8af2421956
- Remove unused variables. - Mark a value only used in debug traces as unused. - Remove variables only used for device register reads with side-effects with void casts on the read.
854 lines
22 KiB
C
854 lines
22 KiB
C
/*
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2017 Cavium, Inc.. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Cavium, Inc. nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
/*$FreeBSD$*/
|
|
|
|
#include "lio_bsd.h"
|
|
#include "lio_common.h"
|
|
#include "lio_droq.h"
|
|
#include "lio_iq.h"
|
|
#include "lio_response_manager.h"
|
|
#include "lio_device.h"
|
|
#include "lio_main.h"
|
|
#include "lio_network.h"
|
|
#include "cn23xx_pf_device.h"
|
|
#include "lio_rxtx.h"
|
|
|
|
struct lio_iq_post_status {
|
|
int status;
|
|
int index;
|
|
};
|
|
|
|
static void lio_check_db_timeout(void *arg, int pending);
|
|
static void __lio_check_db_timeout(struct octeon_device *oct,
|
|
uint64_t iq_no);
|
|
|
|
/* Return 0 on success, 1 on failure */
|
|
int
|
|
lio_init_instr_queue(struct octeon_device *oct, union octeon_txpciq txpciq,
|
|
uint32_t num_descs)
|
|
{
|
|
struct lio_instr_queue *iq;
|
|
struct lio_iq_config *conf = NULL;
|
|
struct lio_tq *db_tq;
|
|
struct lio_request_list *request_buf;
|
|
bus_size_t max_size;
|
|
uint32_t iq_no = (uint32_t)txpciq.s.q_no;
|
|
uint32_t q_size;
|
|
int error, i;
|
|
|
|
if (LIO_CN23XX_PF(oct))
|
|
conf = &(LIO_GET_IQ_CFG(LIO_CHIP_CONF(oct, cn23xx_pf)));
|
|
if (conf == NULL) {
|
|
lio_dev_err(oct, "Unsupported Chip %x\n", oct->chip_id);
|
|
return (1);
|
|
}
|
|
|
|
q_size = (uint32_t)conf->instr_type * num_descs;
|
|
iq = oct->instr_queue[iq_no];
|
|
iq->oct_dev = oct;
|
|
|
|
max_size = LIO_CN23XX_PKI_MAX_FRAME_SIZE * num_descs;
|
|
|
|
error = bus_dma_tag_create(bus_get_dma_tag(oct->device), /* parent */
|
|
1, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
max_size, /* maxsize */
|
|
LIO_MAX_SG, /* nsegments */
|
|
PAGE_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockfuncarg */
|
|
&iq->txtag);
|
|
if (error) {
|
|
lio_dev_err(oct, "Cannot allocate memory for instr queue %d\n",
|
|
iq_no);
|
|
return (1);
|
|
}
|
|
|
|
iq->base_addr = lio_dma_alloc(q_size, (vm_paddr_t *)&iq->base_addr_dma);
|
|
if (!iq->base_addr) {
|
|
lio_dev_err(oct, "Cannot allocate memory for instr queue %d\n",
|
|
iq_no);
|
|
return (1);
|
|
}
|
|
|
|
iq->max_count = num_descs;
|
|
|
|
/*
|
|
* Initialize a list to holds requests that have been posted to
|
|
* Octeon but has yet to be fetched by octeon
|
|
*/
|
|
iq->request_list = malloc(sizeof(*iq->request_list) * num_descs,
|
|
M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (iq->request_list == NULL) {
|
|
lio_dev_err(oct, "Alloc failed for IQ[%d] nr free list\n",
|
|
iq_no);
|
|
return (1);
|
|
}
|
|
|
|
lio_dev_dbg(oct, "IQ[%d]: base: %p basedma: %llx count: %d\n",
|
|
iq_no, iq->base_addr, LIO_CAST64(iq->base_addr_dma),
