2050 lines
60 KiB
C
2050 lines
60 KiB
C
/* malloc.c
|
|
*
|
|
*/
|
|
|
|
/*
|
|
Here are some notes on configuring Perl's malloc. (For non-perl
|
|
usage see below.)
|
|
|
|
There are two macros which serve as bulk disablers of advanced
|
|
features of this malloc: NO_FANCY_MALLOC, PLAIN_MALLOC (undef by
|
|
default). Look in the list of default values below to understand
|
|
their exact effect. Defining NO_FANCY_MALLOC returns malloc.c to the
|
|
state of the malloc in Perl 5.004. Additionally defining PLAIN_MALLOC
|
|
returns it to the state as of Perl 5.000.
|
|
|
|
Note that some of the settings below may be ignored in the code based
|
|
on values of other macros. The PERL_CORE symbol is only defined when
|
|
perl itself is being compiled (so malloc can make some assumptions
|
|
about perl's facilities being available to it).
|
|
|
|
Each config option has a short description, followed by its name,
|
|
default value, and a comment about the default (if applicable). Some
|
|
options take a precise value, while the others are just boolean.
|
|
The boolean ones are listed first.
|
|
|
|
# Enable code for an emergency memory pool in $^M. See perlvar.pod
|
|
# for a description of $^M.
|
|
PERL_EMERGENCY_SBRK (!PLAIN_MALLOC && PERL_CORE)
|
|
|
|
# Enable code for printing memory statistics.
|
|
DEBUGGING_MSTATS (!PLAIN_MALLOC && PERL_CORE)
|
|
|
|
# Move allocation info for small buckets into separate areas.
|
|
# Memory optimization (especially for small allocations, of the
|
|
# less than 64 bytes). Since perl usually makes a large number
|
|
# of small allocations, this is usually a win.
|
|
PACK_MALLOC (!PLAIN_MALLOC && !RCHECK)
|
|
|
|
# Add one page to big powers of two when calculating bucket size.
|
|
# This is targeted at big allocations, as are common in image
|
|
# processing.
|
|
TWO_POT_OPTIMIZE !PLAIN_MALLOC
|
|
|
|
# Use intermediate bucket sizes between powers-of-two. This is
|
|
# generally a memory optimization, and a (small) speed pessimization.
|
|
BUCKETS_ROOT2 !NO_FANCY_MALLOC
|
|
|
|
# Do not check small deallocations for bad free(). Memory
|
|
# and speed optimization, error reporting pessimization.
|
|
IGNORE_SMALL_BAD_FREE (!NO_FANCY_MALLOC && !RCHECK)
|
|
|
|
# Use table lookup to decide in which bucket a given allocation will go.
|
|
SMALL_BUCKET_VIA_TABLE !NO_FANCY_MALLOC
|
|
|
|
# Use a perl-defined sbrk() instead of the (presumably broken or
|
|
# missing) system-supplied sbrk().
|
|
USE_PERL_SBRK undef
|
|
|
|
# Use system malloc() (or calloc() etc.) to emulate sbrk(). Normally
|
|
# only used with broken sbrk()s.
|
|
PERL_SBRK_VIA_MALLOC undef
|
|
|
|
# Which allocator to use if PERL_SBRK_VIA_MALLOC
|
|
SYSTEM_ALLOC(a) malloc(a)
|
|
|
|
# Minimal alignment (in bytes, should be a power of 2) of SYSTEM_ALLOC
|
|
SYSTEM_ALLOC_ALIGNMENT MEM_ALIGNBYTES
|
|
|
|
# Disable memory overwrite checking with DEBUGGING. Memory and speed
|
|
# optimization, error reporting pessimization.
|
|
NO_RCHECK undef
|
|
|
|
# Enable memory overwrite checking with DEBUGGING. Memory and speed
|
|
# pessimization, error reporting optimization
|
|
RCHECK (DEBUGGING && !NO_RCHECK)
|
|
|
|
# Failed allocations bigger than this size croak (if
|
|
# PERL_EMERGENCY_SBRK is enabled) without touching $^M. See
|
|
# perlvar.pod for a description of $^M.
|
|
BIG_SIZE (1<<16) # 64K
|
|
|
|
# Starting from this power of two, add an extra page to the
|
|
# size of the bucket. This enables optimized allocations of sizes
|
|
# close to powers of 2. Note that the value is indexed at 0.
|
|
FIRST_BIG_POW2 15 # 32K, 16K is used too often
|
|
|
|
# Estimate of minimal memory footprint. malloc uses this value to
|
|
# request the most reasonable largest blocks of memory from the system.
|
|
FIRST_SBRK (48*1024)
|
|
|
|
# Round up sbrk()s to multiples of this.
|
|
MIN_SBRK 2048
|
|
|
|
# Round up sbrk()s to multiples of this percent of footprint.
|
|
MIN_SBRK_FRAC 3
|
|
|
|
# Add this much memory to big powers of two to get the bucket size.
|
|
PERL_PAGESIZE 4096
|
|
|
|
# This many sbrk() discontinuities should be tolerated even
|
|
# from the start without deciding that sbrk() is usually
|
|
# discontinuous.
|
|
SBRK_ALLOW_FAILURES 3
|
|
|
|
# This many continuous sbrk()s compensate for one discontinuous one.
|
|
SBRK_FAILURE_PRICE 50
|
|
|
|
# Some configurations may ask for 12-byte-or-so allocations which
|
|
# require 8-byte alignment (?!). In such situation one needs to
|
|
# define this to disable 12-byte bucket (will increase memory footprint)
|
|
STRICT_ALIGNMENT undef
|
|
|
|
This implementation assumes that calling PerlIO_printf() does not
|
|
result in any memory allocation calls (used during a panic).
|
|
|
|
*/
|
|
|
|
/*
|
|
If used outside of Perl environment, it may be useful to redefine
|
|
the following macros (listed below with defaults):
|
|
|
|
# Type of address returned by allocation functions
|
|
Malloc_t void *
|
|
|
|
# Type of size argument for allocation functions
|
|
MEM_SIZE unsigned long
|
|
|
|
# size of void*
|
|
PTRSIZE 4
|
|
|
|
# Maximal value in LONG
|
|
LONG_MAX 0x7FFFFFFF
|
|
|
|
# Unsigned integer type big enough to keep a pointer
|
|
UV unsigned long
|
|
|
|
# Type of pointer with 1-byte granularity
|
|
caddr_t char *
|
|
|
|
# Type returned by free()
|
|
Free_t void
|
|
|
|
# Very fatal condition reporting function (cannot call any )
|
|
fatalcroak(arg) write(2,arg,strlen(arg)) + exit(2)
|
|
|
|
# Fatal error reporting function
|
|
croak(format, arg) warn(idem) + exit(1)
|
|
|
|
# Error reporting function
|
|
warn(format, arg) fprintf(stderr, idem)
|
|
|
|
# Locking/unlocking for MT operation
|
|
MALLOC_LOCK MUTEX_LOCK(&PL_malloc_mutex)
|
|
MALLOC_UNLOCK MUTEX_UNLOCK(&PL_malloc_mutex)
|
|
|
|
# Locking/unlocking mutex for MT operation
|
|
MUTEX_LOCK(l) void
|
|
MUTEX_UNLOCK(l) void
|
|
*/
|
|
|
|
#ifndef NO_FANCY_MALLOC
|
|
# ifndef SMALL_BUCKET_VIA_TABLE
|
|
# define SMALL_BUCKET_VIA_TABLE
|
|
# endif
|
|
# ifndef BUCKETS_ROOT2
|
|
# define BUCKETS_ROOT2
|
|
# endif
|
|
# ifndef IGNORE_SMALL_BAD_FREE
|
|
# define IGNORE_SMALL_BAD_FREE
|
|
# endif
|
|
#endif
|
|
|
|
#ifndef PLAIN_MALLOC /* Bulk enable features */
|
|
# ifndef PACK_MALLOC
|
|
# define PACK_MALLOC
|
|
# endif
|
|
# ifndef TWO_POT_OPTIMIZE
|
|
# define TWO_POT_OPTIMIZE
|
|
# endif
|
|
# if defined(PERL_CORE) && !defined(PERL_EMERGENCY_SBRK)
|
|
# define PERL_EMERGENCY_SBRK
|
|
# endif
|
|
# if defined(PERL_CORE) && !defined(DEBUGGING_MSTATS)
|
|
# define DEBUGGING_MSTATS
|
|
# endif
|
|
#endif
|
|
|
|
#define MIN_BUC_POW2 (sizeof(void*) > 4 ? 3 : 2) /* Allow for 4-byte arena. */
|
|
#define MIN_BUCKET (MIN_BUC_POW2 * BUCKETS_PER_POW2)
|
|
|
|
#if !(defined(I286) || defined(atarist) || defined(__MINT__))
|
|
/* take 2k unless the block is bigger than that */
|
|
# define LOG_OF_MIN_ARENA 11
|
|
#else
|
|
/* take 16k unless the block is bigger than that
|
|
(80286s like large segments!), probably good on the atari too */
|
|
# define LOG_OF_MIN_ARENA 14
|
|
#endif
|
|
|
|
#ifndef lint
|
|
# if defined(DEBUGGING) && !defined(NO_RCHECK)
|
|
# define RCHECK
|
|
# endif
|
|
# if defined(RCHECK) && defined(IGNORE_SMALL_BAD_FREE)
|
|
# undef IGNORE_SMALL_BAD_FREE
|
|
# endif
|
|
/*
|
|
* malloc.c (Caltech) 2/21/82
|
|
* Chris Kingsley, kingsley@cit-20.
|
|
*
|
|
* This is a very fast storage allocator. It allocates blocks of a small
|
|
* number of different sizes, and keeps free lists of each size. Blocks that
|
|
* don't exactly fit are passed up to the next larger size. In this
|
|
* implementation, the available sizes are 2^n-4 (or 2^n-12) bytes long.
|
|
* If PACK_MALLOC is defined, small blocks are 2^n bytes long.
|
|
* This is designed for use in a program that uses vast quantities of memory,
|
|
* but bombs when it runs out.
|
|
*
|
|
* Modifications Copyright Ilya Zakharevich 1996-99.
|
|
*
|
|
* Still very quick, but much more thrifty. (Std config is 10% slower
|
|
* than it was, and takes 67% of old heap size for typical usage.)
|
|
*
|
|
* Allocations of small blocks are now table-driven to many different
|
|
* buckets. Sizes of really big buckets are increased to accomodata
|
|
* common size=power-of-2 blocks. Running-out-of-memory is made into
|
|
* an exception. Deeply configurable and thread-safe.
