John Birrell 275928fc14 Vendor import of the full userland contrib part of DTrace support from
OpenSolaris. This commit resets files to match the versions in the
OpenSolaris tree as of 2008/04/10.

The changes in this import from the previous import are the ones that
will subsequently re-applied to take files off the vendor branch. This
is unfortunately necessary because the Solaris developers won't allow
FreeBSD support #ifdefs in their source code because that creates
'dead code' (stuff that they never compile).
2008-04-26 00:54:52 +00:00

1141 lines
31 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* This file contains routines that merge one tdata_t tree, called the child,
* into another, called the parent. Note that these names are used mainly for
* convenience and to represent the direction of the merge. They are not meant
* to imply any relationship between the tdata_t graphs prior to the merge.
*
* tdata_t structures contain two main elements - a hash of iidesc_t nodes, and
* a directed graph of tdesc_t nodes, pointed to by the iidesc_t nodes. Simply
* put, we merge the tdesc_t graphs, followed by the iidesc_t nodes, and then we
* clean up loose ends.
*
* The algorithm is as follows:
*
* 1. Mapping iidesc_t nodes
*
* For each child iidesc_t node, we first try to map its tdesc_t subgraph
* against the tdesc_t graph in the parent. For each node in the child subgraph
* that exists in the parent, a mapping between the two (between their type IDs)
* is established. For the child nodes that cannot be mapped onto existing
* parent nodes, a mapping is established between the child node ID and a
* newly-allocated ID that the node will use when it is re-created in the
* parent. These unmappable nodes are added to the md_tdtba (tdesc_t To Be
* Added) hash, which tracks nodes that need to be created in the parent.
*
* If all of the nodes in the subgraph for an iidesc_t in the child can be
* mapped to existing nodes in the parent, then we can try to map the child
* iidesc_t onto an iidesc_t in the parent. If we cannot find an equivalent
* iidesc_t, or if we were not able to completely map the tdesc_t subgraph(s),
* then we add this iidesc_t to the md_iitba (iidesc_t To Be Added) list. This
* list tracks iidesc_t nodes that are to be created in the parent.
*
* While visiting the tdesc_t nodes, we may discover a forward declaration (a
* FORWARD tdesc_t) in the parent that is resolved in the child. That is, there
* may be a structure or union definition in the child with the same name as the
* forward declaration in the parent. If we find such a node, we record an
* association in the md_fdida (Forward => Definition ID Association) list
* between the parent ID of the forward declaration and the ID that the
* definition will use when re-created in the parent.
*
* 2. Creating new tdesc_t nodes (the md_tdtba hash)
*
* We have now attempted to map all tdesc_t nodes from the child into the
* parent, and have, in md_tdtba, a hash of all tdesc_t nodes that need to be
* created (or, as we so wittily call it, conjured) in the parent. We iterate
* through this hash, creating the indicated tdesc_t nodes. For a given tdesc_t
* node, conjuring requires two steps - the copying of the common tdesc_t data
* (name, type, etc) from the child node, and the creation of links from the
* newly-created node to the parent equivalents of other tdesc_t nodes pointed
* to by node being conjured. Note that in some cases, the targets of these
* links will be on the md_tdtba hash themselves, and may not have been created
* yet. As such, we can't establish the links from these new nodes into the
* parent graph. We therefore conjure them with links to nodes in the *child*
* graph, and add pointers to the links to be created to the md_tdtbr (tdesc_t
* To Be Remapped) hash. For example, a POINTER tdesc_t that could not be
* resolved would have its &tdesc_t->t_tdesc added to md_tdtbr.
*
* 3. Creating new iidesc_t nodes (the md_iitba list)
*
* When we have completed step 2, all tdesc_t nodes have been created (or
* already existed) in the parent. Some of them may have incorrect links (the
* members of the md_tdtbr list), but they've all been created. As such, we can
* create all of the iidesc_t nodes, as we can attach the tdesc_t subgraph
* pointers correctly. We create each node, and attach the pointers to the
* appropriate parts of the parent tdesc_t graph.
*
* 4. Resolving newly-created tdesc_t node links (the md_tdtbr list)
*
* As in step 3, we rely on the fact that all of the tdesc_t nodes have been
* created. Each entry in the md_tdtbr list is a pointer to where a link into
* the parent will be established. As saved in the md_tdtbr list, these
* pointers point into the child tdesc_t subgraph. We can thus get the target
* type ID from the child, look at the ID mapping to determine the desired link
* target, and redirect the link accordingly.