|
|
iq->max_count);
|
|
|
|
/* Create the descriptor buffer dma maps */
|
|
request_buf = iq->request_list;
|
|
for (i = 0; i < num_descs; i++, request_buf++) {
|
|
error = bus_dmamap_create(iq->txtag, 0, &request_buf->map);
|
|
if (error) {
|
|
lio_dev_err(oct, "Unable to create TX DMA map\n");
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
iq->txpciq.txpciq64 = txpciq.txpciq64;
|
|
iq->fill_cnt = 0;
|
|
iq->host_write_index = 0;
|
|
iq->octeon_read_index = 0;
|
|
iq->flush_index = 0;
|
|
iq->last_db_time = 0;
|
|
iq->db_timeout = (uint32_t)conf->db_timeout;
|
|
atomic_store_rel_int(&iq->instr_pending, 0);
|
|
|
|
/* Initialize the lock for this instruction queue */
|
|
mtx_init(&iq->lock, "Tx_lock", NULL, MTX_DEF);
|
|
mtx_init(&iq->post_lock, "iq_post_lock", NULL, MTX_DEF);
|
|
mtx_init(&iq->enq_lock, "enq_lock", NULL, MTX_DEF);
|
|
|
|
mtx_init(&iq->iq_flush_running_lock, "iq_flush_running_lock", NULL,
|
|
MTX_DEF);
|
|
|
|
oct->io_qmask.iq |= BIT_ULL(iq_no);
|
|
|
|
/* Set the 32B/64B mode for each input queue */
|
|
oct->io_qmask.iq64B |= ((conf->instr_type == 64) << iq_no);
|
|
iq->iqcmd_64B = (conf->instr_type == 64);
|
|
|
|
oct->fn_list.setup_iq_regs(oct, iq_no);
|
|
|
|
db_tq = &oct->check_db_tq[iq_no];
|
|
db_tq->tq = taskqueue_create("lio_check_db_timeout", M_WAITOK,
|
|
taskqueue_thread_enqueue, &db_tq->tq);
|
|
if (db_tq->tq == NULL) {
|
|
lio_dev_err(oct, "check db wq create failed for iq %d\n",
|
|
iq_no);
|
|
return (1);
|
|
}
|
|
|
|
TIMEOUT_TASK_INIT(db_tq->tq, &db_tq->work, 0, lio_check_db_timeout,
|
|
(void *)db_tq);
|
|
db_tq->ctxul = iq_no;
|
|
db_tq->ctxptr = oct;
|
|
|
|
taskqueue_start_threads(&db_tq->tq, 1, PI_NET,
|
|
"lio%d_check_db_timeout:%d",
|
|
oct->octeon_id, iq_no);
|
|
taskqueue_enqueue_timeout(db_tq->tq, &db_tq->work, 1);
|
|
|
|
/* Allocate a buf ring */
|
|
oct->instr_queue[iq_no]->br =
|
|
buf_ring_alloc(LIO_BR_SIZE, M_DEVBUF, M_WAITOK,
|
|
&oct->instr_queue[iq_no]->enq_lock);
|
|
if (oct->instr_queue[iq_no]->br == NULL) {
|
|
lio_dev_err(oct, "Critical Failure setting up buf ring\n");
|
|
return (1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
lio_delete_instr_queue(struct octeon_device *oct, uint32_t iq_no)
|
|
{
|
|
struct lio_instr_queue *iq = oct->instr_queue[iq_no];
|
|
struct lio_request_list *request_buf;
|
|
struct lio_mbuf_free_info *finfo;
|
|
uint64_t desc_size = 0, q_size;
|
|
int i;
|
|
|
|
lio_dev_dbg(oct, "%s[%d]\n", __func__, iq_no);
|
|
|
|
if (oct->check_db_tq[iq_no].tq != NULL) {
|
|
while (taskqueue_cancel_timeout(oct->check_db_tq[iq_no].tq,
|
|
&oct->check_db_tq[iq_no].work,
|
|
NULL))
|
|
taskqueue_drain_timeout(oct->check_db_tq[iq_no].tq,
|
|
&oct->check_db_tq[iq_no].work);
|
|
taskqueue_free(oct->check_db_tq[iq_no].tq);
|
|
oct->check_db_tq[iq_no].tq = NULL;
|
|
}
|
|
|
|
if (LIO_CN23XX_PF(oct))
|
|
desc_size =
|
|
LIO_GET_IQ_INSTR_TYPE_CFG(LIO_CHIP_CONF(oct, cn23xx_pf));
|
|
|
