freebsd-nq/modules/spl/spl-kmem.c
behlendo d46630e0f3 The first locking issue was due to the semaphore I used. I was trying
to be overly clever and the context switch when the semaphore was busy
was destroying performance.  Converting to a simple spin lock bough me
a factor of 50 or so.  That said it's still not good enough.  Tests
show bad performance and we are still CPU bound.  The logical fix is
I need to implement per-cpu hot caches to minimize the SMP contention.
Linux and Solaris both have this, I was hoping to do without but it
looks like that's not to be.

   kmem_lock: time (sec)        slabs           objs            hash
   kmem_lock:                   tot/max/calc    tot/max/calc    size/depth
   kmem_lock:  0.022000000      7/6/64  224/177/2048    32768/1
   kmem_lock:  0.039000000      13/13/128       416/404/4096    32768/1
   kmem_lock:  0.079000000      23/21/256       736/672/8192    32768/1
   kmem_lock:  0.158000000      48/47/512       1536/1504/16384 32768/1
   kmem_lock:  0.345000000      105/105/1024    3360/3358/32768 32768/2
   kmem_lock:  0.760000000      202/200/2048    6464/6400/65536 32768/3



git-svn-id: https://outreach.scidac.gov/svn/spl/trunk@135 7e1ea52c-4ff2-0310-8f11-9dd32ca42a1c
2008-06-24 17:18:15 +00:00

807 lines
23 KiB
C

/*
* This file is part of the SPL: Solaris Porting Layer.
*
* Copyright (c) 2008 Lawrence Livermore National Security, LLC.
* Produced at Lawrence Livermore National Laboratory
* Written by:
* Brian Behlendorf <behlendorf1@llnl.gov>,
* Herb Wartens <wartens2@llnl.gov>,
* Jim Garlick <garlick@llnl.gov>
* UCRL-CODE-235197
*
* This is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <sys/kmem.h>
#ifdef DEBUG_SUBSYSTEM
#undef DEBUG_SUBSYSTEM
#endif
#define DEBUG_SUBSYSTEM S_KMEM
/*
* Memory allocation interfaces and debugging for basic kmem_*
* and vmem_* style memory allocation. When DEBUG_KMEM is enable
* all allocations will be tracked when they are allocated and
* freed. When the SPL module is unload a list of all leaked
* addresses and where they were allocated will be dumped to the
* console. Enabling this feature has a significant impant on
* performance but it makes finding memory leaks staight forward.
*/
#ifdef DEBUG_KMEM
/* Shim layer memory accounting */
atomic64_t kmem_alloc_used;
unsigned long kmem_alloc_max = 0;
atomic64_t vmem_alloc_used;
unsigned long vmem_alloc_max = 0;
int kmem_warning_flag = 1;
atomic64_t kmem_cache_alloc_failed;
spinlock_t kmem_lock;
struct hlist_head kmem_table[KMEM_TABLE_SIZE];
struct list_head kmem_list;
spinlock_t vmem_lock;
struct hlist_head vmem_table[VMEM_TABLE_SIZE];
struct list_head vmem_list;
EXPORT_SYMBOL(kmem_alloc_used);
EXPORT_SYMBOL(kmem_alloc_max);
EXPORT_SYMBOL(vmem_alloc_used);
EXPORT_SYMBOL(vmem_alloc_max);
EXPORT_SYMBOL(kmem_warning_flag);
EXPORT_SYMBOL(kmem_lock);
EXPORT_SYMBOL(kmem_table);
EXPORT_SYMBOL(kmem_list);
EXPORT_SYMBOL(vmem_lock);
EXPORT_SYMBOL(vmem_table);
EXPORT_SYMBOL(vmem_list);
int kmem_set_warning(int flag) { return (kmem_warning_flag = !!flag); }
#else
int kmem_set_warning(int flag) { return 0; }
#endif
EXPORT_SYMBOL(kmem_set_warning);
/*
* Slab allocation interfaces
*
* While the Linux slab implementation was inspired by the Solaris
* implemenation I cannot use it to emulate the Solaris APIs. I
* require two features which are not provided by the Linux slab.