|
|
*
|
|
*/
|
|
|
|
#ifdef PERL_CORE
|
|
# include "EXTERN.h"
|
|
# define PERL_IN_MALLOC_C
|
|
# include "perl.h"
|
|
# if defined(PERL_IMPLICIT_CONTEXT)
|
|
# define croak Perl_croak_nocontext
|
|
# define warn Perl_warn_nocontext
|
|
# endif
|
|
#else
|
|
# ifdef PERL_FOR_X2P
|
|
# include "../EXTERN.h"
|
|
# include "../perl.h"
|
|
# else
|
|
# include <stdlib.h>
|
|
# include <stdio.h>
|
|
# include <memory.h>
|
|
# define _(arg) arg
|
|
# ifndef Malloc_t
|
|
# define Malloc_t void *
|
|
# endif
|
|
# ifndef PTRSIZE
|
|
# define PTRSIZE 4
|
|
# endif
|
|
# ifndef MEM_SIZE
|
|
# define MEM_SIZE unsigned long
|
|
# endif
|
|
# ifndef LONG_MAX
|
|
# define LONG_MAX 0x7FFFFFFF
|
|
# endif
|
|
# ifndef UV
|
|
# define UV unsigned long
|
|
# endif
|
|
# ifndef caddr_t
|
|
# define caddr_t char *
|
|
# endif
|
|
# ifndef Free_t
|
|
# define Free_t void
|
|
# endif
|
|
# define Copy(s,d,n,t) (void)memcpy((char*)(d),(char*)(s), (n) * sizeof(t))
|
|
# define PerlEnv_getenv getenv
|
|
# define PerlIO_printf fprintf
|
|
# define PerlIO_stderr() stderr
|
|
# endif
|
|
# ifndef croak /* make depend */
|
|
# define croak(mess, arg) (warn((mess), (arg)), exit(1))
|
|
# endif
|
|
# ifndef warn
|
|
# define warn(mess, arg) fprintf(stderr, (mess), (arg))
|
|
# endif
|
|
# ifdef DEBUG_m
|
|
# undef DEBUG_m
|
|
# endif
|
|
# define DEBUG_m(a)
|
|
# ifdef DEBUGGING
|
|
# undef DEBUGGING
|
|
# endif
|
|
# ifndef pTHX
|
|
# define pTHX void
|
|
# define pTHX_
|
|
# define dTHX extern int Perl___notused
|
|
# define WITH_THX(s) s
|
|
# endif
|
|
# ifndef PERL_GET_INTERP
|
|
# define PERL_GET_INTERP PL_curinterp
|
|
# endif
|
|
# ifndef Perl_malloc
|
|
# define Perl_malloc malloc
|
|
# endif
|
|
# ifndef Perl_mfree
|
|
# define Perl_mfree free
|
|
# endif
|
|
# ifndef Perl_realloc
|
|
# define Perl_realloc realloc
|
|
# endif
|
|
# ifndef Perl_calloc
|
|
# define Perl_calloc calloc
|
|
# endif
|
|
# ifndef Perl_strdup
|
|
# define Perl_strdup strdup
|
|
# endif
|
|
#endif
|
|
|
|
#ifndef MUTEX_LOCK
|
|
# define MUTEX_LOCK(l)
|
|
#endif
|
|
|
|
#ifndef MUTEX_UNLOCK
|
|
# define MUTEX_UNLOCK(l)
|
|
#endif
|
|
|
|
#ifndef MALLOC_LOCK
|
|
# define MALLOC_LOCK MUTEX_LOCK(&PL_malloc_mutex)
|
|
#endif
|
|
|
|
#ifndef MALLOC_UNLOCK
|
|
# define MALLOC_UNLOCK MUTEX_UNLOCK(&PL_malloc_mutex)
|
|
#endif
|
|
|
|
# ifndef fatalcroak /* make depend */
|
|
# define fatalcroak(mess) (write(2, (mess), strlen(mess)), exit(2))
|
|
# endif
|
|
|
|
#ifdef DEBUGGING
|
|
# undef DEBUG_m
|
|
# define DEBUG_m(a) \
|
|
STMT_START { \
|
|
if (PERL_GET_INTERP) { dTHX; if (PL_debug & 128) { a; } } \
|
|
} STMT_END
|
|
#endif
|
|
|
|
#ifdef PERL_IMPLICIT_CONTEXT
|
|
# define PERL_IS_ALIVE aTHX
|
|
#else
|
|
# define PERL_IS_ALIVE TRUE
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Layout of memory:
|
|
* ~~~~~~~~~~~~~~~~
|
|
* The memory is broken into "blocks" which occupy multiples of 2K (and
|
|
* generally speaking, have size "close" to a power of 2). The addresses
|
|
* of such *unused* blocks are kept in nextf[i] with big enough i. (nextf
|
|
* is an array of linked lists.) (Addresses of used blocks are not known.)
|
|
*
|
|
* Moreover, since the algorithm may try to "bite" smaller blocks out
|
|
* of unused bigger ones, there are also regions of "irregular" size,
|
|
* managed separately, by a linked list chunk_chain.
|
|
*
|
|
* The third type of storage is the sbrk()ed-but-not-yet-used space, its
|
|
* end and size are kept in last_sbrk_top and sbrked_remains.
|
|
*
|
|
* Growing blocks "in place":
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
* The address of the block with the greatest address is kept in last_op
|
|
* (if not known, last_op is 0). If it is known that the memory above
|
|
* last_op is not continuous, or contains a chunk from chunk_chain,
|
|
* last_op is set to 0.
|
|
*
|
|
* The chunk with address last_op may be grown by expanding into
|
|
* sbrk()ed-but-not-yet-used space, or trying to sbrk() more continuous
|
|
* memory.
|
|
*
|
|
* Management of last_op:
|
|
* ~~~~~~~~~~~~~~~~~~~~~
|
|
*
|
|
* free() never changes the boundaries of blocks, so is not relevant.
|
|
*
|
|
* The only way realloc() may change the boundaries of blocks is if it
|
|
* grows a block "in place". However, in the case of success such a
|
|
* chunk is automatically last_op, and it remains last_op. In the case
|
|
* of failure getpages_adjacent() clears last_op.
|
|
*
|
|
* malloc() may change blocks by calling morecore() only.
|
|
*
|
|
* morecore() may create new blocks by:
|
|
* a) biting pieces from chunk_chain (cannot create one above last_op);
|
|
* b) biting a piece from an unused block (if block was last_op, this
|
|
* may create a chunk from chain above last_op, thus last_op is
|
|
* invalidated in such a case).
|
|
* c) biting of sbrk()ed-but-not-yet-used space. This creates
|
|
* a block which is last_op.
|
|
* d) Allocating new pages by calling getpages();
|
|
*
|
|
* getpages() creates a new block. It marks last_op at the bottom of
|
|
* the chunk of memory it returns.
|
|
*
|
|
* Active pages footprint:
|
|
* ~~~~~~~~~~~~~~~~~~~~~~
|
|
* Note that we do not need to traverse the lists in nextf[i], just take
|
|
* the first element of this list. However, we *need* to traverse the
|
|
* list in chunk_chain, but most the time it should be a very short one,
|
|
* so we do not step on a lot of pages we are not going to use.
|
|
*
|
|
* Flaws:
|
|
* ~~~~~
|
|
* get_from_bigger_buckets(): forget to increment price => Quite
|
|
* aggressive.
|
|
*/
|
|
|
|
/* I don't much care whether these are defined in sys/types.h--LAW */
|
|
|
|
#define u_char unsigned char
|
|
#define u_int unsigned int
|
|
/*
|
|
* I removed the definition of u_bigint which appeared to be u_bigint = UV
|
|
* u_bigint was only used in TWOK_MASKED and TWOK_SHIFT
|
|
* where I have used PTR2UV. RMB
|
|
*/
|
|
#define u_short unsigned short
|
|
|
|
/* 286 and atarist like big chunks, which gives too much overhead. */
|
|
#if (defined(RCHECK) || defined(I286) || defined(atarist) || defined(__MINT__)) && defined(PACK_MALLOC)
|
|
# undef PACK_MALLOC
|
|
#endif
|
|
|
|
/*
|
|
* The description below is applicable if PACK_MALLOC is not defined.
|
|
*
|
|
* The overhead on a block is at least 4 bytes. When free, this space
|
|
* contains a pointer to the next free block, and the bottom two bits must
|
|
* be zero. When in use, the first byte is set to MAGIC, and the second
|
|
* byte is the size index. The remaining bytes are for alignment.
|
|
* If range checking is enabled and the size of the block fits
|
|
* in two bytes, then the top two bytes hold the size of the requested block
|
|
* plus the range checking words, and the header word MINUS ONE.
|
|
*/
|
|
union overhead {
|
|
union overhead *ov_next; /* when free */
|
|
#if MEM_ALIGNBYTES > 4
|
|
double strut; /* alignment problems */
|
|
#endif
|
|
struct {
|
|
u_char ovu_index; /* bucket # */
|
|
u_char ovu_magic; /* magic number */
|
|
#ifdef RCHECK
|
|
u_short ovu_size; /* actual block size */
|
|
u_int ovu_rmagic; /* range magic number */
|
|
#endif
|
|
} ovu;
|
|
#define ov_magic ovu.ovu_magic
|
|
#define ov_index ovu.ovu_index
|
|
#define ov_size ovu.ovu_size
|
|
#define ov_rmagic ovu.ovu_rmagic
|
|
};
|
|
|
|
#define MAGIC 0xff /* magic # on accounting info */
|
|
#define RMAGIC 0x55555555 /* magic # on range info */
|
|
#define RMAGIC_C 0x55 /* magic # on range info */
|
|
|
|
#ifdef RCHECK
|
|
# define RSLOP sizeof (u_int)
|
|
# ifdef TWO_POT_OPTIMIZE
|
|
# define MAX_SHORT_BUCKET (12 * BUCKETS_PER_POW2)
|
|
# else
|
|
# define MAX_SHORT_BUCKET (13 * BUCKETS_PER_POW2)
|
|
# endif
|
|
#else
|
|
# define RSLOP 0
|
|
#endif
|
|
|
|
#if !defined(PACK_MALLOC) && defined(BUCKETS_ROOT2)
|
|
# undef BUCKETS_ROOT2
|
|
#endif
|
|
|
|
#ifdef BUCKETS_ROOT2
|
|
# define BUCKET_TABLE_SHIFT 2
|
|
# define BUCKET_POW2_SHIFT 1
|
|
# define BUCKETS_PER_POW2 2
|
|
#else
|
|
# define BUCKET_TABLE_SHIFT MIN_BUC_POW2
|
|
# define BUCKET_POW2_SHIFT 0
|
|
# define BUCKETS_PER_POW2 1
|
|
#endif
|
|
|
|
#if !defined(MEM_ALIGNBYTES) || ((MEM_ALIGNBYTES > 4) && !defined(STRICT_ALIGNMENT))
|
|
/* Figure out the alignment of void*. */
|
|
struct aligner {
|
|
char c;
|
|
void *p;
|
|
};
|
|
# define ALIGN_SMALL ((int)((caddr_t)&(((struct aligner*)0)->p)))
|
|
#else
|
|
# define ALIGN_SMALL MEM_ALIGNBYTES
|
|
#endif
|
|
|
|
#define IF_ALIGN_8(yes,no) ((ALIGN_SMALL>4) ? (yes) : (no))
|
|
|
|
#ifdef BUCKETS_ROOT2
|
|
# define MAX_BUCKET_BY_TABLE 13
|
|
static u_short buck_size[MAX_BUCKET_BY_TABLE + 1] =
|
|
{
|
|
0, 0, 0, 0, 4, 4, 8, 12, 16, 24, 32, 48, 64, 80,
|
|
};
|
|
# define BUCKET_SIZE(i) ((i) % 2 ? buck_size[i] : (1 << ((i) >> BUCKET_POW2_SHIFT)))
|
|
# define BUCKET_SIZE_REAL(i) ((i) <= MAX_BUCKET_BY_TABLE \
|
|
? buck_size[i] \
|
|
: ((1 << ((i) >> BUCKET_POW2_SHIFT)) \
|
|
- MEM_OVERHEAD(i) \
|
|
+ POW2_OPTIMIZE_SURPLUS(i)))
|
|
#else
|
|
# define BUCKET_SIZE(i) (1 << ((i) >> BUCKET_POW2_SHIFT))
|
|
# define BUCKET_SIZE_REAL(i) (BUCKET_SIZE(i) - MEM_OVERHEAD(i) + POW2_OPTIMIZE_SURPLUS(i))
|
|
#endif
|
|
|
|
|
|
#ifdef PACK_MALLOC
|
|
/* In this case there are several possible layout of arenas depending
|
|
* on the size. Arenas are of sizes multiple to 2K, 2K-aligned, and
|
|
* have a size close to a power of 2.
|
|
*
|
|
* Arenas of the size >= 4K keep one chunk only. Arenas of size 2K
|
|
* may keep one chunk or multiple chunks. Here are the possible
|
|
* layouts of arenas:
|
|
*
|
|
* # One chunk only, chunksize 2^k + SOMETHING - ALIGN, k >= 11
|
|
*
|
|
* INDEX MAGIC1 UNUSED CHUNK1
|
|
*
|
|
* # Multichunk with sanity checking and chunksize 2^k-ALIGN, k>7
|
|
*
|
|
* INDEX MAGIC1 MAGIC2 MAGIC3 UNUSED CHUNK1 CHUNK2 CHUNK3 ...
