freebsd-nq/sys/mips/atheros/if_arge.c
Svatopluk Kraus a1e1814d76 As <machine/pmap.h> is included from <vm/pmap.h>, there is no need to
include it explicitly when <vm/pmap.h> is already included.

Reviewed by:	alc, kib
Differential Revision:	https://reviews.freebsd.org/D5373
2016-02-22 09:02:20 +00:00

2725 lines
69 KiB
C

/*-
* Copyright (c) 2009, Oleksandr Tymoshenko
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* AR71XX gigabit ethernet driver
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include "opt_arge.h"
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/lock.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/taskqueue.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_media.h>
#include <net/ethernet.h>
#include <net/if_types.h>
#include <net/bpf.h>
#include <machine/bus.h>
#include <machine/cache.h>
#include <machine/resource.h>
#include <vm/vm_param.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include "opt_arge.h"
#if defined(ARGE_MDIO)
#include <dev/mdio/mdio.h>
#include <dev/etherswitch/miiproxy.h>
#include "mdio_if.h"
#endif
MODULE_DEPEND(arge, ether, 1, 1, 1);
MODULE_DEPEND(arge, miibus, 1, 1, 1);
MODULE_VERSION(arge, 1);
#include "miibus_if.h"
#include <net/ethernet.h>
#include <mips/atheros/ar71xxreg.h>
#include <mips/atheros/ar934xreg.h> /* XXX tsk! */
#include <mips/atheros/qca953xreg.h> /* XXX tsk! */
#include <mips/atheros/qca955xreg.h> /* XXX tsk! */
#include <mips/atheros/if_argevar.h>
#include <mips/atheros/ar71xx_setup.h>
#include <mips/atheros/ar71xx_cpudef.h>
#include <mips/atheros/ar71xx_macaddr.h>
typedef enum {
ARGE_DBG_MII = 0x00000001,
ARGE_DBG_INTR = 0x00000002,
ARGE_DBG_TX = 0x00000004,
ARGE_DBG_RX = 0x00000008,
ARGE_DBG_ERR = 0x00000010,
ARGE_DBG_RESET = 0x00000020,
ARGE_DBG_PLL = 0x00000040,
} arge_debug_flags;
static const char * arge_miicfg_str[] = {
"NONE",
"GMII",
"MII",
"RGMII",
"RMII",
"SGMII"
};
#ifdef ARGE_DEBUG
#define ARGEDEBUG(_sc, _m, ...) \
do { \
if ((_m) & (_sc)->arge_debug) \
device_printf((_sc)->arge_dev, __VA_ARGS__); \
} while (0)
#else
#define ARGEDEBUG(_sc, _m, ...)
#endif
static int arge_attach(device_t);
static int arge_detach(device_t);
static void arge_flush_ddr(struct arge_softc *);
static int arge_ifmedia_upd(struct ifnet *);
static void arge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int arge_ioctl(struct ifnet *, u_long, caddr_t);
static void arge_init(void *);
static void arge_init_locked(struct arge_softc *);
static void arge_link_task(void *, int);
static void arge_update_link_locked(struct arge_softc *sc);
static void arge_set_pll(struct arge_softc *, int, int);
static int arge_miibus_readreg(device_t, int, int);
static void arge_miibus_statchg(device_t);
static int arge_miibus_writereg(device_t, int, int, int);
static int arge_probe(device_t);
static void arge_reset_dma(struct arge_softc *);
static int arge_resume(device_t);
static int arge_rx_ring_init(struct arge_softc *);
static void arge_rx_ring_free(struct arge_softc *sc);
static int arge_tx_ring_init(struct arge_softc *);
static void arge_tx_ring_free(struct arge_softc *);
#ifdef DEVICE_POLLING
static int arge_poll(struct ifnet *, enum poll_cmd, int);
#endif
static int arge_shutdown(device_t);
static void arge_start(struct ifnet *);
static void arge_start_locked(struct ifnet *);
static void arge_stop(struct arge_softc *);
static int arge_suspend(device_t);
static int arge_rx_locked(struct arge_softc *);
static void arge_tx_locked(struct arge_softc *);
static void arge_intr(void *);
static int arge_intr_filter(void *);
static void arge_tick(void *);
static void arge_hinted_child(device_t bus, const char *dname, int dunit);
/*
* ifmedia callbacks for multiPHY MAC
*/
void arge_multiphy_mediastatus(struct ifnet *, struct ifmediareq *);
int arge_multiphy_mediachange(struct ifnet *);
static void arge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
static int arge_dma_alloc(struct arge_softc *);
static void arge_dma_free(struct arge_softc *);
static int arge_newbuf(struct arge_softc *, int);
static __inline void arge_fixup_rx(struct mbuf *);
static device_method_t arge_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, arge_probe),
DEVMETHOD(device_attach, arge_attach),
DEVMETHOD(device_detach, arge_detach),
DEVMETHOD(device_suspend, arge_suspend),
DEVMETHOD(device_resume, arge_resume),
DEVMETHOD(device_shutdown, arge_shutdown),
/* MII interface */
DEVMETHOD(miibus_readreg, arge_miibus_readreg),
DEVMETHOD(miibus_writereg, arge_miibus_writereg),
DEVMETHOD(miibus_statchg, arge_miibus_statchg),
/* bus interface */
DEVMETHOD(bus_add_child, device_add_child_ordered),
DEVMETHOD(bus_hinted_child, arge_hinted_child),
DEVMETHOD_END
};
static driver_t arge_driver = {
"arge",
arge_methods,
sizeof(struct arge_softc)
};
static devclass_t arge_devclass;
DRIVER_MODULE(arge, nexus, arge_driver, arge_devclass, 0, 0);
DRIVER_MODULE(miibus, arge, miibus_driver, miibus_devclass, 0, 0);
#if defined(ARGE_MDIO)
static int argemdio_probe(device_t);
static int argemdio_attach(device_t);
static int argemdio_detach(device_t);
/*
* Declare an additional, separate driver for accessing the MDIO bus.
*/
static device_method_t argemdio_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, argemdio_probe),
DEVMETHOD(device_attach, argemdio_attach),
DEVMETHOD(device_detach, argemdio_detach),
/* bus interface */
DEVMETHOD(bus_add_child, device_add_child_ordered),
/* MDIO access */
DEVMETHOD(mdio_readreg, arge_miibus_readreg),
DEVMETHOD(mdio_writereg, arge_miibus_writereg),
};
DEFINE_CLASS_0(argemdio, argemdio_driver, argemdio_methods,
sizeof(struct arge_softc));
static devclass_t argemdio_devclass;
DRIVER_MODULE(miiproxy, arge, miiproxy_driver, miiproxy_devclass, 0, 0);
DRIVER_MODULE(argemdio, nexus, argemdio_driver, argemdio_devclass, 0, 0);
DRIVER_MODULE(mdio, argemdio, mdio_driver, mdio_devclass, 0, 0);
#endif
static struct mtx miibus_mtx;
MTX_SYSINIT(miibus_mtx, &miibus_mtx, "arge mii lock", MTX_DEF);
/*
* Flushes all
*
* XXX this needs to be done at interrupt time! Grr!
*/
static void
arge_flush_ddr(struct arge_softc *sc)
{
switch (sc->arge_mac_unit) {
case 0:
ar71xx_device_flush_ddr(AR71XX_CPU_DDR_FLUSH_GE0);
break;
case 1:
ar71xx_device_flush_ddr(AR71XX_CPU_DDR_FLUSH_GE1);
break;
default:
device_printf(sc->arge_dev, "%s: unknown unit (%d)\n",
__func__,
sc->arge_mac_unit);
break;
}
}
static int
arge_probe(device_t dev)
{
device_set_desc(dev, "Atheros AR71xx built-in ethernet interface");
return (BUS_PROBE_NOWILDCARD);
}
#ifdef ARGE_DEBUG
static void
arge_attach_intr_sysctl(device_t dev, struct sysctl_oid_list *parent)
{
struct arge_softc *sc = device_get_softc(dev);
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
struct sysctl_oid *tree = device_get_sysctl_tree(dev);
struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
char sn[8];
int i;
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "intr",
CTLFLAG_RD, NULL, "Interrupt statistics");
child = SYSCTL_CHILDREN(tree);
for (i = 0; i < 32; i++) {
snprintf(sn, sizeof(sn), "%d", i);
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, sn, CTLFLAG_RD,
&sc->intr_stats.count[i], 0, "");
}
}
#endif
static void
arge_attach_sysctl(device_t dev)
{
struct arge_softc *sc = device_get_softc(dev);
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
struct sysctl_oid *tree = device_get_sysctl_tree(dev);
#ifdef ARGE_DEBUG
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"debug", CTLFLAG_RW, &sc->arge_debug, 0,
"arge interface debugging flags");
arge_attach_intr_sysctl(dev, SYSCTL_CHILDREN(tree));
#endif
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"tx_pkts_aligned", CTLFLAG_RW, &sc->stats.tx_pkts_aligned, 0,
"number of TX aligned packets");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"tx_pkts_unaligned", CTLFLAG_RW, &sc->stats.tx_pkts_unaligned,
0, "number of TX unaligned packets");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"tx_pkts_unaligned_start", CTLFLAG_RW, &sc->stats.tx_pkts_unaligned_start,
0, "number of TX unaligned packets (start)");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"tx_pkts_unaligned_len", CTLFLAG_RW, &sc->stats.tx_pkts_unaligned_len,
0, "number of TX unaligned packets (len)");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"tx_pkts_nosegs", CTLFLAG_RW, &sc->stats.tx_pkts_nosegs,
0, "number of TX packets fail with no ring slots avail");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"intr_stray_filter", CTLFLAG_RW, &sc->stats.intr_stray,
0, "number of stray interrupts (filter)");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"intr_stray_intr", CTLFLAG_RW, &sc->stats.intr_stray2,
0, "number of stray interrupts (intr)");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
"intr_ok", CTLFLAG_RW, &sc->stats.intr_ok,
0, "number of OK interrupts");
#ifdef ARGE_DEBUG
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_prod",
CTLFLAG_RW, &sc->arge_cdata.arge_tx_prod, 0, "");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_cons",
CTLFLAG_RW, &sc->arge_cdata.arge_tx_cons, 0, "");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_cnt",
CTLFLAG_RW, &sc->arge_cdata.arge_tx_cnt, 0, "");
#endif
}
static void
arge_reset_mac(struct arge_softc *sc)
{
uint32_t reg;
uint32_t reset_reg;
ARGEDEBUG(sc, ARGE_DBG_RESET, "%s called\n", __func__);
/* Step 1. Soft-reset MAC */
ARGE_SET_BITS(sc, AR71XX_MAC_CFG1, MAC_CFG1_SOFT_RESET);
DELAY(20);
/* Step 2. Punt the MAC core from the central reset register */
/*
* XXX TODO: migrate this (and other) chip specific stuff into
* a chipdef method.