*
* 1) Constructors AND destructors. Recent versions of the Linux
* kernel have removed support for destructors. This is a deal
* breaker for the SPL which contains particularly expensive
* initializers for mutex's, condition variables, etc. We also
* require a minimal level of cleaner for these data types unlike
* may Linux data type which do need to be explicitly destroyed.
*
* 2) Virtual address backed slab. Callers of the Solaris slab
* expect it to work well for both small are very large allocations.
* Because of memory fragmentation the Linux slab which is backed
* by kmalloc'ed memory performs very badly when confronted with
* large numbers of large allocations. Basing the slab on the
* virtual address space removes the need for contigeous pages
* and greatly improve performance for large allocations.
*
* For these reasons, the SPL has its own slab implementation with
* the needed features. It is not as highly optimized as either the
* Solaris or Linux slabs, but it should get me most of what is
* needed until it can be optimized or obsoleted by another approach.
*
* One serious concern I do have about this method is the relatively
* small virtual address space on 32bit arches. This will seriously
* constrain the size of the slab caches and their performance.
*
* XXX: Refactor the below code in to smaller functions. This works
* for a first pass but each function is doing to much.
*
* XXX: Implement SPL proc interface to export full per cache stats.
*
* XXX: Implement work requests to keep an eye on each cache and
* shrink them via slab_reclaim() when they are wasting lots
* of space. Currently this process is driven by the reapers.
*
* XXX: Implement proper small cache object support by embedding
* the spl_kmem_slab_t, spl_kmem_obj_t's, and objects in the
* allocated for a particular slab.
*
* XXX: Implement a resizable used object hash. Currently the hash
* is statically sized for thousands of objects but it should
* grow based on observed worst case slab depth.
*
* XXX: Improve the partial slab list by carefully maintaining a
* strict ordering of fullest to emptiest slabs based on
* the slab reference count. This gaurentees the when freeing
* slabs back to the system we need only linearly traverse the
* last N slabs in the list to discover all the freeable slabs.
*
* XXX: NUMA awareness for optionally allocating memory close to a
* particular core. This can be adventageous if you know the slab
* object will be short lived and primarily accessed from one core.
*
* XXX: Slab coloring may also yield performance improvements and would
* be desirable to implement.
*/
/* Ensure the __kmem_cache_create/__kmem_cache_destroy macros are
* removed here to prevent a recursive substitution, we want to call
* the native linux version.
*/
#undef kmem_cache_t
#undef kmem_cache_create
#undef kmem_cache_destroy
#undef kmem_cache_alloc
#undef kmem_cache_free
static struct list_head spl_kmem_cache_list; /* List of caches */
static struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
static kmem_cache_t *spl_slab_cache; /* Cache for slab structs */
static kmem_cache_t *spl_obj_cache; /* Cache for obj structs */
#ifdef HAVE_SET_SHRINKER
static struct shrinker *spl_kmem_cache_shrinker;
#else
static int kmem_cache_generic_shrinker(int nr_to_scan, unsigned int gfp_mask);
static struct shrinker spl_kmem_cache_shrinker = {
.shrink = kmem_cache_generic_shrinker,
.seeks = KMC_DEFAULT_SEEKS,
};
#endif
static spl_kmem_slab_t *
slab_alloc(spl_kmem_cache_t *skc, int flags) {
spl_kmem_slab_t *sks;
spl_kmem_obj_t *sko, *n;
int i;
ENTRY;
sks = kmem_cache_alloc(spl_slab_cache, flags);
if (sks == NULL)
RETURN(sks);
sks->sks_magic = SKS_MAGIC;
sks->sks_objs = SPL_KMEM_CACHE_OBJ_PER_SLAB;
sks->sks_age = jiffies;
sks->sks_cache = skc;
INIT_LIST_HEAD(&sks->sks_list);
INIT_LIST_HEAD(&sks->sks_free_list);
atomic_set(&sks->sks_ref, 0);
for (i = 0; i < sks->sks_objs; i++) {
sko = kmem_cache_alloc(spl_obj_cache, flags);
if (sko == NULL) {
out_alloc:
/* Unable to fully construct slab, objects,
* and object data buffers unwind everything.
