freebsd-nq/sys/arm/allwinner/aw_rtc.c
2020-11-25 11:20:04 +00:00

369 lines
9.8 KiB
C

/*-
* Copyright (c) 2019 Emmanuel Vadot <manu@FreeBSD.Org>
* Copyright (c) 2016 Vladimir Belian <fate10@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/time.h>
#include <sys/rman.h>
#include <sys/clock.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/resource.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/extres/clk/clk_fixed.h>
#include <arm/allwinner/aw_machdep.h>
#include "clock_if.h"
#define LOSC_CTRL_REG 0x00
#define A10_RTC_DATE_REG 0x04
#define A10_RTC_TIME_REG 0x08
#define A31_LOSC_AUTO_SWT_STA 0x04
#define A31_RTC_DATE_REG 0x10
#define A31_RTC_TIME_REG 0x14
#define TIME_MASK 0x001f3f3f
#define LOSC_OSC_SRC (1 << 0)
#define LOSC_GSM (1 << 3)
#define LOSC_AUTO_SW_EN (1 << 14)
#define LOSC_MAGIC 0x16aa0000
#define LOSC_BUSY_MASK 0x00000380
#define IS_SUN7I (sc->conf->is_a20 == true)
#define YEAR_MIN (IS_SUN7I ? 1970 : 2010)
#define YEAR_MAX (IS_SUN7I ? 2100 : 2073)
#define YEAR_OFFSET (IS_SUN7I ? 1900 : 2010)
#define YEAR_MASK (IS_SUN7I ? 0xff : 0x3f)
#define LEAP_BIT (IS_SUN7I ? 24 : 22)
#define GET_SEC_VALUE(x) ((x) & 0x0000003f)
#define GET_MIN_VALUE(x) (((x) & 0x00003f00) >> 8)
#define GET_HOUR_VALUE(x) (((x) & 0x001f0000) >> 16)
#define GET_DAY_VALUE(x) ((x) & 0x0000001f)
#define GET_MON_VALUE(x) (((x) & 0x00000f00) >> 8)
#define GET_YEAR_VALUE(x) (((x) >> 16) & YEAR_MASK)
#define SET_DAY_VALUE(x) GET_DAY_VALUE(x)
#define SET_MON_VALUE(x) (((x) & 0x0000000f) << 8)
#define SET_YEAR_VALUE(x) (((x) & YEAR_MASK) << 16)
#define SET_LEAP_VALUE(x) (((x) & 0x00000001) << LEAP_BIT)
#define SET_SEC_VALUE(x) GET_SEC_VALUE(x)
#define SET_MIN_VALUE(x) (((x) & 0x0000003f) << 8)
#define SET_HOUR_VALUE(x) (((x) & 0x0000001f) << 16)
#define HALF_OF_SEC_NS 500000000
#define RTC_RES_US 1000000
#define RTC_TIMEOUT 70
#define RTC_READ(sc, reg) bus_read_4((sc)->res, (reg))
#define RTC_WRITE(sc, reg, val) bus_write_4((sc)->res, (reg), (val))
#define IS_LEAP_YEAR(y) (((y) % 400) == 0 || (((y) % 100) != 0 && ((y) % 4) == 0))
struct aw_rtc_conf {
uint64_t iosc_freq;
bus_size_t rtc_date;
bus_size_t rtc_time;
bus_size_t rtc_losc_sta;
bool is_a20;
};
struct aw_rtc_conf a10_conf = {
.rtc_date = A10_RTC_DATE_REG,
.rtc_time = A10_RTC_TIME_REG,
.rtc_losc_sta = LOSC_CTRL_REG,
};
struct aw_rtc_conf a20_conf = {
.rtc_date = A10_RTC_DATE_REG,
.rtc_time = A10_RTC_TIME_REG,
.rtc_losc_sta = LOSC_CTRL_REG,
.is_a20 = true,
};
struct aw_rtc_conf a31_conf = {
.iosc_freq = 650000, /* between 600 and 700 Khz */
.rtc_date = A31_RTC_DATE_REG,
.rtc_time = A31_RTC_TIME_REG,
.rtc_losc_sta = A31_LOSC_AUTO_SWT_STA,
};
struct aw_rtc_conf h3_conf = {
.iosc_freq = 16000000,
.rtc_date = A31_RTC_DATE_REG,
.rtc_time = A31_RTC_TIME_REG,