*/
if (sc->arge_mac_unit == 0) {
reset_reg = RST_RESET_GE0_MAC;
} else {
reset_reg = RST_RESET_GE1_MAC;
}
/*
* AR934x (and later) also needs the MDIO block reset.
* XXX should methodize this!
*/
if (ar71xx_soc == AR71XX_SOC_AR9341 ||
ar71xx_soc == AR71XX_SOC_AR9342 ||
ar71xx_soc == AR71XX_SOC_AR9344) {
if (sc->arge_mac_unit == 0) {
reset_reg |= AR934X_RESET_GE0_MDIO;
} else {
reset_reg |= AR934X_RESET_GE1_MDIO;
}
}
if (ar71xx_soc == AR71XX_SOC_QCA9556 ||
ar71xx_soc == AR71XX_SOC_QCA9558) {
if (sc->arge_mac_unit == 0) {
reset_reg |= QCA955X_RESET_GE0_MDIO;
} else {
reset_reg |= QCA955X_RESET_GE1_MDIO;
}
}
if (ar71xx_soc == AR71XX_SOC_QCA9533 ||
ar71xx_soc == AR71XX_SOC_QCA9533_V2) {
if (sc->arge_mac_unit == 0) {
reset_reg |= QCA953X_RESET_GE0_MDIO;
} else {
reset_reg |= QCA953X_RESET_GE1_MDIO;
}
}
ar71xx_device_stop(reset_reg);
DELAY(100);
ar71xx_device_start(reset_reg);
/* Step 3. Reconfigure MAC block */
ARGE_WRITE(sc, AR71XX_MAC_CFG1,
MAC_CFG1_SYNC_RX | MAC_CFG1_RX_ENABLE |
MAC_CFG1_SYNC_TX | MAC_CFG1_TX_ENABLE);
reg = ARGE_READ(sc, AR71XX_MAC_CFG2);
reg |= MAC_CFG2_ENABLE_PADCRC | MAC_CFG2_LENGTH_FIELD ;
ARGE_WRITE(sc, AR71XX_MAC_CFG2, reg);
ARGE_WRITE(sc, AR71XX_MAC_MAX_FRAME_LEN, 1536);
}
/*
* These values map to the divisor values programmed into
* AR71XX_MAC_MII_CFG.
*
* The index of each value corresponds to the divisor section
* value in AR71XX_MAC_MII_CFG (ie, table[0] means '0' in
* AR71XX_MAC_MII_CFG, table[1] means '1', etc.)
*/
static const uint32_t ar71xx_mdio_div_table[] = {
4, 4, 6, 8, 10, 14, 20, 28,
};
static const uint32_t ar7240_mdio_div_table[] = {
2, 2, 4, 6, 8, 12, 18, 26, 32, 40, 48, 56, 62, 70, 78, 96,
};
static const uint32_t ar933x_mdio_div_table[] = {
4, 4, 6, 8, 10, 14, 20, 28, 34, 42, 50, 58, 66, 74, 82, 98,
};
/*
* Lookup the divisor to use based on the given frequency.
*
* Returns the divisor to use, or -ve on error.
*/
static int
arge_mdio_get_divider(struct arge_softc *sc, unsigned long mdio_clock)
{
unsigned long ref_clock, t;
const uint32_t *table;
int ndivs;
int i;
/*
* This is the base MDIO frequency on the SoC.
* The dividers .. well, divide. Duh.
*/
ref_clock = ar71xx_mdio_freq();
/*
* If either clock is undefined, just tell the
* caller to fall through to the defaults.
*/
if (ref_clock == 0 || mdio_clock == 0)
return (-EINVAL);
/*
* Pick the correct table!
*/
switch (ar71xx_soc) {
case AR71XX_SOC_AR9330:
case AR71XX_SOC_AR9331:
case AR71XX_SOC_AR9341:
case AR71XX_SOC_AR9342:
case AR71XX_SOC_AR9344:
case AR71XX_SOC_QCA9533:
case AR71XX_SOC_QCA9533_V2:
case AR71XX_SOC_QCA9556:
case AR71XX_SOC_QCA9558:
table = ar933x_mdio_div_table;
ndivs = nitems(ar933x_mdio_div_table);
break;
case AR71XX_SOC_AR7240:
case AR71XX_SOC_AR7241:
case AR71XX_SOC_AR7242:
table = ar7240_mdio_div_table;
ndivs = nitems(ar7240_mdio_div_table);
break;
default:
table = ar71xx_mdio_div_table;
ndivs = nitems(ar71xx_mdio_div_table);
}
/*
* Now, walk through the list and find the first divisor
* that falls under the target MDIO frequency.
*
* The divisors go up, but the corresponding frequencies
* are actually decreasing.
*/
for (i = 0; i < ndivs; i++) {
t = ref_clock / table[i];
if (t <= mdio_clock) {
return (i);
}
}
ARGEDEBUG(sc, ARGE_DBG_RESET,
"No divider found; MDIO=%lu Hz; target=%lu Hz\n",
ref_clock, mdio_clock);
return (-ENOENT);
}
/*
* Fetch the MDIO bus clock rate.
*
* For now, the default is DIV_28 for everything
* bar AR934x, which will be DIV_58.
*
* It will definitely need updating to take into account
* the MDIO bus core clock rate and the target clock
* rate for the chip.
*/
static uint32_t
arge_fetch_mdiobus_clock_rate(struct arge_softc *sc)
{
int mdio_freq, div;
/*
* Is the MDIO frequency defined? If so, find a divisor that
* makes reasonable sense. Don't overshoot the frequency.
*/
if (resource_int_value(device_get_name(sc->arge_dev),
device_get_unit(sc->arge_dev),
"mdio_freq",
&mdio_freq) == 0) {
sc->arge_mdiofreq = mdio_freq;
div = arge_mdio_get_divider(sc, sc->arge_mdiofreq);
if (bootverbose)
device_printf(sc->arge_dev,
"%s: mdio ref freq=%llu Hz, target freq=%llu Hz,"
" divisor index=%d\n",
__func__,
(unsigned long long) ar71xx_mdio_freq(),
(unsigned long long) mdio_freq,
div);
if (div >= 0)
return (div);
}
/*
* Default value(s).
*
* XXX obviously these need .. fixing.
*
* From Linux/OpenWRT:
*
* + 7240? DIV_6
* + Builtin-switch port and not 934x? DIV_10
* + Not built-in switch port and 934x? DIV_58
* + .. else DIV_28.
*/
switch (ar71xx_soc) {
case AR71XX_SOC_AR9341:
case AR71XX_SOC_AR9342:
case AR71XX_SOC_AR9344:
case AR71XX_SOC_QCA9533:
case AR71XX_SOC_QCA9533_V2:
case AR71XX_SOC_QCA9556:
case AR71XX_SOC_QCA9558:
return (MAC_MII_CFG_CLOCK_DIV_58);
break;
default:
return (MAC_MII_CFG_CLOCK_DIV_28);
}
}
static void
arge_reset_miibus(struct arge_softc *sc)
{
uint32_t mdio_div;
mdio_div = arge_fetch_mdiobus_clock_rate(sc);
/*
* XXX AR934x and later; should we be also resetting the
* MDIO block(s) using the reset register block?
*/
/* Reset MII bus; program in the default divisor */
ARGE_WRITE(sc, AR71XX_MAC_MII_CFG, MAC_MII_CFG_RESET | mdio_div);
DELAY(100);
ARGE_WRITE(sc, AR71XX_MAC_MII_CFG, mdio_div);
DELAY(100);
}
static void
arge_fetch_pll_config(struct arge_softc *sc)
{
long int val;
if (resource_long_value(device_get_name(sc->arge_dev),
device_get_unit(sc->arge_dev),
"pll_10", &val) == 0) {
sc->arge_pllcfg.pll_10 = val;
device_printf(sc->arge_dev, "%s: pll_10 = 0x%x\n",
__func__, (int) val);
}
if (resource_long_value(device_get_name(sc->arge_dev),
device_get_unit(sc->arge_dev),
"pll_100", &val) == 0) {
sc->arge_pllcfg.pll_100 = val;
device_printf(sc->arge_dev, "%s: pll_100 = 0x%x\n",
__func__, (int) val);
}
if (resource_long_value(device_get_name(sc->arge_dev),
device_get_unit(sc->arge_dev),
"pll_1000", &val) == 0) {
sc->arge_pllcfg.pll_1000 = val;
device_printf(sc->arge_dev, "%s: pll_1000 = 0x%x\n",
__func__, (int) val);
}
}
static int
arge_attach(device_t dev)
{
struct ifnet *ifp;
struct arge_softc *sc;
int error = 0, rid, i;
uint32_t hint;
long eeprom_mac_addr = 0;
int miicfg = 0;
int readascii = 0;
int local_mac = 0;
uint8_t local_macaddr[ETHER_ADDR_LEN];
char * local_macstr;
char devid_str[32];
int count;
sc = device_get_softc(dev);
sc->arge_dev = dev;
sc->arge_mac_unit = device_get_unit(dev);
/*
* See if there's a "board" MAC address hint available for
* this particular device.
*
* This is in the environment - it'd be nice to use the resource_*()
* routines, but at the moment the system is booting, the resource hints
* are set to the 'static' map so they're not pulling from kenv.
