c782ea8bb5
Move the type and function pointers for operations on existing send tags (modify, query, next, free) out of 'struct ifnet' and into a new 'struct if_snd_tag_sw'. A pointer to this structure is added to the generic part of send tags and is initialized by m_snd_tag_init() (which now accepts a switch structure as a new argument in place of the type). Previously, device driver ifnet methods switched on the type to call type-specific functions. Now, those type-specific functions are saved in the switch structure and invoked directly. In addition, this more gracefully permits multiple implementations of the same tag within a driver. In particular, NIC TLS for future Chelsio adapters will use a different implementation than the existing NIC TLS support for T6 adapters. Reviewed by: gallatin, hselasky, kib (older version) Sponsored by: Chelsio Communications Differential Revision: https://reviews.freebsd.org/D31572
1735 lines
50 KiB
C
1735 lines
50 KiB
C
/*-
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 2018-2020
|
|
* Netflix Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
/**
|
|
* Author: Randall Stewart <rrs@netflix.com>
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_ipsec.h"
|
|
#include "opt_tcpdebug.h"
|
|
#include "opt_ratelimit.h"
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/ck.h>
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_pcb.h>
|
|
#define TCPSTATES /* for logging */
|
|
#include <netinet/tcp_var.h>
|
|
#ifdef INET6
|
|
#include <netinet6/tcp6_var.h>
|
|
#endif
|
|
#include <netinet/tcp_hpts.h>
|
|
#include <netinet/tcp_log_buf.h>
|
|
#include <netinet/tcp_ratelimit.h>
|
|
#ifndef USECS_IN_SECOND
|
|
#define USECS_IN_SECOND 1000000
|
|
#endif
|
|
/*
|
|
* For the purposes of each send, what is the size
|
|
* of an ethernet frame.
|
|
*/
|
|
MALLOC_DEFINE(M_TCPPACE, "tcp_hwpace", "TCP Hardware pacing memory");
|
|
#ifdef RATELIMIT
|
|
|
|
/*
|
|
* The following preferred table will seem weird to
|
|
* the casual viewer. Why do we not have any rates below
|
|
* 1Mbps? Why do we have a rate at 1.44Mbps called common?
|
|
* Why do the rates cluster in the 1-100Mbps range more
|
|
* than others? Why does the table jump around at the beginnign
|
|
* and then be more consistently raising?
|
|
*
|
|
* Let me try to answer those questions. A lot of
|
|
* this is dependant on the hardware. We have three basic
|
|
* supporters of rate limiting
|
|
*
|
|
* Chelsio - Supporting 16 configurable rates.
|
|
* Mlx - c4 supporting 13 fixed rates.
|
|
* Mlx - c5 & c6 supporting 127 configurable rates.
|
|
*
|
|
* The c4 is why we have a common rate that is available
|
|
* in all rate tables. This is a selected rate from the
|
|
* c4 table and we assure its available in all ratelimit
|
|
* tables. This way the tcp_ratelimit code has an assured
|
|
* rate it should always be able to get. This answers a
|
|
* couple of the questions above.
|
|
*
|
|
* So what about the rest, well the table is built to
|
|
* try to get the most out of a joint hardware/software
|
|
* pacing system. The software pacer will always pick
|
|
* a rate higher than the b/w that it is estimating
|
|
*
|
|
* on the path. This is done for two reasons.
|
|
* a) So we can discover more b/w
|
|
* and
|
|
* b) So we can send a block of MSS's down and then
|
|
* have the software timer go off after the previous
|
|
* send is completely out of the hardware.
|
|
*
|
|
* But when we do <b> we don't want to have the delay
|
|
* between the last packet sent by the hardware be
|
|
* excessively long (to reach our desired rate).
|
|
*
|
|
* So let me give an example for clarity.
|
|
*
|
|
* Lets assume that the tcp stack sees that 29,110,000 bps is
|
|
* what the bw of the path is. The stack would select the
|
|
* rate 31Mbps. 31Mbps means that each send that is done
|
|
* by the hardware will cause a 390 micro-second gap between
|
|
* the packets sent at that rate. For 29,110,000 bps we
|
|
* would need 416 micro-seconds gap between each send.
|
|
*
|
|
* Note that are calculating a complete time for pacing
|
|
* which includes the ethernet, IP and TCP overhead. So
|
|
* a full 1514 bytes is used for the above calculations.
|
|
* My testing has shown that both cards are also using this
|
|
* as their basis i.e. full payload size of the ethernet frame.
|
|
* The TCP stack caller needs to be aware of this and make the
|
|
* appropriate overhead calculations be included in its choices.
|
|
*
|
|
* Now, continuing our example, we pick a MSS size based on the
|
|
* delta between the two rates (416 - 390) divided into the rate
|
|
* we really wish to send at rounded up. That results in a MSS
|
|
* send of 17 mss's at once. The hardware then will
|
|
* run out of data in a single 17MSS send in 6,630 micro-seconds.
|
|
*
|
|
* On the other hand the software pacer will send more data
|
|
* in 7,072 micro-seconds. This means that we will refill
|
|
* the hardware 52 microseconds after it would have sent
|
|
* next if it had not ran out of data. This is a win since we are
|
|
* only sending every 7ms or so and yet all the packets are spaced on
|
|
* the wire with 94% of what they should be and only
|
|
* the last packet is delayed extra to make up for the
|
|
* difference.
|
|
*
|
|
* Note that the above formula has two important caveat.
|
|
* If we are above (b/w wise) over 100Mbps we double the result
|
|
* of the MSS calculation. The second caveat is if we are 500Mbps
|
|
* or more we just send the maximum MSS at once i.e. 45MSS. At
|
|
* the higher b/w's even the cards have limits to what times (timer granularity)
|
|
* they can insert between packets and start to send more than one
|
|
* packet at a time on the wire.
|
|
*
|
|
*/
|
|
#define COMMON_RATE 180500
|
|
const uint64_t desired_rates[] = {
|
|
122500, /* 1Mbps - rate 1 */
|
|
180500, /* 1.44Mpbs - rate 2 common rate */
|
|
375000, /* 3Mbps - rate 3 */
|
|
625000, /* 5Mbps - rate 4 */
|
|
1250000, /* 10Mbps - rate 5 */
|
|
1875000, /* 15Mbps - rate 6 */
|
|
2500000, /* 20Mbps - rate 7 */
|
|
3125000, /* 25Mbps - rate 8 */
|
|
3750000, /* 30Mbps - rate 9 */
|
|
4375000, /* 35Mbps - rate 10 */
|
|
5000000, /* 40Meg - rate 11 */
|
|
6250000, /* 50Mbps - rate 12 */
|
|
12500000, /* 100Mbps - rate 13 */
|
|
25000000, /* 200Mbps - rate 14 */
|
|
50000000, /* 400Mbps - rate 15 */
|
|
100000000, /* 800Mbps - rate 16 */
|
|
5625000, /* 45Mbps - rate 17 */
|
|
6875000, /* 55Mbps - rate 19 */
|
|
7500000, /* 60Mbps - rate 20 */
|
|
8125000, /* 65Mbps - rate 21 */
|
|
8750000, /* 70Mbps - rate 22 */
|
|
9375000, /* 75Mbps - rate 23 */
|
|
10000000, /* 80Mbps - rate 24 */
|
|
10625000, /* 85Mbps - rate 25 */
|
|
11250000, /* 90Mbps - rate 26 */
|
|
11875000, /* 95Mbps - rate 27 */
|
|
12500000, /* 100Mbps - rate 28 */
|
|
13750000, /* 110Mbps - rate 29 */
|
|
15000000, /* 120Mbps - rate 30 */
|
|
16250000, /* 130Mbps - rate 31 */
|
|
17500000, /* 140Mbps - rate 32 */
|
|
18750000, /* 150Mbps - rate 33 */
|
|
20000000, /* 160Mbps - rate 34 */
|
|
21250000, /* 170Mbps - rate 35 */
|
|
22500000, /* 180Mbps - rate 36 */
|
|
23750000, /* 190Mbps - rate 37 */
|
|
26250000, /* 210Mbps - rate 38 */
|
|
27500000, /* 220Mbps - rate 39 */
|
|
28750000, /* 230Mbps - rate 40 */
|
|
30000000, /* 240Mbps - rate 41 */
|
|
31250000, /* 250Mbps - rate 42 */
|
|
34375000, /* 275Mbps - rate 43 */
|
|
37500000, /* 300Mbps - rate 44 */
|
|
40625000, /* 325Mbps - rate 45 */
|
|
43750000, /* 350Mbps - rate 46 */
|
|
46875000, /* 375Mbps - rate 47 */
|
|
53125000, /* 425Mbps - rate 48 */
|
|
56250000, /* 450Mbps - rate 49 */
|
|
59375000, /* 475Mbps - rate 50 */
|
|
62500000, /* 500Mbps - rate 51 */
|
|
68750000, /* 550Mbps - rate 52 */
|
|
75000000, /* 600Mbps - rate 53 */
|
|
81250000, /* 650Mbps - rate 54 */
|
|
87500000, /* 700Mbps - rate 55 */
|
|
93750000, /* 750Mbps - rate 56 */
|
|
106250000, /* 850Mbps - rate 57 */
|
|
112500000, /* 900Mbps - rate 58 */
|
|
125000000, /* 1Gbps - rate 59 */
|
|
156250000, /* 1.25Gps - rate 60 */
|
|
187500000, /* 1.5Gps - rate 61 */
|
|
218750000, /* 1.75Gps - rate 62 */
|
|
250000000, /* 2Gbps - rate 63 */
|
|
281250000, /* 2.25Gps - rate 64 */
|
|
312500000, /* 2.5Gbps - rate 65 */
|
|
343750000, /* 2.75Gbps - rate 66 */
|
|
375000000, /* 3Gbps - rate 67 */
|
|
500000000, /* 4Gbps - rate 68 */
|
|
625000000, /* 5Gbps - rate 69 */
|
|
750000000, /* 6Gbps - rate 70 */
|
|
875000000, /* 7Gbps - rate 71 */
|
|
1000000000, /* 8Gbps - rate 72 */
|
|
1125000000, /* 9Gbps - rate 73 */
|
|
1250000000, /* 10Gbps - rate 74 */
|
|
1875000000, /* 15Gbps - rate 75 */
|
|
2500000000 /* 20Gbps - rate 76 */
|
|
};
|
|
|
|
#define MAX_HDWR_RATES (sizeof(desired_rates)/sizeof(uint64_t))
|
|
#define RS_ORDERED_COUNT 16 /*
|
|
* Number that are in order
|
|
* at the beginning of the table,
|
|
* over this a sort is required.