*
* 5. Parent => child forward declaration resolution
*
* If entries were made in the md_fdida list in step 1, we have forward
* declarations in the parent that need to be resolved to their definitions
* re-created in step 2 from the child. Using the md_fdida list, we can locate
* the definition for the forward declaration, and we can redirect all inbound
* edges to the forward declaration node to the actual definition.
*
* A pox on the house of anyone who changes the algorithm without updating
* this comment.
*/
#include <stdio.h>
#include <strings.h>
#include <assert.h>
#include <pthread.h>
#include "ctf_headers.h"
#include "ctftools.h"
#include "list.h"
#include "alist.h"
#include "memory.h"
#include "traverse.h"
typedef struct equiv_data equiv_data_t;
typedef struct merge_cb_data merge_cb_data_t;
/*
* There are two traversals in this file, for equivalency and for tdesc_t
* re-creation, that do not fit into the tdtraverse() framework. We have our
* own traversal mechanism and ops vector here for those two cases.
*/
typedef struct tdesc_ops {
char *name;
int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
tdesc_t *(*conjure)(tdesc_t *, int, merge_cb_data_t *);
} tdesc_ops_t;
extern tdesc_ops_t tdesc_ops[];
/*
* The workhorse structure of tdata_t merging. Holds all lists of nodes to be
* processed during various phases of the merge algorithm.
*/
struct merge_cb_data {
tdata_t *md_parent;
tdata_t *md_tgt;
alist_t *md_ta; /* Type Association */
alist_t *md_fdida; /* Forward -> Definition ID Association */
list_t **md_iitba; /* iidesc_t nodes To Be Added to the parent */
hash_t *md_tdtba; /* tdesc_t nodes To Be Added to the parent */
list_t **md_tdtbr; /* tdesc_t nodes To Be Remapped */
int md_flags;
}; /* merge_cb_data_t */
/*
* When we first create a tdata_t from stabs data, we will have duplicate nodes.
* Normal merges, however, assume that the child tdata_t is already self-unique,
* and for speed reasons do not attempt to self-uniquify. If this flag is set,
* the merge algorithm will self-uniquify by avoiding the insertion of
* duplicates in the md_tdtdba list.
*/
#define MCD_F_SELFUNIQUIFY 0x1
/*
* When we merge the CTF data for the modules, we don't want it to contain any
* data that can be found in the reference module (usually genunix). If this
* flag is set, we're doing a merge between the fully merged tdata_t for this
* module and the tdata_t for the reference module, with the data unique to this
* module ending up in a third tdata_t. It is this third tdata_t that will end
* up in the .SUNW_ctf section for the module.
*/
#define MCD_F_REFMERGE 0x2
/*
* Mapping of child type IDs to parent type IDs
*/
static void
add_mapping(alist_t *ta, tid_t srcid, tid_t tgtid)
{
debug(3, "Adding mapping %u => %u\n", srcid, tgtid);
assert(!alist_find(ta, (void *)srcid, NULL));
assert(srcid != 0 && tgtid != 0);
alist_add(ta, (void *)srcid, (void *)tgtid);
}
static tid_t
get_mapping(alist_t *ta, int srcid)
{
long ltgtid;
if (alist_find(ta, (void *)srcid, (void **)&ltgtid))
return ((int)ltgtid);
else
return (0);
}
/*
* Determining equivalence of tdesc_t subgraphs
*/
struct equiv_data {
alist_t *ed_ta;
tdesc_t *ed_node;
tdesc_t *ed_tgt;
int ed_clear_mark;
int ed_cur_mark;
int ed_selfuniquify;
}; /* equiv_data_t */
static int equiv_node(tdesc_t *, tdesc_t *, equiv_data_t *);
/*ARGSUSED2*/
static int
equiv_intrinsic(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
{
intr_t *si = stdp->t_intr;
intr_t *ti = ttdp->t_intr;
if (si->intr_type != ti->intr_type ||
si->intr_signed != ti->intr_signed ||
si->intr_offset != ti->intr_offset ||
si->intr_nbits != ti->intr_nbits)
return (0);
if (si->intr_type == INTR_INT &&
si->intr_iformat != ti->intr_iformat)
return (0);
else if (si->intr_type == INTR_REAL &&
si->intr_fformat != ti->intr_fformat)
return (0);
return (1);
}
static int
equiv_plain(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
{
return (equiv_node(stdp->t_tdesc, ttdp->t_tdesc, ed));
}
static int
equiv_function(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
{
fndef_t *fn1 = stdp->t_fndef, *fn2 = ttdp->t_fndef;
int i;
if (fn1->fn_nargs != fn2->fn_nargs ||
fn1->fn_vargs != fn2->fn_vargs)
return (0);
if (!equiv_node(fn1->fn_ret, fn2->fn_ret, ed))
return (0);
for (i = 0; i < fn1->fn_nargs; i++) {
if (!equiv_node(fn1->fn_args[i], fn2->fn_args[i], ed))
return (0);
}
return (1);
}
static int
equiv_array(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
{
ardef_t *ar1 = stdp->t_ardef, *ar2 = ttdp->t_ardef;
if (!equiv_node(ar1->ad_contents, ar2->ad_contents, ed) ||
!equiv_node(ar1->ad_idxtype, ar2->ad_idxtype, ed))
return (0);
if (ar1->ad_nelems != ar2->ad_nelems)
return (0);
return (1);
}
static int
equiv_su(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
{
mlist_t *ml1 = stdp->t_members, *ml2 = ttdp->t_members;
mlist_t *olm1 = NULL;
while (ml1 && ml2) {
if (ml1->ml_offset != ml2->ml_offset ||
strcmp(ml1->ml_name, ml2->ml_name) != 0)
return (0);
/*
* Don't do the recursive equivalency checking more than
* we have to.