|
|
*
|
|
* # Multichunk with sanity checking and size 2^k-ALIGN, k=7
|
|
*
|
|
* INDEX MAGIC1 MAGIC2 MAGIC3 UNUSED CHUNK1 UNUSED CHUNK2 CHUNK3 ...
|
|
*
|
|
* # Multichunk with sanity checking and size up to 80
|
|
*
|
|
* INDEX UNUSED MAGIC1 UNUSED MAGIC2 UNUSED ... CHUNK1 CHUNK2 CHUNK3 ...
|
|
*
|
|
* # No sanity check (usually up to 48=byte-long buckets)
|
|
* INDEX UNUSED CHUNK1 CHUNK2 ...
|
|
*
|
|
* Above INDEX and MAGIC are one-byte-long. Sizes of UNUSED are
|
|
* appropriate to keep algorithms simple and memory aligned. INDEX
|
|
* encodes the size of the chunk, while MAGICn encodes state (used,
|
|
* free or non-managed-by-us-so-it-indicates-a-bug) of CHUNKn. MAGIC
|
|
* is used for sanity checking purposes only. SOMETHING is 0 or 4K
|
|
* (to make size of big CHUNK accomodate allocations for powers of two
|
|
* better).
|
|
*
|
|
* [There is no need to alignment between chunks, since C rules ensure
|
|
* that structs which need 2^k alignment have sizeof which is
|
|
* divisible by 2^k. Thus as far as the last chunk is aligned at the
|
|
* end of the arena, and 2K-alignment does not contradict things,
|
|
* everything is going to be OK for sizes of chunks 2^n and 2^n +
|
|
* 2^k. Say, 80-bit buckets will be 16-bit aligned, and as far as we
|
|
* put allocations for requests in 65..80 range, all is fine.
|
|
*
|
|
* Note, however, that standard malloc() puts more strict
|
|
* requirements than the above C rules. Moreover, our algorithms of
|
|
* realloc() may break this idyll, but we suppose that realloc() does
|
|
* need not change alignment.]
|
|
*
|
|
* Is very important to make calculation of the offset of MAGICm as
|
|
* quick as possible, since it is done on each malloc()/free(). In
|
|
* fact it is so quick that it has quite little effect on the speed of
|
|
* doing malloc()/free(). [By default] We forego such calculations
|
|
* for small chunks, but only to save extra 3% of memory, not because
|
|
* of speed considerations.
|
|
*
|
|
* Here is the algorithm [which is the same for all the allocations
|
|
* schemes above], see OV_MAGIC(block,bucket). Let OFFSETm be the
|
|
* offset of the CHUNKm from the start of ARENA. Then offset of
|
|
* MAGICm is (OFFSET1 >> SHIFT) + ADDOFFSET. Here SHIFT and ADDOFFSET
|
|
* are numbers which depend on the size of the chunks only.
|
|
*
|
|
* Let as check some sanity conditions. Numbers OFFSETm>>SHIFT are
|
|
* different for all the chunks in the arena if 2^SHIFT is not greater
|
|
* than size of the chunks in the arena. MAGIC1 will not overwrite
|
|
* INDEX provided ADDOFFSET is >0 if OFFSET1 < 2^SHIFT. MAGIClast
|
|
* will not overwrite CHUNK1 if OFFSET1 > (OFFSETlast >> SHIFT) +
|
|
* ADDOFFSET.
|
|
*
|
|
* Make SHIFT the maximal possible (there is no point in making it
|
|
* smaller). Since OFFSETlast is 2K - CHUNKSIZE, above restrictions
|
|
* give restrictions on OFFSET1 and on ADDOFFSET.
|
|
*
|
|
* In particular, for chunks of size 2^k with k>=6 we can put
|
|
* ADDOFFSET to be from 0 to 2^k - 2^(11-k), and have
|
|
* OFFSET1==chunksize. For chunks of size 80 OFFSET1 of 2K%80=48 is
|
|
* large enough to have ADDOFFSET between 1 and 16 (similarly for 96,
|
|
* when ADDOFFSET should be 1). In particular, keeping MAGICs for
|
|
* these sizes gives no additional size penalty.
|
|
*
|
|
* However, for chunks of size 2^k with k<=5 this gives OFFSET1 >=
|
|
* ADDOFSET + 2^(11-k). Keeping ADDOFFSET 0 allows for 2^(11-k)-2^(11-2k)
|
|
* chunks per arena. This is smaller than 2^(11-k) - 1 which are
|
|
* needed if no MAGIC is kept. [In fact, having a negative ADDOFFSET
|
|
* would allow for slightly more buckets per arena for k=2,3.]
|
|
*
|
|
* Similarly, for chunks of size 3/2*2^k with k<=5 MAGICs would span
|
|
* the area up to 2^(11-k)+ADDOFFSET. For k=4 this give optimal
|
|
* ADDOFFSET as -7..0. For k=3 ADDOFFSET can go up to 4 (with tiny
|
|
* savings for negative ADDOFFSET). For k=5 ADDOFFSET can go -1..16
|
|
* (with no savings for negative values).
|
|
*
|
|
* In particular, keeping ADDOFFSET 0 for sizes of chunks up to 2^6
|
|
* leads to tiny pessimizations in case of sizes 4, 8, 12, 24, and
|
|
* leads to no contradictions except for size=80 (or 96.)
|
|
*
|
|
* However, it also makes sense to keep no magic for sizes 48 or less.
|
|
* This is what we do. In this case one needs ADDOFFSET>=1 also for
|
|
* chunksizes 12, 24, and 48, unless one gets one less chunk per
|
|
* arena.
|
|
*
|
|
* The algo of OV_MAGIC(block,bucket) keeps ADDOFFSET 0 until
|
|
* chunksize of 64, then makes it 1.
|
|
*
|
|
* This allows for an additional optimization: the above scheme leads
|
|
* to giant overheads for sizes 128 or more (one whole chunk needs to
|
|
* be sacrifised to keep INDEX). Instead we use chunks not of size
|
|
* 2^k, but of size 2^k-ALIGN. If we pack these chunks at the end of
|
|
* the arena, then the beginnings are still in different 2^k-long
|
|
* sections of the arena if k>=7 for ALIGN==4, and k>=8 if ALIGN=8.
|
|
* Thus for k>7 the above algo of calculating the offset of the magic
|
|
* will still give different answers for different chunks. And to
|
|
* avoid the overrun of MAGIC1 into INDEX, one needs ADDOFFSET of >=1.
|
|
* In the case k=7 we just move the first chunk an extra ALIGN
|
|
* backward inside the ARENA (this is done once per arena lifetime,
|
|
* thus is not a big overhead). */
|
|
# define MAX_PACKED_POW2 6
|
|
# define MAX_PACKED (MAX_PACKED_POW2 * BUCKETS_PER_POW2 + BUCKET_POW2_SHIFT)
|
|
# define MAX_POW2_ALGO ((1<<(MAX_PACKED_POW2 + 1)) - M_OVERHEAD)
|
|
# define TWOK_MASK ((1<<LOG_OF_MIN_ARENA) - 1)
|
|
# define TWOK_MASKED(x) (PTR2UV(x) & ~TWOK_MASK)
|
|
# define TWOK_SHIFT(x) (PTR2UV(x) & TWOK_MASK)
|
|
# define OV_INDEXp(block) (INT2PTR(u_char*,TWOK_MASKED(block)))
|
|
# define OV_INDEX(block) (*OV_INDEXp(block))
|
|
# define OV_MAGIC(block,bucket) (*(OV_INDEXp(block) + \
|
|
(TWOK_SHIFT(block)>> \
|
|
(bucket>>BUCKET_POW2_SHIFT)) + \
|
|
(bucket >= MIN_NEEDS_SHIFT ? 1 : 0)))
|
|
/* A bucket can have a shift smaller than it size, we need to
|
|
shift its magic number so it will not overwrite index: */
|
|
# ifdef BUCKETS_ROOT2
|
|
# define MIN_NEEDS_SHIFT (7*BUCKETS_PER_POW2 - 1) /* Shift 80 greater than chunk 64. */
|
|
# else
|
|
# define MIN_NEEDS_SHIFT (7*BUCKETS_PER_POW2) /* Shift 128 greater than chunk 32. */
|
|
# endif
|
|
# define CHUNK_SHIFT 0
|
|
|
|
/* Number of active buckets of given ordinal. */
|
|
#ifdef IGNORE_SMALL_BAD_FREE
|
|
#define FIRST_BUCKET_WITH_CHECK (6 * BUCKETS_PER_POW2) /* 64 */
|
|
# define N_BLKS(bucket) ( (bucket) < FIRST_BUCKET_WITH_CHECK \
|
|
? ((1<<LOG_OF_MIN_ARENA) - 1)/BUCKET_SIZE(bucket) \
|
|
: n_blks[bucket] )
|
|
#else
|
|
# define N_BLKS(bucket) n_blks[bucket]
|
|
#endif
|
|
|
|
static u_short n_blks[LOG_OF_MIN_ARENA * BUCKETS_PER_POW2] =
|
|
{
|
|
# if BUCKETS_PER_POW2==1
|
|
0, 0,
|
|
(MIN_BUC_POW2==2 ? 384 : 0),
|
|
224, 120, 62, 31, 16, 8, 4, 2
|
|
# else
|
|
0, 0, 0, 0,
|
|
(MIN_BUC_POW2==2 ? 384 : 0), (MIN_BUC_POW2==2 ? 384 : 0), /* 4, 4 */
|
|
224, 149, 120, 80, 62, 41, 31, 25, 16, 16, 8, 8, 4, 4, 2, 2
|
|
# endif
|
|
};
|
|
|
|
/* Shift of the first bucket with the given ordinal inside 2K chunk. */
|
|
#ifdef IGNORE_SMALL_BAD_FREE
|
|
# define BLK_SHIFT(bucket) ( (bucket) < FIRST_BUCKET_WITH_CHECK \
|
|
? ((1<<LOG_OF_MIN_ARENA) \
|
|
- BUCKET_SIZE(bucket) * N_BLKS(bucket)) \
|
|
: blk_shift[bucket])
|
|
#else
|
|
# define BLK_SHIFT(bucket) blk_shift[bucket]
|
|
#endif
|
|
|
|
static u_short blk_shift[LOG_OF_MIN_ARENA * BUCKETS_PER_POW2] =
|
|
{
|
|
# if BUCKETS_PER_POW2==1
|
|
0, 0,
|
|
(MIN_BUC_POW2==2 ? 512 : 0),
|
|
256, 128, 64, 64, /* 8 to 64 */
|
|
16*sizeof(union overhead),
|
|
8*sizeof(union overhead),
|
|
4*sizeof(union overhead),
|
|
2*sizeof(union overhead),
|
|
# else
|
|
0, 0, 0, 0,
|
|
(MIN_BUC_POW2==2 ? 512 : 0), (MIN_BUC_POW2==2 ? 512 : 0),
|
|
256, 260, 128, 128, 64, 80, 64, 48, /* 8 to 96 */
|
|
16*sizeof(union overhead), 16*sizeof(union overhead),
|
|
8*sizeof(union overhead), 8*sizeof(union overhead),
|
|
4*sizeof(union overhead), 4*sizeof(union overhead),
|
|
2*sizeof(union overhead), 2*sizeof(union overhead),
|
|
# endif
|
|
};
|
|
|
|
# define NEEDED_ALIGNMENT 0x800 /* 2k boundaries */
|
|
# define WANTED_ALIGNMENT 0x800 /* 2k boundaries */
|
|
|
|
#else /* !PACK_MALLOC */
|
|
|
|
# define OV_MAGIC(block,bucket) (block)->ov_magic
|
|
# define OV_INDEX(block) (block)->ov_index
|
|
# define CHUNK_SHIFT 1
|
|
# define MAX_PACKED -1
|
|
# define NEEDED_ALIGNMENT MEM_ALIGNBYTES
|
|
# define WANTED_ALIGNMENT 0x400 /* 1k boundaries */
|
|
|
|
#endif /* !PACK_MALLOC */
|
|
|
|
#define M_OVERHEAD (sizeof(union overhead) + RSLOP)
|
|
|
|
#ifdef PACK_MALLOC
|
|
# define MEM_OVERHEAD(bucket) \
|
|
(bucket <= MAX_PACKED ? 0 : M_OVERHEAD)
|
|
# ifdef SMALL_BUCKET_VIA_TABLE
|
|
# define START_SHIFTS_BUCKET ((MAX_PACKED_POW2 + 1) * BUCKETS_PER_POW2)
|
|
# define START_SHIFT MAX_PACKED_POW2
|
|
# ifdef BUCKETS_ROOT2 /* Chunks of size 3*2^n. */
|
|
# define SIZE_TABLE_MAX 80
|
|
# else
|
|
# define SIZE_TABLE_MAX 64
|
|
# endif
|
|
static char bucket_of[] =
|
|
{
|
|
# ifdef BUCKETS_ROOT2 /* Chunks of size 3*2^n. */
|
|
/* 0 to 15 in 4-byte increments. */
|
|
(sizeof(void*) > 4 ? 6 : 5), /* 4/8, 5-th bucket for better reports */
|
|
6, /* 8 */
|
|
IF_ALIGN_8(8,7), 8, /* 16/12, 16 */
|
|
9, 9, 10, 10, /* 24, 32 */
|
|
11, 11, 11, 11, /* 48 */
|
|
12, 12, 12, 12, /* 64 */
|
|
13, 13, 13, 13, /* 80 */
|
|
13, 13, 13, 13 /* 80 */
|
|
# else /* !BUCKETS_ROOT2 */
|
|
/* 0 to 15 in 4-byte increments. */
|
|
(sizeof(void*) > 4 ? 3 : 2),
|
|
3,
|
|
4, 4,
|
|
5, 5, 5, 5,
|
|
6, 6, 6, 6,
|
|
6, 6, 6, 6
|
|
# endif /* !BUCKETS_ROOT2 */
|
|
};
|
|
# else /* !SMALL_BUCKET_VIA_TABLE */
|
|
# define START_SHIFTS_BUCKET MIN_BUCKET
|
|
# define START_SHIFT (MIN_BUC_POW2 - 1)
|
|
# endif /* !SMALL_BUCKET_VIA_TABLE */
|
|
#else /* !PACK_MALLOC */
|
|
# define MEM_OVERHEAD(bucket) M_OVERHEAD
|
|
# ifdef SMALL_BUCKET_VIA_TABLE
|
|
# undef SMALL_BUCKET_VIA_TABLE
|
|
# endif
|
|
# define START_SHIFTS_BUCKET MIN_BUCKET
|
|
# define START_SHIFT (MIN_BUC_POW2 - 1)
|
|
#endif /* !PACK_MALLOC */
|
|
|
|
/*
|
|
* Big allocations are often of the size 2^n bytes. To make them a
|
|
* little bit better, make blocks of size 2^n+pagesize for big n.