*/
snprintf(devid_str, 32, "hint.%s.%d.macaddr",
device_get_name(dev),
device_get_unit(dev));
if ((local_macstr = kern_getenv(devid_str)) != NULL) {
uint32_t tmpmac[ETHER_ADDR_LEN];
/* Have a MAC address; should use it */
device_printf(dev, "Overriding MAC address from environment: '%s'\n",
local_macstr);
/* Extract out the MAC address */
/* XXX this should all be a generic method */
count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x",
&tmpmac[0], &tmpmac[1],
&tmpmac[2], &tmpmac[3],
&tmpmac[4], &tmpmac[5]);
if (count == 6) {
/* Valid! */
local_mac = 1;
for (i = 0; i < ETHER_ADDR_LEN; i++)
local_macaddr[i] = tmpmac[i];
}
/* Done! */
freeenv(local_macstr);
local_macstr = NULL;
}
/*
* Hardware workarounds.
*/
switch (ar71xx_soc) {
case AR71XX_SOC_AR9330:
case AR71XX_SOC_AR9331:
case AR71XX_SOC_AR9341:
case AR71XX_SOC_AR9342:
case AR71XX_SOC_AR9344:
case AR71XX_SOC_QCA9533:
case AR71XX_SOC_QCA9533_V2:
case AR71XX_SOC_QCA9556:
case AR71XX_SOC_QCA9558:
/* Arbitrary alignment */
sc->arge_hw_flags |= ARGE_HW_FLG_TX_DESC_ALIGN_1BYTE;
sc->arge_hw_flags |= ARGE_HW_FLG_RX_DESC_ALIGN_1BYTE;
break;
default:
sc->arge_hw_flags |= ARGE_HW_FLG_TX_DESC_ALIGN_4BYTE;
sc->arge_hw_flags |= ARGE_HW_FLG_RX_DESC_ALIGN_4BYTE;
break;
}
/*
* Some units (eg the TP-Link WR-1043ND) do not have a convenient
* EEPROM location to read the ethernet MAC address from.
* OpenWRT simply snaffles it from a fixed location.
*
* Since multiple units seem to use this feature, include
* a method of setting the MAC address based on an flash location
* in CPU address space.
*
* Some vendors have decided to store the mac address as a literal
* string of 18 characters in xx:xx:xx:xx:xx:xx format instead of
* an array of numbers. Expose a hint to turn on this conversion
* feature via strtol()
*/
if (local_mac == 0 && resource_long_value(device_get_name(dev),
device_get_unit(dev), "eeprommac", &eeprom_mac_addr) == 0) {
local_mac = 1;
int i;
const char *mac =
(const char *) MIPS_PHYS_TO_KSEG1(eeprom_mac_addr);
device_printf(dev, "Overriding MAC from EEPROM\n");
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
"readascii", &readascii) == 0) {
device_printf(dev, "Vendor stores MAC in ASCII format\n");
for (i = 0; i < 6; i++) {
local_macaddr[i] = strtol(&(mac[i*3]), NULL, 16);
}
} else {
for (i = 0; i < 6; i++) {
local_macaddr[i] = mac[i];
}
}
}
KASSERT(((sc->arge_mac_unit == 0) || (sc->arge_mac_unit == 1)),
("if_arge: Only MAC0 and MAC1 supported"));
/*
* Fetch the PLL configuration.
*/
arge_fetch_pll_config(sc);
/*
* Get the MII configuration, if applicable.
*/
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
"miimode", &miicfg) == 0) {
/* XXX bounds check? */
device_printf(dev, "%s: overriding MII mode to '%s'\n",
__func__, arge_miicfg_str[miicfg]);
sc->arge_miicfg = miicfg;
}
/*
* Get which PHY of 5 available we should use for this unit
*/
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
"phymask", &sc->arge_phymask) != 0) {
/*
* Use port 4 (WAN) for GE0. For any other port use
* its PHY the same as its unit number
*/
if (sc->arge_mac_unit == 0)
sc->arge_phymask = (1 << 4);
else
/* Use all phys up to 4 */
sc->arge_phymask = (1 << 4) - 1;
device_printf(dev, "No PHY specified, using mask %d\n", sc->arge_phymask);
}
/*
* Get default/hard-coded media & duplex mode.
*/
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
"media", &hint) != 0)
hint = 0;
if (hint == 1000)
sc->arge_media_type = IFM_1000_T;
else if (hint == 100)
sc->arge_media_type = IFM_100_TX;
else if (hint == 10)
sc->arge_media_type = IFM_10_T;
else
sc->arge_media_type = 0;
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
"fduplex", &hint) != 0)
hint = 1;
if (hint)
sc->arge_duplex_mode = IFM_FDX;
else
sc->arge_duplex_mode = 0;
mtx_init(&sc->arge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->arge_stat_callout, &sc->arge_mtx, 0);
TASK_INIT(&sc->arge_link_task, 0, arge_link_task, sc);
/* Map control/status registers. */
sc->arge_rid = 0;
sc->arge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&sc->arge_rid, RF_ACTIVE | RF_SHAREABLE);
if (sc->arge_res == NULL) {
device_printf(dev, "couldn't map memory\n");
error = ENXIO;
goto fail;
}
/* Allocate interrupts */
rid = 0;
sc->arge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->arge_irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
/* Allocate ifnet structure. */
ifp = sc->arge_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "couldn't allocate ifnet structure\n");
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = arge_ioctl;
ifp->if_start = arge_start;
ifp->if_init = arge_init;
sc->arge_if_flags = ifp->if_flags;
/* XXX: add real size */
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
ifp->if_snd.ifq_maxlen = ifqmaxlen;
IFQ_SET_READY(&ifp->if_snd);
/* Tell the upper layer(s) we support long frames. */
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable = ifp->if_capabilities;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/* If there's a local mac defined, copy that in */
if (local_mac == 1) {
(void) ar71xx_mac_addr_init(sc->arge_eaddr,
local_macaddr, 0, 0);
} else {
/*
* No MAC address configured. Generate the random one.
*/
if (bootverbose)
device_printf(dev,
"Generating random ethernet address.\n");
(void) ar71xx_mac_addr_random_init(sc->arge_eaddr);
}
if (arge_dma_alloc(sc) != 0) {
error = ENXIO;
goto fail;
}
/*
* Don't do this for the MDIO bus case - it's already done
* as part of the MDIO bus attachment.
*
* XXX TODO: if we don't do this, we don't ever release the MAC
* from reset and we can't use the port. Now, if we define ARGE_MDIO
* but we /don't/ define two MDIO busses, then we can't actually
* use both MACs.
*/
#if !defined(ARGE_MDIO)
/* Initialize the MAC block */
arge_reset_mac(sc);
arge_reset_miibus(sc);
#endif
/* Configure MII mode, just for convienence */
if (sc->arge_miicfg != 0)
ar71xx_device_set_mii_if(sc->arge_mac_unit, sc->arge_miicfg);
/*
* Set all Ethernet address registers to the same initial values
* set all four addresses to 66-88-aa-cc-dd-ee
*/
ARGE_WRITE(sc, AR71XX_MAC_STA_ADDR1, (sc->arge_eaddr[2] << 24)
| (sc->arge_eaddr[3] << 16) | (sc->arge_eaddr[4] << 8)
| sc->arge_eaddr[5]);
ARGE_WRITE(sc, AR71XX_MAC_STA_ADDR2, (sc->arge_eaddr[0] << 8)
| sc->arge_eaddr[1]);
ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG0,
FIFO_CFG0_ALL << FIFO_CFG0_ENABLE_SHIFT);
/*
* SoC specific bits.
*/
switch (ar71xx_soc) {
case AR71XX_SOC_AR7240:
case AR71XX_SOC_AR7241:
case AR71XX_SOC_AR7242:
case AR71XX_SOC_AR9330:
case AR71XX_SOC_AR9331:
case AR71XX_SOC_AR9341:
case AR71XX_SOC_AR9342:
case AR71XX_SOC_AR9344:
case AR71XX_SOC_QCA9533:
case AR71XX_SOC_QCA9533_V2:
case AR71XX_SOC_QCA9556:
case AR71XX_SOC_QCA9558:
ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG1, 0x0010ffff);
ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG2, 0x015500aa);
break;
/* AR71xx, AR913x */
default:
ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG1, 0x0fff0000);
ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG2, 0x00001fff);
}
ARGE_WRITE(sc, AR71XX_MAC_FIFO_RX_FILTMATCH,
FIFO_RX_FILTMATCH_DEFAULT);
ARGE_WRITE(sc, AR71XX_MAC_FIFO_RX_FILTMASK,
FIFO_RX_FILTMASK_DEFAULT);
#if defined(ARGE_MDIO)
sc->arge_miiproxy = mii_attach_proxy(sc->arge_dev);
#endif
device_printf(sc->arge_dev, "finishing attachment, phymask %04x"
", proxy %s \n", sc->arge_phymask, sc->arge_miiproxy == NULL ?
