freebsd-nq/lib/Target/PTX/PTXAsmPrinter.cpp

598 lines
17 KiB
C++

//===-- PTXAsmPrinter.cpp - PTX LLVM assembly writer ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to PTX assembly language.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ptx-asm-printer"
#include "PTX.h"
#include "PTXAsmPrinter.h"
#include "PTXMachineFunctionInfo.h"
#include "PTXParamManager.h"
#include "PTXRegisterInfo.h"
#include "PTXTargetMachine.h"
#include "llvm/Argument.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Module.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/Mangler.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
static const char PARAM_PREFIX[] = "__param_";
static const char RETURN_PREFIX[] = "__ret_";
static const char *getRegisterTypeName(unsigned RegNo,
const MachineRegisterInfo& MRI) {
const TargetRegisterClass *TRC = MRI.getRegClass(RegNo);
#define TEST_REGCLS(cls, clsstr) \
if (PTX::cls ## RegisterClass == TRC) return # clsstr;
TEST_REGCLS(RegPred, pred);
TEST_REGCLS(RegI16, b16);
TEST_REGCLS(RegI32, b32);
TEST_REGCLS(RegI64, b64);
TEST_REGCLS(RegF32, b32);
TEST_REGCLS(RegF64, b64);
#undef TEST_REGCLS
llvm_unreachable("Not in any register class!");
return NULL;
}
static const char *getStateSpaceName(unsigned addressSpace) {
switch (addressSpace) {
default: llvm_unreachable("Unknown state space");
case PTXStateSpace::Global: return "global";
case PTXStateSpace::Constant: return "const";
case PTXStateSpace::Local: return "local";
case PTXStateSpace::Parameter: return "param";
case PTXStateSpace::Shared: return "shared";
}
return NULL;
}
static const char *getTypeName(Type* type) {
while (true) {
switch (type->getTypeID()) {
default: llvm_unreachable("Unknown type");
case Type::FloatTyID: return ".f32";
case Type::DoubleTyID: return ".f64";
case Type::IntegerTyID:
switch (type->getPrimitiveSizeInBits()) {
default: llvm_unreachable("Unknown integer bit-width");
case 16: return ".u16";
case 32: return ".u32";
case 64: return ".u64";
}
case Type::ArrayTyID:
case Type::PointerTyID:
type = dyn_cast<SequentialType>(type)->getElementType();
break;
}
}
return NULL;
}
bool PTXAsmPrinter::doFinalization(Module &M) {
// XXX Temproarily remove global variables so that doFinalization() will not
// emit them again (global variables are emitted at beginning).
Module::GlobalListType &global_list = M.getGlobalList();
int i, n = global_list.size();
GlobalVariable **gv_array = new GlobalVariable* [n];
// first, back-up GlobalVariable in gv_array
i = 0;
for (Module::global_iterator I = global_list.begin(), E = global_list.end();
I != E; ++I)
gv_array[i++] = &*I;
// second, empty global_list
while (!global_list.empty())
global_list.remove(global_list.begin());
// call doFinalization
bool ret = AsmPrinter::doFinalization(M);
// now we restore global variables
for (i = 0; i < n; i ++)
global_list.insert(global_list.end(), gv_array[i]);
delete[] gv_array;
return ret;
}
void PTXAsmPrinter::EmitStartOfAsmFile(Module &M)
{
const PTXSubtarget& ST = TM.getSubtarget<PTXSubtarget>();
// Emit the PTX .version and .target attributes
OutStreamer.EmitRawText(Twine("\t.version " + ST.getPTXVersionString()));
OutStreamer.EmitRawText(Twine("\t.target " + ST.getTargetString() +
(ST.supportsDouble() ? ""
: ", map_f64_to_f32")));
// .address_size directive is optional, but it must immediately follow
// the .target directive if present within a module
if (ST.supportsPTX23()) {
std::string addrSize = ST.is64Bit() ? "64" : "32";