|
|
*/
|
|
|
|
#ifdef TWO_POT_OPTIMIZE
|
|
|
|
# ifndef PERL_PAGESIZE
|
|
# define PERL_PAGESIZE 4096
|
|
# endif
|
|
# ifndef FIRST_BIG_POW2
|
|
# define FIRST_BIG_POW2 15 /* 32K, 16K is used too often. */
|
|
# endif
|
|
# define FIRST_BIG_BLOCK (1<<FIRST_BIG_POW2)
|
|
/* If this value or more, check against bigger blocks. */
|
|
# define FIRST_BIG_BOUND (FIRST_BIG_BLOCK - M_OVERHEAD)
|
|
/* If less than this value, goes into 2^n-overhead-block. */
|
|
# define LAST_SMALL_BOUND ((FIRST_BIG_BLOCK>>1) - M_OVERHEAD)
|
|
|
|
# define POW2_OPTIMIZE_ADJUST(nbytes) \
|
|
((nbytes >= FIRST_BIG_BOUND) ? nbytes -= PERL_PAGESIZE : 0)
|
|
# define POW2_OPTIMIZE_SURPLUS(bucket) \
|
|
((bucket >= FIRST_BIG_POW2 * BUCKETS_PER_POW2) ? PERL_PAGESIZE : 0)
|
|
|
|
#else /* !TWO_POT_OPTIMIZE */
|
|
# define POW2_OPTIMIZE_ADJUST(nbytes)
|
|
# define POW2_OPTIMIZE_SURPLUS(bucket) 0
|
|
#endif /* !TWO_POT_OPTIMIZE */
|
|
|
|
#if defined(HAS_64K_LIMIT) && defined(PERL_CORE)
|
|
# define BARK_64K_LIMIT(what,nbytes,size) \
|
|
if (nbytes > 0xffff) { \
|
|
PerlIO_printf(PerlIO_stderr(), \
|
|
"%s too large: %lx\n", what, size); \
|
|
my_exit(1); \
|
|
}
|
|
#else /* !HAS_64K_LIMIT || !PERL_CORE */
|
|
# define BARK_64K_LIMIT(what,nbytes,size)
|
|
#endif /* !HAS_64K_LIMIT || !PERL_CORE */
|
|
|
|
#ifndef MIN_SBRK
|
|
# define MIN_SBRK 2048
|
|
#endif
|
|
|
|
#ifndef FIRST_SBRK
|
|
# define FIRST_SBRK (48*1024)
|
|
#endif
|
|
|
|
/* Minimal sbrk in percents of what is already alloced. */
|
|
#ifndef MIN_SBRK_FRAC
|
|
# define MIN_SBRK_FRAC 3
|
|
#endif
|
|
|
|
#ifndef SBRK_ALLOW_FAILURES
|
|
# define SBRK_ALLOW_FAILURES 3
|
|
#endif
|
|
|
|
#ifndef SBRK_FAILURE_PRICE
|
|
# define SBRK_FAILURE_PRICE 50
|
|
#endif
|
|
|
|
static void morecore (register int bucket);
|
|
# if defined(DEBUGGING)
|
|
static void botch (char *diag, char *s);
|
|
# endif
|
|
static void add_to_chain (void *p, MEM_SIZE size, MEM_SIZE chip);
|
|
static void* get_from_chain (MEM_SIZE size);
|
|
static void* get_from_bigger_buckets(int bucket, MEM_SIZE size);
|
|
static union overhead *getpages (MEM_SIZE needed, int *nblksp, int bucket);
|
|
static int getpages_adjacent(MEM_SIZE require);
|
|
|
|
#if defined(PERL_EMERGENCY_SBRK) && defined(PERL_CORE)
|
|
|
|
# ifndef BIG_SIZE
|
|
# define BIG_SIZE (1<<16) /* 64K */
|
|
# endif
|
|
|
|
#ifdef I_MACH_CTHREADS
|
|
# undef MUTEX_LOCK
|
|
# define MUTEX_LOCK(m) STMT_START { if (*m) mutex_lock(*m); } STMT_END
|
|
# undef MUTEX_UNLOCK
|
|
# define MUTEX_UNLOCK(m) STMT_START { if (*m) mutex_unlock(*m); } STMT_END
|
|
#endif
|
|
|
|
static char *emergency_buffer;
|
|
static MEM_SIZE emergency_buffer_size;
|
|
|
|
static Malloc_t
|
|
emergency_sbrk(MEM_SIZE size)
|
|
{
|
|
MEM_SIZE rsize = (((size - 1)>>LOG_OF_MIN_ARENA) + 1)<<LOG_OF_MIN_ARENA;
|
|
|
|
if (size >= BIG_SIZE) {
|
|
/* Give the possibility to recover: */
|
|
MALLOC_UNLOCK;
|
|
croak("Out of memory during \"large\" request for %i bytes", size);
|
|
}
|
|
|
|
if (emergency_buffer_size >= rsize) {
|
|
char *old = emergency_buffer;
|
|
|
|
emergency_buffer_size -= rsize;
|
|
emergency_buffer += rsize;
|
|
return old;
|
|
} else {
|
|
dTHX;
|
|
/* First offense, give a possibility to recover by dieing. */
|
|
/* No malloc involved here: */
|
|
GV **gvp = (GV**)hv_fetch(PL_defstash, "^M", 2, 0);
|
|
SV *sv;
|
|
char *pv;
|
|
int have = 0;
|
|
STRLEN n_a;
|
|
|
|
if (emergency_buffer_size) {
|
|
add_to_chain(emergency_buffer, emergency_buffer_size, 0);
|
|
emergency_buffer_size = 0;
|
|
emergency_buffer = Nullch;
|
|
have = 1;
|
|
}
|
|
if (!gvp) gvp = (GV**)hv_fetch(PL_defstash, "\015", 1, 0);
|
|
if (!gvp || !(sv = GvSV(*gvp)) || !SvPOK(sv)
|
|
|| (SvLEN(sv) < (1<<LOG_OF_MIN_ARENA) - M_OVERHEAD)) {
|
|
if (have)
|
|
goto do_croak;
|
|
return (char *)-1; /* Now die die die... */
|
|
}
|
|
/* Got it, now detach SvPV: */
|
|
pv = SvPV(sv, n_a);
|
|
/* Check alignment: */
|
|
if ((PTR2UV(pv) - sizeof(union overhead)) & (NEEDED_ALIGNMENT - 1)) {
|
|
PerlIO_puts(PerlIO_stderr(),"Bad alignment of $^M!\n");
|
|
return (char *)-1; /* die die die */
|
|
}
|
|
|
|
emergency_buffer = pv - sizeof(union overhead);
|
|
emergency_buffer_size = malloced_size(pv) + M_OVERHEAD;
|
|
SvPOK_off(sv);
|
|
SvPVX(sv) = Nullch;
|
|
SvCUR(sv) = SvLEN(sv) = 0;
|
|
}
|
|
do_croak:
|
|
MALLOC_UNLOCK;
|
|
croak("Out of memory during request for %i bytes", size);
|
|
/* NOTREACHED */
|
|
return Nullch;
|
|
}
|
|
|
|
#else /* !(defined(PERL_EMERGENCY_SBRK) && defined(PERL_CORE)) */
|
|
# define emergency_sbrk(size) -1
|
|
#endif /* !(defined(PERL_EMERGENCY_SBRK) && defined(PERL_CORE)) */
|
|
|
|
#ifndef BITS_IN_PTR
|
|
# define BITS_IN_PTR (8*PTRSIZE)
|
|
#endif
|
|
|
|
/*
|
|
* nextf[i] is the pointer to the next free block of size 2^i. The
|
|
* smallest allocatable block is 8 bytes. The overhead information
|
|
* precedes the data area returned to the user.
|
|
*/
|
|
#define NBUCKETS (BITS_IN_PTR*BUCKETS_PER_POW2 + 1)
|
|
static union overhead *nextf[NBUCKETS];
|
|
|
|
#if defined(PURIFY) && !defined(USE_PERL_SBRK)
|
|
# define USE_PERL_SBRK
|
|
#endif
|
|
|
|
#ifdef USE_PERL_SBRK
|
|
#define sbrk(a) Perl_sbrk(a)
|
|
Malloc_t Perl_sbrk (int size);
|
|
#else
|
|
#ifdef DONT_DECLARE_STD
|
|
#ifdef I_UNISTD
|
|
#include <unistd.h>
|
|
#endif
|
|
#else
|
|
extern Malloc_t sbrk(int);
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef DEBUGGING_MSTATS
|
|
/*
|
|
* nmalloc[i] is the difference between the number of mallocs and frees
|
|
* for a given block size.