*/
if (olm1 == NULL || olm1->ml_type->t_id != ml1->ml_type->t_id) {
if (ml1->ml_size != ml2->ml_size ||
!equiv_node(ml1->ml_type, ml2->ml_type, ed))
return (0);
}
olm1 = ml1;
ml1 = ml1->ml_next;
ml2 = ml2->ml_next;
}
if (ml1 || ml2)
return (0);
return (1);
}
/*ARGSUSED2*/
static int
equiv_enum(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
{
elist_t *el1 = stdp->t_emem;
elist_t *el2 = ttdp->t_emem;
while (el1 && el2) {
if (el1->el_number != el2->el_number ||
strcmp(el1->el_name, el2->el_name) != 0)
return (0);
el1 = el1->el_next;
el2 = el2->el_next;
}
if (el1 || el2)
return (0);
return (1);
}
/*ARGSUSED*/
static int
equiv_assert(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
{
/* foul, evil, and very bad - this is a "shouldn't happen" */
assert(1 == 0);
return (0);
}
static int
fwd_equiv(tdesc_t *ctdp, tdesc_t *mtdp)
{
tdesc_t *defn = (ctdp->t_type == FORWARD ? mtdp : ctdp);
return (defn->t_type == STRUCT || defn->t_type == UNION);
}
static int
equiv_node(tdesc_t *ctdp, tdesc_t *mtdp, equiv_data_t *ed)
{
int (*equiv)();
int mapping;
if (ctdp->t_emark > ed->ed_clear_mark ||
mtdp->t_emark > ed->ed_clear_mark)
return (ctdp->t_emark == mtdp->t_emark);
/*
* In normal (non-self-uniquify) mode, we don't want to do equivalency
* checking on a subgraph that has already been checked. If a mapping
* has already been established for a given child node, we can simply
* compare the mapping for the child node with the ID of the parent
* node. If we are in self-uniquify mode, then we're comparing two
* subgraphs within the child graph, and thus need to ignore any
* type mappings that have been created, as they are only valid into the
* parent.
*/
if ((mapping = get_mapping(ed->ed_ta, ctdp->t_id)) > 0 &&
mapping == mtdp->t_id && !ed->ed_selfuniquify)
return (1);
if (!streq(ctdp->t_name, mtdp->t_name))
return (0);
if (ctdp->t_type != mtdp->t_type) {
if (ctdp->t_type == FORWARD || mtdp->t_type == FORWARD)
return (fwd_equiv(ctdp, mtdp));
else
return (0);
}
ctdp->t_emark = ed->ed_cur_mark;
mtdp->t_emark = ed->ed_cur_mark;
ed->ed_cur_mark++;
if ((equiv = tdesc_ops[ctdp->t_type].equiv) != NULL)
return (equiv(ctdp, mtdp, ed));
return (1);
}
/*
* We perform an equivalency check on two subgraphs by traversing through them
* in lockstep. If a given node is equivalent in both the parent and the child,
* we mark it in both subgraphs, using the t_emark field, with a monotonically
* increasing number. If, in the course of the traversal, we reach a node that
* we have visited and numbered during this equivalency check, we have a cycle.
* If the previously-visited nodes don't have the same emark, then the edges
* that brought us to these nodes are not equivalent, and so the check ends.
* If the emarks are the same, the edges are equivalent. We then backtrack and
* continue the traversal. If we have exhausted all edges in the subgraph, and
* have not found any inequivalent nodes, then the subgraphs are equivalent.
