freebsd-nq/usr.bin/gprof/arcs.c
1999-08-28 01:08:13 +00:00

955 lines
26 KiB
C

/*
* Copyright (c) 1983, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef lint
#if 0
static char sccsid[] = "@(#)arcs.c 8.1 (Berkeley) 6/6/93";
#endif
static const char rcsid[] =
"$FreeBSD$";
#endif /* not lint */
#include <err.h>
#include "gprof.h"
#ifdef DEBUG
int visited;
int viable;
int newcycle;
int oldcycle;
#endif DEBUG
/*
* add (or just increment) an arc
*/
addarc( parentp , childp , count )
nltype *parentp;
nltype *childp;
long count;
{
arctype *arcp;
# ifdef DEBUG
if ( debug & TALLYDEBUG ) {
printf( "[addarc] %d arcs from %s to %s\n" ,
count , parentp -> name , childp -> name );
}
# endif DEBUG
arcp = arclookup( parentp , childp );
if ( arcp != 0 ) {
/*
* a hit: just increment the count.
*/
# ifdef DEBUG
if ( debug & TALLYDEBUG ) {
printf( "[tally] hit %d += %d\n" ,
arcp -> arc_count , count );
}
# endif DEBUG
arcp -> arc_count += count;
return;
}
arcp = (arctype *)calloc( 1 , sizeof *arcp );
arcp -> arc_parentp = parentp;
arcp -> arc_childp = childp;
arcp -> arc_count = count;
/*
* prepend this child to the children of this parent
*/
arcp -> arc_childlist = parentp -> children;
parentp -> children = arcp;
/*
* prepend this parent to the parents of this child
*/
arcp -> arc_parentlist = childp -> parents;
childp -> parents = arcp;
}
/*
* the code below topologically sorts the graph (collapsing cycles),
* and propagates time bottom up and flags top down.
*/
/*
* the topologically sorted name list pointers
*/
nltype **topsortnlp;
topcmp( npp1 , npp2 )
nltype **npp1;
nltype **npp2;
{
return (*npp1) -> toporder - (*npp2) -> toporder;
}
nltype **
doarcs()
{
nltype *parentp, **timesortnlp;
arctype *arcp;
long index;
long pass;
/*
* initialize various things:
* zero out child times.
* count self-recursive calls.
* indicate that nothing is on cycles.
*/
for ( parentp = nl ; parentp < npe ; parentp++ ) {
parentp -> childtime = 0.0;
arcp = arclookup( parentp , parentp );
if ( arcp != 0 ) {
parentp -> ncall -= arcp -> arc_count;
parentp -> selfcalls = arcp -> arc_count;
} else {
parentp -> selfcalls = 0;
}
parentp -> npropcall = parentp -> ncall;
parentp -> propfraction = 0.0;
parentp -> propself = 0.0;
parentp -> propchild = 0.0;
parentp -> printflag = FALSE;
parentp -> toporder = DFN_NAN;
parentp -> cycleno = 0;
parentp -> cyclehead = parentp;
parentp -> cnext = 0;
if ( cflag ) {
findcall( parentp , parentp -> value , (parentp+1) -> value );
}
}
for ( pass = 1 ; ; pass++ ) {
/*
* topologically order things
* if any node is unnumbered,
* number it and any of its descendents.