|
|
*/
|
|
#define RS_NEXT_ORDER_GROUP 16 /*
|
|
* The point in our table where
|
|
* we come fill in a second ordered
|
|
* group (index wise means -1).
|
|
*/
|
|
#define ALL_HARDWARE_RATES 1004 /*
|
|
* 1Meg - 1Gig in 1 Meg steps
|
|
* plus 100, 200k and 500k and
|
|
* 10Gig
|
|
*/
|
|
|
|
#define RS_ONE_MEGABIT_PERSEC 1000000
|
|
#define RS_ONE_GIGABIT_PERSEC 1000000000
|
|
#define RS_TEN_GIGABIT_PERSEC 10000000000
|
|
|
|
static struct head_tcp_rate_set int_rs;
|
|
static struct mtx rs_mtx;
|
|
uint32_t rs_number_alive;
|
|
uint32_t rs_number_dead;
|
|
static uint32_t rs_floor_mss = 0;
|
|
static uint32_t wait_time_floor = 8000; /* 8 ms */
|
|
static uint32_t rs_hw_floor_mss = 16;
|
|
static uint32_t num_of_waits_allowed = 1; /* How many time blocks are we willing to wait */
|
|
|
|
SYSCTL_NODE(_net_inet_tcp, OID_AUTO, rl, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"TCP Ratelimit stats");
|
|
SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, alive, CTLFLAG_RW,
|
|
&rs_number_alive, 0,
|
|
"Number of interfaces initialized for ratelimiting");
|
|
SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, dead, CTLFLAG_RW,
|
|
&rs_number_dead, 0,
|
|
"Number of interfaces departing from ratelimiting");
|
|
SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, floor_mss, CTLFLAG_RW,
|
|
&rs_floor_mss, 0,
|
|
"Number of MSS that will override the normal minimums (0 means don't enforce)");
|
|
SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, wait_floor, CTLFLAG_RW,
|
|
&wait_time_floor, 2000,
|
|
"Has b/w increases what is the wait floor we are willing to wait at the end?");
|
|
SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, time_blocks, CTLFLAG_RW,
|
|
&num_of_waits_allowed, 1,
|
|
"How many time blocks on the end should software pacing be willing to wait?");
|
|
|
|
SYSCTL_UINT(_net_inet_tcp_rl, OID_AUTO, hw_floor_mss, CTLFLAG_RW,
|
|
&rs_hw_floor_mss, 16,
|
|
"Number of mss that are a minum for hardware pacing?");
|
|
|
|
|
|
static void
|
|
rl_add_syctl_entries(struct sysctl_oid *rl_sysctl_root, struct tcp_rate_set *rs)
|
|
{
|
|
/*
|
|
* Add sysctl entries for thus interface.
|
|
*/
|
|
if (rs->rs_flags & RS_INTF_NO_SUP) {
|
|
SYSCTL_ADD_S32(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_sysctl_root),
|
|
OID_AUTO, "disable", CTLFLAG_RD,
|
|
&rs->rs_disable, 0,
|
|
"Disable this interface from new hdwr limiting?");
|
|
} else {
|
|
SYSCTL_ADD_S32(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_sysctl_root),
|
|
OID_AUTO, "disable", CTLFLAG_RW,
|
|
&rs->rs_disable, 0,
|
|
"Disable this interface from new hdwr limiting?");
|
|
}
|
|
SYSCTL_ADD_S32(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_sysctl_root),
|
|
OID_AUTO, "minseg", CTLFLAG_RW,
|
|
&rs->rs_min_seg, 0,
|
|
"What is the minimum we need to send on this interface?");
|
|
SYSCTL_ADD_U64(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_sysctl_root),
|
|
OID_AUTO, "flow_limit", CTLFLAG_RW,
|
|
&rs->rs_flow_limit, 0,
|
|
"What is the limit for number of flows (0=unlimited)?");
|
|
SYSCTL_ADD_S32(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_sysctl_root),
|
|
OID_AUTO, "highest", CTLFLAG_RD,
|
|
&rs->rs_highest_valid, 0,
|
|
"Highest valid rate");
|
|
SYSCTL_ADD_S32(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_sysctl_root),
|
|
OID_AUTO, "lowest", CTLFLAG_RD,
|
|
&rs->rs_lowest_valid, 0,
|
|
"Lowest valid rate");
|
|
SYSCTL_ADD_S32(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_sysctl_root),
|
|
OID_AUTO, "flags", CTLFLAG_RD,
|
|
&rs->rs_flags, 0,
|
|
"What lags are on the entry?");
|
|
SYSCTL_ADD_S32(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_sysctl_root),
|
|
OID_AUTO, "numrates", CTLFLAG_RD,
|
|
&rs->rs_rate_cnt, 0,
|
|
"How many rates re there?");
|
|
SYSCTL_ADD_U64(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_sysctl_root),
|
|
OID_AUTO, "flows_using", CTLFLAG_RD,
|
|
&rs->rs_flows_using, 0,
|
|
"How many flows are using this interface now?");
|
|
#ifdef DETAILED_RATELIMIT_SYSCTL
|
|
if (rs->rs_rlt && rs->rs_rate_cnt > 0) {
|
|
/* Lets display the rates */
|
|
int i;
|
|
struct sysctl_oid *rl_rates;
|
|
struct sysctl_oid *rl_rate_num;
|
|
char rate_num[16];
|
|
rl_rates = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_sysctl_root),
|
|
OID_AUTO,
|
|
"rate",
|
|
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"Ratelist");
|
|
for( i = 0; i < rs->rs_rate_cnt; i++) {
|
|
sprintf(rate_num, "%d", i);
|
|
rl_rate_num = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_rates),
|
|
OID_AUTO,
|
|
rate_num,
|
|
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"Individual Rate");
|
|
SYSCTL_ADD_U32(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_rate_num),
|
|
OID_AUTO, "flags", CTLFLAG_RD,
|
|
&rs->rs_rlt[i].flags, 0,
|
|
"Flags on this rate");
|
|
SYSCTL_ADD_U32(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_rate_num),
|
|
OID_AUTO, "pacetime", CTLFLAG_RD,
|
|
&rs->rs_rlt[i].time_between, 0,
|
|
"Time hardware inserts between 1500 byte sends");
|
|
SYSCTL_ADD_LONG(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_rate_num),
|
|
OID_AUTO, "rate", CTLFLAG_RD,
|
|
&rs->rs_rlt[i].rate,
|
|
"Rate in bytes per second");
|
|
SYSCTL_ADD_LONG(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_rate_num),
|
|
OID_AUTO, "using", CTLFLAG_RD,
|
|
&rs->rs_rlt[i].using,
|
|
"Number of flows using");
|
|
SYSCTL_ADD_LONG(&rs->sysctl_ctx,
|
|
SYSCTL_CHILDREN(rl_rate_num),
|
|
OID_AUTO, "enobufs", CTLFLAG_RD,
|
|
&rs->rs_rlt[i].rs_num_enobufs,
|
|
"Number of enobufs logged on this rate");
|
|
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
rs_destroy(epoch_context_t ctx)
|
|
{
|
|
struct tcp_rate_set *rs;
|
|
bool do_free_rs;
|
|
|
|
rs = __containerof(ctx, struct tcp_rate_set, rs_epoch_ctx);
|
|
|
|
mtx_lock(&rs_mtx);
|
|
rs->rs_flags &= ~RS_FUNERAL_SCHD;
|
|
/*
|
|
* In theory its possible (but unlikely)
|
|
* that while the delete was occuring
|
|
* and we were applying the DEAD flag
|
|
* someone slipped in and found the
|
|
* interface in a lookup. While we
|
|
* decided rs_flows_using were 0 and
|
|
* scheduling the epoch_call, the other
|
|
* thread incremented rs_flow_using. This
|
|
* is because users have a pointer and
|
|
* we only use the rs_flows_using in an
|
|
* atomic fashion, i.e. the other entities
|
|
* are not protected. To assure this did
|
|
* not occur, we check rs_flows_using here
|
|
* before deleting.