*/
list_for_each_entry_safe(sko, n, &sks->sks_free_list,
sko_list) {
ASSERT(sko->sko_magic == SKO_MAGIC);
vmem_free(sko->sko_addr, skc->skc_obj_size);
list_del(&sko->sko_list);
kmem_cache_free(spl_obj_cache, sko);
}
kmem_cache_free(spl_slab_cache, sks);
GOTO(out, sks = NULL);
}
sko->sko_addr = vmem_alloc(skc->skc_obj_size, flags);
if (sko->sko_addr == NULL) {
kmem_cache_free(spl_obj_cache, sko);
GOTO(out_alloc, sks = NULL);
}
sko->sko_magic = SKO_MAGIC;
sko->sko_flags = 0;
sko->sko_slab = sks;
INIT_LIST_HEAD(&sko->sko_list);
INIT_HLIST_NODE(&sko->sko_hlist);
list_add(&sko->sko_list, &sks->sks_free_list);
}
out:
RETURN(sks);
}
/* Removes slab from complete or partial list, so it must
* be called with the 'skc->skc_lock' held.
* */
static void
slab_free(spl_kmem_slab_t *sks) {
spl_kmem_cache_t *skc;
spl_kmem_obj_t *sko, *n;
int i = 0;
ENTRY;
ASSERT(sks->sks_magic == SKS_MAGIC);
ASSERT(atomic_read(&sks->sks_ref) == 0);
skc = sks->sks_cache;
skc->skc_obj_total -= sks->sks_objs;
skc->skc_slab_total--;
//#ifdef CONFIG_RWSEM_GENERIC_SPINLOCK
ASSERT(spin_is_locked(&skc->skc_lock));
//#endif
list_for_each_entry_safe(sko, n, &sks->sks_free_list, sko_list) {
ASSERT(sko->sko_magic == SKO_MAGIC);
/* Run destructors for being freed */
if (skc->skc_dtor)
skc->skc_dtor(sko->sko_addr, skc->skc_private);
vmem_free(sko->sko_addr, skc->skc_obj_size);
list_del(&sko->sko_list);
kmem_cache_free(spl_obj_cache, sko);
i++;
}
ASSERT(sks->sks_objs == i);
list_del(&sks->sks_list);
kmem_cache_free(spl_slab_cache, sks);
EXIT;
}
static int
__slab_reclaim(spl_kmem_cache_t *skc)
{
spl_kmem_slab_t *sks, *m;
int rc = 0;
ENTRY;
//#ifdef CONFIG_RWSEM_GENERIC_SPINLOCK
ASSERT(spin_is_locked(&skc->skc_lock));
//#endif
/*
* Free empty slabs which have not been touched in skc_delay
* seconds. This delay time is important to avoid thrashing.
* Empty slabs will be at the end of the skc_partial_list.
*/
list_for_each_entry_safe_reverse(sks, m, &skc->skc_partial_list,
sks_list) {
if (atomic_read(&sks->sks_ref) > 0)
break;
if (time_after(jiffies, sks->sks_age + skc->skc_delay * HZ)) {
slab_free(sks);
rc++;
}
}
/* Returns number of slabs reclaimed */
RETURN(rc);
}
static int
slab_reclaim(spl_kmem_cache_t *skc)
{
int rc;
ENTRY;
spin_lock(&skc->skc_lock);
rc = __slab_reclaim(skc);
spin_unlock(&skc->skc_lock);
RETURN(rc);
}
spl_kmem_cache_t *
spl_kmem_cache_create(char *name, size_t size, size_t align,
spl_kmem_ctor_t ctor,
spl_kmem_dtor_t dtor,
spl_kmem_reclaim_t reclaim,
void *priv, void *vmp, int flags)
{
spl_kmem_cache_t *skc;
int i, kmem_flags = KM_SLEEP;
ENTRY;
/* We may be called when there is a non-zero preempt_count or
* interrupts are disabled is which case we must not sleep.