*/
for ( dfn_init() , parentp = nl ; parentp < npe ; parentp++ ) {
if ( parentp -> toporder == DFN_NAN ) {
dfn( parentp );
}
}
/*
* link together nodes on the same cycle
*/
cyclelink();
/*
* if no cycles to break up, proceed
*/
if ( ! Cflag )
break;
/*
* analyze cycles to determine breakup
*/
# ifdef DEBUG
if ( debug & BREAKCYCLE ) {
printf("[doarcs] pass %d, cycle(s) %d\n" , pass , ncycle );
}
# endif DEBUG
if ( pass == 1 ) {
printf( "\n\n%s %s\n%s %d:\n" ,
"The following arcs were deleted" ,
"from the propagation calculation" ,
"to reduce the maximum cycle size to", cyclethreshold );
}
if ( cycleanalyze() )
break;
free ( cyclenl );
ncycle = 0;
for ( parentp = nl ; parentp < npe ; parentp++ ) {
parentp -> toporder = DFN_NAN;
parentp -> cycleno = 0;
parentp -> cyclehead = parentp;
parentp -> cnext = 0;
}
}
if ( pass > 1 ) {
printf( "\f\n" );
} else {
printf( "\tNone\n\n" );
}
/*
* Sort the symbol table in reverse topological order
*/
topsortnlp = (nltype **) calloc( nname , sizeof(nltype *) );
if ( topsortnlp == (nltype **) 0 ) {
fprintf( stderr , "[doarcs] ran out of memory for topo sorting\n" );
}
for ( index = 0 ; index < nname ; index += 1 ) {
topsortnlp[ index ] = &nl[ index ];
}
qsort( topsortnlp , nname , sizeof(nltype *) , topcmp );
# ifdef DEBUG
if ( debug & DFNDEBUG ) {
printf( "[doarcs] topological sort listing\n" );
for ( index = 0 ; index < nname ; index += 1 ) {
printf( "[doarcs] " );
printf( "%d:" , topsortnlp[ index ] -> toporder );
printname( topsortnlp[ index ] );
printf( "\n" );
}
}
# endif DEBUG
/*
* starting from the topological top,
* propagate print flags to children.
* also, calculate propagation fractions.
* this happens before time propagation
* since time propagation uses the fractions.
*/
doflags();
/*
* starting from the topological bottom,
* propogate children times up to parents.
*/
dotime();
/*
* Now, sort by propself + propchild.
* sorting both the regular function names
* and cycle headers.
*/
timesortnlp = (nltype **) calloc( nname + ncycle , sizeof(nltype *) );
if ( timesortnlp == (nltype **) 0 ) {
warnx("ran out of memory for sorting");
}
for ( index = 0 ; index < nname ; index++ ) {
timesortnlp[index] = &nl[index];
}
for ( index = 1 ; index <= ncycle ; index++ ) {
timesortnlp[nname+index-1] = &cyclenl[index];
}
qsort( timesortnlp , nname + ncycle , sizeof(nltype *) , totalcmp );
for ( index = 0 ; index < nname + ncycle ; index++ ) {
timesortnlp[ index ] -> index = index + 1;
}
return( timesortnlp );
}
dotime()
{
int index;
cycletime();
for ( index = 0 ; index < nname ; index += 1 ) {
timepropagate( topsortnlp[ index ] );
}
}
timepropagate( parentp )
nltype *parentp;
{
arctype *arcp;
nltype *childp;
double share;
double propshare;
if ( parentp -> propfraction == 0.0 ) {
return;
}
/*
* gather time from children of this parent.
*/
for ( arcp = parentp -> children ; arcp ; arcp = arcp -> arc_childlist ) {
childp = arcp -> arc_childp;
if ( arcp -> arc_flags & DEADARC ) {
continue;
}
if ( arcp -> arc_count == 0 ) {
continue;
}
if ( childp == parentp ) {
continue;
}
if ( childp -> propfraction == 0.0 ) {
continue;
}
if ( childp -> cyclehead != childp ) {
if ( parentp -> cycleno == childp -> cycleno ) {
continue;
}
if ( parentp -> toporder <= childp -> toporder ) {
fprintf( stderr , "[propagate] toporder botches\n" );
}
childp = childp -> cyclehead;
} else {
if ( parentp -> toporder <= childp -> toporder ) {
fprintf( stderr , "[propagate] toporder botches\n" );
continue;
}
}
if ( childp -> npropcall == 0 ) {
continue;
}
/*
* distribute time for this arc
*/
arcp -> arc_time = childp -> time
* ( ( (double) arcp -> arc_count ) /
( (double) childp -> npropcall ) );
arcp -> arc_childtime = childp -> childtime
* ( ( (double) arcp -> arc_count ) /
( (double) childp -> npropcall ) );
share = arcp -> arc_time + arcp -> arc_childtime;
parentp -> childtime += share;
/*
* ( 1 - propfraction ) gets lost along the way
*/
propshare = parentp -> propfraction * share;
/*
* fix things for printing
*/
parentp -> propchild += propshare;
arcp -> arc_time *= parentp -> propfraction;
arcp -> arc_childtime *= parentp -> propfraction;
/*
* add this share to the parent's cycle header, if any.