OutStreamer.EmitRawText(Twine("\t.address_size " + addrSize));
}
OutStreamer.AddBlankLine();
// Define any .file directives
DebugInfoFinder DbgFinder;
DbgFinder.processModule(M);
for (DebugInfoFinder::iterator I = DbgFinder.compile_unit_begin(),
E = DbgFinder.compile_unit_end(); I != E; ++I) {
DICompileUnit DIUnit(*I);
StringRef FN = DIUnit.getFilename();
StringRef Dir = DIUnit.getDirectory();
GetOrCreateSourceID(FN, Dir);
}
OutStreamer.AddBlankLine();
// declare global variables
for (Module::const_global_iterator i = M.global_begin(), e = M.global_end();
i != e; ++i)
EmitVariableDeclaration(i);
}
void PTXAsmPrinter::EmitFunctionBodyStart() {
OutStreamer.EmitRawText(Twine("{"));
const PTXMachineFunctionInfo *MFI = MF->getInfo<PTXMachineFunctionInfo>();
const PTXParamManager &PM = MFI->getParamManager();
// Print register definitions
std::string regDefs;
unsigned numRegs;
// pred
numRegs = MFI->getNumRegistersForClass(PTX::RegPredRegisterClass);
if(numRegs > 0) {
regDefs += "\t.reg .pred %p<";
regDefs += utostr(numRegs);
regDefs += ">;\n";
}
// i16
numRegs = MFI->getNumRegistersForClass(PTX::RegI16RegisterClass);
if(numRegs > 0) {
regDefs += "\t.reg .b16 %rh<";
regDefs += utostr(numRegs);
regDefs += ">;\n";
}
// i32
numRegs = MFI->getNumRegistersForClass(PTX::RegI32RegisterClass);
if(numRegs > 0) {
regDefs += "\t.reg .b32 %r<";
regDefs += utostr(numRegs);
regDefs += ">;\n";
}
// i64
numRegs = MFI->getNumRegistersForClass(PTX::RegI64RegisterClass);
if(numRegs > 0) {
regDefs += "\t.reg .b64 %rd<";
regDefs += utostr(numRegs);
regDefs += ">;\n";
}
// f32
numRegs = MFI->getNumRegistersForClass(PTX::RegF32RegisterClass);
if(numRegs > 0) {
regDefs += "\t.reg .f32 %f<";
regDefs += utostr(numRegs);
regDefs += ">;\n";
}
// f64
numRegs = MFI->getNumRegistersForClass(PTX::RegF64RegisterClass);
if(numRegs > 0) {
regDefs += "\t.reg .f64 %fd<";
regDefs += utostr(numRegs);
regDefs += ">;\n";
}
// Local params
for (PTXParamManager::param_iterator i = PM.local_begin(), e = PM.local_end();
i != e; ++i) {
regDefs += "\t.param .b";
regDefs += utostr(PM.getParamSize(*i));
regDefs += " ";
regDefs += PM.getParamName(*i);
regDefs += ";\n";
}
OutStreamer.EmitRawText(Twine(regDefs));
const MachineFrameInfo* FrameInfo = MF->getFrameInfo();
DEBUG(dbgs() << "Have " << FrameInfo->getNumObjects()
<< " frame object(s)\n");
for (unsigned i = 0, e = FrameInfo->getNumObjects(); i != e; ++i) {
DEBUG(dbgs() << "Size of object: " << FrameInfo->getObjectSize(i) << "\n");
if (FrameInfo->getObjectSize(i) > 0) {
std::string def = "\t.local .align ";
def += utostr(FrameInfo->getObjectAlignment(i));
def += " .b8";
def += " __local";
def += utostr(i);
def += "[";
def += utostr(FrameInfo->getObjectSize(i)); // Convert to bits
def += "]";
def += ";";
OutStreamer.EmitRawText(Twine(def));
}
}
//unsigned Index = 1;
// Print parameter passing params
//for (PTXMachineFunctionInfo::param_iterator
// i = MFI->paramBegin(), e = MFI->paramEnd(); i != e; ++i) {
// std::string def = "\t.param .b";
// def += utostr(*i);
// def += " __ret_";
// def += utostr(Index);
// Index++;
// def += ";";
// OutStreamer.EmitRawText(Twine(def));
//}
}
void PTXAsmPrinter::EmitFunctionBodyEnd() {
OutStreamer.EmitRawText(Twine("}"));
}
void PTXAsmPrinter::EmitInstruction(const MachineInstr *MI) {
MCInst TmpInst;
LowerPTXMachineInstrToMCInst(MI, TmpInst, *this);
OutStreamer.EmitInstruction(TmpInst);
}
void PTXAsmPrinter::EmitVariableDeclaration(const GlobalVariable *gv) {
// Check to see if this is a special global used by LLVM, if so, emit it.