*/
if (current_thread_info()->preempt_count || irqs_disabled())
kmem_flags = KM_NOSLEEP;
/* Allocate new cache memory and initialize. */
skc = (spl_kmem_cache_t *)kmem_alloc(sizeof(*skc), kmem_flags);
if (skc == NULL)
RETURN(NULL);
skc->skc_magic = SKC_MAGIC;
skc->skc_name_size = strlen(name) + 1;
skc->skc_name = (char *)kmem_alloc(skc->skc_name_size, kmem_flags);
if (skc->skc_name == NULL) {
kmem_free(skc, sizeof(*skc));
RETURN(NULL);
}
strncpy(skc->skc_name, name, skc->skc_name_size);
skc->skc_ctor = ctor;
skc->skc_dtor = dtor;
skc->skc_reclaim = reclaim;
skc->skc_private = priv;
skc->skc_vmp = vmp;
skc->skc_flags = flags;
skc->skc_obj_size = size;
skc->skc_chunk_size = 0; /* XXX: Needed only when implementing */
skc->skc_slab_size = 0; /* small slab object optimizations */
skc->skc_max_chunks = 0; /* which are yet supported. */
skc->skc_delay = SPL_KMEM_CACHE_DELAY;
skc->skc_hash_bits = SPL_KMEM_CACHE_HASH_BITS;
skc->skc_hash_size = SPL_KMEM_CACHE_HASH_SIZE;
skc->skc_hash_elts = SPL_KMEM_CACHE_HASH_ELTS;
skc->skc_hash = (struct hlist_head *)
kmem_alloc(skc->skc_hash_size, kmem_flags);
if (skc->skc_hash == NULL) {
kmem_free(skc->skc_name, skc->skc_name_size);
kmem_free(skc, sizeof(*skc));
}
for (i = 0; i < skc->skc_hash_elts; i++)
INIT_HLIST_HEAD(&skc->skc_hash[i]);
INIT_LIST_HEAD(&skc->skc_list);
INIT_LIST_HEAD(&skc->skc_complete_list);
INIT_LIST_HEAD(&skc->skc_partial_list);
spin_lock_init(&skc->skc_lock);
skc->skc_slab_fail = 0;
skc->skc_slab_create = 0;
skc->skc_slab_destroy = 0;
skc->skc_slab_total = 0;
skc->skc_slab_alloc = 0;
skc->skc_slab_max = 0;
skc->skc_obj_total = 0;
skc->skc_obj_alloc = 0;
skc->skc_obj_max = 0;
skc->skc_hash_depth = 0;
skc->skc_hash_max = 0;
down_write(&spl_kmem_cache_sem);
list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
up_write(&spl_kmem_cache_sem);
RETURN(skc);
}
EXPORT_SYMBOL(spl_kmem_cache_create);
/* The caller must ensure there are no racing calls to
* spl_kmem_cache_alloc() for this spl_kmem_cache_t when
* it is being destroyed.
*/
void
spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
{
spl_kmem_slab_t *sks, *m;
ENTRY;
down_write(&spl_kmem_cache_sem);
list_del_init(&skc->skc_list);
up_write(&spl_kmem_cache_sem);
spin_lock(&skc->skc_lock);
/* Validate there are no objects in use and free all the
* spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
*/
ASSERT(list_empty(&skc->skc_complete_list));
list_for_each_entry_safe(sks, m, &skc->skc_partial_list, sks_list)
slab_free(sks);
kmem_free(skc->skc_hash, skc->skc_hash_size);
kmem_free(skc->skc_name, skc->skc_name_size);
kmem_free(skc, sizeof(*skc));
spin_unlock(&skc->skc_lock);
EXIT;
}
EXPORT_SYMBOL(spl_kmem_cache_destroy);
/* The kernel provided hash_ptr() function behaves exceptionally badly
* when all the addresses are page aligned which is likely the case
* here. To avoid this issue shift off the low order non-random bits.