*/
if ( parentp -> cyclehead != parentp ) {
parentp -> cyclehead -> childtime += share;
parentp -> cyclehead -> propchild += propshare;
}
# ifdef DEBUG
if ( debug & PROPDEBUG ) {
printf( "[dotime] child \t" );
printname( childp );
printf( " with %f %f %d/%d\n" ,
childp -> time , childp -> childtime ,
arcp -> arc_count , childp -> npropcall );
printf( "[dotime] parent\t" );
printname( parentp );
printf( "\n[dotime] share %f\n" , share );
}
# endif DEBUG
}
}
cyclelink()
{
register nltype *nlp;
register nltype *cyclenlp;
int cycle;
nltype *memberp;
arctype *arcp;
/*
* Count the number of cycles, and initialze the cycle lists
*/
ncycle = 0;
for ( nlp = nl ; nlp < npe ; nlp++ ) {
/*
* this is how you find unattached cycles
*/
if ( nlp -> cyclehead == nlp && nlp -> cnext != 0 ) {
ncycle += 1;
}
}
/*
* cyclenl is indexed by cycle number:
* i.e. it is origin 1, not origin 0.
*/
cyclenl = (nltype *) calloc( ncycle + 1 , sizeof( nltype ) );
if ( cyclenl == 0 ) {
warnx("no room for %d bytes of cycle headers",
( ncycle + 1 ) * sizeof( nltype ) );
done();
}
/*
* now link cycles to true cycleheads,
* number them, accumulate the data for the cycle
*/
cycle = 0;
for ( nlp = nl ; nlp < npe ; nlp++ ) {
if ( !( nlp -> cyclehead == nlp && nlp -> cnext != 0 ) ) {
continue;
}
cycle += 1;
cyclenlp = &cyclenl[cycle];
cyclenlp -> name = 0; /* the name */
cyclenlp -> value = 0; /* the pc entry point */
cyclenlp -> time = 0.0; /* ticks in this routine */
cyclenlp -> childtime = 0.0; /* cumulative ticks in children */
cyclenlp -> ncall = 0; /* how many times called */
cyclenlp -> selfcalls = 0; /* how many calls to self */
cyclenlp -> propfraction = 0.0; /* what % of time propagates */
cyclenlp -> propself = 0.0; /* how much self time propagates */
cyclenlp -> propchild = 0.0; /* how much child time propagates */
cyclenlp -> printflag = TRUE; /* should this be printed? */
cyclenlp -> index = 0; /* index in the graph list */
cyclenlp -> toporder = DFN_NAN; /* graph call chain top-sort order */
cyclenlp -> cycleno = cycle; /* internal number of cycle on */
cyclenlp -> cyclehead = cyclenlp; /* pointer to head of cycle */
cyclenlp -> cnext = nlp; /* pointer to next member of cycle */
cyclenlp -> parents = 0; /* list of caller arcs */
cyclenlp -> children = 0; /* list of callee arcs */
# ifdef DEBUG
if ( debug & CYCLEDEBUG ) {
printf( "[cyclelink] " );
printname( nlp );
printf( " is the head of cycle %d\n" , cycle );
}
# endif DEBUG
/*
* link members to cycle header
*/
for ( memberp = nlp ; memberp ; memberp = memberp -> cnext ) {
memberp -> cycleno = cycle;
memberp -> cyclehead = cyclenlp;
}
/*
* count calls from outside the cycle
* and those among cycle members
*/
for ( memberp = nlp ; memberp ; memberp = memberp -> cnext ) {
for ( arcp=memberp->parents ; arcp ; arcp=arcp->arc_parentlist ) {
if ( arcp -> arc_parentp == memberp ) {