if (EmitSpecialLLVMGlobal(gv))
return;
MCSymbol *gvsym = Mang->getSymbol(gv);
assert(gvsym->isUndefined() && "Cannot define a symbol twice!");
std::string decl;
// check if it is defined in some other translation unit
if (gv->isDeclaration())
decl += ".extern ";
// state space: e.g., .global
decl += ".";
decl += getStateSpaceName(gv->getType()->getAddressSpace());
decl += " ";
// alignment (optional)
unsigned alignment = gv->getAlignment();
if (alignment != 0) {
decl += ".align ";
decl += utostr(gv->getAlignment());
decl += " ";
}
if (PointerType::classof(gv->getType())) {
PointerType* pointerTy = dyn_cast<PointerType>(gv->getType());
Type* elementTy = pointerTy->getElementType();
decl += ".b8 ";
decl += gvsym->getName();
decl += "[";
if (elementTy->isArrayTy())
{
assert(elementTy->isArrayTy() && "Only pointers to arrays are supported");
ArrayType* arrayTy = dyn_cast<ArrayType>(elementTy);
elementTy = arrayTy->getElementType();
unsigned numElements = arrayTy->getNumElements();
while (elementTy->isArrayTy()) {
arrayTy = dyn_cast<ArrayType>(elementTy);
elementTy = arrayTy->getElementType();
numElements *= arrayTy->getNumElements();
}
// FIXME: isPrimitiveType() == false for i16?
assert(elementTy->isSingleValueType() &&
"Non-primitive types are not handled");
// Compute the size of the array, in bytes.
uint64_t arraySize = (elementTy->getPrimitiveSizeInBits() >> 3)
* numElements;
decl += utostr(arraySize);
}
decl += "]";
// handle string constants (assume ConstantArray means string)
if (gv->hasInitializer())
{
const Constant *C = gv->getInitializer();
if (const ConstantArray *CA = dyn_cast<ConstantArray>(C))
{
decl += " = {";
for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
{
if (i > 0) decl += ",";
decl += "0x" +
utohexstr(cast<ConstantInt>(CA->getOperand(i))->getZExtValue());
}
decl += "}";
}
}
}
else {
// Note: this is currently the fall-through case and most likely generates
// incorrect code.
decl += getTypeName(gv->getType());
decl += " ";
decl += gvsym->getName();
if (ArrayType::classof(gv->getType()) ||
PointerType::classof(gv->getType()))
decl += "[]";
}
decl += ";";
OutStreamer.EmitRawText(Twine(decl));
OutStreamer.AddBlankLine();
}
void PTXAsmPrinter::EmitFunctionEntryLabel() {
// The function label could have already been emitted if two symbols end up
// conflicting due to asm renaming. Detect this and emit an error.
if (!CurrentFnSym->isUndefined()) {
report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
"' label emitted multiple times to assembly file");
return;
}
const PTXMachineFunctionInfo *MFI = MF->getInfo<PTXMachineFunctionInfo>();
const PTXParamManager &PM = MFI->getParamManager();
const bool isKernel = MFI->isKernel();
const PTXSubtarget& ST = TM.getSubtarget<PTXSubtarget>();
const MachineRegisterInfo& MRI = MF->getRegInfo();
std::string decl = isKernel ? ".entry" : ".func";
if (!isKernel) {
decl += " (";
if (ST.useParamSpaceForDeviceArgs()) {
for (PTXParamManager::param_iterator i = PM.ret_begin(), e = PM.ret_end(),
b = i; i != e; ++i) {
if (i != b) {
decl += ", ";
}
decl += ".param .b";
decl += utostr(PM.getParamSize(*i));
decl += " ";
decl += PM.getParamName(*i);
}
} else {
for (PTXMachineFunctionInfo::reg_iterator
i = MFI->retreg_begin(), e = MFI->retreg_end(), b = i;
i != e; ++i) {
if (i != b) {
decl += ", ";
}
decl += ".reg .";
decl += getRegisterTypeName(*i, MRI);
decl += " ";
decl += MFI->getRegisterName(*i);
}
}
decl += ")";
}
// Print function name
decl += " ";
decl += CurrentFnSym->getName().str();
decl += " (";
const Function *F = MF->getFunction();
// Print parameters
if (isKernel || ST.useParamSpaceForDeviceArgs()) {
/*for (PTXParamManager::param_iterator i = PM.arg_begin(), e = PM.arg_end(),
b = i; i != e; ++i) {
if (i != b) {
decl += ", ";
}
decl += ".param .b";
decl += utostr(PM.getParamSize(*i));