|
|
*/
|
|
static u_int nmalloc[NBUCKETS];
|
|
static u_int sbrk_slack;
|
|
static u_int start_slack;
|
|
#endif
|
|
|
|
static u_int goodsbrk;
|
|
|
|
#ifdef DEBUGGING
|
|
#undef ASSERT
|
|
#define ASSERT(p,diag) if (!(p)) botch(diag,STRINGIFY(p)); else
|
|
static void
|
|
botch(char *diag, char *s)
|
|
{
|
|
dTHX;
|
|
PerlIO_printf(PerlIO_stderr(), "assertion botched (%s?): %s\n", diag, s);
|
|
PerlProc_abort();
|
|
}
|
|
#else
|
|
#define ASSERT(p, diag)
|
|
#endif
|
|
|
|
Malloc_t
|
|
Perl_malloc(register size_t nbytes)
|
|
{
|
|
register union overhead *p;
|
|
register int bucket;
|
|
register MEM_SIZE shiftr;
|
|
|
|
#if defined(DEBUGGING) || defined(RCHECK)
|
|
MEM_SIZE size = nbytes;
|
|
#endif
|
|
|
|
BARK_64K_LIMIT("Allocation",nbytes,nbytes);
|
|
#ifdef DEBUGGING
|
|
if ((long)nbytes < 0)
|
|
croak("%s", "panic: malloc");
|
|
#endif
|
|
|
|
/*
|
|
* Convert amount of memory requested into
|
|
* closest block size stored in hash buckets
|
|
* which satisfies request. Account for
|
|
* space used per block for accounting.
|
|
*/
|
|
#ifdef PACK_MALLOC
|
|
# ifdef SMALL_BUCKET_VIA_TABLE
|
|
if (nbytes == 0)
|
|
bucket = MIN_BUCKET;
|
|
else if (nbytes <= SIZE_TABLE_MAX) {
|
|
bucket = bucket_of[(nbytes - 1) >> BUCKET_TABLE_SHIFT];
|
|
} else
|
|
# else
|
|
if (nbytes == 0)
|
|
nbytes = 1;
|
|
if (nbytes <= MAX_POW2_ALGO) goto do_shifts;
|
|
else
|
|
# endif
|
|
#endif
|
|
{
|
|
POW2_OPTIMIZE_ADJUST(nbytes);
|
|
nbytes += M_OVERHEAD;
|
|
nbytes = (nbytes + 3) &~ 3;
|
|
do_shifts:
|
|
shiftr = (nbytes - 1) >> START_SHIFT;
|
|
bucket = START_SHIFTS_BUCKET;
|
|
/* apart from this loop, this is O(1) */
|
|
while (shiftr >>= 1)
|
|
bucket += BUCKETS_PER_POW2;
|
|
}
|
|
MALLOC_LOCK;
|
|
/*
|
|
* If nothing in hash bucket right now,
|
|
* request more memory from the system.
|
|
*/
|
|
if (nextf[bucket] == NULL)
|
|
morecore(bucket);
|
|
if ((p = nextf[bucket]) == NULL) {
|
|
MALLOC_UNLOCK;
|
|
#ifdef PERL_CORE
|
|
{
|
|
dTHX;
|
|
if (!PL_nomemok) {
|
|
PerlIO_puts(PerlIO_stderr(),"Out of memory!\n");
|
|
my_exit(1);
|
|
}
|
|
}
|
|
#endif
|
|
return (NULL);
|
|
}
|
|
|
|
DEBUG_m(PerlIO_printf(Perl_debug_log,
|
|
"0x%"UVxf": (%05lu) malloc %ld bytes\n",
|
|
PTR2UV(p+1), (unsigned long)(PL_an++),
|
|
(long)size));
|
|
|
|
/* remove from linked list */
|
|
#if defined(RCHECK)
|
|
if ((PTR2UV(p)) & (MEM_ALIGNBYTES - 1)) {
|
|
dTHX;
|
|
PerlIO_printf(PerlIO_stderr(),
|
|
"Unaligned pointer in the free chain 0x%"UVxf"\n",
|
|
PTR2UV(p));
|
|
}
|
|
if ((PTR2UV(p->ov_next)) & (MEM_ALIGNBYTES - 1)) {
|
|
dTHX;
|
|
PerlIO_printf(PerlIO_stderr(),
|
|
"Unaligned `next' pointer in the free "
|
|
"chain 0x"UVxf" at 0x%"UVxf"\n",
|
|
PTR2UV(p->ov_next), PTR2UV(p));
|
|
}
|
|
#endif
|
|
nextf[bucket] = p->ov_next;
|
|
|
|
MALLOC_UNLOCK;
|
|
|
|
#ifdef IGNORE_SMALL_BAD_FREE
|
|
if (bucket >= FIRST_BUCKET_WITH_CHECK)
|
|
#endif
|
|
OV_MAGIC(p, bucket) = MAGIC;
|
|
#ifndef PACK_MALLOC
|
|
OV_INDEX(p) = bucket;
|
|
#endif
|
|
#ifdef RCHECK
|
|
/*
|
|
* Record allocated size of block and
|
|
* bound space with magic numbers.
|
|
*/
|
|
p->ov_rmagic = RMAGIC;
|
|
if (bucket <= MAX_SHORT_BUCKET) {
|
|
int i;
|
|
|
|
nbytes = size + M_OVERHEAD;
|
|
p->ov_size = nbytes - 1;
|
|
if ((i = nbytes & 3)) {
|
|
i = 4 - i;
|
|
while (i--)
|
|
*((char *)((caddr_t)p + nbytes - RSLOP + i)) = RMAGIC_C;
|
|
}
|
|
nbytes = (nbytes + 3) &~ 3;
|
|
*((u_int *)((caddr_t)p + nbytes - RSLOP)) = RMAGIC;
|
|
}
|
|
#endif
|
|
return ((Malloc_t)(p + CHUNK_SHIFT));
|
|
}
|
|
|
|
static char *last_sbrk_top;
|
|
static char *last_op; /* This arena can be easily extended. */
|
|
static int sbrked_remains;
|
|
static int sbrk_good = SBRK_ALLOW_FAILURES * SBRK_FAILURE_PRICE;
|
|
|
|
#ifdef DEBUGGING_MSTATS
|
|
static int sbrks;
|
|
#endif
|
|
|
|
struct chunk_chain_s {
|
|
struct chunk_chain_s *next;
|
|
MEM_SIZE size;
|
|
};
|
|
static struct chunk_chain_s *chunk_chain;
|
|
static int n_chunks;
|
|
static char max_bucket;
|
|
|
|
/* Cutoff a piece of one of the chunks in the chain. Prefer smaller chunk. */
|
|
static void *
|
|
get_from_chain(MEM_SIZE size)
|
|
{
|
|
struct chunk_chain_s *elt = chunk_chain, **oldp = &chunk_chain;
|
|
struct chunk_chain_s **oldgoodp = NULL;
|
|
long min_remain = LONG_MAX;
|
|
|
|
while (elt) {
|
|
if (elt->size >= size) {
|
|
long remains = elt->size - size;
|
|
if (remains >= 0 && remains < min_remain) {
|
|
oldgoodp = oldp;
|
|
min_remain = remains;
|
|
}
|
|
if (remains == 0) {
|
|
break;
|
|
}
|
|
}
|
|
oldp = &( elt->next );
|
|
elt = elt->next;
|
|
}
|
|
if (!oldgoodp) return NULL;
|
|
if (min_remain) {
|
|
void *ret = *oldgoodp;
|
|
struct chunk_chain_s *next = (*oldgoodp)->next;
|
|
|
|
*oldgoodp = (struct chunk_chain_s *)((char*)ret + size);
|
|
(*oldgoodp)->size = min_remain;
|
|
(*oldgoodp)->next = next;
|
|
return ret;
|
|
} else {
|
|
void *ret = *oldgoodp;
|
|
*oldgoodp = (*oldgoodp)->next;
|
|
n_chunks--;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
static void
|
|
add_to_chain(void *p, MEM_SIZE size, MEM_SIZE chip)
|
|
{
|
|
struct chunk_chain_s *next = chunk_chain;
|
|
char *cp = (char*)p;
|
|
|
|
cp += chip;
|
|
chunk_chain = (struct chunk_chain_s *)cp;
|
|
chunk_chain->size = size - chip;
|
|
chunk_chain->next = next;
|
|
n_chunks++;
|
|
}
|
|
|
|
static void *
|
|
get_from_bigger_buckets(int bucket, MEM_SIZE size)
|
|
{
|
|
int price = 1;
|
|
static int bucketprice[NBUCKETS];
|
|
while (bucket <= max_bucket) {
|
|
/* We postpone stealing from bigger buckets until we want it
|
|
often enough. */
|
|
if (nextf[bucket] && bucketprice[bucket]++ >= price) {
|
|
/* Steal it! */
|
|
void *ret = (void*)(nextf[bucket] - 1 + CHUNK_SHIFT);
|
|
bucketprice[bucket] = 0;
|
|
if (((char*)nextf[bucket]) - M_OVERHEAD == last_op) {
|
|
last_op = NULL; /* Disable optimization */
|
|
}
|
|
nextf[bucket] = nextf[bucket]->ov_next;
|
|
#ifdef DEBUGGING_MSTATS
|
|
nmalloc[bucket]--;
|
|
start_slack -= M_OVERHEAD;
|
|
#endif
|
|
add_to_chain(ret, (BUCKET_SIZE(bucket) +
|
|
POW2_OPTIMIZE_SURPLUS(bucket)),
|
|
size);
|
|
return ret;
|
|
}
|
|
bucket++;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static union overhead *
|
|
getpages(MEM_SIZE needed, int *nblksp, int bucket)
|
|
{
|
|
/* Need to do (possibly expensive) system call. Try to
|
|
optimize it for rare calling. */
|
|
MEM_SIZE require = needed - sbrked_remains;
|
|
char *cp;
|
|
union overhead *ovp;
|
|
MEM_SIZE slack = 0;
|
|
|
|
if (sbrk_good > 0) {
|
|
if (!last_sbrk_top && require < FIRST_SBRK)
|
|
require = FIRST_SBRK;
|
|
else if (require < MIN_SBRK) require = MIN_SBRK;
|
|
|
|
if (require < goodsbrk * MIN_SBRK_FRAC / 100)
|
|
require = goodsbrk * MIN_SBRK_FRAC / 100;
|
|
require = ((require - 1 + MIN_SBRK) / MIN_SBRK) * MIN_SBRK;
|
|
} else {
|
|
require = needed;
|
|
last_sbrk_top = 0;
|
|
sbrked_remains = 0;
|
|
}
|
|
|
|
DEBUG_m(PerlIO_printf(Perl_debug_log,
|
|
"sbrk(%ld) for %ld-byte-long arena\n",
|
|
(long)require, (long) needed));
|
|
cp = (char *)sbrk(require);
|
|
#ifdef DEBUGGING_MSTATS
|
|
sbrks++;
|
|
#endif
|
|
if (cp == last_sbrk_top) {
|
|
/* Common case, anything is fine. */
|
|
sbrk_good++;
|
|
ovp = (union overhead *) (cp - sbrked_remains);
|
|
last_op = cp - sbrked_remains;
|
|
sbrked_remains = require - (needed - sbrked_remains);
|
|
} else if (cp == (char *)-1) { /* no more room! */
|
|
ovp = (union overhead *)emergency_sbrk(needed);
|
|
if (ovp == (union overhead *)-1)
|
|
return 0;
|
|
if (((char*)ovp) > last_op) { /* Cannot happen with current emergency_sbrk() */
|
|
last_op = 0;
|
|
}
|
|
return ovp;
|
|
} else { /* Non-continuous or first sbrk(). */
|
|
long add = sbrked_remains;
|
|
char *newcp;
|
|
|
|
if (sbrked_remains) { /* Put rest into chain, we
|
|
cannot use it right now. */
|
|
add_to_chain((void*)(last_sbrk_top - sbrked_remains),
|
|
sbrked_remains, 0);
|
|
}
|
|
|
|
/* Second, check alignment. */
|
|
slack = 0;
|
|
|
|
#if !defined(atarist) && !defined(__MINT__) /* on the atari we dont have to worry about this */
|
|
# ifndef I286 /* The sbrk(0) call on the I286 always returns the next segment */
|
|
/* WANTED_ALIGNMENT may be more than NEEDED_ALIGNMENT, but this may
|
|
improve performance of memory access. */
|
|
if (PTR2UV(cp) & (WANTED_ALIGNMENT - 1)) { /* Not aligned. */
|
|
slack = WANTED_ALIGNMENT - (PTR2UV(cp) & (WANTED_ALIGNMENT - 1));
|
|
add += slack;
|
|
}
|
|
# endif
|
|
#endif /* !atarist && !MINT */
|
|
|
|
if (add) {
|
|
DEBUG_m(PerlIO_printf(Perl_debug_log,
|
|
"sbrk(%ld) to fix non-continuous/off-page sbrk:\n\t%ld for alignement,\t%ld were assumed to come from the tail of the previous sbrk\n",
|
|
(long)add, (long) slack,
|
|
(long) sbrked_remains));
|
|
newcp = (char *)sbrk(add);
|
|
#if defined(DEBUGGING_MSTATS)
|
|
sbrks++;
|
|
sbrk_slack += add;
|
|
#endif
|
|
if (newcp != cp + require) {
|
|
/* Too bad: even rounding sbrk() is not continuous.*/
|
|
DEBUG_m(PerlIO_printf(Perl_debug_log,
|
|
"failed to fix bad sbrk()\n"));
|
|
#ifdef PACK_MALLOC
|
|
if (slack) {
|
|
MALLOC_UNLOCK;
|
|
fatalcroak("panic: Off-page sbrk\n");
|
|
}
|
|
#endif
|
|
if (sbrked_remains) {
|
|
/* Try again. */
|
|
#if defined(DEBUGGING_MSTATS)
|
|
sbrk_slack += require;
|
|
#endif
|
|
require = needed;
|
|
DEBUG_m(PerlIO_printf(Perl_debug_log,
|
|
"straight sbrk(%ld)\n",
|
|
(long)require));
|
|
cp = (char *)sbrk(require);
|
|
#ifdef DEBUGGING_MSTATS
|
|
sbrks++;
|
|
#endif
|
|
if (cp == (char *)-1)
|
|
return 0;
|
|
}
|
|
sbrk_good = -1; /* Disable optimization!