continue;
}
if ( arcp -> arc_parentp -> cycleno == cycle ) {
cyclenlp -> selfcalls += arcp -> arc_count;
} else {
cyclenlp -> npropcall += arcp -> arc_count;
}
}
}
}
}
/*
* analyze cycles to determine breakup
*/
cycleanalyze()
{
arctype **cyclestack;
arctype **stkp;
arctype **arcpp;
arctype **endlist;
arctype *arcp;
nltype *nlp;
cltype *clp;
bool ret;
bool done;
int size;
int cycleno;
/*
* calculate the size of the cycle, and find nodes that
* exit the cycle as they are desirable targets to cut
* some of their parents
*/
for ( done = TRUE , cycleno = 1 ; cycleno <= ncycle ; cycleno++ ) {
size = 0;
for (nlp = cyclenl[ cycleno ] . cnext; nlp; nlp = nlp -> cnext) {
size += 1;
nlp -> parentcnt = 0;
nlp -> flags &= ~HASCYCLEXIT;
for ( arcp = nlp -> parents; arcp; arcp = arcp -> arc_parentlist ) {
nlp -> parentcnt += 1;
if ( arcp -> arc_parentp -> cycleno != cycleno )
nlp -> flags |= HASCYCLEXIT;
}
}
if ( size <= cyclethreshold )
continue;
done = FALSE;
cyclestack = (arctype **) calloc( size + 1 , sizeof( arctype *) );
if ( cyclestack == 0 ) {
warnx("no room for %d bytes of cycle stack",
( size + 1 ) * sizeof( arctype * ) );
return;
}
# ifdef DEBUG
if ( debug & BREAKCYCLE ) {
printf( "[cycleanalyze] starting cycle %d of %d, size %d\n" ,
cycleno , ncycle , size );
}
# endif DEBUG
for ( nlp = cyclenl[ cycleno ] . cnext ; nlp ; nlp = nlp -> cnext ) {
stkp = &cyclestack[0];
nlp -> flags |= CYCLEHEAD;
ret = descend ( nlp , cyclestack , stkp );
nlp -> flags &= ~CYCLEHEAD;
if ( ret == FALSE )
break;
}
free( cyclestack );
if ( cyclecnt > 0 ) {
compresslist();
for ( clp = cyclehead ; clp ; ) {
endlist = &clp -> list[ clp -> size ];
for ( arcpp = clp -> list ; arcpp < endlist ; arcpp++ )
(*arcpp) -> arc_cyclecnt--;
cyclecnt--;
clp = clp -> next;
free( clp );
}
cyclehead = 0;
}
}
# ifdef DEBUG
if ( debug & BREAKCYCLE ) {
printf("%s visited %d, viable %d, newcycle %d, oldcycle %d\n",
"[doarcs]" , visited , viable , newcycle , oldcycle);
}
# endif DEBUG
return( done );
}
descend( node , stkstart , stkp )
nltype *node;
arctype **stkstart;
arctype **stkp;
{
arctype *arcp;
bool ret;
for ( arcp = node -> children ; arcp ; arcp = arcp -> arc_childlist ) {
# ifdef DEBUG
visited++;
# endif DEBUG
if ( arcp -> arc_childp -> cycleno != node -> cycleno
|| ( arcp -> arc_childp -> flags & VISITED )
|| ( arcp -> arc_flags & DEADARC ) )
continue;
# ifdef DEBUG
viable++;
# endif DEBUG
*stkp = arcp;
if ( arcp -> arc_childp -> flags & CYCLEHEAD ) {
if ( addcycle( stkstart , stkp ) == FALSE )
return( FALSE );
continue;
}
arcp -> arc_childp -> flags |= VISITED;
ret = descend( arcp -> arc_childp , stkstart , stkp + 1 );
arcp -> arc_childp -> flags &= ~VISITED;
if ( ret == FALSE )
return( FALSE );
}
}
addcycle( stkstart , stkend )
arctype **stkstart;
arctype **stkend;
{
arctype **arcpp;
arctype **stkloc;
arctype **stkp;