decl += " ";
decl += PM.getParamName(*i);
}*/
int Counter = 1;
for (Function::const_arg_iterator i = F->arg_begin(), e = F->arg_end(),
b = i; i != e; ++i) {
if (i != b)
decl += ", ";
const Type *ArgType = (*i).getType();
decl += ".param .b";
if (ArgType->isPointerTy()) {
if (ST.is64Bit())
decl += "64";
else
decl += "32";
} else {
decl += utostr(ArgType->getPrimitiveSizeInBits());
}
if (ArgType->isPointerTy() && ST.emitPtrAttribute()) {
const PointerType *PtrType = dyn_cast<const PointerType>(ArgType);
decl += " .ptr";
switch (PtrType->getAddressSpace()) {
default:
llvm_unreachable("Unknown address space in argument");
case PTXStateSpace::Global:
decl += " .global";
break;
case PTXStateSpace::Shared:
decl += " .shared";
break;
}
}
decl += " __param_";
decl += utostr(Counter++);
}
} else {
for (PTXMachineFunctionInfo::reg_iterator
i = MFI->argreg_begin(), e = MFI->argreg_end(), b = i;
i != e; ++i) {
if (i != b) {
decl += ", ";
}
decl += ".reg .";
decl += getRegisterTypeName(*i, MRI);
decl += " ";
decl += MFI->getRegisterName(*i);
}
}
decl += ")";
OutStreamer.EmitRawText(Twine(decl));
}
unsigned PTXAsmPrinter::GetOrCreateSourceID(StringRef FileName,
StringRef DirName) {
// If FE did not provide a file name, then assume stdin.
if (FileName.empty())
return GetOrCreateSourceID("<stdin>", StringRef());
// MCStream expects full path name as filename.
if (!DirName.empty() && !sys::path::is_absolute(FileName)) {
SmallString<128> FullPathName = DirName;
sys::path::append(FullPathName, FileName);
// Here FullPathName will be copied into StringMap by GetOrCreateSourceID.
return GetOrCreateSourceID(StringRef(FullPathName), StringRef());
}
StringMapEntry<unsigned> &Entry = SourceIdMap.GetOrCreateValue(FileName);
if (Entry.getValue())
return Entry.getValue();
unsigned SrcId = SourceIdMap.size();
Entry.setValue(SrcId);
// Print out a .file directive to specify files for .loc directives.
OutStreamer.EmitDwarfFileDirective(SrcId, Entry.getKey());
return SrcId;
}
MCOperand PTXAsmPrinter::GetSymbolRef(const MachineOperand &MO,
const MCSymbol *Symbol) {
const MCExpr *Expr;
Expr = MCSymbolRefExpr::Create(Symbol, MCSymbolRefExpr::VK_None, OutContext);
return MCOperand::CreateExpr(Expr);
}
MCOperand PTXAsmPrinter::lowerOperand(const MachineOperand &MO) {
MCOperand MCOp;
const PTXMachineFunctionInfo *MFI = MF->getInfo<PTXMachineFunctionInfo>();
const MCExpr *Expr;
const char *RegSymbolName;
switch (MO.getType()) {
default:
llvm_unreachable("Unknown operand type");
case MachineOperand::MO_Register:
// We create register operands as symbols, since the PTXInstPrinter class
// has no way to map virtual registers back to a name without some ugly
// hacks.
// FIXME: Figure out a better way to handle virtual register naming.
RegSymbolName = MFI->getRegisterName(MO.getReg());
Expr = MCSymbolRefExpr::Create(RegSymbolName, MCSymbolRefExpr::VK_None,
OutContext);
MCOp = MCOperand::CreateExpr(Expr);
break;
case MachineOperand::MO_Immediate:
MCOp = MCOperand::CreateImm(MO.getImm());
break;
case MachineOperand::MO_MachineBasicBlock:
MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(
MO.getMBB()->getSymbol(), OutContext));
break;
case MachineOperand::MO_GlobalAddress:
MCOp = GetSymbolRef(MO, Mang->getSymbol(MO.getGlobal()));
break;
case MachineOperand::MO_ExternalSymbol:
MCOp = GetSymbolRef(MO, GetExternalSymbolSymbol(MO.getSymbolName()));
break;
case MachineOperand::MO_FPImmediate:
APFloat Val = MO.getFPImm()->getValueAPF();
bool ignored;
Val.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &ignored);
MCOp = MCOperand::CreateFPImm(Val.convertToDouble());
break;
}
return MCOp;
}
// Force static initialization.
extern "C" void LLVMInitializePTXAsmPrinter() {
RegisterAsmPrinter<PTXAsmPrinter> X(ThePTX32Target);
RegisterAsmPrinter<PTXAsmPrinter> Y(ThePTX64Target);
}