|
|
*/
|
|
do_free_rs = (rs->rs_flows_using == 0);
|
|
rs_number_dead--;
|
|
mtx_unlock(&rs_mtx);
|
|
|
|
if (do_free_rs) {
|
|
sysctl_ctx_free(&rs->sysctl_ctx);
|
|
free(rs->rs_rlt, M_TCPPACE);
|
|
free(rs, M_TCPPACE);
|
|
}
|
|
}
|
|
|
|
static void
|
|
rs_defer_destroy(struct tcp_rate_set *rs)
|
|
{
|
|
|
|
mtx_assert(&rs_mtx, MA_OWNED);
|
|
|
|
/* Check if already pending. */
|
|
if (rs->rs_flags & RS_FUNERAL_SCHD)
|
|
return;
|
|
|
|
rs_number_dead++;
|
|
|
|
/* Set flag to only defer once. */
|
|
rs->rs_flags |= RS_FUNERAL_SCHD;
|
|
NET_EPOCH_CALL(rs_destroy, &rs->rs_epoch_ctx);
|
|
}
|
|
|
|
#ifdef INET
|
|
extern counter_u64_t rate_limit_new;
|
|
extern counter_u64_t rate_limit_chg;
|
|
extern counter_u64_t rate_limit_set_ok;
|
|
extern counter_u64_t rate_limit_active;
|
|
extern counter_u64_t rate_limit_alloc_fail;
|
|
#endif
|
|
|
|
static int
|
|
rl_attach_txrtlmt(struct ifnet *ifp,
|
|
uint32_t flowtype,
|
|
int flowid,
|
|
uint64_t cfg_rate,
|
|
struct m_snd_tag **tag)
|
|
{
|
|
int error;
|
|
union if_snd_tag_alloc_params params = {
|
|
.rate_limit.hdr.type = IF_SND_TAG_TYPE_RATE_LIMIT,
|
|
.rate_limit.hdr.flowid = flowid,
|
|
.rate_limit.hdr.flowtype = flowtype,
|
|
.rate_limit.max_rate = cfg_rate,
|
|
.rate_limit.flags = M_NOWAIT,
|
|
};
|
|
|
|
error = m_snd_tag_alloc(ifp, ¶ms, tag);
|
|
#ifdef INET
|
|
if (error == 0) {
|
|
counter_u64_add(rate_limit_set_ok, 1);
|
|
counter_u64_add(rate_limit_active, 1);
|
|
} else if (error != EOPNOTSUPP)
|
|
counter_u64_add(rate_limit_alloc_fail, 1);
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
populate_canned_table(struct tcp_rate_set *rs, const uint64_t *rate_table_act)
|
|
{
|
|
/*
|
|
* The internal table is "special", it
|
|
* is two seperate ordered tables that
|
|
* must be merged. We get here when the
|
|
* adapter specifies a number of rates that
|
|
* covers both ranges in the table in some
|
|
* form.
|
|
*/
|
|
int i, at_low, at_high;
|
|
uint8_t low_disabled = 0, high_disabled = 0;
|
|
|
|
for(i = 0, at_low = 0, at_high = RS_NEXT_ORDER_GROUP; i < rs->rs_rate_cnt; i++) {
|
|
rs->rs_rlt[i].flags = 0;
|
|
rs->rs_rlt[i].time_between = 0;
|
|
if ((low_disabled == 0) &&
|
|
(high_disabled ||
|
|
(rate_table_act[at_low] < rate_table_act[at_high]))) {
|
|
rs->rs_rlt[i].rate = rate_table_act[at_low];
|
|
at_low++;
|
|
if (at_low == RS_NEXT_ORDER_GROUP)
|
|
low_disabled = 1;
|
|
} else if (high_disabled == 0) {
|
|
rs->rs_rlt[i].rate = rate_table_act[at_high];
|
|
at_high++;
|
|
if (at_high == MAX_HDWR_RATES)
|
|
high_disabled = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct tcp_rate_set *
|
|
rt_setup_new_rs(struct ifnet *ifp, int *error)
|
|
{
|
|
struct tcp_rate_set *rs;
|
|
const uint64_t *rate_table_act;
|
|
uint64_t lentim, res;
|
|
size_t sz;
|
|
uint32_t hash_type;
|
|
int i;
|
|
struct if_ratelimit_query_results rl;
|
|
struct sysctl_oid *rl_sysctl_root;
|
|
struct epoch_tracker et;
|
|
/*
|
|
* We expect to enter with the
|
|
* mutex locked.
|
|
*/
|
|
|
|
if (ifp->if_ratelimit_query == NULL) {
|
|
/*
|
|
* We can do nothing if we cannot
|
|
* get a query back from the driver.
|
|
*/
|
|
printf("Warning:No query functions for %s:%d-- failed\n",
|
|
ifp->if_dname, ifp->if_dunit);
|
|
return (NULL);
|
|
}
|
|
rs = malloc(sizeof(struct tcp_rate_set), M_TCPPACE, M_NOWAIT | M_ZERO);
|
|
if (rs == NULL) {
|
|
if (error)
|
|
*error = ENOMEM;
|
|
printf("Warning:No memory for malloc of tcp_rate_set\n");
|
|
return (NULL);
|
|
}
|
|
memset(&rl, 0, sizeof(rl));
|
|
rl.flags = RT_NOSUPPORT;
|
|
ifp->if_ratelimit_query(ifp, &rl);
|
|
if (rl.flags & RT_IS_UNUSABLE) {
|
|
/*
|
|
* The interface does not really support
|
|
* the rate-limiting.
|
|
*/
|
|
memset(rs, 0, sizeof(struct tcp_rate_set));
|
|
rs->rs_ifp = ifp;
|
|
rs->rs_if_dunit = ifp->if_dunit;
|
|
rs->rs_flags = RS_INTF_NO_SUP;
|
|
rs->rs_disable = 1;
|
|
rs_number_alive++;
|
|
sysctl_ctx_init(&rs->sysctl_ctx);
|
|
rl_sysctl_root = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
|
|
SYSCTL_STATIC_CHILDREN(_net_inet_tcp_rl),
|
|
OID_AUTO,
|
|
rs->rs_ifp->if_xname,
|
|
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"");
|
|
rl_add_syctl_entries(rl_sysctl_root, rs);
|
|
NET_EPOCH_ENTER(et);
|
|
mtx_lock(&rs_mtx);
|
|
CK_LIST_INSERT_HEAD(&int_rs, rs, next);
|
|
mtx_unlock(&rs_mtx);
|
|
NET_EPOCH_EXIT(et);
|
|
return (rs);
|
|
} else if ((rl.flags & RT_IS_INDIRECT) == RT_IS_INDIRECT) {
|
|
memset(rs, 0, sizeof(struct tcp_rate_set));
|
|
rs->rs_ifp = ifp;
|
|
rs->rs_if_dunit = ifp->if_dunit;
|
|
rs->rs_flags = RS_IS_DEFF;
|
|
rs_number_alive++;
|
|
sysctl_ctx_init(&rs->sysctl_ctx);
|
|
rl_sysctl_root = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
|
|
SYSCTL_STATIC_CHILDREN(_net_inet_tcp_rl),
|
|
OID_AUTO,
|
|
rs->rs_ifp->if_xname,
|
|
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"");
|
|
rl_add_syctl_entries(rl_sysctl_root, rs);
|
|
NET_EPOCH_ENTER(et);
|
|
mtx_lock(&rs_mtx);
|
|
CK_LIST_INSERT_HEAD(&int_rs, rs, next);
|
|
mtx_unlock(&rs_mtx);
|
|
NET_EPOCH_EXIT(et);
|
|
return (rs);
|
|
} else if ((rl.flags & RT_IS_FIXED_TABLE) == RT_IS_FIXED_TABLE) {
|
|
/* Mellanox C4 likely */
|
|
rs->rs_ifp = ifp;
|
|
rs->rs_if_dunit = ifp->if_dunit;
|
|
rs->rs_rate_cnt = rl.number_of_rates;
|
|
rs->rs_min_seg = rl.min_segment_burst;
|
|
rs->rs_highest_valid = 0;
|
|
rs->rs_flow_limit = rl.max_flows;
|
|
rs->rs_flags = RS_IS_INTF | RS_NO_PRE;
|
|
rs->rs_disable = 0;
|
|
rate_table_act = rl.rate_table;
|
|
} else if ((rl.flags & RT_IS_SELECTABLE) == RT_IS_SELECTABLE) {
|
|
/* Chelsio, C5 and C6 of Mellanox? */
|
|
rs->rs_ifp = ifp;
|
|
rs->rs_if_dunit = ifp->if_dunit;
|
|
rs->rs_rate_cnt = rl.number_of_rates;
|
|
rs->rs_min_seg = rl.min_segment_burst;
|
|
rs->rs_disable = 0;
|
|
rs->rs_flow_limit = rl.max_flows;
|
|
rate_table_act = desired_rates;
|
|
if ((rs->rs_rate_cnt > MAX_HDWR_RATES) &&
|
|
(rs->rs_rate_cnt < ALL_HARDWARE_RATES)) {
|
|
/*
|
|
* Our desired table is not big
|
|
* enough, do what we can.
|
|
*/
|
|
rs->rs_rate_cnt = MAX_HDWR_RATES;
|
|
}
|
|
if (rs->rs_rate_cnt <= RS_ORDERED_COUNT)
|
|
rs->rs_flags = RS_IS_INTF;
|
|
else
|
|
rs->rs_flags = RS_IS_INTF | RS_INT_TBL;
|
|
if (rs->rs_rate_cnt >= ALL_HARDWARE_RATES)
|
|
rs->rs_rate_cnt = ALL_HARDWARE_RATES;
|
|
} else {
|
|
free(rs, M_TCPPACE);
|
|
return (NULL);
|
|
}
|
|
sz = sizeof(struct tcp_hwrate_limit_table) * rs->rs_rate_cnt;
|
|
rs->rs_rlt = malloc(sz, M_TCPPACE, M_NOWAIT);
|
|
if (rs->rs_rlt == NULL) {
|
|
if (error)
|
|
*error = ENOMEM;
|
|
bail:
|
|
free(rs, M_TCPPACE);
|
|
return (NULL);
|
|
}
|
|
if (rs->rs_rate_cnt >= ALL_HARDWARE_RATES) {
|
|
/*
|
|
* The interface supports all
|
|
* the rates we could possibly want.