"null" : "set");
for (i = 0; i < ARGE_NPHY; i++) {
if (((1 << i) & sc->arge_phymask) != 0) {
error = mii_attach(sc->arge_miiproxy != NULL ?
sc->arge_miiproxy : sc->arge_dev,
&sc->arge_miibus, sc->arge_ifp,
arge_ifmedia_upd, arge_ifmedia_sts,
BMSR_DEFCAPMASK, i, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(sc->arge_dev, "unable to attach"
" PHY %d: %d\n", i, error);
goto fail;
}
}
}
if (sc->arge_miibus == NULL) {
/* no PHY, so use hard-coded values */
ifmedia_init(&sc->arge_ifmedia, 0,
arge_multiphy_mediachange,
arge_multiphy_mediastatus);
ifmedia_add(&sc->arge_ifmedia,
IFM_ETHER | sc->arge_media_type | sc->arge_duplex_mode,
0, NULL);
ifmedia_set(&sc->arge_ifmedia,
IFM_ETHER | sc->arge_media_type | sc->arge_duplex_mode);
arge_set_pll(sc, sc->arge_media_type, sc->arge_duplex_mode);
}
/* Call MI attach routine. */
ether_ifattach(sc->arge_ifp, sc->arge_eaddr);
/* Hook interrupt last to avoid having to lock softc */
error = bus_setup_intr(sc->arge_dev, sc->arge_irq, INTR_TYPE_NET | INTR_MPSAFE,
arge_intr_filter, arge_intr, sc, &sc->arge_intrhand);
if (error) {
device_printf(sc->arge_dev, "couldn't set up irq\n");
ether_ifdetach(sc->arge_ifp);
goto fail;
}
/* setup sysctl variables */
arge_attach_sysctl(sc->arge_dev);
fail:
if (error)
arge_detach(dev);
return (error);
}
static int
arge_detach(device_t dev)
{
struct arge_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->arge_ifp;
KASSERT(mtx_initialized(&sc->arge_mtx),
("arge mutex not initialized"));
/* These should only be active if attach succeeded */
if (device_is_attached(dev)) {
ARGE_LOCK(sc);
sc->arge_detach = 1;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
arge_stop(sc);
ARGE_UNLOCK(sc);
taskqueue_drain(taskqueue_swi, &sc->arge_link_task);
ether_ifdetach(ifp);
}
if (sc->arge_miibus)
device_delete_child(dev, sc->arge_miibus);
if (sc->arge_miiproxy)
device_delete_child(dev, sc->arge_miiproxy);
bus_generic_detach(dev);
if (sc->arge_intrhand)
bus_teardown_intr(dev, sc->arge_irq, sc->arge_intrhand);
if (sc->arge_res)
bus_release_resource(dev, SYS_RES_MEMORY, sc->arge_rid,
sc->arge_res);
if (ifp)
if_free(ifp);
arge_dma_free(sc);
mtx_destroy(&sc->arge_mtx);
return (0);
}
static int
arge_suspend(device_t dev)
{
panic("%s", __func__);
return 0;
}
static int
arge_resume(device_t dev)
{
panic("%s", __func__);
return 0;
}
static int
arge_shutdown(device_t dev)
{
struct arge_softc *sc;
sc = device_get_softc(dev);
ARGE_LOCK(sc);
arge_stop(sc);
ARGE_UNLOCK(sc);
return (0);
}
static void
arge_hinted_child(device_t bus, const char *dname, int dunit)
{
BUS_ADD_CHILD(bus, 0, dname, dunit);
device_printf(bus, "hinted child %s%d\n", dname, dunit);
}
static int
arge_mdio_busy(struct arge_softc *sc)
{
int i,result;
for (i = 0; i < ARGE_MII_TIMEOUT; i++) {
DELAY(5);
ARGE_MDIO_BARRIER_READ(sc);
result = ARGE_MDIO_READ(sc, AR71XX_MAC_MII_INDICATOR);
if (! result)
return (0);
DELAY(5);
}
return (-1);
}
static int
arge_miibus_readreg(device_t dev, int phy, int reg)
{
struct arge_softc * sc = device_get_softc(dev);
int result;
uint32_t addr = (phy << MAC_MII_PHY_ADDR_SHIFT)
| (reg & MAC_MII_REG_MASK);
mtx_lock(&miibus_mtx);
ARGE_MDIO_BARRIER_RW(sc);
ARGE_MDIO_WRITE(sc, AR71XX_MAC_MII_CMD, MAC_MII_CMD_WRITE);
ARGE_MDIO_BARRIER_WRITE(sc);
ARGE_MDIO_WRITE(sc, AR71XX_MAC_MII_ADDR, addr);
ARGE_MDIO_BARRIER_WRITE(sc);
ARGE_MDIO_WRITE(sc, AR71XX_MAC_MII_CMD, MAC_MII_CMD_READ);
if (arge_mdio_busy(sc) != 0) {
mtx_unlock(&miibus_mtx);
ARGEDEBUG(sc, ARGE_DBG_MII, "%s timedout\n", __func__);
/* XXX: return ERRNO istead? */
return (-1);
}
ARGE_MDIO_BARRIER_READ(sc);
result = ARGE_MDIO_READ(sc, AR71XX_MAC_MII_STATUS) & MAC_MII_STATUS_MASK;
ARGE_MDIO_BARRIER_RW(sc);
ARGE_MDIO_WRITE(sc, AR71XX_MAC_MII_CMD, MAC_MII_CMD_WRITE);
mtx_unlock(&miibus_mtx);
ARGEDEBUG(sc, ARGE_DBG_MII,
"%s: phy=%d, reg=%02x, value[%08x]=%04x\n",
__func__, phy, reg, addr, result);
return (result);
}
static int
arge_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct arge_softc * sc = device_get_softc(dev);
uint32_t addr =
(phy << MAC_MII_PHY_ADDR_SHIFT) | (reg & MAC_MII_REG_MASK);
ARGEDEBUG(sc, ARGE_DBG_MII, "%s: phy=%d, reg=%02x, value=%04x\n", __func__,
phy, reg, data);
mtx_lock(&miibus_mtx);
ARGE_MDIO_BARRIER_RW(sc);
ARGE_MDIO_WRITE(sc, AR71XX_MAC_MII_ADDR, addr);
ARGE_MDIO_BARRIER_WRITE(sc);
ARGE_MDIO_WRITE(sc, AR71XX_MAC_MII_CONTROL, data);
ARGE_MDIO_BARRIER_WRITE(sc);
if (arge_mdio_busy(sc) != 0) {
mtx_unlock(&miibus_mtx);
ARGEDEBUG(sc, ARGE_DBG_MII, "%s timedout\n", __func__);
/* XXX: return ERRNO istead? */
return (-1);
}
mtx_unlock(&miibus_mtx);
return (0);
}
static void
arge_miibus_statchg(device_t dev)
{
struct arge_softc *sc;
sc = device_get_softc(dev);
taskqueue_enqueue(taskqueue_swi, &sc->arge_link_task);
}
static void
arge_link_task(void *arg, int pending)
{
struct arge_softc *sc;
sc = (struct arge_softc *)arg;
ARGE_LOCK(sc);
arge_update_link_locked(sc);
ARGE_UNLOCK(sc);
}
static void
arge_update_link_locked(struct arge_softc *sc)
{
struct mii_data *mii;
struct ifnet *ifp;
uint32_t media, duplex;
mii = device_get_softc(sc->arge_miibus);
ifp = sc->arge_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
return;
}
/*
* If we have a static media type configured, then
* use that. Some PHY configurations (eg QCA955x -> AR8327)
* use a static speed/duplex between the SoC and switch,
* even though the front-facing PHY speed changes.
*/
if (sc->arge_media_type != 0) {
ARGEDEBUG(sc, ARGE_DBG_MII, "%s: fixed; media=%d, duplex=%d\n",
__func__,
sc->arge_media_type,
sc->arge_duplex_mode);
if (mii->mii_media_status & IFM_ACTIVE) {
sc->arge_link_status = 1;
} else {
sc->arge_link_status = 0;
}
arge_set_pll(sc, sc->arge_media_type, sc->arge_duplex_mode);
}
if (mii->mii_media_status & IFM_ACTIVE) {
media = IFM_SUBTYPE(mii->mii_media_active);
if (media != IFM_NONE) {
sc->arge_link_status = 1;
duplex = mii->mii_media_active & IFM_GMASK;
ARGEDEBUG(sc, ARGE_DBG_MII, "%s: media=%d, duplex=%d\n",
__func__,
media,
duplex);
arge_set_pll(sc, media, duplex);
}
} else {
sc->arge_link_status = 0;
}
}
static void
arge_set_pll(struct arge_softc *sc, int media, int duplex)
{
uint32_t cfg, ifcontrol, rx_filtmask;
uint32_t fifo_tx, pll;
int if_speed;
/*
* XXX Verify - is this valid for all chips?
* QCA955x (and likely some of the earlier chips!) define
* this as nibble mode and byte mode, and those have to do
* with the interface type (MII/SMII versus GMII/RGMII.)
*/
ARGEDEBUG(sc, ARGE_DBG_PLL, "set_pll(%04x, %s)\n", media,
duplex == IFM_FDX ? "full" : "half");
cfg = ARGE_READ(sc, AR71XX_MAC_CFG2);
cfg &= ~(MAC_CFG2_IFACE_MODE_1000
| MAC_CFG2_IFACE_MODE_10_100
| MAC_CFG2_FULL_DUPLEX);
if (duplex == IFM_FDX)
cfg |= MAC_CFG2_FULL_DUPLEX;
ifcontrol = ARGE_READ(sc, AR71XX_MAC_IFCONTROL);
ifcontrol &= ~MAC_IFCONTROL_SPEED;
rx_filtmask =
ARGE_READ(sc, AR71XX_MAC_FIFO_RX_FILTMASK);
rx_filtmask &= ~FIFO_RX_MASK_BYTE_MODE;
switch(media) {
case IFM_10_T:
cfg |= MAC_CFG2_IFACE_MODE_10_100;
if_speed = 10;
break;
case IFM_100_TX:
cfg |= MAC_CFG2_IFACE_MODE_10_100;
ifcontrol |= MAC_IFCONTROL_SPEED;
if_speed = 100;
break;
case IFM_1000_T:
case IFM_1000_SX:
cfg |= MAC_CFG2_IFACE_MODE_1000;
rx_filtmask |= FIFO_RX_MASK_BYTE_MODE;
if_speed = 1000;
break;
default:
if_speed = 100;
device_printf(sc->arge_dev,
"Unknown media %d\n", media);
}
ARGEDEBUG(sc, ARGE_DBG_PLL, "%s: if_speed=%d\n", __func__, if_speed);
switch (ar71xx_soc) {
case AR71XX_SOC_AR7240:
case AR71XX_SOC_AR7241:
case AR71XX_SOC_AR7242:
case AR71XX_SOC_AR9330:
case AR71XX_SOC_AR9331:
case AR71XX_SOC_AR9341:
case AR71XX_SOC_AR9342:
case AR71XX_SOC_AR9344:
case AR71XX_SOC_QCA9533:
case AR71XX_SOC_QCA9533_V2:
case AR71XX_SOC_QCA9556:
case AR71XX_SOC_QCA9558:
fifo_tx = 0x01f00140;
break;
case AR71XX_SOC_AR9130:
case AR71XX_SOC_AR9132:
fifo_tx = 0x00780fff;
break;
/* AR71xx */
default:
fifo_tx = 0x008001ff;
}
ARGE_WRITE(sc, AR71XX_MAC_CFG2, cfg);
ARGE_WRITE(sc, AR71XX_MAC_IFCONTROL, ifcontrol);
ARGE_WRITE(sc, AR71XX_MAC_FIFO_RX_FILTMASK,
rx_filtmask);
ARGE_WRITE(sc, AR71XX_MAC_FIFO_TX_THRESHOLD, fifo_tx);
/* fetch PLL registers */
pll = ar71xx_device_get_eth_pll(sc->arge_mac_unit, if_speed);
ARGEDEBUG(sc, ARGE_DBG_PLL, "%s: pll=0x%x\n", __func__, pll);
/* Override if required by platform data */
if (if_speed == 10 && sc->arge_pllcfg.pll_10 != 0)
pll = sc->arge_pllcfg.pll_10;
else if (if_speed == 100 && sc->arge_pllcfg.pll_100 != 0)
pll = sc->arge_pllcfg.pll_100;
else if (if_speed == 1000 && sc->arge_pllcfg.pll_1000 != 0)
pll = sc->arge_pllcfg.pll_1000;
ARGEDEBUG(sc, ARGE_DBG_PLL, "%s: final pll=0x%x\n", __func__, pll);
/* XXX ensure pll != 0 */
ar71xx_device_set_pll_ge(sc->arge_mac_unit, if_speed, pll);
/* set MII registers */
/*
* This was introduced to match what the Linux ag71xx ethernet
* driver does. For the AR71xx case, it does set the port
* MII speed. However, if this is done, non-gigabit speeds
* are not at all reliable when speaking via RGMII through
* 'bridge' PHY port that's pretending to be a local PHY.