.rtc_losc_sta = A31_LOSC_AUTO_SWT_STA,
};
static struct ofw_compat_data compat_data[] = {
{ "allwinner,sun4i-a10-rtc", (uintptr_t) &a10_conf },
{ "allwinner,sun7i-a20-rtc", (uintptr_t) &a20_conf },
{ "allwinner,sun6i-a31-rtc", (uintptr_t) &a31_conf },
{ "allwinner,sun8i-h3-rtc", (uintptr_t) &h3_conf },
{ "allwinner,sun50i-h5-rtc", (uintptr_t) &h3_conf },
{ "allwinner,sun50i-h6-rtc", (uintptr_t) &h3_conf },
{ NULL, 0 }
};
struct aw_rtc_softc {
struct resource *res;
struct aw_rtc_conf *conf;
int type;
};
static struct clk_fixed_def aw_rtc_osc32k = {
.clkdef.id = 0,
.freq = 32768,
};
static struct clk_fixed_def aw_rtc_iosc = {
.clkdef.id = 2,
};
static void aw_rtc_install_clocks(struct aw_rtc_softc *sc, device_t dev);
static int aw_rtc_probe(device_t dev);
static int aw_rtc_attach(device_t dev);
static int aw_rtc_detach(device_t dev);
static int aw_rtc_gettime(device_t dev, struct timespec *ts);
static int aw_rtc_settime(device_t dev, struct timespec *ts);
static device_method_t aw_rtc_methods[] = {
DEVMETHOD(device_probe, aw_rtc_probe),
DEVMETHOD(device_attach, aw_rtc_attach),
DEVMETHOD(device_detach, aw_rtc_detach),
DEVMETHOD(clock_gettime, aw_rtc_gettime),
DEVMETHOD(clock_settime, aw_rtc_settime),
DEVMETHOD_END
};
static driver_t aw_rtc_driver = {
"rtc",
aw_rtc_methods,
sizeof(struct aw_rtc_softc),
};
static devclass_t aw_rtc_devclass;
EARLY_DRIVER_MODULE(aw_rtc, simplebus, aw_rtc_driver, aw_rtc_devclass, 0, 0,
BUS_PASS_RESOURCE + BUS_PASS_ORDER_FIRST);
MODULE_VERSION(aw_rtc, 1);
SIMPLEBUS_PNP_INFO(compat_data);
static int
aw_rtc_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_search_compatible(dev, compat_data)->ocd_data)
return (ENXIO);
device_set_desc(dev, "Allwinner RTC");
return (BUS_PROBE_DEFAULT);
}
static int
aw_rtc_attach(device_t dev)
{
struct aw_rtc_softc *sc = device_get_softc(dev);
uint32_t val;
int rid = 0;
sc->res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE);
if (!sc->res) {
device_printf(dev, "could not allocate resources\n");
return (ENXIO);
}
sc->conf = (struct aw_rtc_conf *)ofw_bus_search_compatible(dev, compat_data)->ocd_data;
val = RTC_READ(sc, LOSC_CTRL_REG);
val |= LOSC_AUTO_SW_EN;
val |= LOSC_MAGIC | LOSC_GSM | LOSC_OSC_SRC;
RTC_WRITE(sc, LOSC_CTRL_REG, val);
DELAY(100);
if (bootverbose) {
val = RTC_READ(sc, sc->conf->rtc_losc_sta);
if ((val & LOSC_OSC_SRC) == 0)
device_printf(dev, "Using internal oscillator\n");
else
device_printf(dev, "Using external oscillator\n");
}
aw_rtc_install_clocks(sc, dev);
clock_register(dev, RTC_RES_US);
return (0);
}
static int
aw_rtc_detach(device_t dev)
{
/* can't support detach, since there's no clock_unregister function */
return (EBUSY);
}
static void
aw_rtc_install_clocks(struct aw_rtc_softc *sc, device_t dev) {
struct clkdom *clkdom;