*/
static int
equiv_cb(void *bucket, void *arg)
{
equiv_data_t *ed = arg;
tdesc_t *mtdp = bucket;
tdesc_t *ctdp = ed->ed_node;
ed->ed_clear_mark = ed->ed_cur_mark + 1;
ed->ed_cur_mark = ed->ed_clear_mark + 1;
if (equiv_node(ctdp, mtdp, ed)) {
debug(3, "equiv_node matched %d %d\n", ctdp->t_id, mtdp->t_id);
ed->ed_tgt = mtdp;
/* matched. stop looking */
return (-1);
}
return (0);
}
/*ARGSUSED1*/
static int
map_td_tree_pre(tdesc_t *ctdp, tdesc_t **ctdpp, void *private)
{
merge_cb_data_t *mcd = private;
if (get_mapping(mcd->md_ta, ctdp->t_id) > 0)
return (0);
return (1);
}
/*ARGSUSED1*/
static int
map_td_tree_post(tdesc_t *ctdp, tdesc_t **ctdpp, void *private)
{
merge_cb_data_t *mcd = private;
equiv_data_t ed;
ed.ed_ta = mcd->md_ta;
ed.ed_clear_mark = mcd->md_parent->td_curemark;
ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
ed.ed_node = ctdp;
ed.ed_selfuniquify = 0;
debug(3, "map_td_tree_post on %d %s\n", ctdp->t_id, tdesc_name(ctdp));
if (hash_find_iter(mcd->md_parent->td_layouthash, ctdp,
equiv_cb, &ed) < 0) {
/* We found an equivalent node */
if (ed.ed_tgt->t_type == FORWARD && ctdp->t_type != FORWARD) {
int id = mcd->md_tgt->td_nextid++;
debug(3, "Creating new defn type %d\n", id);
add_mapping(mcd->md_ta, ctdp->t_id, id);
alist_add(mcd->md_fdida, (void *)(ulong_t)ed.ed_tgt,
(void *)(ulong_t)id);
hash_add(mcd->md_tdtba, ctdp);
} else
add_mapping(mcd->md_ta, ctdp->t_id, ed.ed_tgt->t_id);
} else if (debug_level > 1 && hash_iter(mcd->md_parent->td_idhash,
equiv_cb, &ed) < 0) {
/*
* We didn't find an equivalent node by looking through the
* layout hash, but we somehow found it by performing an
* exhaustive search through the entire graph. This usually
* means that the "name" hash function is broken.
*/
aborterr("Second pass for %d (%s) == %d\n", ctdp->t_id,
tdesc_name(ctdp), ed.ed_tgt->t_id);
} else {
int id = mcd->md_tgt->td_nextid++;
debug(3, "Creating new type %d\n", id);
add_mapping(mcd->md_ta, ctdp->t_id, id);
hash_add(mcd->md_tdtba, ctdp);
}
mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
return (1);
}
/*ARGSUSED1*/
static int
map_td_tree_self_post(tdesc_t *ctdp, tdesc_t **ctdpp, void *private)
{
merge_cb_data_t *mcd = private;
equiv_data_t ed;
ed.ed_ta = mcd->md_ta;
ed.ed_clear_mark = mcd->md_parent->td_curemark;
ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
ed.ed_node = ctdp;
ed.ed_selfuniquify = 1;
ed.ed_tgt = NULL;
if (hash_find_iter(mcd->md_tdtba, ctdp, equiv_cb, &ed) < 0) {
debug(3, "Self check found %d in %d\n", ctdp->t_id,
ed.ed_tgt->t_id);
add_mapping(mcd->md_ta, ctdp->t_id,
get_mapping(mcd->md_ta, ed.ed_tgt->t_id));
} else if (debug_level > 1 && hash_iter(mcd->md_tdtba,
equiv_cb, &ed) < 0) {
/*
* We didn't find an equivalent node using the quick way (going
* through the hash normally), but we did find it by iterating
* through the entire hash. This usually means that the hash
* function is broken.