|
|
*/
|
|
uint64_t rat;
|
|
|
|
rs->rs_rlt[0].rate = 12500; /* 100k */
|
|
rs->rs_rlt[1].rate = 25000; /* 200k */
|
|
rs->rs_rlt[2].rate = 62500; /* 500k */
|
|
/* Note 125000 == 1Megabit
|
|
* populate 1Meg - 1000meg.
|
|
*/
|
|
for(i = 3, rat = 125000; i< (ALL_HARDWARE_RATES-1); i++) {
|
|
rs->rs_rlt[i].rate = rat;
|
|
rat += 125000;
|
|
}
|
|
rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate = 1250000000;
|
|
} else if (rs->rs_flags & RS_INT_TBL) {
|
|
/* We populate this in a special way */
|
|
populate_canned_table(rs, rate_table_act);
|
|
} else {
|
|
/*
|
|
* Just copy in the rates from
|
|
* the table, it is in order.
|
|
*/
|
|
for (i=0; i<rs->rs_rate_cnt; i++) {
|
|
rs->rs_rlt[i].rate = rate_table_act[i];
|
|
rs->rs_rlt[i].time_between = 0;
|
|
rs->rs_rlt[i].flags = 0;
|
|
}
|
|
}
|
|
for (i = (rs->rs_rate_cnt - 1); i >= 0; i--) {
|
|
/*
|
|
* We go backwards through the list so that if we can't get
|
|
* a rate and fail to init one, we have at least a chance of
|
|
* getting the highest one.
|
|
*/
|
|
rs->rs_rlt[i].ptbl = rs;
|
|
rs->rs_rlt[i].tag = NULL;
|
|
rs->rs_rlt[i].using = 0;
|
|
rs->rs_rlt[i].rs_num_enobufs = 0;
|
|
/*
|
|
* Calculate the time between.
|
|
*/
|
|
lentim = ETHERNET_SEGMENT_SIZE * USECS_IN_SECOND;
|
|
res = lentim / rs->rs_rlt[i].rate;
|
|
if (res > 0)
|
|
rs->rs_rlt[i].time_between = res;
|
|
else
|
|
rs->rs_rlt[i].time_between = 1;
|
|
if (rs->rs_flags & RS_NO_PRE) {
|
|
rs->rs_rlt[i].flags = HDWRPACE_INITED;
|
|
rs->rs_lowest_valid = i;
|
|
} else {
|
|
int err;
|
|
|
|
if ((rl.flags & RT_IS_SETUP_REQ) &&
|
|
(ifp->if_ratelimit_query)) {
|
|
err = ifp->if_ratelimit_setup(ifp,
|
|
rs->rs_rlt[i].rate, i);
|
|
if (err)
|
|
goto handle_err;
|
|
}
|
|
#ifdef RSS
|
|
hash_type = M_HASHTYPE_RSS_TCP_IPV4;
|
|
#else
|
|
hash_type = M_HASHTYPE_OPAQUE_HASH;
|
|
#endif
|
|
err = rl_attach_txrtlmt(ifp,
|
|
hash_type,
|
|
(i + 1),
|
|
rs->rs_rlt[i].rate,
|
|
&rs->rs_rlt[i].tag);
|
|
if (err) {
|
|
handle_err:
|
|
if (i == (rs->rs_rate_cnt - 1)) {
|
|
/*
|
|
* Huh - first rate and we can't get
|
|
* it?
|
|
*/
|
|
free(rs->rs_rlt, M_TCPPACE);
|
|
if (error)
|
|
*error = err;
|
|
goto bail;
|
|
} else {
|
|
if (error)
|
|
*error = err;
|
|
}
|
|
break;
|
|
} else {
|
|
rs->rs_rlt[i].flags = HDWRPACE_INITED | HDWRPACE_TAGPRESENT;
|
|
rs->rs_lowest_valid = i;
|
|
}
|
|
}
|
|
}
|
|
/* Did we get at least 1 rate? */
|
|
if (rs->rs_rlt[(rs->rs_rate_cnt - 1)].flags & HDWRPACE_INITED)
|
|
rs->rs_highest_valid = rs->rs_rate_cnt - 1;
|
|
else {
|
|
free(rs->rs_rlt, M_TCPPACE);
|
|
goto bail;
|
|
}
|
|
rs_number_alive++;
|
|
sysctl_ctx_init(&rs->sysctl_ctx);
|
|
rl_sysctl_root = SYSCTL_ADD_NODE(&rs->sysctl_ctx,
|
|
SYSCTL_STATIC_CHILDREN(_net_inet_tcp_rl),
|
|
OID_AUTO,
|
|
rs->rs_ifp->if_xname,
|
|
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"");
|
|
rl_add_syctl_entries(rl_sysctl_root, rs);
|
|
NET_EPOCH_ENTER(et);
|
|
mtx_lock(&rs_mtx);
|
|
CK_LIST_INSERT_HEAD(&int_rs, rs, next);
|
|
mtx_unlock(&rs_mtx);
|
|
NET_EPOCH_EXIT(et);
|
|
return (rs);
|
|
}
|
|
|
|
/*
|
|
* For an explanation of why the argument is volatile please
|
|
* look at the comments around rt_setup_rate().
|
|
*/
|
|
static const struct tcp_hwrate_limit_table *
|
|
tcp_int_find_suitable_rate(const volatile struct tcp_rate_set *rs,
|
|
uint64_t bytes_per_sec, uint32_t flags, uint64_t *lower_rate)
|
|
{
|
|
struct tcp_hwrate_limit_table *arte = NULL, *rte = NULL;
|
|
uint64_t mbits_per_sec, ind_calc, previous_rate = 0;
|
|
int i;
|
|
|
|
mbits_per_sec = (bytes_per_sec * 8);
|
|
if (flags & RS_PACING_LT) {
|
|
if ((mbits_per_sec < RS_ONE_MEGABIT_PERSEC) &&
|
|
(rs->rs_lowest_valid <= 2)){
|
|
/*
|
|
* Smaller than 1Meg, only
|
|
* 3 entries can match it.
|
|
*/
|
|
previous_rate = 0;
|
|
for(i = rs->rs_lowest_valid; i < 3; i++) {
|
|
if (bytes_per_sec <= rs->rs_rlt[i].rate) {
|
|
rte = &rs->rs_rlt[i];
|
|
break;
|
|
} else if (rs->rs_rlt[i].flags & HDWRPACE_INITED) {
|
|
arte = &rs->rs_rlt[i];
|
|
}
|
|
previous_rate = rs->rs_rlt[i].rate;
|
|
}
|
|
goto done;
|
|
} else if ((mbits_per_sec > RS_ONE_GIGABIT_PERSEC) &&
|
|
(rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)){
|
|
/*
|
|
* Larger than 1G (the majority of
|
|
* our table.
|
|
*/
|
|
if (mbits_per_sec < RS_TEN_GIGABIT_PERSEC)
|
|
rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
|
|
else
|
|
arte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
|
|
previous_rate = rs->rs_rlt[(ALL_HARDWARE_RATES-2)].rate;
|
|
goto done;
|
|
}
|
|
/*
|
|
* If we reach here its in our table (between 1Meg - 1000Meg),
|
|
* just take the rounded down mbits per second, and add
|
|
* 1Megabit to it, from this we can calculate
|
|
* the index in the table.