*/
static unsigned long
spl_hash_ptr(void *ptr, unsigned int bits)
{
return hash_long((unsigned long)ptr >> PAGE_SHIFT, bits);
}
#ifndef list_first_entry
#define list_first_entry(ptr, type, member) \
list_entry((ptr)->next, type, member)
#endif
void *
spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
{
spl_kmem_slab_t *sks;
spl_kmem_obj_t *sko;
void *obj;
unsigned long key;
ENTRY;
spin_lock(&skc->skc_lock);
restart:
/* Check for available objects from the partial slabs */
if (!list_empty(&skc->skc_partial_list)) {
sks = list_first_entry(&skc->skc_partial_list,
spl_kmem_slab_t, sks_list);
ASSERT(sks->sks_magic == SKS_MAGIC);
ASSERT(atomic_read(&sks->sks_ref) < sks->sks_objs);
ASSERT(!list_empty(&sks->sks_free_list));
sko = list_first_entry(&sks->sks_free_list,
spl_kmem_obj_t, sko_list);
ASSERT(sko->sko_magic == SKO_MAGIC);
ASSERT(sko->sko_addr != NULL);
/* Remove from sks_free_list, add to used hash */
list_del_init(&sko->sko_list);
key = spl_hash_ptr(sko->sko_addr, skc->skc_hash_bits);
hlist_add_head(&sko->sko_hlist, &skc->skc_hash[key]);
sks->sks_age = jiffies;
atomic_inc(&sks->sks_ref);
skc->skc_obj_alloc++;
if (skc->skc_obj_alloc > skc->skc_obj_max)
skc->skc_obj_max = skc->skc_obj_alloc;
if (atomic_read(&sks->sks_ref) == 1) {
skc->skc_slab_alloc++;
if (skc->skc_slab_alloc > skc->skc_slab_max)
skc->skc_slab_max = skc->skc_slab_alloc;
}
/* Move slab to skc_complete_list when full */
if (atomic_read(&sks->sks_ref) == sks->sks_objs) {
list_del(&sks->sks_list);
list_add(&sks->sks_list, &skc->skc_complete_list);
}
GOTO(out_lock, obj = sko->sko_addr);
}
spin_unlock(&skc->skc_lock);
/* No available objects create a new slab. Since this is an
* expensive operation we do it without holding the semaphore
* and only briefly aquire it when we link in the fully
* allocated and constructed slab.
*/
/* Under Solaris if the KM_SLEEP flag is passed we may never
* fail, so sleep as long as needed. Additionally, since we are
* using vmem_alloc() KM_NOSLEEP is not an option and we must
* fail. Shifting to allocating our own pages and mapping the
* virtual address space may allow us to bypass this issue.
*/
if (!flags)
flags |= KM_SLEEP;
if (flags & KM_SLEEP)
flags |= __GFP_NOFAIL;
else
GOTO(out, obj = NULL);
sks = slab_alloc(skc, flags);
if (sks == NULL)
GOTO(out, obj = NULL);
/* Run all the constructors now that the slab is fully allocated */
list_for_each_entry(sko, &sks->sks_free_list, sko_list) {
ASSERT(sko->sko_magic == SKO_MAGIC);
if (skc->skc_ctor)
skc->skc_ctor(sko->sko_addr, skc->skc_private, flags);
}
/* Link the newly created slab in to the skc_partial_list,
* and retry the allocation which will now succeed.
*/
spin_lock(&skc->skc_lock);
skc->skc_slab_total++;
skc->skc_obj_total += sks->sks_objs;
list_add_tail(&sks->sks_list, &skc->skc_partial_list);
GOTO(restart, obj = NULL);
out_lock:
spin_unlock(&skc->skc_lock);
out:
RETURN(obj);
}
EXPORT_SYMBOL(spl_kmem_cache_alloc);
void
spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
{
struct hlist_node *node;
spl_kmem_slab_t *sks = NULL;
spl_kmem_obj_t *sko = NULL;
unsigned long key = spl_hash_ptr(obj, skc->skc_hash_bits);
int i = 0;
ENTRY;
spin_lock(&skc->skc_lock);
hlist_for_each_entry(sko, node, &skc->skc_hash[key], sko_hlist) {
if (unlikely((++i) > skc->skc_hash_depth))
skc->skc_hash_depth = i;
if (sko->sko_addr == obj) {
ASSERT(sko->sko_magic == SKO_MAGIC);
sks = sko->sko_slab;
break;
}
}
ASSERT(sko != NULL); /* Obj must be in hash */
ASSERT(sks != NULL); /* Obj must reference slab */
ASSERT(sks->sks_cache == skc);
hlist_del_init(&sko->sko_hlist);
list_add(&sko->sko_list, &sks->sks_free_list);
sks->sks_age = jiffies;
atomic_dec(&sks->sks_ref);
skc->skc_obj_alloc--;
/* Move slab to skc_partial_list when no longer full. Slabs
* are added to the kead to keep the partial list is quasi
* full sorted order. Fuller at the head, emptier at the tail.