const char **clknames;
phandle_t node;
int nclocks;
node = ofw_bus_get_node(dev);
nclocks = ofw_bus_string_list_to_array(node, "clock-output-names", &clknames);
/* No clocks to export */
if (nclocks <= 0)
return;
if (nclocks != 3) {
device_printf(dev, "Having only %d clocks instead of 3, aborting\n", nclocks);
return;
}
clkdom = clkdom_create(dev);
aw_rtc_osc32k.clkdef.name = clknames[0];
if (clknode_fixed_register(clkdom, &aw_rtc_osc32k) != 0)
device_printf(dev, "Cannot register osc32k clock\n");
aw_rtc_iosc.clkdef.name = clknames[2];
aw_rtc_iosc.freq = sc->conf->iosc_freq;
if (clknode_fixed_register(clkdom, &aw_rtc_iosc) != 0)
device_printf(dev, "Cannot register iosc clock\n");
clkdom_finit(clkdom);
if (bootverbose)
clkdom_dump(clkdom);
}
static int
aw_rtc_gettime(device_t dev, struct timespec *ts)
{
struct aw_rtc_softc *sc = device_get_softc(dev);
struct clocktime ct;
uint32_t rdate, rtime;
rdate = RTC_READ(sc, sc->conf->rtc_date);
rtime = RTC_READ(sc, sc->conf->rtc_time);
if ((rtime & TIME_MASK) == 0)
rdate = RTC_READ(sc, sc->conf->rtc_date);
ct.sec = GET_SEC_VALUE(rtime);
ct.min = GET_MIN_VALUE(rtime);
ct.hour = GET_HOUR_VALUE(rtime);
ct.day = GET_DAY_VALUE(rdate);
ct.mon = GET_MON_VALUE(rdate);
ct.year = GET_YEAR_VALUE(rdate) + YEAR_OFFSET;
ct.dow = -1;
/* RTC resolution is 1 sec */
ct.nsec = 0;
return (clock_ct_to_ts(&ct, ts));
}
static int
aw_rtc_settime(device_t dev, struct timespec *ts)
{
struct aw_rtc_softc *sc = device_get_softc(dev);
struct clocktime ct;
uint32_t clk, rdate, rtime;
/* RTC resolution is 1 sec */
if (ts->tv_nsec >= HALF_OF_SEC_NS)
ts->tv_sec++;
ts->tv_nsec = 0;
clock_ts_to_ct(ts, &ct);
if ((ct.year < YEAR_MIN) || (ct.year > YEAR_MAX)) {
device_printf(dev, "could not set time, year out of range\n");
return (EINVAL);
}
for (clk = 0; RTC_READ(sc, LOSC_CTRL_REG) & LOSC_BUSY_MASK; clk++) {
if (clk > RTC_TIMEOUT) {
device_printf(dev, "could not set time, RTC busy\n");
return (EINVAL);
}
DELAY(1);
}
/* reset time register to avoid unexpected date increment */
RTC_WRITE(sc, sc->conf->rtc_time, 0);
rdate = SET_DAY_VALUE(ct.day) | SET_MON_VALUE(ct.mon) |
SET_YEAR_VALUE(ct.year - YEAR_OFFSET) |
SET_LEAP_VALUE(IS_LEAP_YEAR(ct.year));
rtime = SET_SEC_VALUE(ct.sec) | SET_MIN_VALUE(ct.min) |
SET_HOUR_VALUE(ct.hour);
for (clk = 0; RTC_READ(sc, LOSC_CTRL_REG) & LOSC_BUSY_MASK; clk++) {
if (clk > RTC_TIMEOUT) {
device_printf(dev, "could not set date, RTC busy\n");
return (EINVAL);
}
DELAY(1);
}
RTC_WRITE(sc, sc->conf->rtc_date, rdate);
for (clk = 0; RTC_READ(sc, LOSC_CTRL_REG) & LOSC_BUSY_MASK; clk++) {
if (clk > RTC_TIMEOUT) {
device_printf(dev, "could not set time, RTC busy\n");
return (EINVAL);
}
DELAY(1);
}
RTC_WRITE(sc, sc->conf->rtc_time, rtime);
DELAY(RTC_TIMEOUT);
return (0);
}