|
|
*/
|
|
ind_calc = mbits_per_sec/RS_ONE_MEGABIT_PERSEC;
|
|
if ((ind_calc * RS_ONE_MEGABIT_PERSEC) != mbits_per_sec)
|
|
ind_calc++;
|
|
/* our table is offset by 3, we add 2 */
|
|
ind_calc += 2;
|
|
if (ind_calc > (ALL_HARDWARE_RATES-1)) {
|
|
/* This should not happen */
|
|
ind_calc = ALL_HARDWARE_RATES-1;
|
|
}
|
|
if ((ind_calc >= rs->rs_lowest_valid) &&
|
|
(ind_calc <= rs->rs_highest_valid)) {
|
|
rte = &rs->rs_rlt[ind_calc];
|
|
if (ind_calc >= 1)
|
|
previous_rate = rs->rs_rlt[(ind_calc-1)].rate;
|
|
}
|
|
} else if (flags & RS_PACING_EXACT_MATCH) {
|
|
if ((mbits_per_sec < RS_ONE_MEGABIT_PERSEC) &&
|
|
(rs->rs_lowest_valid <= 2)){
|
|
for(i = rs->rs_lowest_valid; i < 3; i++) {
|
|
if (bytes_per_sec == rs->rs_rlt[i].rate) {
|
|
rte = &rs->rs_rlt[i];
|
|
break;
|
|
}
|
|
}
|
|
} else if ((mbits_per_sec > RS_ONE_GIGABIT_PERSEC) &&
|
|
(rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)) {
|
|
/* > 1Gbps only one rate */
|
|
if (bytes_per_sec == rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate) {
|
|
/* Its 10G wow */
|
|
rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
|
|
}
|
|
} else {
|
|
/* Ok it must be a exact meg (its between 1G and 1Meg) */
|
|
ind_calc = mbits_per_sec/RS_ONE_MEGABIT_PERSEC;
|
|
if ((ind_calc * RS_ONE_MEGABIT_PERSEC) == mbits_per_sec) {
|
|
/* its an exact Mbps */
|
|
ind_calc += 2;
|
|
if (ind_calc > (ALL_HARDWARE_RATES-1)) {
|
|
/* This should not happen */
|
|
ind_calc = ALL_HARDWARE_RATES-1;
|
|
}
|
|
if (rs->rs_rlt[ind_calc].flags & HDWRPACE_INITED)
|
|
rte = &rs->rs_rlt[ind_calc];
|
|
}
|
|
}
|
|
} else {
|
|
/* we want greater than the requested rate */
|
|
if ((mbits_per_sec < RS_ONE_MEGABIT_PERSEC) &&
|
|
(rs->rs_lowest_valid <= 2)){
|
|
arte = &rs->rs_rlt[3]; /* set alternate to 1Meg */
|
|
for (i=2; i>=rs->rs_lowest_valid; i--) {
|
|
if (bytes_per_sec < rs->rs_rlt[i].rate) {
|
|
rte = &rs->rs_rlt[i];
|
|
if (i >= 1) {
|
|
previous_rate = rs->rs_rlt[(i-1)].rate;
|
|
}
|
|
break;
|
|
} else if ((flags & RS_PACING_GEQ) &&
|
|
(bytes_per_sec == rs->rs_rlt[i].rate)) {
|
|
rte = &rs->rs_rlt[i];
|
|
if (i >= 1) {
|
|
previous_rate = rs->rs_rlt[(i-1)].rate;
|
|
}
|
|
break;
|
|
} else {
|
|
arte = &rs->rs_rlt[i]; /* new alternate */
|
|
}
|
|
}
|
|
} else if (mbits_per_sec > RS_ONE_GIGABIT_PERSEC) {
|
|
if ((bytes_per_sec < rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate) &&
|
|
(rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)){
|
|
/* Our top rate is larger than the request */
|
|
rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
|
|
} else if ((flags & RS_PACING_GEQ) &&
|
|
(bytes_per_sec == rs->rs_rlt[(ALL_HARDWARE_RATES-1)].rate) &&
|
|
(rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED)) {
|
|
/* It matches our top rate */
|
|
rte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
|
|
} else if (rs->rs_rlt[(ALL_HARDWARE_RATES-1)].flags & HDWRPACE_INITED) {
|
|
/* The top rate is an alternative */
|
|
arte = &rs->rs_rlt[(ALL_HARDWARE_RATES-1)];
|
|
}
|
|
previous_rate = rs->rs_rlt[(ALL_HARDWARE_RATES-2)].rate;
|
|
} else {
|
|
/* Its in our range 1Meg - 1Gig */
|
|
if (flags & RS_PACING_GEQ) {
|
|
ind_calc = mbits_per_sec/RS_ONE_MEGABIT_PERSEC;
|
|
if ((ind_calc * RS_ONE_MEGABIT_PERSEC) == mbits_per_sec) {
|
|
if (ind_calc > (ALL_HARDWARE_RATES-1)) {
|
|
/* This should not happen */
|
|
ind_calc = (ALL_HARDWARE_RATES-1);
|
|
}
|
|
rte = &rs->rs_rlt[ind_calc];
|
|
if (ind_calc >= 1)
|
|
previous_rate = rs->rs_rlt[(ind_calc-1)].rate;
|
|
}
|
|
goto done;
|
|
}
|
|
ind_calc = (mbits_per_sec + (RS_ONE_MEGABIT_PERSEC-1))/RS_ONE_MEGABIT_PERSEC;
|
|
ind_calc += 2;
|
|
if (ind_calc > (ALL_HARDWARE_RATES-1)) {
|
|
/* This should not happen */
|
|
ind_calc = ALL_HARDWARE_RATES-1;
|
|
}
|
|
if (rs->rs_rlt[ind_calc].flags & HDWRPACE_INITED) {
|
|
rte = &rs->rs_rlt[ind_calc];
|
|
if (ind_calc >= 1)
|
|
previous_rate = rs->rs_rlt[(ind_calc-1)].rate;
|
|
}
|
|
}
|
|
}
|
|
done:
|
|
if ((rte == NULL) &&
|
|
(arte != NULL) &&
|
|
(flags & RS_PACING_SUB_OK)) {
|
|
/* We can use the substitute */
|
|
rte = arte;
|
|
}
|
|
if (lower_rate)
|
|
*lower_rate = previous_rate;
|
|
return (rte);
|
|
}
|
|
|
|
/*
|
|
* For an explanation of why the argument is volatile please
|
|
* look at the comments around rt_setup_rate().
|
|
*/
|
|
static const struct tcp_hwrate_limit_table *
|
|
tcp_find_suitable_rate(const volatile struct tcp_rate_set *rs, uint64_t bytes_per_sec, uint32_t flags, uint64_t *lower_rate)
|
|
{
|
|
/**
|
|
* Hunt the rate table with the restrictions in flags and find a
|
|
* suitable rate if possible.
|
|
* RS_PACING_EXACT_MATCH - look for an exact match to rate.
|
|
* RS_PACING_GT - must be greater than.
|
|
* RS_PACING_GEQ - must be greater than or equal.
|
|
* RS_PACING_LT - must be less than.
|
|
* RS_PACING_SUB_OK - If we don't meet criteria a
|
|
* substitute is ok.
|
|
*/
|
|
int i, matched;
|
|
struct tcp_hwrate_limit_table *rte = NULL;
|
|
uint64_t previous_rate = 0;
|
|
|
|
if ((rs->rs_flags & RS_INT_TBL) &&
|
|
(rs->rs_rate_cnt >= ALL_HARDWARE_RATES)) {
|
|
/*
|
|
* Here we don't want to paw thru
|
|
* a big table, we have everything
|
|
* from 1Meg - 1000Meg in 1Meg increments.
|
|
* Use an alternate method to "lookup".
|
|
*/
|
|
return (tcp_int_find_suitable_rate(rs, bytes_per_sec, flags, lower_rate));
|
|
}
|
|
if ((flags & RS_PACING_LT) ||
|
|
(flags & RS_PACING_EXACT_MATCH)) {
|
|
/*
|
|
* For exact and less than we go forward through the table.
|
|
* This way when we find one larger we stop (exact was a
|
|
* toss up).
|
|
*/
|
|
for (i = rs->rs_lowest_valid, matched = 0; i <= rs->rs_highest_valid; i++) {
|
|
if ((flags & RS_PACING_EXACT_MATCH) &&
|
|
(bytes_per_sec == rs->rs_rlt[i].rate)) {
|
|
rte = &rs->rs_rlt[i];
|
|
matched = 1;
|
|
if (lower_rate != NULL)
|
|
*lower_rate = previous_rate;
|
|
break;
|
|
} else if ((flags & RS_PACING_LT) &&
|
|
(bytes_per_sec <= rs->rs_rlt[i].rate)) {
|
|
rte = &rs->rs_rlt[i];
|
|
matched = 1;
|
|
if (lower_rate != NULL)
|
|
*lower_rate = previous_rate;
|
|
break;
|
|
}
|
|
previous_rate = rs->rs_rlt[i].rate;
|
|
if (bytes_per_sec > rs->rs_rlt[i].rate)
|
|
break;
|
|
}
|
|
if ((matched == 0) &&
|
|
(flags & RS_PACING_LT) &&
|
|
(flags & RS_PACING_SUB_OK)) {
|
|
/* Kick in a substitute (the lowest) */
|
|
rte = &rs->rs_rlt[rs->rs_lowest_valid];
|
|
}
|
|
} else {
|
|
/*
|
|
* Here we go backward through the table so that we can find
|
|
* the one greater in theory faster (but its probably a
|
|
* wash).
|
|
*/
|
|
for (i = rs->rs_highest_valid, matched = 0; i >= rs->rs_lowest_valid; i--) {
|
|
if (rs->rs_rlt[i].rate > bytes_per_sec) {
|
|
/* A possible candidate */
|
|
rte = &rs->rs_rlt[i];
|
|
}
|
|
if ((flags & RS_PACING_GEQ) &&
|
|
(bytes_per_sec == rs->rs_rlt[i].rate)) {
|
|
/* An exact match and we want equal */
|
|
matched = 1;
|
|
rte = &rs->rs_rlt[i];
|
|
break;
|
|
} else if (rte) {
|
|
/*
|
|
* Found one that is larger than but don't
|
|
* stop, there may be a more closer match.
|
|
*/
|
|
matched = 1;
|
|
}
|
|
if (rs->rs_rlt[i].rate < bytes_per_sec) {
|
|
/*
|
|
* We found a table entry that is smaller,
|
|
* stop there will be none greater or equal.
|
|
*/
|
|
if (lower_rate != NULL)
|
|
*lower_rate = rs->rs_rlt[i].rate;
|
|
break;
|
|
}
|
|
}
|
|
if ((matched == 0) &&
|
|
(flags & RS_PACING_SUB_OK)) {
|
|
/* Kick in a substitute (the highest) */
|
|
rte = &rs->rs_rlt[rs->rs_highest_valid];
|
|
}
|
|
}
|
|
return (rte);
|
|
}
|
|
|
|
static struct ifnet *
|
|
rt_find_real_interface(struct ifnet *ifp, struct inpcb *inp, int *error)
|
|
{
|
|
struct ifnet *tifp;
|
|
struct m_snd_tag *tag, *ntag;
|
|
union if_snd_tag_alloc_params params = {
|
|
.rate_limit.hdr.type = IF_SND_TAG_TYPE_RATE_LIMIT,
|
|
.rate_limit.hdr.flowid = inp->inp_flowid,
|
|
.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
|
|
.rate_limit.max_rate = COMMON_RATE,
|
|
.rate_limit.flags = M_NOWAIT,
|
|
};
|
|
int err;
|
|
#ifdef RSS
|
|
params.rate_limit.hdr.flowtype = ((inp->inp_vflag & INP_IPV6) ?