|
|
Continue with not-aligned... */
|
|
} else {
|
|
cp += slack;
|
|
require += sbrked_remains;
|
|
}
|
|
}
|
|
|
|
if (last_sbrk_top) {
|
|
sbrk_good -= SBRK_FAILURE_PRICE;
|
|
}
|
|
|
|
ovp = (union overhead *) cp;
|
|
/*
|
|
* Round up to minimum allocation size boundary
|
|
* and deduct from block count to reflect.
|
|
*/
|
|
|
|
# if NEEDED_ALIGNMENT > MEM_ALIGNBYTES
|
|
if (PTR2UV(ovp) & (NEEDED_ALIGNMENT - 1))
|
|
fatalcroak("Misalignment of sbrk()\n");
|
|
else
|
|
# endif
|
|
#ifndef I286 /* Again, this should always be ok on an 80286 */
|
|
if (PTR2UV(ovp) & (MEM_ALIGNBYTES - 1)) {
|
|
DEBUG_m(PerlIO_printf(Perl_debug_log,
|
|
"fixing sbrk(): %d bytes off machine alignement\n",
|
|
(int)(PTR2UV(ovp) & (MEM_ALIGNBYTES - 1))));
|
|
ovp = INT2PTR(union overhead *,(PTR2UV(ovp) + MEM_ALIGNBYTES) &
|
|
(MEM_ALIGNBYTES - 1));
|
|
(*nblksp)--;
|
|
# if defined(DEBUGGING_MSTATS)
|
|
/* This is only approx. if TWO_POT_OPTIMIZE: */
|
|
sbrk_slack += (1 << (bucket >> BUCKET_POW2_SHIFT));
|
|
# endif
|
|
}
|
|
#endif
|
|
; /* Finish `else' */
|
|
sbrked_remains = require - needed;
|
|
last_op = cp;
|
|
}
|
|
last_sbrk_top = cp + require;
|
|
#ifdef DEBUGGING_MSTATS
|
|
goodsbrk += require;
|
|
#endif
|
|
return ovp;
|
|
}
|
|
|
|
static int
|
|
getpages_adjacent(MEM_SIZE require)
|
|
{
|
|
if (require <= sbrked_remains) {
|
|
sbrked_remains -= require;
|
|
} else {
|
|
char *cp;
|
|
|
|
require -= sbrked_remains;
|
|
/* We do not try to optimize sbrks here, we go for place. */
|
|
cp = (char*) sbrk(require);
|
|
#ifdef DEBUGGING_MSTATS
|
|
sbrks++;
|
|
goodsbrk += require;
|
|
#endif
|
|
if (cp == last_sbrk_top) {
|
|
sbrked_remains = 0;
|
|
last_sbrk_top = cp + require;
|
|
} else {
|
|
if (cp == (char*)-1) { /* Out of memory */
|
|
#ifdef DEBUGGING_MSTATS
|
|
goodsbrk -= require;
|
|
#endif
|
|
return 0;
|
|
}
|
|
/* Report the failure: */
|
|
if (sbrked_remains)
|
|
add_to_chain((void*)(last_sbrk_top - sbrked_remains),
|
|
sbrked_remains, 0);
|
|
add_to_chain((void*)cp, require, 0);
|
|
sbrk_good -= SBRK_FAILURE_PRICE;
|
|
sbrked_remains = 0;
|
|
last_sbrk_top = 0;
|
|
last_op = 0;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Allocate more memory to the indicated bucket.
|
|
*/
|
|
static void
|
|
morecore(register int bucket)
|
|
{
|
|
register union overhead *ovp;
|
|
register int rnu; /* 2^rnu bytes will be requested */
|
|
int nblks; /* become nblks blocks of the desired size */
|
|
register MEM_SIZE siz, needed;
|
|
|
|
if (nextf[bucket])
|
|
return;
|
|
if (bucket == sizeof(MEM_SIZE)*8*BUCKETS_PER_POW2) {
|
|
MALLOC_UNLOCK;
|
|
croak("%s", "Out of memory during ridiculously large request");
|
|
}
|
|
if (bucket > max_bucket)
|
|
max_bucket = bucket;
|
|
|
|
rnu = ( (bucket <= (LOG_OF_MIN_ARENA << BUCKET_POW2_SHIFT))
|
|
? LOG_OF_MIN_ARENA
|
|
: (bucket >> BUCKET_POW2_SHIFT) );
|
|
/* This may be overwritten later: */
|
|
nblks = 1 << (rnu - (bucket >> BUCKET_POW2_SHIFT)); /* how many blocks to get */
|
|
needed = ((MEM_SIZE)1 << rnu) + POW2_OPTIMIZE_SURPLUS(bucket);
|
|
if (nextf[rnu << BUCKET_POW2_SHIFT]) { /* 2048b bucket. */
|
|
ovp = nextf[rnu << BUCKET_POW2_SHIFT] - 1 + CHUNK_SHIFT;
|
|
nextf[rnu << BUCKET_POW2_SHIFT]
|
|
= nextf[rnu << BUCKET_POW2_SHIFT]->ov_next;
|
|
#ifdef DEBUGGING_MSTATS
|
|
nmalloc[rnu << BUCKET_POW2_SHIFT]--;
|
|
start_slack -= M_OVERHEAD;
|
|
#endif
|
|
DEBUG_m(PerlIO_printf(Perl_debug_log,
|
|
"stealing %ld bytes from %ld arena\n",
|
|
(long) needed, (long) rnu << BUCKET_POW2_SHIFT));
|
|
} else if (chunk_chain
|
|
&& (ovp = (union overhead*) get_from_chain(needed))) {
|
|
DEBUG_m(PerlIO_printf(Perl_debug_log,
|
|
"stealing %ld bytes from chain\n",
|
|
(long) needed));
|
|
} else if ( (ovp = (union overhead*)
|
|
get_from_bigger_buckets((rnu << BUCKET_POW2_SHIFT) + 1,
|
|
needed)) ) {
|
|
DEBUG_m(PerlIO_printf(Perl_debug_log,
|
|
"stealing %ld bytes from bigger buckets\n",
|
|
(long) needed));
|
|
} else if (needed <= sbrked_remains) {
|
|
ovp = (union overhead *)(last_sbrk_top - sbrked_remains);
|
|
sbrked_remains -= needed;
|
|
last_op = (char*)ovp;
|
|
} else
|
|
ovp = getpages(needed, &nblks, bucket);
|
|
|
|
if (!ovp)
|
|
return;
|
|
|
|
/*
|
|
* Add new memory allocated to that on
|
|
* free list for this hash bucket.
|
|
*/
|
|
siz = BUCKET_SIZE(bucket);
|
|
#ifdef PACK_MALLOC
|
|
*(u_char*)ovp = bucket; /* Fill index. */
|
|
if (bucket <= MAX_PACKED) {
|
|
ovp = (union overhead *) ((char*)ovp + BLK_SHIFT(bucket));
|
|
nblks = N_BLKS(bucket);
|
|
# ifdef DEBUGGING_MSTATS
|
|
start_slack += BLK_SHIFT(bucket);
|
|
# endif
|
|
} else if (bucket < LOG_OF_MIN_ARENA * BUCKETS_PER_POW2) {
|
|
ovp = (union overhead *) ((char*)ovp + BLK_SHIFT(bucket));
|
|
siz -= sizeof(union overhead);
|
|
} else ovp++; /* One chunk per block. */
|
|
#endif /* PACK_MALLOC */
|
|
nextf[bucket] = ovp;
|
|
#ifdef DEBUGGING_MSTATS
|
|
nmalloc[bucket] += nblks;
|
|
if (bucket > MAX_PACKED) {
|
|
start_slack += M_OVERHEAD * nblks;
|
|
}
|
|
#endif
|
|
while (--nblks > 0) {
|
|
ovp->ov_next = (union overhead *)((caddr_t)ovp + siz);
|
|
ovp = (union overhead *)((caddr_t)ovp + siz);
|
|
}
|
|
/* Not all sbrks return zeroed memory.*/
|
|
ovp->ov_next = (union overhead *)NULL;
|
|
#ifdef PACK_MALLOC
|
|
if (bucket == 7*BUCKETS_PER_POW2) { /* Special case, explanation is above. */
|
|
union overhead *n_op = nextf[7*BUCKETS_PER_POW2]->ov_next;
|
|
nextf[7*BUCKETS_PER_POW2] =
|
|
(union overhead *)((caddr_t)nextf[7*BUCKETS_PER_POW2]
|
|
- sizeof(union overhead));
|
|
nextf[7*BUCKETS_PER_POW2]->ov_next = n_op;
|
|
}
|
|
#endif /* !PACK_MALLOC */
|
|
}
|
|
|
|
Free_t
|
|
Perl_mfree(void *mp)
|
|
{
|
|
register MEM_SIZE size;
|
|
register union overhead *ovp;
|
|
char *cp = (char*)mp;
|
|
#ifdef PACK_MALLOC
|
|
u_char bucket;
|
|
#endif
|
|
|
|
DEBUG_m(PerlIO_printf(Perl_debug_log,
|
|
"0x%"UVxf": (%05lu) free\n",
|
|
PTR2UV(cp), (unsigned long)(PL_an++)));
|
|
|
|
if (cp == NULL)
|
|
return;
|
|
ovp = (union overhead *)((caddr_t)cp
|
|
- sizeof (union overhead) * CHUNK_SHIFT);
|
|
#ifdef PACK_MALLOC
|
|
bucket = OV_INDEX(ovp);
|
|
#endif
|
|
#ifdef IGNORE_SMALL_BAD_FREE
|
|
if ((bucket >= FIRST_BUCKET_WITH_CHECK)
|
|
&& (OV_MAGIC(ovp, bucket) != MAGIC))
|
|
#else
|
|
if (OV_MAGIC(ovp, bucket) != MAGIC)
|
|
#endif
|
|
{
|
|
static int bad_free_warn = -1;
|
|
if (bad_free_warn == -1) {
|
|
dTHX;
|
|
char *pbf = PerlEnv_getenv("PERL_BADFREE");
|
|
bad_free_warn = (pbf) ? atoi(pbf) : 1;
|
|
}
|
|
if (!bad_free_warn)
|
|
return;
|
|
#ifdef RCHECK
|
|
#ifdef PERL_CORE
|
|
{
|
|
dTHX;
|
|
if (!PERL_IS_ALIVE || !PL_curcop || ckWARN_d(WARN_MALLOC))
|
|
Perl_warner(aTHX_ WARN_MALLOC, "%s free() ignored",
|
|
ovp->ov_rmagic == RMAGIC - 1 ?