*
* Until that gets root caused, and until an AR71xx + normal
* PHY board is tested, leave this disabled.
*/
#if 0
ar71xx_device_set_mii_speed(sc->arge_mac_unit, if_speed);
#endif
}
static void
arge_reset_dma(struct arge_softc *sc)
{
ARGEDEBUG(sc, ARGE_DBG_RESET, "%s: called\n", __func__);
ARGE_WRITE(sc, AR71XX_DMA_RX_CONTROL, 0);
ARGE_WRITE(sc, AR71XX_DMA_TX_CONTROL, 0);
ARGE_WRITE(sc, AR71XX_DMA_RX_DESC, 0);
ARGE_WRITE(sc, AR71XX_DMA_TX_DESC, 0);
/* Clear all possible RX interrupts */
while(ARGE_READ(sc, AR71XX_DMA_RX_STATUS) & DMA_RX_STATUS_PKT_RECVD)
ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_PKT_RECVD);
/*
* Clear all possible TX interrupts
*/
while(ARGE_READ(sc, AR71XX_DMA_TX_STATUS) & DMA_TX_STATUS_PKT_SENT)
ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_PKT_SENT);
/*
* Now Rx/Tx errors
*/
ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS,
DMA_RX_STATUS_BUS_ERROR | DMA_RX_STATUS_OVERFLOW);
ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS,
DMA_TX_STATUS_BUS_ERROR | DMA_TX_STATUS_UNDERRUN);
/*
* Force a DDR flush so any pending data is properly
* flushed to RAM before underlying buffers are freed.
*/
arge_flush_ddr(sc);
}
static void
arge_init(void *xsc)
{
struct arge_softc *sc = xsc;
ARGE_LOCK(sc);
arge_init_locked(sc);
ARGE_UNLOCK(sc);
}
static void
arge_init_locked(struct arge_softc *sc)
{
struct ifnet *ifp = sc->arge_ifp;
struct mii_data *mii;
ARGE_LOCK_ASSERT(sc);
if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
return;
/* Init circular RX list. */
if (arge_rx_ring_init(sc) != 0) {
device_printf(sc->arge_dev,
"initialization failed: no memory for rx buffers\n");
arge_stop(sc);
return;
}
/* Init tx descriptors. */
arge_tx_ring_init(sc);
arge_reset_dma(sc);
if (sc->arge_miibus) {
mii = device_get_softc(sc->arge_miibus);
mii_mediachg(mii);
}
else {
/*
* Sun always shines over multiPHY interface
*/
sc->arge_link_status = 1;
}
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if (sc->arge_miibus) {
callout_reset(&sc->arge_stat_callout, hz, arge_tick, sc);
arge_update_link_locked(sc);
}
ARGE_WRITE(sc, AR71XX_DMA_TX_DESC, ARGE_TX_RING_ADDR(sc, 0));
ARGE_WRITE(sc, AR71XX_DMA_RX_DESC, ARGE_RX_RING_ADDR(sc, 0));
/* Start listening */
ARGE_WRITE(sc, AR71XX_DMA_RX_CONTROL, DMA_RX_CONTROL_EN);
/* Enable interrupts */
ARGE_WRITE(sc, AR71XX_DMA_INTR, DMA_INTR_ALL);
}
/*
* Return whether the mbuf chain is correctly aligned
* for the arge TX engine.
*
* All the MACs have a length requirement: any non-final
* fragment (ie, descriptor with MORE bit set) needs to have
* a length divisible by 4.
*
* The AR71xx, AR913x require the start address also be
* DWORD aligned. The later MACs don't.
*/
static int
arge_mbuf_chain_is_tx_aligned(struct arge_softc *sc, struct mbuf *m0)
{
struct mbuf *m;
for (m = m0; m != NULL; m = m->m_next) {
/*
* Only do this for chips that require it.
*/
if ((sc->arge_hw_flags & ARGE_HW_FLG_TX_DESC_ALIGN_4BYTE) &&
(mtod(m, intptr_t) & 3) != 0) {
sc->stats.tx_pkts_unaligned_start++;
return 0;
}
/*
* All chips have this requirement for length.
*/
if ((m->m_next != NULL) && ((m->m_len & 0x03) != 0)) {
sc->stats.tx_pkts_unaligned_len++;
return 0;
}
}
return 1;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int
arge_encap(struct arge_softc *sc, struct mbuf **m_head)
{
struct arge_txdesc *txd;
struct arge_desc *desc, *prev_desc;
bus_dma_segment_t txsegs[ARGE_MAXFRAGS];
int error, i, nsegs, prod, prev_prod;
struct mbuf *m;
ARGE_LOCK_ASSERT(sc);
/*
* Fix mbuf chain based on hardware alignment constraints.
*/
m = *m_head;
if (! arge_mbuf_chain_is_tx_aligned(sc, m)) {
sc->stats.tx_pkts_unaligned++;
m = m_defrag(*m_head, M_NOWAIT);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
} else
sc->stats.tx_pkts_aligned++;
prod = sc->arge_cdata.arge_tx_prod;
txd = &sc->arge_cdata.arge_txdesc[prod];
error = bus_dmamap_load_mbuf_sg(sc->arge_cdata.arge_tx_tag,
txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
if (error == EFBIG) {
panic("EFBIG");
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
/* Check number of available descriptors. */
if (sc->arge_cdata.arge_tx_cnt + nsegs >= (ARGE_TX_RING_COUNT - 2)) {
bus_dmamap_unload(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap);
sc->stats.tx_pkts_nosegs++;
return (ENOBUFS);
}
txd->tx_m = *m_head;
bus_dmamap_sync(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_PREWRITE);
/*
* Make a list of descriptors for this packet. DMA controller will
* walk through it while arge_link is not zero.
*
* Since we're in a endless circular buffer, ensure that
* the first descriptor in a multi-descriptor ring is always
* set to EMPTY, then un-do it when we're done populating.
*/
prev_prod = prod;
desc = prev_desc = NULL;
for (i = 0; i < nsegs; i++) {
uint32_t tmp;
desc = &sc->arge_rdata.arge_tx_ring[prod];
/*
* Set DESC_EMPTY so the hardware (hopefully) stops at this
* point. We don't want it to start transmitting descriptors
* before we've finished fleshing this out.
*/
tmp = ARGE_DMASIZE(txsegs[i].ds_len);
if (i == 0)
tmp |= ARGE_DESC_EMPTY;
desc->packet_ctrl = tmp;
/* XXX Note: only relevant for older MACs; but check length! */
if ((sc->arge_hw_flags & ARGE_HW_FLG_TX_DESC_ALIGN_4BYTE) &&
(txsegs[i].ds_addr & 3))
panic("TX packet address unaligned\n");
desc->packet_addr = txsegs[i].ds_addr;
/* link with previous descriptor */
if (prev_desc)
prev_desc->packet_ctrl |= ARGE_DESC_MORE;
sc->arge_cdata.arge_tx_cnt++;
prev_desc = desc;
ARGE_INC(prod, ARGE_TX_RING_COUNT);
}
/* Update producer index. */
sc->arge_cdata.arge_tx_prod = prod;
/*
* The descriptors are updated, so enable the first one.
*/
desc = &sc->arge_rdata.arge_tx_ring[prev_prod];
desc->packet_ctrl &= ~ ARGE_DESC_EMPTY;
/* Sync descriptors. */
bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag,
sc->arge_cdata.arge_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Flush writes */
ARGE_BARRIER_WRITE(sc);
/* Start transmitting */
ARGEDEBUG(sc, ARGE_DBG_TX, "%s: setting DMA_TX_CONTROL_EN\n",
__func__);
ARGE_WRITE(sc, AR71XX_DMA_TX_CONTROL, DMA_TX_CONTROL_EN);
return (0);
}
static void
arge_start(struct ifnet *ifp)
{
struct arge_softc *sc;
sc = ifp->if_softc;
ARGE_LOCK(sc);
arge_start_locked(ifp);
ARGE_UNLOCK(sc);
}
static void
arge_start_locked(struct ifnet *ifp)
{
struct arge_softc *sc;
struct mbuf *m_head;
int enq = 0;
sc = ifp->if_softc;
ARGE_LOCK_ASSERT(sc);
ARGEDEBUG(sc, ARGE_DBG_TX, "%s: beginning\n", __func__);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || sc->arge_link_status == 0 )
return;
/*
* Before we go any further, check whether we're already full.
