
|
|
"object[%llu]: old bonus %u, old blocksz %u",
|
|
dmu_tx_get_txg(tx), spa_name(spa), sm, sm->sm_object,
|
|
doi.doi_bonus_size, doi.doi_data_block_size);
|
|
|
|
space_map_free(sm, tx);
|
|
dmu_buf_rele(sm->sm_dbuf, sm);
|
|
|
|
sm->sm_object = space_map_alloc(sm->sm_os, blocksize, tx);
|
|
VERIFY0(space_map_open_impl(sm));
|
|
} else {
|
|
VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
|
|
|
|
/*
|
|
* If the spacemap is reallocated, its histogram
|
|
* will be reset. Do the same in the common case so that
|
|
* bugs related to the uncommon case do not go unnoticed.
|
|
*/
|
|
bzero(sm->sm_phys->smp_histogram,
|
|
sizeof (sm->sm_phys->smp_histogram));
|
|
}
|
|
|
|
dmu_buf_will_dirty(sm->sm_dbuf, tx);
|
|
sm->sm_phys->smp_objsize = 0;
|
|
sm->sm_phys->smp_alloc = 0;
|
|
}
|
|
|
|
/*
|
|
* Update the in-core space_map allocation and length values.
|
|
*/
|
|
void
|
|
space_map_update(space_map_t *sm)
|
|
{
|
|
if (sm == NULL)
|
|
return;
|
|
|
|
sm->sm_alloc = sm->sm_phys->smp_alloc;
|
|
sm->sm_length = sm->sm_phys->smp_objsize;
|
|
}
|
|
|
|
uint64_t
|
|
space_map_alloc(objset_t *os, int blocksize, dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa = dmu_objset_spa(os);
|
|
uint64_t object;
|
|
int bonuslen;
|
|
|
|
if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
|
|
spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
|
|
bonuslen = sizeof (space_map_phys_t);
|
|
ASSERT3U(bonuslen, <=, dmu_bonus_max());
|
|
} else {
|
|
bonuslen = SPACE_MAP_SIZE_V0;
|
|
}
|
|
|
|
object = dmu_object_alloc(os, DMU_OT_SPACE_MAP, blocksize,
|
|
DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
|
|
|
|
return (object);
|
|
}
|
|
|
|
void
|
|
space_map_free_obj(objset_t *os, uint64_t smobj, dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa = dmu_objset_spa(os);
|
|
if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
|
|
dmu_object_info_t doi;
|
|
|
|
VERIFY0(dmu_object_info(os, smobj, &doi));
|
|
if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
|
|
spa_feature_decr(spa,
|
|
SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
|
|
}
|
|
}
|
|
|
|
VERIFY0(dmu_object_free(os, smobj, tx));
|
|
}
|
|
|
|
void
|
|
space_map_free(space_map_t *sm, dmu_tx_t *tx)
|
|
{
|
|
if (sm == NULL)
|
|
return;
|
|
|
|
space_map_free_obj(sm->sm_os, space_map_object(sm), tx);
|
|
sm->sm_object = 0;
|
|
}
|
|
|
|
uint64_t
|
|
space_map_object(space_map_t *sm)
|
|
{
|
|
return (sm != NULL ? sm->sm_object : 0);
|
|
}
|
|
|
|
/*
|
|
* Returns the already synced, on-disk allocated space.
|
|
*/
|
|
uint64_t
|
|
space_map_allocated(space_map_t *sm)
|
|
{
|
|
return (sm != NULL ? sm->sm_alloc : 0);
|
|
}
|
|
|
|
/*
|
|
* Returns the already synced, on-disk length;
|
|
*/
|
|
uint64_t
|
|
space_map_length(space_map_t *sm)
|
|
{
|
|
return (sm != NULL ? sm->sm_length : 0);
|
|
}
|
|
|
|
/*
|
|
* Returns the allocated space that is currently syncing.
|
|
*/
|
|
int64_t
|
|
space_map_alloc_delta(space_map_t *sm)
|
|
{
|
|
if (sm == NULL)
|
|
return (0);
|
|
ASSERT(sm->sm_dbuf != NULL);
|
|
return (sm->sm_phys->smp_alloc - space_map_allocated(sm));
|
|
}
|