*/
if (atomic_read(&sks->sks_ref) == (sks->sks_objs - 1)) {
list_del(&sks->sks_list);
list_add(&sks->sks_list, &skc->skc_partial_list);
}
/* Move emply slabs to the end of the partial list so
* they can be easily found and freed during reclamation.
*/
if (atomic_read(&sks->sks_ref) == 0) {
list_del(&sks->sks_list);
list_add_tail(&sks->sks_list, &skc->skc_partial_list);
skc->skc_slab_alloc--;
}
__slab_reclaim(skc);
spin_unlock(&skc->skc_lock);
}
EXPORT_SYMBOL(spl_kmem_cache_free);
static int
kmem_cache_generic_shrinker(int nr_to_scan, unsigned int gfp_mask)
{
spl_kmem_cache_t *skc;
/* Under linux a shrinker is not tightly coupled with a slab
* cache. In fact linux always systematically trys calling all
* registered shrinker callbacks until its target reclamation level
* is reached. Because of this we only register one shrinker
* function in the shim layer for all slab caches. And we always
* attempt to shrink all caches when this generic shrinker is called.
*/
down_read(&spl_kmem_cache_sem);
list_for_each_entry(skc, &spl_kmem_cache_list, skc_list)
spl_kmem_cache_reap_now(skc);
up_read(&spl_kmem_cache_sem);
/* XXX: Under linux we should return the remaining number of
* entries in the cache. We should do this as well.
*/
return 1;
}
void
spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
{
ENTRY;
ASSERT(skc && skc->skc_magic == SKC_MAGIC);
if (skc->skc_reclaim)
skc->skc_reclaim(skc->skc_private);
slab_reclaim(skc);
EXIT;
}
EXPORT_SYMBOL(spl_kmem_cache_reap_now);
void
spl_kmem_reap(void)
{
kmem_cache_generic_shrinker(KMC_REAP_CHUNK, GFP_KERNEL);
}
EXPORT_SYMBOL(spl_kmem_reap);
int
spl_kmem_init(void)
{
int rc = 0;
ENTRY;
init_rwsem(&spl_kmem_cache_sem);
INIT_LIST_HEAD(&spl_kmem_cache_list);
spl_slab_cache = NULL;
spl_obj_cache = NULL;
spl_slab_cache = __kmem_cache_create("spl_slab_cache",
sizeof(spl_kmem_slab_t),
0, 0, NULL, NULL);
if (spl_slab_cache == NULL)
GOTO(out_cache, rc = -ENOMEM);
spl_obj_cache = __kmem_cache_create("spl_obj_cache",
sizeof(spl_kmem_obj_t),
0, 0, NULL, NULL);
if (spl_obj_cache == NULL)
GOTO(out_cache, rc = -ENOMEM);
#ifdef HAVE_SET_SHRINKER
spl_kmem_cache_shrinker = set_shrinker(KMC_DEFAULT_SEEKS,
kmem_cache_generic_shrinker);
if (spl_kmem_cache_shrinker == NULL)
GOTO(out_cache, rc = -ENOMEM);
#else
register_shrinker(&spl_kmem_cache_shrinker);
#endif
#ifdef DEBUG_KMEM
{ int i;
atomic64_set(&kmem_alloc_used, 0);
atomic64_set(&vmem_alloc_used, 0);
atomic64_set(&kmem_cache_alloc_failed, 0);
spin_lock_init(&kmem_lock);
INIT_LIST_HEAD(&kmem_list);
for (i = 0; i < KMEM_TABLE_SIZE; i++)
INIT_HLIST_HEAD(&kmem_table[i]);
spin_lock_init(&vmem_lock);
INIT_LIST_HEAD(&vmem_list);
for (i = 0; i < VMEM_TABLE_SIZE; i++)