* The below check errors out immediately if the ring is full
* and never gets a chance to set this flag. Although it's
* likely never needed, this at least avoids an unexpected
* situation.
*/
if (sc->arge_cdata.arge_tx_cnt >= ARGE_TX_RING_COUNT - 2) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
ARGEDEBUG(sc, ARGE_DBG_ERR,
"%s: tx_cnt %d >= max %d; setting IFF_DRV_OACTIVE\n",
__func__, sc->arge_cdata.arge_tx_cnt,
ARGE_TX_RING_COUNT - 2);
return;
}
arge_flush_ddr(sc);
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
sc->arge_cdata.arge_tx_cnt < ARGE_TX_RING_COUNT - 2; ) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring.
*/
if (arge_encap(sc, &m_head)) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
enq++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
ETHER_BPF_MTAP(ifp, m_head);
}
ARGEDEBUG(sc, ARGE_DBG_TX, "%s: finished; queued %d packets\n",
__func__, enq);
}
static void
arge_stop(struct arge_softc *sc)
{
struct ifnet *ifp;
ARGE_LOCK_ASSERT(sc);
ifp = sc->arge_ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
if (sc->arge_miibus)
callout_stop(&sc->arge_stat_callout);
/* mask out interrupts */
ARGE_WRITE(sc, AR71XX_DMA_INTR, 0);
arge_reset_dma(sc);
/* Flush FIFO and free any existing mbufs */
arge_flush_ddr(sc);
arge_rx_ring_free(sc);
arge_tx_ring_free(sc);
}
static int
arge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct arge_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int error;
#ifdef DEVICE_POLLING
int mask;
#endif
switch (command) {
case SIOCSIFFLAGS:
ARGE_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if (((ifp->if_flags ^ sc->arge_if_flags)
& (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
/* XXX: handle promisc & multi flags */
}
} else {
if (!sc->arge_detach)
arge_init_locked(sc);
}
} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
arge_stop(sc);
}
sc->arge_if_flags = ifp->if_flags;
ARGE_UNLOCK(sc);
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* XXX: implement SIOCDELMULTI */
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
if (sc->arge_miibus) {
mii = device_get_softc(sc->arge_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
command);
}
else
error = ifmedia_ioctl(ifp, ifr, &sc->arge_ifmedia,
command);
break;
case SIOCSIFCAP:
/* XXX: Check other capabilities */
#ifdef DEVICE_POLLING
mask = ifp->if_capenable ^ ifr->ifr_reqcap;
if (mask & IFCAP_POLLING) {
if (ifr->ifr_reqcap & IFCAP_POLLING) {
ARGE_WRITE(sc, AR71XX_DMA_INTR, 0);
error = ether_poll_register(arge_poll, ifp);
if (error)
return error;
ARGE_LOCK(sc);
ifp->if_capenable |= IFCAP_POLLING;
ARGE_UNLOCK(sc);
} else {
ARGE_WRITE(sc, AR71XX_DMA_INTR, DMA_INTR_ALL);
error = ether_poll_deregister(ifp);
ARGE_LOCK(sc);
ifp->if_capenable &= ~IFCAP_POLLING;
ARGE_UNLOCK(sc);
}
}
error = 0;
break;
#endif
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
/*
* Set media options.
*/
static int
arge_ifmedia_upd(struct ifnet *ifp)
{
struct arge_softc *sc;
struct mii_data *mii;
struct mii_softc *miisc;
int error;
sc = ifp->if_softc;
ARGE_LOCK(sc);
mii = device_get_softc(sc->arge_miibus);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
error = mii_mediachg(mii);
ARGE_UNLOCK(sc);
return (error);
}
/*
* Report current media status.
*/
static void
arge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct arge_softc *sc = ifp->if_softc;
struct mii_data *mii;
mii = device_get_softc(sc->arge_miibus);
ARGE_LOCK(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
ARGE_UNLOCK(sc);
}
struct arge_dmamap_arg {
bus_addr_t arge_busaddr;
};
static void
arge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct arge_dmamap_arg *ctx;
if (error != 0)
return;
ctx = arg;
ctx->arge_busaddr = segs[0].ds_addr;
}
static int
arge_dma_alloc(struct arge_softc *sc)
{
struct arge_dmamap_arg ctx;
struct arge_txdesc *txd;
struct arge_rxdesc *rxd;
int error, i;
int arge_tx_align, arge_rx_align;
/* Assume 4 byte alignment by default */
arge_tx_align = 4;
arge_rx_align = 4;
if (sc->arge_hw_flags & ARGE_HW_FLG_TX_DESC_ALIGN_1BYTE)
arge_tx_align = 1;
if (sc->arge_hw_flags & ARGE_HW_FLG_RX_DESC_ALIGN_1BYTE)
arge_rx_align = 1;
/* Create parent DMA tag. */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->arge_dev), /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->arge_cdata.arge_parent_tag);
if (error != 0) {
device_printf(sc->arge_dev,
"failed to create parent DMA tag\n");
goto fail;
}
/* Create tag for Tx ring. */
error = bus_dma_tag_create(
sc->arge_cdata.arge_parent_tag, /* parent */
ARGE_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
ARGE_TX_DMA_SIZE, /* maxsize */
1, /* nsegments */
ARGE_TX_DMA_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->arge_cdata.arge_tx_ring_tag);
if (error != 0) {
device_printf(sc->arge_dev,
"failed to create Tx ring DMA tag\n");
goto fail;
}
/* Create tag for Rx ring. */
error = bus_dma_tag_create(
sc->arge_cdata.arge_parent_tag, /* parent */
ARGE_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
ARGE_RX_DMA_SIZE, /* maxsize */
1, /* nsegments */
ARGE_RX_DMA_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->arge_cdata.arge_rx_ring_tag);
if (error != 0) {
device_printf(sc->arge_dev,
"failed to create Rx ring DMA tag\n");
goto fail;
}
/* Create tag for Tx buffers. */
error = bus_dma_tag_create(
sc->arge_cdata.arge_parent_tag, /* parent */
arge_tx_align, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES * ARGE_MAXFRAGS, /* maxsize */
ARGE_MAXFRAGS, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->arge_cdata.arge_tx_tag);
if (error != 0) {
device_printf(sc->arge_dev, "failed to create Tx DMA tag\n");
goto fail;
}
/* Create tag for Rx buffers. */
error = bus_dma_tag_create(
sc->arge_cdata.arge_parent_tag, /* parent */
arge_rx_align, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, /* maxsize */
ARGE_MAXFRAGS, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->arge_cdata.arge_rx_tag);
if (error != 0) {
device_printf(sc->arge_dev, "failed to create Rx DMA tag\n");
goto fail;
}
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
error = bus_dmamem_alloc(sc->arge_cdata.arge_tx_ring_tag,
(void **)&sc->arge_rdata.arge_tx_ring, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO,
&sc->arge_cdata.arge_tx_ring_map);
if (error != 0) {
device_printf(sc->arge_dev,
"failed to allocate DMA'able memory for Tx ring\n");
goto fail;
}
ctx.arge_busaddr = 0;
error = bus_dmamap_load(sc->arge_cdata.arge_tx_ring_tag,
sc->arge_cdata.arge_tx_ring_map, sc->arge_rdata.arge_tx_ring,
ARGE_TX_DMA_SIZE, arge_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.arge_busaddr == 0) {
device_printf(sc->arge_dev,
"failed to load DMA'able memory for Tx ring\n");
goto fail;
}
sc->arge_rdata.arge_tx_ring_paddr = ctx.arge_busaddr;
/* Allocate DMA'able memory and load the DMA map for Rx ring. */
error = bus_dmamem_alloc(sc->arge_cdata.arge_rx_ring_tag,
(void **)&sc->arge_rdata.arge_rx_ring, BUS_DMA_WAITOK |
BUS_DMA_COHERENT | BUS_DMA_ZERO,
&sc->arge_cdata.arge_rx_ring_map);
if (error != 0) {
device_printf(sc->arge_dev,
"failed to allocate DMA'able memory for Rx ring\n");
goto fail;
}
ctx.arge_busaddr = 0;
error = bus_dmamap_load(sc->arge_cdata.arge_rx_ring_tag,
sc->arge_cdata.arge_rx_ring_map, sc->arge_rdata.arge_rx_ring,
ARGE_RX_DMA_SIZE, arge_dmamap_cb, &ctx, 0);
if (error != 0 || ctx.arge_busaddr == 0) {
device_printf(sc->arge_dev,