|
|
M_HASHTYPE_RSS_TCP_IPV6 : M_HASHTYPE_RSS_TCP_IPV4);
|
|
#else
|
|
params.rate_limit.hdr.flowtype = M_HASHTYPE_OPAQUE_HASH;
|
|
#endif
|
|
err = m_snd_tag_alloc(ifp, ¶ms, &tag);
|
|
if (err) {
|
|
/* Failed to setup a tag? */
|
|
if (error)
|
|
*error = err;
|
|
return (NULL);
|
|
}
|
|
ntag = tag;
|
|
while (ntag->sw->next_snd_tag != NULL) {
|
|
ntag = ntag->sw->next_snd_tag(ntag);
|
|
}
|
|
tifp = ntag->ifp;
|
|
m_snd_tag_rele(tag);
|
|
return (tifp);
|
|
}
|
|
|
|
static void
|
|
rl_increment_using(const struct tcp_hwrate_limit_table *rte)
|
|
{
|
|
struct tcp_hwrate_limit_table *decon_rte;
|
|
|
|
decon_rte = __DECONST(struct tcp_hwrate_limit_table *, rte);
|
|
atomic_add_long(&decon_rte->using, 1);
|
|
}
|
|
|
|
static void
|
|
rl_decrement_using(const struct tcp_hwrate_limit_table *rte)
|
|
{
|
|
struct tcp_hwrate_limit_table *decon_rte;
|
|
|
|
decon_rte = __DECONST(struct tcp_hwrate_limit_table *, rte);
|
|
atomic_subtract_long(&decon_rte->using, 1);
|
|
}
|
|
|
|
void
|
|
tcp_rl_log_enobuf(const struct tcp_hwrate_limit_table *rte)
|
|
{
|
|
struct tcp_hwrate_limit_table *decon_rte;
|
|
|
|
decon_rte = __DECONST(struct tcp_hwrate_limit_table *, rte);
|
|
atomic_add_long(&decon_rte->rs_num_enobufs, 1);
|
|
}
|
|
|
|
/*
|
|
* Do NOT take the __noinline out of the
|
|
* find_rs_for_ifp() function. If you do the inline
|
|
* of it for the rt_setup_rate() will show you a
|
|
* compiler bug. For some reason the compiler thinks
|
|
* the list can never be empty. The consequence of
|
|
* this will be a crash when we dereference NULL
|
|
* if an ifp is removed just has a hw rate limit
|
|
* is attempted. If you are working on the compiler
|
|
* and want to "test" this go ahead and take the noinline
|
|
* out otherwise let sleeping dogs ly until such time
|
|
* as we get a compiler fix 10/2/20 -- RRS
|
|
*/
|
|
static __noinline struct tcp_rate_set *
|
|
find_rs_for_ifp(struct ifnet *ifp)
|
|
{
|
|
struct tcp_rate_set *rs;
|
|
|
|
CK_LIST_FOREACH(rs, &int_rs, next) {
|
|
if ((rs->rs_ifp == ifp) &&
|
|
(rs->rs_if_dunit == ifp->if_dunit)) {
|
|
/* Ok we found it */
|
|
return (rs);
|
|
}
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
|
|
static const struct tcp_hwrate_limit_table *
|
|
rt_setup_rate(struct inpcb *inp, struct ifnet *ifp, uint64_t bytes_per_sec,
|
|
uint32_t flags, int *error, uint64_t *lower_rate)
|
|
{
|
|
/* First lets find the interface if it exists */
|
|
const struct tcp_hwrate_limit_table *rte;
|
|
/*
|
|
* So why is rs volatile? This is to defeat a
|
|
* compiler bug where in the compiler is convinced
|
|
* that rs can never be NULL (which is not true). Because
|
|
* of its conviction it nicely optimizes out the if ((rs == NULL
|
|
* below which means if you get a NULL back you dereference it.
|
|
*/
|
|
volatile struct tcp_rate_set *rs;
|
|
struct epoch_tracker et;
|
|
struct ifnet *oifp = ifp;
|
|
int err;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
use_real_interface:
|
|
rs = find_rs_for_ifp(ifp);
|
|
if ((rs == NULL) ||
|
|
(rs->rs_flags & RS_INTF_NO_SUP) ||
|
|
(rs->rs_flags & RS_IS_DEAD)) {
|
|
/*
|
|
* This means we got a packet *before*
|
|
* the IF-UP was processed below, <or>
|
|
* while or after we already received an interface
|
|
* departed event. In either case we really don't
|
|
* want to do anything with pacing, in
|
|
* the departing case the packet is not
|
|
* going to go very far. The new case
|
|
* might be arguable, but its impossible
|
|
* to tell from the departing case.
|
|
*/
|
|
if (error)
|
|
*error = ENODEV;
|
|
NET_EPOCH_EXIT(et);
|
|
return (NULL);
|
|
}
|
|
|
|
if ((rs == NULL) || (rs->rs_disable != 0)) {
|
|
if (error)
|
|
*error = ENOSPC;
|
|
NET_EPOCH_EXIT(et);
|
|
return (NULL);
|
|
}
|
|
if (rs->rs_flags & RS_IS_DEFF) {
|
|
/* We need to find the real interface */
|
|
struct ifnet *tifp;
|
|
|
|
tifp = rt_find_real_interface(ifp, inp, error);
|
|
if (tifp == NULL) {
|
|
if (rs->rs_disable && error)
|
|
*error = ENOTSUP;
|
|
NET_EPOCH_EXIT(et);
|
|
return (NULL);
|
|
}
|
|
KASSERT((tifp != ifp),
|
|
("Lookup failure ifp:%p inp:%p rt_find_real_interface() returns the same interface tifp:%p?\n",
|
|
ifp, inp, tifp));
|
|
ifp = tifp;
|
|
goto use_real_interface;
|
|
}
|
|
if (rs->rs_flow_limit &&
|
|
((rs->rs_flows_using + 1) > rs->rs_flow_limit)) {
|
|
if (error)
|
|
*error = ENOSPC;
|
|
NET_EPOCH_EXIT(et);
|
|
return (NULL);
|
|
}
|
|
rte = tcp_find_suitable_rate(rs, bytes_per_sec, flags, lower_rate);
|
|
if (rte) {
|
|
err = in_pcbattach_txrtlmt(inp, oifp,
|
|
inp->inp_flowtype,
|
|
inp->inp_flowid,
|
|
rte->rate,
|
|
&inp->inp_snd_tag);
|
|
if (err) {
|
|
/* Failed to attach */
|
|
if (error)
|
|
*error = err;
|
|
rte = NULL;
|
|
} else {
|
|
KASSERT((inp->inp_snd_tag != NULL) ,
|
|
("Setup rate has no snd_tag inp:%p rte:%p rate:%llu rs:%p",
|
|
inp, rte, (unsigned long long)rte->rate, rs));
|
|
#ifdef INET
|
|
counter_u64_add(rate_limit_new, 1);
|
|
#endif
|
|
}
|
|
}
|
|
if (rte) {
|
|
/*
|
|
* We use an atomic here for accounting so we don't have to
|
|
* use locks when freeing.
|
|
*/
|
|
atomic_add_64(&rs->rs_flows_using, 1);
|
|
}
|
|
NET_EPOCH_EXIT(et);
|
|
return (rte);
|
|
}
|
|
|
|
static void
|
|
tcp_rl_ifnet_link(void *arg __unused, struct ifnet *ifp, int link_state)
|
|
{
|
|
int error;
|
|
struct tcp_rate_set *rs;
|
|
struct epoch_tracker et;
|
|
|
|
if (((ifp->if_capenable & IFCAP_TXRTLMT) == 0) ||
|
|
(link_state != LINK_STATE_UP)) {
|
|
/*
|
|
* We only care on an interface going up that is rate-limit
|
|
* capable.