|
|
"Duplicate" : "Bad");
|
|
}
|
|
#else
|
|
warn("%s free() ignored",
|
|
ovp->ov_rmagic == RMAGIC - 1 ? "Duplicate" : "Bad");
|
|
#endif
|
|
#else
|
|
#ifdef PERL_CORE
|
|
{
|
|
dTHX;
|
|
if (!PERL_IS_ALIVE || !PL_curcop || ckWARN_d(WARN_MALLOC))
|
|
Perl_warner(aTHX_ WARN_MALLOC, "%s", "Bad free() ignored");
|
|
}
|
|
#else
|
|
warn("%s", "Bad free() ignored");
|
|
#endif
|
|
#endif
|
|
return; /* sanity */
|
|
}
|
|
#ifdef RCHECK
|
|
ASSERT(ovp->ov_rmagic == RMAGIC, "chunk's head overwrite");
|
|
if (OV_INDEX(ovp) <= MAX_SHORT_BUCKET) {
|
|
int i;
|
|
MEM_SIZE nbytes = ovp->ov_size + 1;
|
|
|
|
if ((i = nbytes & 3)) {
|
|
i = 4 - i;
|
|
while (i--) {
|
|
ASSERT(*((char *)((caddr_t)ovp + nbytes - RSLOP + i))
|
|
== RMAGIC_C, "chunk's tail overwrite");
|
|
}
|
|
}
|
|
nbytes = (nbytes + 3) &~ 3;
|
|
ASSERT(*(u_int *)((caddr_t)ovp + nbytes - RSLOP) == RMAGIC, "chunk's tail overwrite");
|
|
}
|
|
ovp->ov_rmagic = RMAGIC - 1;
|
|
#endif
|
|
ASSERT(OV_INDEX(ovp) < NBUCKETS, "chunk's head overwrite");
|
|
size = OV_INDEX(ovp);
|
|
|
|
MALLOC_LOCK;
|
|
ovp->ov_next = nextf[size];
|
|
nextf[size] = ovp;
|
|
MALLOC_UNLOCK;
|
|
}
|
|
|
|
/* There is no need to do any locking in realloc (with an exception of
|
|
trying to grow in place if we are at the end of the chain).
|
|
If somebody calls us from a different thread with the same address,
|
|
we are sole anyway. */
|
|
|
|
Malloc_t
|
|
Perl_realloc(void *mp, size_t nbytes)
|
|
{
|
|
register MEM_SIZE onb;
|
|
union overhead *ovp;
|
|
char *res;
|
|
int prev_bucket;
|
|
register int bucket;
|
|
int incr; /* 1 if does not fit, -1 if "easily" fits in a
|
|
smaller bucket, otherwise 0. */
|
|
char *cp = (char*)mp;
|
|
|
|
#if defined(DEBUGGING) || !defined(PERL_CORE)
|
|
MEM_SIZE size = nbytes;
|
|
|
|
if ((long)nbytes < 0)
|
|
croak("%s", "panic: realloc");
|
|
#endif
|
|
|
|
BARK_64K_LIMIT("Reallocation",nbytes,size);
|
|
if (!cp)
|
|
return Perl_malloc(nbytes);
|
|
|
|
ovp = (union overhead *)((caddr_t)cp
|
|
- sizeof (union overhead) * CHUNK_SHIFT);
|
|
bucket = OV_INDEX(ovp);
|
|
|
|
#ifdef IGNORE_SMALL_BAD_FREE
|
|
if ((bucket >= FIRST_BUCKET_WITH_CHECK)
|
|
&& (OV_MAGIC(ovp, bucket) != MAGIC))
|
|
#else
|
|
if (OV_MAGIC(ovp, bucket) != MAGIC)
|
|
#endif
|
|
{
|
|
static int bad_free_warn = -1;
|
|
if (bad_free_warn == -1) {
|
|
dTHX;
|
|
char *pbf = PerlEnv_getenv("PERL_BADFREE");
|
|
bad_free_warn = (pbf) ? atoi(pbf) : 1;
|
|
}
|
|
if (!bad_free_warn)
|
|
return Nullch;
|
|
#ifdef RCHECK
|
|
#ifdef PERL_CORE
|
|
{
|
|
dTHX;
|
|
if (!PERL_IS_ALIVE || !PL_curcop || ckWARN_d(WARN_MALLOC))
|
|
Perl_warner(aTHX_ WARN_MALLOC, "%srealloc() %signored",
|
|
(ovp->ov_rmagic == RMAGIC - 1 ? "" : "Bad "),
|
|
ovp->ov_rmagic == RMAGIC - 1
|
|
? "of freed memory " : "");
|
|
}
|
|
#else
|
|
warn("%srealloc() %signored",
|
|
(ovp->ov_rmagic == RMAGIC - 1 ? "" : "Bad "),
|
|
ovp->ov_rmagic == RMAGIC - 1 ? "of freed memory " : "");
|
|
#endif
|
|
#else
|
|
#ifdef PERL_CORE
|
|
{
|
|
dTHX;
|
|
if (!PERL_IS_ALIVE || !PL_curcop || ckWARN_d(WARN_MALLOC))
|
|
Perl_warner(aTHX_ WARN_MALLOC, "%s",
|
|
"Bad realloc() ignored");
|
|
}
|
|
#else
|
|
warn("%s", "Bad realloc() ignored");
|
|
#endif
|
|
#endif
|
|
return Nullch; /* sanity */
|
|
}
|
|
|
|
onb = BUCKET_SIZE_REAL(bucket);
|
|
/*
|
|
* avoid the copy if same size block.
|
|
* We are not agressive with boundary cases. Note that it might
|
|
* (for a small number of cases) give false negative if
|
|
* both new size and old one are in the bucket for
|
|
* FIRST_BIG_POW2, but the new one is near the lower end.
|
|
*
|
|
* We do not try to go to 1.5 times smaller bucket so far.
|
|
*/
|
|
if (nbytes > onb) incr = 1;
|
|
else {
|
|
#ifdef DO_NOT_TRY_HARDER_WHEN_SHRINKING
|
|
if ( /* This is a little bit pessimal if PACK_MALLOC: */
|
|
nbytes > ( (onb >> 1) - M_OVERHEAD )
|
|
# ifdef TWO_POT_OPTIMIZE
|
|
|| (bucket == FIRST_BIG_POW2 && nbytes >= LAST_SMALL_BOUND )
|
|
# endif
|
|
)
|
|
#else /* !DO_NOT_TRY_HARDER_WHEN_SHRINKING */
|
|
prev_bucket = ( (bucket > MAX_PACKED + 1)
|
|
? bucket - BUCKETS_PER_POW2
|
|
: bucket - 1);
|
|
if (nbytes > BUCKET_SIZE_REAL(prev_bucket))
|
|
#endif /* !DO_NOT_TRY_HARDER_WHEN_SHRINKING */
|
|
incr = 0;
|
|
else incr = -1;
|
|
}
|
|
#ifdef STRESS_REALLOC
|
|
goto hard_way;
|
|
#endif
|
|
if (incr == 0) {
|
|
inplace_label:
|
|
#ifdef RCHECK
|
|
/*
|
|
* Record new allocated size of block and
|
|
* bound space with magic numbers.
|
|
*/
|
|
if (OV_INDEX(ovp) <= MAX_SHORT_BUCKET) {
|
|
int i, nb = ovp->ov_size + 1;
|
|
|
|
if ((i = nb & 3)) {
|
|
i = 4 - i;
|
|
while (i--) {
|
|
ASSERT(*((char *)((caddr_t)ovp + nb - RSLOP + i)) == RMAGIC_C, "chunk's tail overwrite");
|
|
}
|
|
}
|
|
nb = (nb + 3) &~ 3;
|
|
ASSERT(*(u_int *)((caddr_t)ovp + nb - RSLOP) == RMAGIC, "chunk's tail overwrite");
|
|
/*
|
|
* Convert amount of memory requested into
|
|
* closest block size stored in hash buckets
|
|
* which satisfies request. Account for
|
|
* space used per block for accounting.
|
|
*/
|
|
nbytes += M_OVERHEAD;
|
|
ovp->ov_size = nbytes - 1;
|
|
if ((i = nbytes & 3)) {
|
|
i = 4 - i;
|
|
while (i--)
|
|
*((char *)((caddr_t)ovp + nbytes - RSLOP + i))
|
|
= RMAGIC_C;
|
|
}
|
|
nbytes = (nbytes + 3) &~ 3;
|
|
*((u_int *)((caddr_t)ovp + nbytes - RSLOP)) = RMAGIC;
|
|
}
|
|
#endif
|
|
res = cp;
|
|
DEBUG_m(PerlIO_printf(Perl_debug_log,
|
|
"0x%"UVxf": (%05lu) realloc %ld bytes inplace\n",
|
|
PTR2UV(res),(unsigned long)(PL_an++),
|
|
(long)size));
|
|
} else if (incr == 1 && (cp - M_OVERHEAD == last_op)
|
|
&& (onb > (1 << LOG_OF_MIN_ARENA))) {
|
|
MEM_SIZE require, newarena = nbytes, pow;
|
|
int shiftr;
|
|
|
|
POW2_OPTIMIZE_ADJUST(newarena);
|
|
newarena = newarena + M_OVERHEAD;
|
|
/* newarena = (newarena + 3) &~ 3; */
|
|
shiftr = (newarena - 1) >> LOG_OF_MIN_ARENA;
|
|
pow = LOG_OF_MIN_ARENA + 1;
|
|
/* apart from this loop, this is O(1) */
|
|
while (shiftr >>= 1)
|
|
pow++;
|
|
newarena = (1 << pow) + POW2_OPTIMIZE_SURPLUS(pow * BUCKETS_PER_POW2);
|
|
require = newarena - onb - M_OVERHEAD;
|
|
|
|
MALLOC_LOCK;
|
|
if (cp - M_OVERHEAD == last_op /* We *still* are the last chunk */
|
|
&& getpages_adjacent(require)) {
|
|
#ifdef DEBUGGING_MSTATS
|
|
nmalloc[bucket]--;
|
|
nmalloc[pow * BUCKETS_PER_POW2]++;
|
|
#endif
|
|
*(cp - M_OVERHEAD) = pow * BUCKETS_PER_POW2; /* Fill index. */
|
|
MALLOC_UNLOCK;
|
|
goto inplace_label;
|
|
} else {
|
|
MALLOC_UNLOCK;
|
|
goto hard_way;
|
|
}
|
|
} else {
|
|
hard_way:
|
|
DEBUG_m(PerlIO_printf(Perl_debug_log,
|
|
"0x%"UVxf": (%05lu) realloc %ld bytes the hard way\n",
|
|
PTR2UV(cp),(unsigned long)(PL_an++),
|
|
(long)size));
|
|
if ((res = (char*)Perl_malloc(nbytes)) == NULL)
|
|
return (NULL);
|
|
if (cp != res) /* common optimization */
|
|
Copy(cp, res, (MEM_SIZE)(nbytes<onb?nbytes:onb), char);
|
|
Perl_mfree(cp);
|
|
}
|
|
return ((Malloc_t)res);
|
|
}
|
|
|
|
Malloc_t
|
|
Perl_calloc(register size_t elements, register size_t size)
|
|
{
|
|
long sz = elements * size;
|
|
Malloc_t p = Perl_malloc(sz);
|
|
|
|
if (p) {
|
|
memset((void*)p, 0, sz);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
char *
|
|
Perl_strdup(const char *s)
|
|
{
|
|
MEM_SIZE l = strlen(s);
|
|
char *s1 = (char *)Perl_malloc(l+1);
|
|
|
|
Copy(s, s1, (MEM_SIZE)(l+1), char);
|
|
return s1;
|
|
}
|
|
|
|
#ifdef PERL_CORE
|
|
int
|
|
Perl_putenv(char *a)
|
|
{
|
|