"failed to load DMA'able memory for Rx ring\n");
goto fail;
}
sc->arge_rdata.arge_rx_ring_paddr = ctx.arge_busaddr;
/* Create DMA maps for Tx buffers. */
for (i = 0; i < ARGE_TX_RING_COUNT; i++) {
txd = &sc->arge_cdata.arge_txdesc[i];
txd->tx_m = NULL;
txd->tx_dmamap = NULL;
error = bus_dmamap_create(sc->arge_cdata.arge_tx_tag, 0,
&txd->tx_dmamap);
if (error != 0) {
device_printf(sc->arge_dev,
"failed to create Tx dmamap\n");
goto fail;
}
}
/* Create DMA maps for Rx buffers. */
if ((error = bus_dmamap_create(sc->arge_cdata.arge_rx_tag, 0,
&sc->arge_cdata.arge_rx_sparemap)) != 0) {
device_printf(sc->arge_dev,
"failed to create spare Rx dmamap\n");
goto fail;
}
for (i = 0; i < ARGE_RX_RING_COUNT; i++) {
rxd = &sc->arge_cdata.arge_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_dmamap = NULL;
error = bus_dmamap_create(sc->arge_cdata.arge_rx_tag, 0,
&rxd->rx_dmamap);
if (error != 0) {
device_printf(sc->arge_dev,
"failed to create Rx dmamap\n");
goto fail;
}
}
fail:
return (error);
}
static void
arge_dma_free(struct arge_softc *sc)
{
struct arge_txdesc *txd;
struct arge_rxdesc *rxd;
int i;
/* Tx ring. */
if (sc->arge_cdata.arge_tx_ring_tag) {
if (sc->arge_rdata.arge_tx_ring_paddr)
bus_dmamap_unload(sc->arge_cdata.arge_tx_ring_tag,
sc->arge_cdata.arge_tx_ring_map);
if (sc->arge_rdata.arge_tx_ring)
bus_dmamem_free(sc->arge_cdata.arge_tx_ring_tag,
sc->arge_rdata.arge_tx_ring,
sc->arge_cdata.arge_tx_ring_map);
sc->arge_rdata.arge_tx_ring = NULL;
sc->arge_rdata.arge_tx_ring_paddr = 0;
bus_dma_tag_destroy(sc->arge_cdata.arge_tx_ring_tag);
sc->arge_cdata.arge_tx_ring_tag = NULL;
}
/* Rx ring. */
if (sc->arge_cdata.arge_rx_ring_tag) {
if (sc->arge_rdata.arge_rx_ring_paddr)
bus_dmamap_unload(sc->arge_cdata.arge_rx_ring_tag,
sc->arge_cdata.arge_rx_ring_map);
if (sc->arge_rdata.arge_rx_ring)
bus_dmamem_free(sc->arge_cdata.arge_rx_ring_tag,
sc->arge_rdata.arge_rx_ring,
sc->arge_cdata.arge_rx_ring_map);
sc->arge_rdata.arge_rx_ring = NULL;
sc->arge_rdata.arge_rx_ring_paddr = 0;
bus_dma_tag_destroy(sc->arge_cdata.arge_rx_ring_tag);
sc->arge_cdata.arge_rx_ring_tag = NULL;
}
/* Tx buffers. */
if (sc->arge_cdata.arge_tx_tag) {
for (i = 0; i < ARGE_TX_RING_COUNT; i++) {
txd = &sc->arge_cdata.arge_txdesc[i];
if (txd->tx_dmamap) {
bus_dmamap_destroy(sc->arge_cdata.arge_tx_tag,
txd->tx_dmamap);
txd->tx_dmamap = NULL;
}
}
bus_dma_tag_destroy(sc->arge_cdata.arge_tx_tag);
sc->arge_cdata.arge_tx_tag = NULL;
}
/* Rx buffers. */
if (sc->arge_cdata.arge_rx_tag) {
for (i = 0; i < ARGE_RX_RING_COUNT; i++) {
rxd = &sc->arge_cdata.arge_rxdesc[i];
if (rxd->rx_dmamap) {
bus_dmamap_destroy(sc->arge_cdata.arge_rx_tag,
rxd->rx_dmamap);
rxd->rx_dmamap = NULL;
}
}
if (sc->arge_cdata.arge_rx_sparemap) {
bus_dmamap_destroy(sc->arge_cdata.arge_rx_tag,
sc->arge_cdata.arge_rx_sparemap);
sc->arge_cdata.arge_rx_sparemap = 0;
}
bus_dma_tag_destroy(sc->arge_cdata.arge_rx_tag);
sc->arge_cdata.arge_rx_tag = NULL;
}
if (sc->arge_cdata.arge_parent_tag) {
bus_dma_tag_destroy(sc->arge_cdata.arge_parent_tag);
sc->arge_cdata.arge_parent_tag = NULL;
}
}
/*
* Initialize the transmit descriptors.
*/
static int
arge_tx_ring_init(struct arge_softc *sc)
{
struct arge_ring_data *rd;
struct arge_txdesc *txd;
bus_addr_t addr;
int i;
sc->arge_cdata.arge_tx_prod = 0;
sc->arge_cdata.arge_tx_cons = 0;
sc->arge_cdata.arge_tx_cnt = 0;
rd = &sc->arge_rdata;
bzero(rd->arge_tx_ring, sizeof(rd->arge_tx_ring));
for (i = 0; i < ARGE_TX_RING_COUNT; i++) {
if (i == ARGE_TX_RING_COUNT - 1)
addr = ARGE_TX_RING_ADDR(sc, 0);
else
addr = ARGE_TX_RING_ADDR(sc, i + 1);
rd->arge_tx_ring[i].packet_ctrl = ARGE_DESC_EMPTY;
rd->arge_tx_ring[i].next_desc = addr;
txd = &sc->arge_cdata.arge_txdesc[i];
txd->tx_m = NULL;
}
bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag,
sc->arge_cdata.arge_tx_ring_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Free the Tx ring, unload any pending dma transaction and free the mbuf.
*/
static void
arge_tx_ring_free(struct arge_softc *sc)
{
struct arge_txdesc *txd;
int i;
/* Free the Tx buffers. */
for (i = 0; i < ARGE_TX_RING_COUNT; i++) {
txd = &sc->arge_cdata.arge_txdesc[i];
if (txd->tx_dmamap) {
bus_dmamap_sync(sc->arge_cdata.arge_tx_tag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->arge_cdata.arge_tx_tag,
txd->tx_dmamap);
}
if (txd->tx_m)
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int
arge_rx_ring_init(struct arge_softc *sc)
{
struct arge_ring_data *rd;
struct arge_rxdesc *rxd;
bus_addr_t addr;
int i;
sc->arge_cdata.arge_rx_cons = 0;
rd = &sc->arge_rdata;
bzero(rd->arge_rx_ring, sizeof(rd->arge_rx_ring));
for (i = 0; i < ARGE_RX_RING_COUNT; i++) {
rxd = &sc->arge_cdata.arge_rxdesc[i];
if (rxd->rx_m != NULL) {
device_printf(sc->arge_dev,
"%s: ring[%d] rx_m wasn't free?\n",
__func__,
i);
}
rxd->rx_m = NULL;
rxd->desc = &rd->arge_rx_ring[i];
if (i == ARGE_RX_RING_COUNT - 1)
addr = ARGE_RX_RING_ADDR(sc, 0);
else
addr = ARGE_RX_RING_ADDR(sc, i + 1);
rd->arge_rx_ring[i].next_desc = addr;
if (arge_newbuf(sc, i) != 0) {
return (ENOBUFS);
}
}
bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag,
sc->arge_cdata.arge_rx_ring_map,
BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Free all the buffers in the RX ring.
*
* TODO: ensure that DMA is disabled and no pending DMA
* is lurking in the FIFO.
*/
static void
arge_rx_ring_free(struct arge_softc *sc)
{
int i;
struct arge_rxdesc *rxd;
ARGE_LOCK_ASSERT(sc);
for (i = 0; i < ARGE_RX_RING_COUNT; i++) {
rxd = &sc->arge_cdata.arge_rxdesc[i];
/* Unmap the mbuf */
if (rxd->rx_m != NULL) {
bus_dmamap_unload(sc->arge_cdata.arge_rx_tag,
rxd->rx_dmamap);
m_free(rxd->rx_m);
rxd->rx_m = NULL;
}
}
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int
arge_newbuf(struct arge_softc *sc, int idx)
{
struct arge_desc *desc;
struct arge_rxdesc *rxd;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
int nsegs;
/* XXX TODO: should just allocate an explicit 2KiB buffer */
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
/*
* Add extra space to "adjust" (copy) the packet back to be aligned
* for purposes of IPv4/IPv6 header contents.
*/
if (sc->arge_hw_flags & ARGE_HW_FLG_RX_DESC_ALIGN_4BYTE)
m_adj(m, sizeof(uint64_t));
/*
* If it's a 1-byte aligned buffer, then just offset it two bytes
* and that will give us a hopefully correctly DWORD aligned
* L3 payload - and we won't have to undo it afterwards.
*/
else if (sc->arge_hw_flags & ARGE_HW_FLG_RX_DESC_ALIGN_1BYTE)
m_adj(m, sizeof(uint16_t));
if (bus_dmamap_load_mbuf_sg(sc->arge_cdata.arge_rx_tag,
sc->arge_cdata.arge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
rxd = &sc->arge_cdata.arge_rxdesc[idx];
if (rxd->rx_m != NULL) {
bus_dmamap_unload(sc->arge_cdata.arge_rx_tag, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->arge_cdata.arge_rx_sparemap;
sc->arge_cdata.arge_rx_sparemap = map;
rxd->rx_m = m;
desc = rxd->desc;
if ((sc->arge_hw_flags & ARGE_HW_FLG_RX_DESC_ALIGN_4BYTE) &&
segs[0].ds_addr & 3)
panic("RX packet address unaligned");
desc->packet_addr = segs[0].ds_addr;
desc->packet_ctrl = ARGE_DESC_EMPTY | ARGE_DMASIZE(segs[0].ds_len);
bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag,
sc->arge_cdata.arge_rx_ring_map,
BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Move the data backwards 16 bits to (hopefully!) ensure the
* IPv4/IPv6 payload is aligned.
*
* This is required for earlier hardware where the RX path
* requires DWORD aligned buffers.