arctype **endlist;
arctype *minarc;
arctype *arcp;
cltype *clp;
int size;
size = stkend - stkstart + 1;
if ( size <= 1 )
return( TRUE );
for ( arcpp = stkstart , minarc = *arcpp ; arcpp <= stkend ; arcpp++ ) {
if ( *arcpp > minarc )
continue;
minarc = *arcpp;
stkloc = arcpp;
}
for ( clp = cyclehead ; clp ; clp = clp -> next ) {
if ( clp -> size != size )
continue;
stkp = stkloc;
endlist = &clp -> list[ size ];
for ( arcpp = clp -> list ; arcpp < endlist ; arcpp++ ) {
if ( *stkp++ != *arcpp )
break;
if ( stkp > stkend )
stkp = stkstart;
}
if ( arcpp == endlist ) {
# ifdef DEBUG
oldcycle++;
# endif DEBUG
return( TRUE );
}
}
clp = (cltype *)
calloc( 1 , sizeof ( cltype ) + ( size - 1 ) * sizeof( arctype * ) );
if ( clp == 0 ) {
warnx("no room for %d bytes of subcycle storage",
sizeof ( cltype ) + ( size - 1 ) * sizeof( arctype * ) );
return( FALSE );
}
stkp = stkloc;
endlist = &clp -> list[ size ];
for ( arcpp = clp -> list ; arcpp < endlist ; arcpp++ ) {
arcp = *arcpp = *stkp++;
if ( stkp > stkend )
stkp = stkstart;
arcp -> arc_cyclecnt++;
if ( ( arcp -> arc_flags & ONLIST ) == 0 ) {
arcp -> arc_flags |= ONLIST;
arcp -> arc_next = archead;
archead = arcp;
}
}
clp -> size = size;
clp -> next = cyclehead;
cyclehead = clp;
# ifdef DEBUG
newcycle++;
if ( debug & SUBCYCLELIST ) {
printsubcycle( clp );
}
# endif DEBUG
cyclecnt++;
if ( cyclecnt >= CYCLEMAX )
return( FALSE );
return( TRUE );
}
compresslist()
{
cltype *clp;
cltype **prev;
arctype **arcpp;
arctype **endlist;
arctype *arcp;
arctype *maxarcp;
arctype *maxexitarcp;
arctype *maxwithparentarcp;
arctype *maxnoparentarcp;
int maxexitcnt;
int maxwithparentcnt;
int maxnoparentcnt;
maxexitcnt = 0;
maxwithparentcnt = 0;
maxnoparentcnt = 0;
for ( endlist = &archead , arcp = archead ; arcp ; ) {
if ( arcp -> arc_cyclecnt == 0 ) {
arcp -> arc_flags &= ~ONLIST;
*endlist = arcp -> arc_next;
arcp -> arc_next = 0;
arcp = *endlist;
continue;
}
if ( arcp -> arc_childp -> flags & HASCYCLEXIT ) {
if ( arcp -> arc_cyclecnt > maxexitcnt ||
( arcp -> arc_cyclecnt == maxexitcnt &&
arcp -> arc_cyclecnt < maxexitarcp -> arc_count ) ) {
maxexitcnt = arcp -> arc_cyclecnt;
maxexitarcp = arcp;
}
} else if ( arcp -> arc_childp -> parentcnt > 1 ) {
if ( arcp -> arc_cyclecnt > maxwithparentcnt ||
( arcp -> arc_cyclecnt == maxwithparentcnt &&
arcp -> arc_cyclecnt < maxwithparentarcp -> arc_count ) ) {
maxwithparentcnt = arcp -> arc_cyclecnt;
maxwithparentarcp = arcp;
}
} else {
if ( arcp -> arc_cyclecnt > maxnoparentcnt ||
( arcp -> arc_cyclecnt == maxnoparentcnt &&
arcp -> arc_cyclecnt < maxnoparentarcp -> arc_count ) ) {
maxnoparentcnt = arcp -> arc_cyclecnt;
maxnoparentarcp = arcp;
}
}
endlist = &arcp -> arc_next;
arcp = arcp -> arc_next;
}
if ( maxexitcnt > 0 ) {
/*
* first choice is edge leading to node with out-of-cycle parent
*/
maxarcp = maxexitarcp;