/* Sometimes system's putenv conflicts with my_setenv() - this is system
|
|
malloc vs Perl's free(). */
|
|
dTHX;
|
|
char *var;
|
|
char *val = a;
|
|
MEM_SIZE l;
|
|
char buf[80];
|
|
|
|
while (*val && *val != '=')
|
|
val++;
|
|
if (!*val)
|
|
return -1;
|
|
l = val - a;
|
|
if (l < sizeof(buf))
|
|
var = buf;
|
|
else
|
|
var = Perl_malloc(l + 1);
|
|
Copy(a, var, l, char);
|
|
var[l + 1] = 0;
|
|
my_setenv(var, val+1);
|
|
if (var != buf)
|
|
Perl_mfree(var);
|
|
return 0;
|
|
}
|
|
# endif
|
|
|
|
MEM_SIZE
|
|
Perl_malloced_size(void *p)
|
|
{
|
|
union overhead *ovp = (union overhead *)
|
|
((caddr_t)p - sizeof (union overhead) * CHUNK_SHIFT);
|
|
int bucket = OV_INDEX(ovp);
|
|
#ifdef RCHECK
|
|
/* The caller wants to have a complete control over the chunk,
|
|
disable the memory checking inside the chunk. */
|
|
if (bucket <= MAX_SHORT_BUCKET) {
|
|
MEM_SIZE size = BUCKET_SIZE_REAL(bucket);
|
|
ovp->ov_size = size + M_OVERHEAD - 1;
|
|
*((u_int *)((caddr_t)ovp + size + M_OVERHEAD - RSLOP)) = RMAGIC;
|
|
}
|
|
#endif
|
|
return BUCKET_SIZE_REAL(bucket);
|
|
}
|
|
|
|
# ifdef BUCKETS_ROOT2
|
|
# define MIN_EVEN_REPORT 6
|
|
# else
|
|
# define MIN_EVEN_REPORT MIN_BUCKET
|
|
# endif
|
|
|
|
int
|
|
Perl_get_mstats(pTHX_ perl_mstats_t *buf, int buflen, int level)
|
|
{
|
|
#ifdef DEBUGGING_MSTATS
|
|
register int i, j;
|
|
register union overhead *p;
|
|
struct chunk_chain_s* nextchain;
|
|
|
|
buf->topbucket = buf->topbucket_ev = buf->topbucket_odd
|
|
= buf->totfree = buf->total = buf->total_chain = 0;
|
|
|
|
buf->minbucket = MIN_BUCKET;
|
|
MALLOC_LOCK;
|
|
for (i = MIN_BUCKET ; i < NBUCKETS; i++) {
|
|
for (j = 0, p = nextf[i]; p; p = p->ov_next, j++)
|
|
;
|
|
if (i < buflen) {
|
|
buf->nfree[i] = j;
|
|
buf->ntotal[i] = nmalloc[i];
|
|
}
|
|
buf->totfree += j * BUCKET_SIZE_REAL(i);
|
|
buf->total += nmalloc[i] * BUCKET_SIZE_REAL(i);
|
|
if (nmalloc[i]) {
|
|
i % 2 ? (buf->topbucket_odd = i) : (buf->topbucket_ev = i);
|
|
buf->topbucket = i;
|
|
}
|
|
}
|
|
nextchain = chunk_chain;
|
|
while (nextchain) {
|
|
buf->total_chain += nextchain->size;
|
|
nextchain = nextchain->next;
|
|
}
|
|
buf->total_sbrk = goodsbrk + sbrk_slack;
|
|
buf->sbrks = sbrks;
|
|
buf->sbrk_good = sbrk_good;
|
|
buf->sbrk_slack = sbrk_slack;
|
|
buf->start_slack = start_slack;
|
|
buf->sbrked_remains = sbrked_remains;
|
|
MALLOC_UNLOCK;
|
|
if (level) {
|
|
for (i = MIN_BUCKET ; i < NBUCKETS; i++) {
|
|
if (i >= buflen)
|
|
break;
|
|
buf->bucket_mem_size[i] = BUCKET_SIZE(i);
|
|
buf->bucket_available_size[i] = BUCKET_SIZE_REAL(i);
|
|
}
|
|
}
|
|
#endif /* defined DEBUGGING_MSTATS */
|
|
return 0; /* XXX unused */
|
|
}
|
|
/*
|
|
* mstats - print out statistics about malloc
|
|
*
|
|
* Prints two lines of numbers, one showing the length of the free list
|
|
* for each size category, the second showing the number of mallocs -
|
|
* frees for each size category.
|
|
*/
|
|
void
|
|
Perl_dump_mstats(pTHX_ char *s)
|
|
{
|
|
#ifdef DEBUGGING_MSTATS
|
|
register int i, j;
|
|
register union overhead *p;
|
|
perl_mstats_t buffer;
|
|
unsigned long nf[NBUCKETS];
|
|
unsigned long nt[NBUCKETS];
|
|
struct chunk_chain_s* nextchain;
|
|
|
|
buffer.nfree = nf;
|
|
buffer.ntotal = nt;
|
|
get_mstats(&buffer, NBUCKETS, 0);
|
|
|
|
if (s)
|
|
PerlIO_printf(Perl_error_log,
|
|
"Memory allocation statistics %s (buckets %ld(%ld)..%ld(%ld)\n",
|
|
s,
|
|
(long)BUCKET_SIZE_REAL(MIN_BUCKET),
|
|
(long)BUCKET_SIZE(MIN_BUCKET),
|
|
(long)BUCKET_SIZE_REAL(buffer.topbucket),
|
|
(long)BUCKET_SIZE(buffer.topbucket));
|
|
PerlIO_printf(Perl_error_log, "%8ld free:", buffer.totfree);
|
|
for (i = MIN_EVEN_REPORT; i <= buffer.topbucket; i += BUCKETS_PER_POW2) {
|
|
PerlIO_printf(Perl_error_log,
|
|
((i < 8*BUCKETS_PER_POW2 || i == 10*BUCKETS_PER_POW2)
|
|
? " %5d"
|
|
: ((i < 12*BUCKETS_PER_POW2) ? " %3d" : " %d")),
|
|
buffer.nfree[i]);
|
|
}
|
|
#ifdef BUCKETS_ROOT2
|
|
PerlIO_printf(Perl_error_log, "\n\t ");
|
|
for (i = MIN_BUCKET + 1; i <= buffer.topbucket_odd; i += BUCKETS_PER_POW2) {
|
|
PerlIO_printf(Perl_error_log,
|
|
((i < 8*BUCKETS_PER_POW2 || i == 10*BUCKETS_PER_POW2)
|
|
? " %5d"
|
|
: ((i < 12*BUCKETS_PER_POW2) ? " %3d" : " %d")),
|
|
buffer.nfree[i]);
|
|
}
|
|
#endif
|
|
PerlIO_printf(Perl_error_log, "\n%8ld used:", buffer.total - buffer.totfree);
|
|
for (i = MIN_EVEN_REPORT; i <= buffer.topbucket; i += BUCKETS_PER_POW2) {
|
|
PerlIO_printf(Perl_error_log,
|
|
((i < 8*BUCKETS_PER_POW2 || i == 10*BUCKETS_PER_POW2)
|
|
? " %5d"
|
|
: ((i < 12*BUCKETS_PER_POW2) ? " %3d" : " %d")),
|
|
buffer.ntotal[i] - buffer.nfree[i]);
|
|
}
|
|
#ifdef BUCKETS_ROOT2
|
|
PerlIO_printf(Perl_error_log, "\n\t ");
|
|
for (i = MIN_BUCKET + 1; i <= buffer.topbucket_odd; i += BUCKETS_PER_POW2) {
|
|
PerlIO_printf(Perl_error_log,
|
|
((i < 8*BUCKETS_PER_POW2 || i == 10*BUCKETS_PER_POW2)
|
|
? " %5d"
|
|
: ((i < 12*BUCKETS_PER_POW2) ? " %3d" : " %d")),
|
|
buffer.ntotal[i] - buffer.nfree[i]);
|
|
}
|
|
#endif
|
|
PerlIO_printf(Perl_error_log, "\nTotal sbrk(): %ld/%ld:%ld. Odd ends: pad+heads+chain+tail: %ld+%ld+%ld+%ld.\n",
|
|
buffer.total_sbrk, buffer.sbrks, buffer.sbrk_good,
|
|
buffer.sbrk_slack, buffer.start_slack,
|
|
buffer.total_chain, buffer.sbrked_remains);
|
|
#endif /* DEBUGGING_MSTATS */
|
|
}
|
|
#endif /* lint */
|
|
|
|
#ifdef USE_PERL_SBRK
|
|
|
|
# if defined(__MACHTEN_PPC__) || defined(NeXT) || defined(__NeXT__) || defined(PURIFY)
|
|
# define PERL_SBRK_VIA_MALLOC
|
|
# endif
|
|
|
|
# ifdef PERL_SBRK_VIA_MALLOC
|
|
|
|
/* it may seem schizophrenic to use perl's malloc and let it call system */
|
|
/* malloc, the reason for that is only the 3.2 version of the OS that had */
|
|
/* frequent core dumps within nxzonefreenolock. This sbrk routine put an */
|
|
/* end to the cores */
|
|
|
|
# ifndef SYSTEM_ALLOC
|
|
# define SYSTEM_ALLOC(a) malloc(a)
|
|
# endif
|
|
# ifndef SYSTEM_ALLOC_ALIGNMENT
|
|
# define SYSTEM_ALLOC_ALIGNMENT MEM_ALIGNBYTES
|
|
# endif
|
|
|
|
# endif /* PERL_SBRK_VIA_MALLOC */
|
|
|
|
static IV Perl_sbrk_oldchunk;
|
|
static long Perl_sbrk_oldsize;
|
|
|
|
# define PERLSBRK_32_K (1<<15)
|
|
# define PERLSBRK_64_K (1<<16)
|
|
|
|
Malloc_t
|
|
Perl_sbrk(int size)
|
|
{
|
|
IV got;
|
|
int small, reqsize;
|
|
|
|
if (!size) return 0;
|
|
#ifdef PERL_CORE
|
|
reqsize = size; /* just for the DEBUG_m statement */
|
|
#endif
|
|
#ifdef PACK_MALLOC
|
|
size = (size + 0x7ff) & ~0x7ff;
|
|
#endif
|
|
if (size <= Perl_sbrk_oldsize) {
|
|
got = Perl_sbrk_oldchunk;
|
|
Perl_sbrk_oldchunk += size;
|
|
Perl_sbrk_oldsize -= size;
|
|
} else {
|
|
if (size >= PERLSBRK_32_K) {
|
|
small = 0;
|
|
} else {
|
|
size = PERLSBRK_64_K;
|
|
small = 1;
|
|
}
|
|
# if NEEDED_ALIGNMENT > SYSTEM_ALLOC_ALIGNMENT
|
|
size += NEEDED_ALIGNMENT - SYSTEM_ALLOC_ALIGNMENT;
|
|
# endif
|
|
got = (IV)SYSTEM_ALLOC(size);
|
|
# if NEEDED_ALIGNMENT > SYSTEM_ALLOC_ALIGNMENT
|
|
got = (got + NEEDED_ALIGNMENT - 1) & ~(NEEDED_ALIGNMENT - 1);
|
|
# endif
|
|
if (small) {
|
|
/* Chunk is small, register the rest for future allocs. */
|
|
Perl_sbrk_oldchunk = got + reqsize;
|
|
Perl_sbrk_oldsize = size - reqsize;
|
|
}
|
|
}
|
|
|
|
DEBUG_m(PerlIO_printf(Perl_debug_log, "sbrk malloc size %ld (reqsize %ld), left size %ld, give addr 0x%"UVxf"\n",
|
|
size, reqsize, Perl_sbrk_oldsize, PTR2UV(got)));
|
|
|
|
return (void *)got;
|
|
}
|
|
|
|
#endif /* ! defined USE_PERL_SBRK */
|