*/
aborterr("Self-unique second pass for %d (%s) == %d\n",
ctdp->t_id, tdesc_name(ctdp), ed.ed_tgt->t_id);
} else {
int id = mcd->md_tgt->td_nextid++;
debug(3, "Creating new type %d\n", id);
add_mapping(mcd->md_ta, ctdp->t_id, id);
hash_add(mcd->md_tdtba, ctdp);
}
mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
return (1);
}
static tdtrav_cb_f map_pre[] = {
NULL,
map_td_tree_pre, /* intrinsic */
map_td_tree_pre, /* pointer */
map_td_tree_pre, /* array */
map_td_tree_pre, /* function */
map_td_tree_pre, /* struct */
map_td_tree_pre, /* union */
map_td_tree_pre, /* enum */
map_td_tree_pre, /* forward */
map_td_tree_pre, /* typedef */
tdtrav_assert, /* typedef_unres */
map_td_tree_pre, /* volatile */
map_td_tree_pre, /* const */
map_td_tree_pre /* restrict */
};
static tdtrav_cb_f map_post[] = {
NULL,
map_td_tree_post, /* intrinsic */
map_td_tree_post, /* pointer */
map_td_tree_post, /* array */
map_td_tree_post, /* function */
map_td_tree_post, /* struct */
map_td_tree_post, /* union */
map_td_tree_post, /* enum */
map_td_tree_post, /* forward */
map_td_tree_post, /* typedef */
tdtrav_assert, /* typedef_unres */
map_td_tree_post, /* volatile */
map_td_tree_post, /* const */
map_td_tree_post /* restrict */
};
static tdtrav_cb_f map_self_post[] = {
NULL,
map_td_tree_self_post, /* intrinsic */
map_td_tree_self_post, /* pointer */
map_td_tree_self_post, /* array */
map_td_tree_self_post, /* function */
map_td_tree_self_post, /* struct */
map_td_tree_self_post, /* union */
map_td_tree_self_post, /* enum */
map_td_tree_self_post, /* forward */
map_td_tree_self_post, /* typedef */
tdtrav_assert, /* typedef_unres */
map_td_tree_self_post, /* volatile */
map_td_tree_self_post, /* const */
map_td_tree_self_post /* restrict */
};
/*
* Determining equivalence of iidesc_t nodes
*/
typedef struct iifind_data {
iidesc_t *iif_template;
alist_t *iif_ta;
int iif_newidx;
int iif_refmerge;
} iifind_data_t;
/*
* Check to see if this iidesc_t (node) - the current one on the list we're
* iterating through - matches the target one (iif->iif_template). Return -1
* if it matches, to stop the iteration.
*/
static int
iidesc_match(void *data, void *arg)
{
iidesc_t *node = data;
iifind_data_t *iif = arg;
int i;
if (node->ii_type != iif->iif_template->ii_type ||
!streq(node->ii_name, iif->iif_template->ii_name) ||
node->ii_dtype->t_id != iif->iif_newidx)
return (0);
if ((node->ii_type == II_SVAR || node->ii_type == II_SFUN) &&
!streq(node->ii_owner, iif->iif_template->ii_owner))
return (0);
if (node->ii_nargs != iif->iif_template->ii_nargs)
return (0);
for (i = 0; i < node->ii_nargs; i++) {
if (get_mapping(iif->iif_ta,
iif->iif_template->ii_args[i]->t_id) !=
node->ii_args[i]->t_id)
return (0);
}
if (iif->iif_refmerge) {
switch (iif->iif_template->ii_type) {
case II_GFUN:
case II_SFUN:
case II_GVAR:
case II_SVAR:
debug(3, "suppressing duping of %d %s from %s\n",
iif->iif_template->ii_type,
iif->iif_template->ii_name,
(iif->iif_template->ii_owner ?
iif->iif_template->ii_owner : "NULL"));
return (0);
case II_NOT:
case II_PSYM:
case II_SOU:
case II_TYPE:
break;
}
}
return (-1);
}
static int
merge_type_cb(void *data, void *arg)
{
iidesc_t *sii = data;
merge_cb_data_t *mcd = arg;
iifind_data_t iif;
tdtrav_cb_f *post;
post = (mcd->md_flags & MCD_F_SELFUNIQUIFY ? map_self_post : map_post);
/* Map the tdesc nodes */
(void) iitraverse(sii, &mcd->md_parent->td_curvgen, NULL, map_pre, post,
mcd);
/* Map the iidesc nodes */
iif.iif_template = sii;
iif.iif_ta = mcd->md_ta;