# ifdef DEBUG
type = "exit";
# endif DEBUG
} else if ( maxwithparentcnt > 0 ) {
/*
* second choice is edge leading to node with at least one
* other in-cycle parent
*/
maxarcp = maxwithparentarcp;
# ifdef DEBUG
type = "internal";
# endif DEBUG
} else {
/*
* last choice is edge leading to node with only this arc as
* a parent (as it will now be orphaned)
*/
maxarcp = maxnoparentarcp;
# ifdef DEBUG
type = "orphan";
# endif DEBUG
}
maxarcp -> arc_flags |= DEADARC;
maxarcp -> arc_childp -> parentcnt -= 1;
maxarcp -> arc_childp -> npropcall -= maxarcp -> arc_count;
# ifdef DEBUG
if ( debug & BREAKCYCLE ) {
printf( "%s delete %s arc: %s (%d) -> %s from %d cycle(s)\n" ,
"[compresslist]" , type , maxarcp -> arc_parentp -> name ,
maxarcp -> arc_count , maxarcp -> arc_childp -> name ,
maxarcp -> arc_cyclecnt );
}
# endif DEBUG
printf( "\t%s to %s with %d calls\n" , maxarcp -> arc_parentp -> name ,
maxarcp -> arc_childp -> name , maxarcp -> arc_count );
prev = &cyclehead;
for ( clp = cyclehead ; clp ; ) {
endlist = &clp -> list[ clp -> size ];
for ( arcpp = clp -> list ; arcpp < endlist ; arcpp++ )
if ( (*arcpp) -> arc_flags & DEADARC )
break;
if ( arcpp == endlist ) {
prev = &clp -> next;
clp = clp -> next;
continue;
}
for ( arcpp = clp -> list ; arcpp < endlist ; arcpp++ )
(*arcpp) -> arc_cyclecnt--;
cyclecnt--;
*prev = clp -> next;
clp = clp -> next;
free( clp );
}
}
#ifdef DEBUG
printsubcycle( clp )
cltype *clp;
{
arctype **arcpp;
arctype **endlist;
arcpp = clp -> list;
printf( "%s <cycle %d>\n" , (*arcpp) -> arc_parentp -> name ,
(*arcpp) -> arc_parentp -> cycleno ) ;
for ( endlist = &clp -> list[ clp -> size ]; arcpp < endlist ; arcpp++ )
printf( "\t(%d) -> %s\n" , (*arcpp) -> arc_count ,
(*arcpp) -> arc_childp -> name ) ;
}
#endif DEBUG
cycletime()
{
int cycle;
nltype *cyclenlp;
nltype *childp;
for ( cycle = 1 ; cycle <= ncycle ; cycle += 1 ) {
cyclenlp = &cyclenl[ cycle ];
for ( childp = cyclenlp -> cnext ; childp ; childp = childp -> cnext ) {
if ( childp -> propfraction == 0.0 ) {
/*
* all members have the same propfraction except those
* that were excluded with -E
*/
continue;
}
cyclenlp -> time += childp -> time;
}
cyclenlp -> propself = cyclenlp -> propfraction * cyclenlp -> time;
}
}
/*
* in one top to bottom pass over the topologically sorted namelist
* propagate:
* printflag as the union of parents' printflags
* propfraction as the sum of fractional parents' propfractions
* and while we're here, sum time for functions.
*/
doflags()
{
int index;
nltype *childp;
nltype *oldhead;
oldhead = 0;
for ( index = nname-1 ; index >= 0 ; index -= 1 ) {
childp = topsortnlp[ index ];
/*
* if we haven't done this function or cycle,
* inherit things from parent.
* this way, we are linear in the number of arcs
* since we do all members of a cycle (and the cycle itself)
* as we hit the first member of the cycle.