INIT_HLIST_HEAD(&vmem_table[i]);
}
#endif
RETURN(rc);
out_cache:
if (spl_obj_cache)
(void)kmem_cache_destroy(spl_obj_cache);
if (spl_slab_cache)
(void)kmem_cache_destroy(spl_slab_cache);
RETURN(rc);
}
#ifdef DEBUG_KMEM
static char *
sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
{
int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
int i, flag = 1;
ASSERT(str != NULL && len >= 17);
memset(str, 0, len);
/* Check for a fully printable string, and while we are at
* it place the printable characters in the passed buffer. */
for (i = 0; i < size; i++) {
str[i] = ((char *)(kd->kd_addr))[i];
if (isprint(str[i])) {
continue;
} else {
/* Minimum number of printable characters found
* to make it worthwhile to print this as ascii. */
if (i > min)
break;
flag = 0;
break;
}
}
if (!flag) {
sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
*((uint8_t *)kd->kd_addr),
*((uint8_t *)kd->kd_addr + 2),
*((uint8_t *)kd->kd_addr + 4),
*((uint8_t *)kd->kd_addr + 6),
*((uint8_t *)kd->kd_addr + 8),
*((uint8_t *)kd->kd_addr + 10),
*((uint8_t *)kd->kd_addr + 12),
*((uint8_t *)kd->kd_addr + 14));
}
return str;
}
#endif /* DEBUG_KMEM */
void
spl_kmem_fini(void)
{
#ifdef DEBUG_KMEM
unsigned long flags;
kmem_debug_t *kd;
char str[17];
/* Display all unreclaimed memory addresses, including the
* allocation size and the first few bytes of what's located
* at that address to aid in debugging. Performance is not
* a serious concern here since it is module unload time. */
if (atomic64_read(&kmem_alloc_used) != 0)
CWARN("kmem leaked %ld/%ld bytes\n",
atomic_read(&kmem_alloc_used), kmem_alloc_max);
spin_lock_irqsave(&kmem_lock, flags);
if (!list_empty(&kmem_list))
CDEBUG(D_WARNING, "%-16s %-5s %-16s %s:%s\n",
"address", "size", "data", "func", "line");
list_for_each_entry(kd, &kmem_list, kd_list)
CDEBUG(D_WARNING, "%p %-5d %-16s %s:%d\n",
kd->kd_addr, kd->kd_size,
sprintf_addr(kd, str, 17, 8),
kd->kd_func, kd->kd_line);
spin_unlock_irqrestore(&kmem_lock, flags);
if (atomic64_read(&vmem_alloc_used) != 0)
CWARN("vmem leaked %ld/%ld bytes\n",
atomic_read(&vmem_alloc_used), vmem_alloc_max);
spin_lock_irqsave(&vmem_lock, flags);
if (!list_empty(&vmem_list))
CDEBUG(D_WARNING, "%-16s %-5s %-16s %s:%s\n",
"address", "size", "data", "func", "line");
list_for_each_entry(kd, &vmem_list, kd_list)
CDEBUG(D_WARNING, "%p %-5d %-16s %s:%d\n",
kd->kd_addr, kd->kd_size,
sprintf_addr(kd, str, 17, 8),
kd->kd_func, kd->kd_line);
spin_unlock_irqrestore(&vmem_lock, flags);
#endif
ENTRY;
#ifdef HAVE_SET_SHRINKER
remove_shrinker(spl_kmem_cache_shrinker);
#else
unregister_shrinker(&spl_kmem_cache_shrinker);
#endif
(void)kmem_cache_destroy(spl_obj_cache);
(void)kmem_cache_destroy(spl_slab_cache);
EXIT;
}