|
|
*/
|
|
return;
|
|
}
|
|
NET_EPOCH_ENTER(et);
|
|
mtx_lock(&rs_mtx);
|
|
rs = find_rs_for_ifp(ifp);
|
|
if (rs) {
|
|
/* We already have initialized this guy */
|
|
mtx_unlock(&rs_mtx);
|
|
NET_EPOCH_EXIT(et);
|
|
return;
|
|
}
|
|
mtx_unlock(&rs_mtx);
|
|
NET_EPOCH_EXIT(et);
|
|
rt_setup_new_rs(ifp, &error);
|
|
}
|
|
|
|
static void
|
|
tcp_rl_ifnet_departure(void *arg __unused, struct ifnet *ifp)
|
|
{
|
|
struct tcp_rate_set *rs;
|
|
struct epoch_tracker et;
|
|
int i;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
mtx_lock(&rs_mtx);
|
|
rs = find_rs_for_ifp(ifp);
|
|
if (rs) {
|
|
CK_LIST_REMOVE(rs, next);
|
|
rs_number_alive--;
|
|
rs->rs_flags |= RS_IS_DEAD;
|
|
for (i = 0; i < rs->rs_rate_cnt; i++) {
|
|
if (rs->rs_rlt[i].flags & HDWRPACE_TAGPRESENT) {
|
|
in_pcbdetach_tag(rs->rs_rlt[i].tag);
|
|
rs->rs_rlt[i].tag = NULL;
|
|
}
|
|
rs->rs_rlt[i].flags = HDWRPACE_IFPDEPARTED;
|
|
}
|
|
if (rs->rs_flows_using == 0)
|
|
rs_defer_destroy(rs);
|
|
}
|
|
mtx_unlock(&rs_mtx);
|
|
NET_EPOCH_EXIT(et);
|
|
}
|
|
|
|
static void
|
|
tcp_rl_shutdown(void *arg __unused, int howto __unused)
|
|
{
|
|
struct tcp_rate_set *rs, *nrs;
|
|
struct epoch_tracker et;
|
|
int i;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
mtx_lock(&rs_mtx);
|
|
CK_LIST_FOREACH_SAFE(rs, &int_rs, next, nrs) {
|
|
CK_LIST_REMOVE(rs, next);
|
|
rs_number_alive--;
|
|
rs->rs_flags |= RS_IS_DEAD;
|
|
for (i = 0; i < rs->rs_rate_cnt; i++) {
|
|
if (rs->rs_rlt[i].flags & HDWRPACE_TAGPRESENT) {
|
|
in_pcbdetach_tag(rs->rs_rlt[i].tag);
|
|
rs->rs_rlt[i].tag = NULL;
|
|
}
|
|
rs->rs_rlt[i].flags = HDWRPACE_IFPDEPARTED;
|
|
}
|
|
if (rs->rs_flows_using == 0)
|
|
rs_defer_destroy(rs);
|
|
}
|
|
mtx_unlock(&rs_mtx);
|
|
NET_EPOCH_EXIT(et);
|
|
}
|
|
|
|
const struct tcp_hwrate_limit_table *
|
|
tcp_set_pacing_rate(struct tcpcb *tp, struct ifnet *ifp,
|
|
uint64_t bytes_per_sec, int flags, int *error, uint64_t *lower_rate)
|
|
{
|
|
const struct tcp_hwrate_limit_table *rte;
|
|
#ifdef KERN_TLS
|
|
struct ktls_session *tls;
|
|
#endif
|
|
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
|
|
if (tp->t_inpcb->inp_snd_tag == NULL) {
|
|
/*
|
|
* We are setting up a rate for the first time.
|
|
*/
|
|
if ((ifp->if_capenable & IFCAP_TXRTLMT) == 0) {
|
|
/* Not supported by the egress */
|
|
if (error)
|
|
*error = ENODEV;
|
|
return (NULL);
|
|
}
|
|
#ifdef KERN_TLS
|
|
tls = NULL;
|
|
if (tp->t_inpcb->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) {
|
|
tls = tp->t_inpcb->inp_socket->so_snd.sb_tls_info;
|
|
|
|
if ((ifp->if_capenable & IFCAP_TXTLS_RTLMT) == 0 ||
|
|
tls->mode != TCP_TLS_MODE_IFNET) {
|
|
if (error)
|
|
*error = ENODEV;
|
|
return (NULL);
|
|
}
|
|
}
|
|
#endif
|
|
rte = rt_setup_rate(tp->t_inpcb, ifp, bytes_per_sec, flags, error, lower_rate);
|
|
if (rte)
|
|
rl_increment_using(rte);
|
|
#ifdef KERN_TLS
|
|
if (rte != NULL && tls != NULL && tls->snd_tag != NULL) {
|
|
/*
|
|
* Fake a route change error to reset the TLS
|
|
* send tag. This will convert the existing
|
|
* tag to a TLS ratelimit tag.
|
|
*/
|
|
MPASS(tls->snd_tag->sw->type == IF_SND_TAG_TYPE_TLS);
|
|
ktls_output_eagain(tp->t_inpcb, tls);
|
|
}
|
|
#endif
|
|
} else {
|
|
/*
|
|
* We are modifying a rate, wrong interface?
|
|
*/
|
|
if (error)
|
|
*error = EINVAL;
|
|
rte = NULL;
|
|
}
|
|
if (rte != NULL) {
|
|
tp->t_pacing_rate = rte->rate;
|
|
*error = 0;
|
|
}
|
|
return (rte);
|
|
}
|
|
|
|
const struct tcp_hwrate_limit_table *
|
|
tcp_chg_pacing_rate(const struct tcp_hwrate_limit_table *crte,
|
|
struct tcpcb *tp, struct ifnet *ifp,
|
|
uint64_t bytes_per_sec, int flags, int *error, uint64_t *lower_rate)
|
|
{
|
|
const struct tcp_hwrate_limit_table *nrte;
|
|
const struct tcp_rate_set *rs;
|
|
#ifdef KERN_TLS
|
|
struct ktls_session *tls = NULL;
|
|
#endif
|
|
int err;
|
|
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
|
|
if (crte == NULL) {
|
|
/* Wrong interface */
|
|
if (error)
|
|
*error = EINVAL;
|
|
return (NULL);
|
|
}
|
|
|
|
#ifdef KERN_TLS
|
|
if (tp->t_inpcb->inp_socket->so_snd.sb_flags & SB_TLS_IFNET) {
|
|
tls = tp->t_inpcb->inp_socket->so_snd.sb_tls_info;
|
|
MPASS(tls->mode == TCP_TLS_MODE_IFNET);
|
|
if (tls->snd_tag != NULL &&
|
|
tls->snd_tag->sw->type != IF_SND_TAG_TYPE_TLS_RATE_LIMIT) {
|
|
/*
|
|
* NIC probably doesn't support ratelimit TLS
|
|
* tags if it didn't allocate one when an
|
|
* existing rate was present, so ignore.
|
|
*/
|
|
if (error)
|
|
*error = EOPNOTSUPP;
|
|
return (NULL);
|
|
}
|
|
}
|
|
#endif
|
|
if (tp->t_inpcb->inp_snd_tag == NULL) {
|
|
/* Wrong interface */
|
|
if (error)
|
|
*error = EINVAL;
|
|
return (NULL);
|
|
}
|
|
rs = crte->ptbl;
|
|
if ((rs->rs_flags & RS_IS_DEAD) ||
|
|
(crte->flags & HDWRPACE_IFPDEPARTED)) {
|
|
/* Release the rate, and try anew */
|
|
|
|
tcp_rel_pacing_rate(crte, tp);
|
|
nrte = tcp_set_pacing_rate(tp, ifp,
|
|
bytes_per_sec, flags, error, lower_rate);
|
|
return (nrte);
|
|
}
|
|
nrte = tcp_find_suitable_rate(rs, bytes_per_sec, flags, lower_rate);
|
|
if (nrte == crte) {
|
|
/* No change */
|
|
if (error)
|
|
*error = 0;
|
|
return (crte);
|
|
}
|
|
if (nrte == NULL) {
|
|
/* Release the old rate */
|
|
if (error)
|
|
*error = ENOENT;
|
|
tcp_rel_pacing_rate(crte, tp);
|
|
return (NULL);
|
|
}
|
|
rl_decrement_using(crte);
|
|
rl_increment_using(nrte);
|
|
/* Change rates to our new entry */
|
|
#ifdef KERN_TLS
|
|
if (tls != NULL)
|
|
err = ktls_modify_txrtlmt(tls, nrte->rate);
|
|
else
|
|
#endif
|
|
err = in_pcbmodify_txrtlmt(tp->t_inpcb, nrte->rate);
|
|
if (err) {
|
|
rl_decrement_using(nrte);
|
|
/* Do we still have a snd-tag attached? */
|
|
if (tp->t_inpcb->inp_snd_tag)
|
|
in_pcbdetach_txrtlmt(tp->t_inpcb);
|
|
if (error)
|
|
*error = err;
|
|
return (NULL);
|
|
} else {
|
|
#ifdef INET
|
|
counter_u64_add(rate_limit_chg, 1);
|
|
#endif
|
|
}
|
|
if (error)
|
|
*error = 0;
|
|
tp->t_pacing_rate = nrte->rate;
|
|
return (nrte);
|
|
}
|
|
|
|
void
|
|
tcp_rel_pacing_rate(const struct tcp_hwrate_limit_table *crte, struct tcpcb *tp)
|
|
{
|
|
const struct tcp_rate_set *crs;
|
|
struct tcp_rate_set *rs;
|
|
uint64_t pre;
|
|
|
|
INP_WLOCK_ASSERT(tp->t_inpcb);
|
|
|
|
tp->t_pacing_rate = -1;
|
|
crs = crte->ptbl;
|
|
/*
|
|
* Now we must break the const
|
|
* in order to release our refcount.
|
|
*/
|
|
rs = __DECONST(struct tcp_rate_set *, crs);
|
|
rl_decrement_using(crte);
|
|
pre = atomic_fetchadd_64(&rs->rs_flows_using, -1);
|
|
if (pre == 1) {
|
|
struct epoch_tracker et;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
mtx_lock(&rs_mtx);
|
|
/*
|
|
* Is it dead?
|
|
*/
|
|
if (rs->rs_flags & RS_IS_DEAD)
|
|
rs_defer_destroy(rs);
|
|
mtx_unlock(&rs_mtx);
|
|
NET_EPOCH_EXIT(et);
|
|
}
|
|
|
|
/*
|
|
* XXX: If this connection is using ifnet TLS, should we
|
|
* switch it to using an unlimited rate, or perhaps use
|
|
* ktls_output_eagain() to reset the send tag to a plain
|
|
* TLS tag?