*/
if ( childp -> cyclehead != oldhead ) {
oldhead = childp -> cyclehead;
inheritflags( childp );
}
# ifdef DEBUG
if ( debug & PROPDEBUG ) {
printf( "[doflags] " );
printname( childp );
printf( " inherits printflag %d and propfraction %f\n" ,
childp -> printflag , childp -> propfraction );
}
# endif DEBUG
if ( ! childp -> printflag ) {
/*
* printflag is off
* it gets turned on by
* being on -f list,
* or there not being any -f list and not being on -e list.
*/
if ( onlist( flist , childp -> name )
|| ( !fflag && !onlist( elist , childp -> name ) ) ) {
childp -> printflag = TRUE;
}
} else {
/*
* this function has printing parents:
* maybe someone wants to shut it up
* by putting it on -e list. (but favor -f over -e)
*/
if ( ( !onlist( flist , childp -> name ) )
&& onlist( elist , childp -> name ) ) {
childp -> printflag = FALSE;
}
}
if ( childp -> propfraction == 0.0 ) {
/*
* no parents to pass time to.
* collect time from children if
* its on -F list,
* or there isn't any -F list and its not on -E list.
*/
if ( onlist( Flist , childp -> name )
|| ( !Fflag && !onlist( Elist , childp -> name ) ) ) {
childp -> propfraction = 1.0;
}
} else {
/*
* it has parents to pass time to,
* but maybe someone wants to shut it up
* by puttting it on -E list. (but favor -F over -E)
*/
if ( !onlist( Flist , childp -> name )
&& onlist( Elist , childp -> name ) ) {
childp -> propfraction = 0.0;
}
}
childp -> propself = childp -> time * childp -> propfraction;
printtime += childp -> propself;
# ifdef DEBUG
if ( debug & PROPDEBUG ) {
printf( "[doflags] " );
printname( childp );
printf( " ends up with printflag %d and propfraction %f\n" ,
childp -> printflag , childp -> propfraction );
printf( "time %f propself %f printtime %f\n" ,
childp -> time , childp -> propself , printtime );
}
# endif DEBUG
}
}
/*
* check if any parent of this child
* (or outside parents of this cycle)
* have their print flags on and set the
* print flag of the child (cycle) appropriately.
* similarly, deal with propagation fractions from parents.
*/
inheritflags( childp )
nltype *childp;
{
nltype *headp;
arctype *arcp;
nltype *parentp;
nltype *memp;
headp = childp -> cyclehead;
if ( childp == headp ) {
/*
* just a regular child, check its parents
*/
childp -> printflag = FALSE;
childp -> propfraction = 0.0;
for (arcp = childp -> parents ; arcp ; arcp = arcp -> arc_parentlist) {
parentp = arcp -> arc_parentp;
if ( childp == parentp ) {
continue;
}
childp -> printflag |= parentp -> printflag;
/*
* if the child was never actually called
* (e.g. this arc is static (and all others are, too))
* no time propagates along this arc.
*/
if ( arcp -> arc_flags & DEADARC ) {
continue;
}
if ( childp -> npropcall ) {
childp -> propfraction += parentp -> propfraction
* ( ( (double) arcp -> arc_count )
/ ( (double) childp -> npropcall ) );
}
}
} else {
/*
* its a member of a cycle, look at all parents from
* outside the cycle
*/
headp -> printflag = FALSE;
headp -> propfraction = 0.0;
for ( memp = headp -> cnext ; memp ; memp = memp -> cnext ) {
for (arcp = memp->parents ; arcp ; arcp = arcp->arc_parentlist) {
if ( arcp -> arc_parentp -> cyclehead == headp ) {
continue;
}
parentp = arcp -> arc_parentp;
headp -> printflag |= parentp -> printflag;
/*
* if the cycle was never actually called
* (e.g. this arc is static (and all others are, too))
* no time propagates along this arc.
*/
if ( arcp -> arc_flags & DEADARC ) {
continue;
}
if ( headp -> npropcall ) {
headp -> propfraction += parentp -> propfraction
* ( ( (double) arcp -> arc_count )
/ ( (double) headp -> npropcall ) );
}
}
}
for ( memp = headp ; memp ; memp = memp -> cnext ) {
memp -> printflag = headp -> printflag;
memp -> propfraction = headp -> propfraction;
}
}
}