iif.iif_newidx = get_mapping(mcd->md_ta, sii->ii_dtype->t_id);
iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
if (hash_match(mcd->md_parent->td_iihash, sii, iidesc_match,
&iif) == 1)
/* successfully mapped */
return (1);
debug(3, "tba %s (%d)\n", (sii->ii_name ? sii->ii_name : "(anon)"),
sii->ii_type);
list_add(mcd->md_iitba, sii);
return (0);
}
static int
remap_node(tdesc_t **tgtp, tdesc_t *oldtgt, int selftid, tdesc_t *newself,
merge_cb_data_t *mcd)
{
tdesc_t *tgt = NULL;
tdesc_t template;
int oldid = oldtgt->t_id;
if (oldid == selftid) {
*tgtp = newself;
return (1);
}
if ((template.t_id = get_mapping(mcd->md_ta, oldid)) == 0)
aborterr("failed to get mapping for tid %d\n", oldid);
if (!hash_find(mcd->md_parent->td_idhash, (void *)&template,
(void *)&tgt) && (!(mcd->md_flags & MCD_F_REFMERGE) ||
!hash_find(mcd->md_tgt->td_idhash, (void *)&template,
(void *)&tgt))) {
debug(3, "Remap couldn't find %d (from %d)\n", template.t_id,
oldid);
*tgtp = oldtgt;
list_add(mcd->md_tdtbr, tgtp);
return (0);
}
*tgtp = tgt;
return (1);
}
static tdesc_t *
conjure_template(tdesc_t *old, int newselfid)
{
tdesc_t *new = xcalloc(sizeof (tdesc_t));
new->t_name = old->t_name ? xstrdup(old->t_name) : NULL;
new->t_type = old->t_type;
new->t_size = old->t_size;
new->t_id = newselfid;
new->t_flags = old->t_flags;
return (new);
}
/*ARGSUSED2*/
static tdesc_t *
conjure_intrinsic(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
{
tdesc_t *new = conjure_template(old, newselfid);
new->t_intr = xmalloc(sizeof (intr_t));
bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
return (new);
}
static tdesc_t *
conjure_plain(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
{
tdesc_t *new = conjure_template(old, newselfid);
(void) remap_node(&new->t_tdesc, old->t_tdesc, old->t_id, new, mcd);
return (new);
}
static tdesc_t *
conjure_function(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
{
tdesc_t *new = conjure_template(old, newselfid);
fndef_t *nfn = xmalloc(sizeof (fndef_t));
fndef_t *ofn = old->t_fndef;
int i;
(void) remap_node(&nfn->fn_ret, ofn->fn_ret, old->t_id, new, mcd);
nfn->fn_nargs = ofn->fn_nargs;
nfn->fn_vargs = ofn->fn_vargs;
if (nfn->fn_nargs > 0)
nfn->fn_args = xcalloc(sizeof (tdesc_t *) * ofn->fn_nargs);
for (i = 0; i < ofn->fn_nargs; i++) {
(void) remap_node(&nfn->fn_args[i], ofn->fn_args[i], old->t_id,
new, mcd);
}
new->t_fndef = nfn;
return (new);
}
static tdesc_t *
conjure_array(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
{
tdesc_t *new = conjure_template(old, newselfid);
ardef_t *nar = xmalloc(sizeof (ardef_t));
ardef_t *oar = old->t_ardef;
(void) remap_node(&nar->ad_contents, oar->ad_contents, old->t_id, new,
mcd);
(void) remap_node(&nar->ad_idxtype, oar->ad_idxtype, old->t_id, new,
mcd);
nar->ad_nelems = oar->ad_nelems;
new->t_ardef = nar;
return (new);
}
static tdesc_t *
conjure_su(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
{
tdesc_t *new = conjure_template(old, newselfid);
mlist_t *omem, **nmemp;
for (omem = old->t_members, nmemp = &new->t_members;
omem; omem = omem->ml_next, nmemp = &((*nmemp)->ml_next)) {
*nmemp = xmalloc(sizeof (mlist_t));
(*nmemp)->ml_offset = omem->ml_offset;
(*nmemp)->ml_size = omem->ml_size;
(*nmemp)->ml_name = xstrdup(omem->ml_name);
(void) remap_node(&((*nmemp)->ml_type), omem->ml_type,
old->t_id, new, mcd);
}
*nmemp = NULL;
return (new);
}
/*ARGSUSED2*/
static tdesc_t *
conjure_enum(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
{
tdesc_t *new = conjure_template(old, newselfid);