*/
static __inline void
arge_fixup_rx(struct mbuf *m)
{
int i;
uint16_t *src, *dst;
src = mtod(m, uint16_t *);
dst = src - 1;
for (i = 0; i < m->m_len / sizeof(uint16_t); i++) {
*dst++ = *src++;
}
if (m->m_len % sizeof(uint16_t))
*(uint8_t *)dst = *(uint8_t *)src;
m->m_data -= ETHER_ALIGN;
}
#ifdef DEVICE_POLLING
static int
arge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct arge_softc *sc = ifp->if_softc;
int rx_npkts = 0;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ARGE_LOCK(sc);
arge_tx_locked(sc);
rx_npkts = arge_rx_locked(sc);
ARGE_UNLOCK(sc);
}
return (rx_npkts);
}
#endif /* DEVICE_POLLING */
static void
arge_tx_locked(struct arge_softc *sc)
{
struct arge_txdesc *txd;
struct arge_desc *cur_tx;
struct ifnet *ifp;
uint32_t ctrl;
int cons, prod;
ARGE_LOCK_ASSERT(sc);
cons = sc->arge_cdata.arge_tx_cons;
prod = sc->arge_cdata.arge_tx_prod;
ARGEDEBUG(sc, ARGE_DBG_TX, "%s: cons=%d, prod=%d\n", __func__, cons,
prod);
if (cons == prod)
return;
bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag,
sc->arge_cdata.arge_tx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
ifp = sc->arge_ifp;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
for (; cons != prod; ARGE_INC(cons, ARGE_TX_RING_COUNT)) {
cur_tx = &sc->arge_rdata.arge_tx_ring[cons];
ctrl = cur_tx->packet_ctrl;
/* Check if descriptor has "finished" flag */
if ((ctrl & ARGE_DESC_EMPTY) == 0)
break;
ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_PKT_SENT);
sc->arge_cdata.arge_tx_cnt--;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
txd = &sc->arge_cdata.arge_txdesc[cons];
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
bus_dmamap_sync(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap);
/* Free only if it's first descriptor in list */
if (txd->tx_m)
m_freem(txd->tx_m);
txd->tx_m = NULL;
/* reset descriptor */
cur_tx->packet_addr = 0;
}
sc->arge_cdata.arge_tx_cons = cons;
bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag,
sc->arge_cdata.arge_tx_ring_map, BUS_DMASYNC_PREWRITE);
}
static int
arge_rx_locked(struct arge_softc *sc)
{
struct arge_rxdesc *rxd;
struct ifnet *ifp = sc->arge_ifp;
int cons, prog, packet_len, i;
struct arge_desc *cur_rx;
struct mbuf *m;
int rx_npkts = 0;
ARGE_LOCK_ASSERT(sc);
cons = sc->arge_cdata.arge_rx_cons;
bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag,
sc->arge_cdata.arge_rx_ring_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (prog = 0; prog < ARGE_RX_RING_COUNT;
ARGE_INC(cons, ARGE_RX_RING_COUNT)) {
cur_rx = &sc->arge_rdata.arge_rx_ring[cons];
rxd = &sc->arge_cdata.arge_rxdesc[cons];
m = rxd->rx_m;
if ((cur_rx->packet_ctrl & ARGE_DESC_EMPTY) != 0)
break;
ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_PKT_RECVD);
prog++;
packet_len = ARGE_DMASIZE(cur_rx->packet_ctrl);
bus_dmamap_sync(sc->arge_cdata.arge_rx_tag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
m = rxd->rx_m;
/*
* If the MAC requires 4 byte alignment then the RX setup
* routine will have pre-offset things; so un-offset it here.
*/
if (sc->arge_hw_flags & ARGE_HW_FLG_RX_DESC_ALIGN_4BYTE)
arge_fixup_rx(m);
m->m_pkthdr.rcvif = ifp;
/* Skip 4 bytes of CRC */
m->m_pkthdr.len = m->m_len = packet_len - ETHER_CRC_LEN;
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
rx_npkts++;
ARGE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
ARGE_LOCK(sc);
cur_rx->packet_addr = 0;
}
if (prog > 0) {
i = sc->arge_cdata.arge_rx_cons;
for (; prog > 0 ; prog--) {
if (arge_newbuf(sc, i) != 0) {
device_printf(sc->arge_dev,
"Failed to allocate buffer\n");
break;
}
ARGE_INC(i, ARGE_RX_RING_COUNT);
}
bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag,
sc->arge_cdata.arge_rx_ring_map,
BUS_DMASYNC_PREWRITE);
sc->arge_cdata.arge_rx_cons = cons;
}
return (rx_npkts);
}
static int
arge_intr_filter(void *arg)
{
struct arge_softc *sc = arg;
uint32_t status, ints;
status = ARGE_READ(sc, AR71XX_DMA_INTR_STATUS);
ints = ARGE_READ(sc, AR71XX_DMA_INTR);
ARGEDEBUG(sc, ARGE_DBG_INTR, "int mask(filter) = %b\n", ints,
"\20\10RX_BUS_ERROR\7RX_OVERFLOW\5RX_PKT_RCVD"
"\4TX_BUS_ERROR\2TX_UNDERRUN\1TX_PKT_SENT");
ARGEDEBUG(sc, ARGE_DBG_INTR, "status(filter) = %b\n", status,
"\20\10RX_BUS_ERROR\7RX_OVERFLOW\5RX_PKT_RCVD"
"\4TX_BUS_ERROR\2TX_UNDERRUN\1TX_PKT_SENT");
if (status & DMA_INTR_ALL) {
sc->arge_intr_status |= status;
ARGE_WRITE(sc, AR71XX_DMA_INTR, 0);
sc->stats.intr_ok++;
return (FILTER_SCHEDULE_THREAD);
}
sc->arge_intr_status = 0;
sc->stats.intr_stray++;
return (FILTER_STRAY);
}
static void
arge_intr(void *arg)
{
struct arge_softc *sc = arg;
uint32_t status;
struct ifnet *ifp = sc->arge_ifp;
#ifdef ARGE_DEBUG
int i;
#endif
status = ARGE_READ(sc, AR71XX_DMA_INTR_STATUS);
status |= sc->arge_intr_status;
ARGEDEBUG(sc, ARGE_DBG_INTR, "int status(intr) = %b\n", status,
"\20\10\7RX_OVERFLOW\5RX_PKT_RCVD"
"\4TX_BUS_ERROR\2TX_UNDERRUN\1TX_PKT_SENT");
/*
* Is it our interrupt at all?
*/
if (status == 0) {
sc->stats.intr_stray2++;
return;
}
#ifdef ARGE_DEBUG
for (i = 0; i < 32; i++) {
if (status & (1U << i)) {
sc->intr_stats.count[i]++;
}
}
#endif
if (status & DMA_INTR_RX_BUS_ERROR) {
ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_BUS_ERROR);
device_printf(sc->arge_dev, "RX bus error");
return;
}
if (status & DMA_INTR_TX_BUS_ERROR) {
ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_BUS_ERROR);
device_printf(sc->arge_dev, "TX bus error");
return;
}
ARGE_LOCK(sc);
arge_flush_ddr(sc);
if (status & DMA_INTR_RX_PKT_RCVD)
arge_rx_locked(sc);
/*
* RX overrun disables the receiver.
* Clear indication and re-enable rx.
*/
if ( status & DMA_INTR_RX_OVERFLOW) {
ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_OVERFLOW);
ARGE_WRITE(sc, AR71XX_DMA_RX_CONTROL, DMA_RX_CONTROL_EN);
sc->stats.rx_overflow++;
}
if (status & DMA_INTR_TX_PKT_SENT)
arge_tx_locked(sc);
/*
* Underrun turns off TX. Clear underrun indication.
* If there's anything left in the ring, reactivate the tx.
*/
if (status & DMA_INTR_TX_UNDERRUN) {
ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_UNDERRUN);
sc->stats.tx_underflow++;
ARGEDEBUG(sc, ARGE_DBG_TX, "%s: TX underrun; tx_cnt=%d\n",
__func__, sc->arge_cdata.arge_tx_cnt);
if (sc->arge_cdata.arge_tx_cnt > 0 ) {
ARGE_WRITE(sc, AR71XX_DMA_TX_CONTROL,
DMA_TX_CONTROL_EN);
}
}
/*
* If we've finished TXing and there's space for more packets
* to be queued for TX, do so. Otherwise we may end up in a
* situation where the interface send queue was filled
* whilst the hardware queue was full, then the hardware
* queue was drained by the interface send queue wasn't,
* and thus if_start() is never called to kick-start
* the send process (and all subsequent packets are simply
* discarded.
*
* XXX TODO: make sure that the hardware deals nicely
* with the possibility of the queue being enabled above
* after a TX underrun, then having the hardware queue added
* to below.
*/
if (status & (DMA_INTR_TX_PKT_SENT | DMA_INTR_TX_UNDERRUN) &&
(ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
if (!IFQ_IS_EMPTY(&ifp->if_snd))
arge_start_locked(ifp);
}
/*
* We handled all bits, clear status
*/
sc->arge_intr_status = 0;
ARGE_UNLOCK(sc);
/*
* re-enable all interrupts
*/
ARGE_WRITE(sc, AR71XX_DMA_INTR, DMA_INTR_ALL);
}
static void
arge_tick(void *xsc)
{
struct arge_softc *sc = xsc;
struct mii_data *mii;
ARGE_LOCK_ASSERT(sc);
if (sc->arge_miibus) {
mii = device_get_softc(sc->arge_miibus);
mii_tick(mii);
callout_reset(&sc->arge_stat_callout, hz, arge_tick, sc);
}
}
int
arge_multiphy_mediachange(struct ifnet *ifp)
{
struct arge_softc *sc = ifp->if_softc;
struct ifmedia *ifm = &sc->arge_ifmedia;
struct ifmedia_entry *ife = ifm->ifm_cur;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return (EINVAL);
if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
device_printf(sc->arge_dev,
"AUTO is not supported for multiphy MAC");
return (EINVAL);
}
/*
* Ignore everything
*/
return (0);
}
void
arge_multiphy_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct arge_softc *sc = ifp->if_softc;
ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
ifmr->ifm_active = IFM_ETHER | sc->arge_media_type |
sc->arge_duplex_mode;
}
#if defined(ARGE_MDIO)
static int
argemdio_probe(device_t dev)
{
device_set_desc(dev, "Atheros AR71xx built-in ethernet interface, MDIO controller");
return (0);
}
static int
argemdio_attach(device_t dev)
{
struct arge_softc *sc;
int error = 0;
sc = device_get_softc(dev);
sc->arge_dev = dev;
sc->arge_mac_unit = device_get_unit(dev);
sc->arge_rid = 0;
sc->arge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&sc->arge_rid, RF_ACTIVE | RF_SHAREABLE);
if (sc->arge_res == NULL) {
device_printf(dev, "couldn't map memory\n");
error = ENXIO;
goto fail;
}
/* Reset MAC - required for AR71xx MDIO to successfully occur */
arge_reset_mac(sc);
/* Reset MII bus */
arge_reset_miibus(sc);
bus_generic_probe(dev);
bus_enumerate_hinted_children(dev);
error = bus_generic_attach(dev);
fail:
return (error);
}
static int
argemdio_detach(device_t dev)
{
return (0);
}
#endif