|
|
*/
|
|
in_pcbdetach_txrtlmt(tp->t_inpcb);
|
|
}
|
|
|
|
#define ONE_POINT_TWO_MEG 150000 /* 1.2 megabits in bytes */
|
|
#define ONE_HUNDRED_MBPS 12500000 /* 100Mbps in bytes per second */
|
|
#define FIVE_HUNDRED_MBPS 62500000 /* 500Mbps in bytes per second */
|
|
#define MAX_MSS_SENT 43 /* 43 mss = 43 x 1500 = 64,500 bytes */
|
|
|
|
static void
|
|
tcp_log_pacing_size(struct tcpcb *tp, uint64_t bw, uint32_t segsiz, uint32_t new_tso,
|
|
uint64_t hw_rate, uint32_t time_between, uint32_t calc_time_between,
|
|
uint32_t segs, uint32_t res_div, uint16_t mult, uint8_t mod)
|
|
{
|
|
if (tp->t_logstate != TCP_LOG_STATE_OFF) {
|
|
union tcp_log_stackspecific log;
|
|
struct timeval tv;
|
|
uint32_t cts;
|
|
|
|
memset(&log, 0, sizeof(log));
|
|
cts = tcp_get_usecs(&tv);
|
|
log.u_bbr.flex1 = segsiz;
|
|
log.u_bbr.flex2 = new_tso;
|
|
log.u_bbr.flex3 = time_between;
|
|
log.u_bbr.flex4 = calc_time_between;
|
|
log.u_bbr.flex5 = segs;
|
|
log.u_bbr.flex6 = res_div;
|
|
log.u_bbr.flex7 = mult;
|
|
log.u_bbr.flex8 = mod;
|
|
log.u_bbr.timeStamp = tcp_get_usecs(&tv);
|
|
log.u_bbr.cur_del_rate = bw;
|
|
log.u_bbr.delRate = hw_rate;
|
|
TCP_LOG_EVENTP(tp, NULL,
|
|
&tp->t_inpcb->inp_socket->so_rcv,
|
|
&tp->t_inpcb->inp_socket->so_snd,
|
|
TCP_HDWR_PACE_SIZE, 0,
|
|
0, &log, false, &tv);
|
|
}
|
|
}
|
|
|
|
uint32_t
|
|
tcp_get_pacing_burst_size (struct tcpcb *tp, uint64_t bw, uint32_t segsiz, int can_use_1mss,
|
|
const struct tcp_hwrate_limit_table *te, int *err)
|
|
{
|
|
/*
|
|
* We use the google formula to calculate the
|
|
* TSO size. I.E.
|
|
* bw < 24Meg
|
|
* tso = 2mss
|
|
* else
|
|
* tso = min(bw/1000, 64k)
|
|
*
|
|
* Note for these calculations we ignore the
|
|
* packet overhead (enet hdr, ip hdr and tcp hdr).
|
|
*/
|
|
uint64_t lentim, res, bytes;
|
|
uint32_t new_tso, min_tso_segs;
|
|
|
|
bytes = bw / 1000;
|
|
if (bytes > (64 * 1000))
|
|
bytes = 64 * 1000;
|
|
/* Round up */
|
|
new_tso = (bytes + segsiz - 1) / segsiz;
|
|
if (can_use_1mss && (bw < ONE_POINT_TWO_MEG))
|
|
min_tso_segs = 1;
|
|
else
|
|
min_tso_segs = 2;
|
|
if (rs_floor_mss && (new_tso < rs_floor_mss))
|
|
new_tso = rs_floor_mss;
|
|
else if (new_tso < min_tso_segs)
|
|
new_tso = min_tso_segs;
|
|
if (new_tso > MAX_MSS_SENT)
|
|
new_tso = MAX_MSS_SENT;
|
|
new_tso *= segsiz;
|
|
tcp_log_pacing_size(tp, bw, segsiz, new_tso,
|
|
0, 0, 0, 0, 0, 0, 1);
|
|
/*
|
|
* If we are not doing hardware pacing
|
|
* then we are done.
|
|
*/
|
|
if (te == NULL) {
|
|
if (err)
|
|
*err = 0;
|
|
return(new_tso);
|
|
}
|
|
/*
|
|
* For hardware pacing we look at the
|
|
* rate you are sending at and compare
|
|
* that to the rate you have in hardware.
|
|
*
|
|
* If the hardware rate is slower than your
|
|
* software rate then you are in error and
|
|
* we will build a queue in our hardware whic
|
|
* is probably not desired, in such a case
|
|
* just return the non-hardware TSO size.
|
|
*
|
|
* If the rate in hardware is faster (which
|
|
* it should be) then look at how long it
|
|
* takes to send one ethernet segment size at
|
|
* your b/w and compare that to the time it
|
|
* takes to send at the rate you had selected.
|
|
*
|
|
* If your time is greater (which we hope it is)
|
|
* we get the delta between the two, and then
|
|
* divide that into your pacing time. This tells
|
|
* us how many MSS you can send down at once (rounded up).
|
|
*
|
|
* Note we also double this value if the b/w is over
|
|
* 100Mbps. If its over 500meg we just set you to the
|
|
* max (43 segments).
|
|
*/
|
|
if (te->rate > FIVE_HUNDRED_MBPS)
|
|
goto max;
|
|
if (te->rate == bw) {
|
|
/* We are pacing at exactly the hdwr rate */
|
|
max:
|
|
tcp_log_pacing_size(tp, bw, segsiz, new_tso,
|
|
te->rate, te->time_between, (uint32_t)0,
|
|
(segsiz * MAX_MSS_SENT), 0, 0, 3);
|
|
return (segsiz * MAX_MSS_SENT);
|
|
}
|
|
lentim = ETHERNET_SEGMENT_SIZE * USECS_IN_SECOND;
|
|
res = lentim / bw;
|
|
if (res > te->time_between) {
|
|
uint32_t delta, segs, res_div;
|
|
|
|
res_div = ((res * num_of_waits_allowed) + wait_time_floor);
|
|
delta = res - te->time_between;
|
|
segs = (res_div + delta - 1)/delta;
|
|
if (segs < min_tso_segs)
|
|
segs = min_tso_segs;
|
|
if (segs < rs_hw_floor_mss)
|
|
segs = rs_hw_floor_mss;
|
|
if (segs > MAX_MSS_SENT)
|
|
segs = MAX_MSS_SENT;
|
|
segs *= segsiz;
|
|
tcp_log_pacing_size(tp, bw, segsiz, new_tso,
|
|
te->rate, te->time_between, (uint32_t)res,
|
|
segs, res_div, 1, 3);
|
|
if (err)
|
|
*err = 0;
|
|
if (segs < new_tso) {
|
|
/* unexpected ? */
|
|
return(new_tso);
|
|
} else {
|
|
return (segs);
|
|
}
|
|
} else {
|
|
/*
|
|
* Your time is smaller which means
|
|
* we will grow a queue on our
|
|
* hardware. Send back the non-hardware
|
|
* rate.
|
|
*/
|
|
tcp_log_pacing_size(tp, bw, segsiz, new_tso,
|
|
te->rate, te->time_between, (uint32_t)res,
|
|
0, 0, 0, 4);
|
|
if (err)
|
|
*err = -1;
|
|
return (new_tso);
|
|
}
|
|
}
|
|
|
|
uint64_t
|
|
tcp_hw_highest_rate_ifp(struct ifnet *ifp, struct inpcb *inp)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct tcp_rate_set *rs;
|
|
uint64_t rate_ret;
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
use_next_interface:
|
|
rs = find_rs_for_ifp(ifp);
|
|
if (rs == NULL) {
|
|
/* This interface does not do ratelimiting */
|
|
rate_ret = 0;
|
|
} else if (rs->rs_flags & RS_IS_DEFF) {
|
|
/* We need to find the real interface */
|
|
struct ifnet *tifp;
|
|
|
|
tifp = rt_find_real_interface(ifp, inp, NULL);
|
|
if (tifp == NULL) {
|
|
NET_EPOCH_EXIT(et);
|
|
return (0);
|
|
}
|
|
ifp = tifp;
|
|
goto use_next_interface;
|
|
} else {
|
|
/* Lets return the highest rate this guy has */
|
|
rate_ret = rs->rs_rlt[rs->rs_highest_valid].rate;
|
|
}
|
|
NET_EPOCH_EXIT(et);
|
|
return(rate_ret);
|
|
}
|
|
|
|
static eventhandler_tag rl_ifnet_departs;
|
|
static eventhandler_tag rl_ifnet_arrives;
|
|
static eventhandler_tag rl_shutdown_start;
|
|
|
|
static void
|
|
tcp_rs_init(void *st __unused)
|
|
{
|
|
CK_LIST_INIT(&int_rs);
|
|
rs_number_alive = 0;
|
|
rs_number_dead = 0;
|
|
mtx_init(&rs_mtx, "tcp_rs_mtx", "rsmtx", MTX_DEF);
|
|
rl_ifnet_departs = EVENTHANDLER_REGISTER(ifnet_departure_event,
|
|
tcp_rl_ifnet_departure,
|
|
NULL, EVENTHANDLER_PRI_ANY);
|
|
rl_ifnet_arrives = EVENTHANDLER_REGISTER(ifnet_link_event,
|
|
tcp_rl_ifnet_link,
|
|
NULL, EVENTHANDLER_PRI_ANY);
|
|
rl_shutdown_start = EVENTHANDLER_REGISTER(shutdown_pre_sync,
|
|
tcp_rl_shutdown, NULL,
|
|
SHUTDOWN_PRI_FIRST);
|
|
printf("TCP_ratelimit: Is now initialized\n");
|
|
}
|
|
|
|
SYSINIT(tcp_rl_init, SI_SUB_SMP + 1, SI_ORDER_ANY, tcp_rs_init, NULL);
|
|
#endif
|