elist_t *oel, **nelp;
for (oel = old->t_emem, nelp = &new->t_emem;
oel; oel = oel->el_next, nelp = &((*nelp)->el_next)) {
*nelp = xmalloc(sizeof (elist_t));
(*nelp)->el_name = xstrdup(oel->el_name);
(*nelp)->el_number = oel->el_number;
}
*nelp = NULL;
return (new);
}
/*ARGSUSED2*/
static tdesc_t *
conjure_forward(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
{
tdesc_t *new = conjure_template(old, newselfid);
list_add(&mcd->md_tgt->td_fwdlist, new);
return (new);
}
/*ARGSUSED*/
static tdesc_t *
conjure_assert(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
{
assert(1 == 0);
return (NULL);
}
static iidesc_t *
conjure_iidesc(iidesc_t *old, merge_cb_data_t *mcd)
{
iidesc_t *new = iidesc_dup(old);
int i;
(void) remap_node(&new->ii_dtype, old->ii_dtype, -1, NULL, mcd);
for (i = 0; i < new->ii_nargs; i++) {
(void) remap_node(&new->ii_args[i], old->ii_args[i], -1, NULL,
mcd);
}
return (new);
}
static int
fwd_redir(tdesc_t *fwd, tdesc_t **fwdp, void *private)
{
alist_t *map = private;
tdesc_t *defn;
if (!alist_find(map, (void *)fwd, (void **)&defn))
return (0);
debug(3, "Redirecting an edge to %s\n", tdesc_name(defn));
*fwdp = defn;
return (1);
}
static tdtrav_cb_f fwd_redir_cbs[] = {
NULL,
NULL, /* intrinsic */
NULL, /* pointer */
NULL, /* array */
NULL, /* function */
NULL, /* struct */
NULL, /* union */
NULL, /* enum */
fwd_redir, /* forward */
NULL, /* typedef */
tdtrav_assert, /* typedef_unres */
NULL, /* volatile */
NULL, /* const */
NULL /* restrict */
};
typedef struct redir_mstr_data {
tdata_t *rmd_tgt;
alist_t *rmd_map;
} redir_mstr_data_t;
static int
redir_mstr_fwd_cb(void *name, void *value, void *arg)
{
tdesc_t *fwd = name;
int defnid = (int)value;
redir_mstr_data_t *rmd = arg;
tdesc_t template;
tdesc_t *defn;
template.t_id = defnid;
if (!hash_find(rmd->rmd_tgt->td_idhash, (void *)&template,
(void *)&defn)) {
aborterr("Couldn't unforward %d (%s)\n", defnid,
tdesc_name(defn));
}
debug(3, "Forward map: resolved %d to %s\n", defnid, tdesc_name(defn));
alist_add(rmd->rmd_map, (void *)fwd, (void *)defn);
return (1);
}
static void
redir_mstr_fwds(merge_cb_data_t *mcd)
{
redir_mstr_data_t rmd;
alist_t *map = alist_new(NULL, NULL);
rmd.rmd_tgt = mcd->md_tgt;
rmd.rmd_map = map;
if (alist_iter(mcd->md_fdida, redir_mstr_fwd_cb, &rmd)) {
(void) iitraverse_hash(mcd->md_tgt->td_iihash,
&mcd->md_tgt->td_curvgen, fwd_redir_cbs, NULL, NULL, map);
}
alist_free(map);
}
static int
add_iitba_cb(void *data, void *private)
{
merge_cb_data_t *mcd = private;
iidesc_t *tba = data;
iidesc_t *new;
iifind_data_t iif;
int newidx;
newidx = get_mapping(mcd->md_ta, tba->ii_dtype->t_id);
assert(newidx != -1);
(void) list_remove(mcd->md_iitba, data, NULL, NULL);
iif.iif_template = tba;
iif.iif_ta = mcd->md_ta;
iif.iif_newidx = newidx;
iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
if (hash_match(mcd->md_parent->td_iihash, tba, iidesc_match,
&iif) == 1) {
debug(3, "iidesc_t %s already exists\n",
(tba->ii_name ? tba->ii_name : "(anon)"));
return (1);
}
new = conjure_iidesc(tba, mcd);
hash_add(mcd->md_tgt->td_iihash, new);
return (1);
}
static int
add_tdesc(tdesc_t *oldtdp, int newid, merge_cb_data_t *mcd)
{
tdesc_t *newtdp;
tdesc_t template;
template.t_id = newid;
assert(hash_find(mcd->md_parent->td_idhash,
(void *)&template, NULL) == 0);
debug(3, "trying to conjure %d %s (%d) as %d\n",
oldtdp->t_type, tdesc_name(oldtdp), oldtdp->t_id, newid);
if ((newtdp = tdesc_ops[oldtdp->t_type].conjure(oldtdp, newid,
mcd)) == NULL)
/* couldn't map everything */
return (0);
debug(3, "succeeded\n");
hash_add(mcd->md_tgt->td_idhash, newtdp);
hash_add(mcd->md_tgt->td_layouthash, newtdp);
return (1);
}
static int
add_tdtba_cb(void *data, void *arg)
{
tdesc_t *tdp = data;
merge_cb_data_t *mcd = arg;
int newid;
int rc;
newid = get_mapping(mcd->md_ta, tdp->t_id);
assert(newid != -1);
if ((rc = add_tdesc(tdp, newid, mcd)))
hash_remove(mcd->md_tdtba, (void *)tdp);
return (rc);
}
static int
add_tdtbr_cb(void *data, void *arg)
{
tdesc_t **tdpp = data;
merge_cb_data_t *mcd = arg;
debug(3, "Remapping %s (%d)\n", tdesc_name(*tdpp), (*tdpp)->t_id);
if (!remap_node(tdpp, *tdpp, -1, NULL, mcd))
return (0);
(void) list_remove(mcd->md_tdtbr, (void *)tdpp, NULL, NULL);
return (1);
}
static void
merge_types(hash_t *src, merge_cb_data_t *mcd)
{
list_t *iitba = NULL;
list_t *tdtbr = NULL;
int iirc, tdrc;
mcd->md_iitba = &iitba;
mcd->md_tdtba = hash_new(TDATA_LAYOUT_HASH_SIZE, tdesc_layouthash,
tdesc_layoutcmp);
mcd->md_tdtbr = &tdtbr;
(void) hash_iter(src, merge_type_cb, mcd);
tdrc = hash_iter(mcd->md_tdtba, add_tdtba_cb, (void *)mcd);
debug(3, "add_tdtba_cb added %d items\n", tdrc);
iirc = list_iter(*mcd->md_iitba, add_iitba_cb, (void *)mcd);
debug(3, "add_iitba_cb added %d items\n", iirc);
assert(list_count(*mcd->md_iitba) == 0 &&
hash_count(mcd->md_tdtba) == 0);
tdrc = list_iter(*mcd->md_tdtbr, add_tdtbr_cb, (void *)mcd);
debug(3, "add_tdtbr_cb added %d items\n", tdrc);
if (list_count(*mcd->md_tdtbr) != 0)
aborterr("Couldn't remap all nodes\n");
/*
* We now have an alist of master forwards and the ids of the new master
* definitions for those forwards in mcd->md_fdida. By this point,
* we're guaranteed that all of the master definitions referenced in
* fdida have been added to the master tree. We now traverse through
* the master tree, redirecting all edges inbound to forwards that have
* definitions to those definitions.
*/
if (mcd->md_parent == mcd->md_tgt) {
redir_mstr_fwds(mcd);
}
}
void
merge_into_master(tdata_t *cur, tdata_t *mstr, tdata_t *tgt, int selfuniquify)
{
merge_cb_data_t mcd;
cur->td_ref++;
mstr->td_ref++;
if (tgt)
tgt->td_ref++;
assert(cur->td_ref == 1 && mstr->td_ref == 1 &&
(tgt == NULL || tgt->td_ref == 1));
mcd.md_parent = mstr;
mcd.md_tgt = (tgt ? tgt : mstr);
mcd.md_ta = alist_new(NULL, NULL);
mcd.md_fdida = alist_new(NULL, NULL);
mcd.md_flags = 0;
if (selfuniquify)
mcd.md_flags |= MCD_F_SELFUNIQUIFY;
if (tgt)
mcd.md_flags |= MCD_F_REFMERGE;
mstr->td_curvgen = MAX(mstr->td_curvgen, cur->td_curvgen);
mstr->td_curemark = MAX(mstr->td_curemark, cur->td_curemark);
merge_types(cur->td_iihash, &mcd);
if (debug_level >= 3) {
debug(3, "Type association stats\n");
alist_stats(mcd.md_ta, 0);
debug(3, "Layout hash stats\n");
hash_stats(mcd.md_tgt->td_layouthash, 1);
}
alist_free(mcd.md_fdida);
alist_free(mcd.md_ta);
cur->td_ref--;
mstr->td_ref--;
if (tgt)
tgt->td_ref--;
}
tdesc_ops_t tdesc_ops[] = {
{ "ERROR! BAD tdesc TYPE", NULL, NULL },
{ "intrinsic", equiv_intrinsic, conjure_intrinsic },
{ "pointer", equiv_plain, conjure_plain },
{ "array", equiv_array, conjure_array },
{ "function", equiv_function, conjure_function },
{ "struct", equiv_su, conjure_su },
{ "union", equiv_su, conjure_su },
{ "enum", equiv_enum, conjure_enum },
{ "forward", NULL, conjure_forward },
{ "typedef", equiv_plain, conjure_plain },
{ "typedef_unres", equiv_assert, conjure_assert },
{ "volatile", equiv_plain, conjure_plain },
{ "const", equiv_plain, conjure_plain },
{ "restrict", equiv_plain, conjure_plain }
};