|
request_buf = iq->request_list;
|
|
for (i = 0; i < iq->max_count; i++, request_buf++) {
|
|
if ((request_buf->reqtype == LIO_REQTYPE_NORESP_NET) ||
|
|
(request_buf->reqtype == LIO_REQTYPE_NORESP_NET_SG)) {
|
|
if (request_buf->buf != NULL) {
|
|
finfo = request_buf->buf;
|
|
bus_dmamap_sync(iq->txtag, request_buf->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(iq->txtag,
|
|
request_buf->map);
|
|
m_freem(finfo->mb);
|
|
request_buf->buf = NULL;
|
|
if (request_buf->map != NULL) {
|
|
bus_dmamap_destroy(iq->txtag,
|
|
request_buf->map);
|
|
request_buf->map = NULL;
|
|
}
|
|
} else if (request_buf->map != NULL) {
|
|
bus_dmamap_unload(iq->txtag, request_buf->map);
|
|
bus_dmamap_destroy(iq->txtag, request_buf->map);
|
|
request_buf->map = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (iq->br != NULL) {
|
|
buf_ring_free(iq->br, M_DEVBUF);
|
|
iq->br = NULL;
|
|
}
|
|
|
|
if (iq->request_list != NULL) {
|
|
free(iq->request_list, M_DEVBUF);
|
|
iq->request_list = NULL;
|
|
}
|
|
|
|
if (iq->txtag != NULL) {
|
|
bus_dma_tag_destroy(iq->txtag);
|
|
iq->txtag = NULL;
|
|
}
|
|
|
|
if (iq->base_addr) {
|
|
q_size = iq->max_count * desc_size;
|
|
lio_dma_free((uint32_t)q_size, iq->base_addr);
|
|
|
|
oct->io_qmask.iq &= ~(1ULL << iq_no);
|
|
bzero(oct->instr_queue[iq_no], sizeof(struct lio_instr_queue));
|
|
oct->num_iqs--;
|
|
|
|
return (0);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
/* Return 0 on success, 1 on failure */
|
|
int
|
|
lio_setup_iq(struct octeon_device *oct, int ifidx, int q_index,
|
|
union octeon_txpciq txpciq, uint32_t num_descs)
|
|
{
|
|
uint32_t iq_no = (uint32_t)txpciq.s.q_no;
|
|
|
|
if (oct->instr_queue[iq_no]->oct_dev != NULL) {
|
|
lio_dev_dbg(oct, "IQ is in use. Cannot create the IQ: %d again\n",
|
|
iq_no);
|
|
oct->instr_queue[iq_no]->txpciq.txpciq64 = txpciq.txpciq64;
|
|
return (0);
|
|
}
|
|
|
|
oct->instr_queue[iq_no]->q_index = q_index;
|
|
oct->instr_queue[iq_no]->ifidx = ifidx;
|
|
|
|
if (lio_init_instr_queue(oct, txpciq, num_descs)) {
|
|
lio_delete_instr_queue(oct, iq_no);
|
|
return (1);
|
|
}
|
|
|
|
oct->num_iqs++;
|
|
if (oct->fn_list.enable_io_queues(oct))
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
lio_wait_for_instr_fetch(struct octeon_device *oct)
|
|
{
|
|
int i, retry = 1000, pending, instr_cnt = 0;
|
|
|
|
do {
|
|
instr_cnt = 0;
|
|
|
|
for (i = 0; i < LIO_MAX_INSTR_QUEUES(oct); i++) {
|
|
if (!(oct->io_qmask.iq & BIT_ULL(i)))
|
|
continue;
|
|
pending = atomic_load_acq_int(
|
|
&oct->instr_queue[i]->instr_pending);
|
|
if (pending)
|
|
__lio_check_db_timeout(oct, i);
|
|
instr_cnt += pending;
|
|
}
|
|
|
|
if (instr_cnt == 0)
|
|
break;
|
|
|
|
lio_sleep_timeout(1);
|
|
|
|
} while (retry-- && instr_cnt);
|
|
|
|
return (instr_cnt);
|
|
}
|
|
|
|
static inline void
|
|
lio_ring_doorbell(struct octeon_device *oct, struct lio_instr_queue *iq)
|
|
{
|
|
|
|
if (atomic_load_acq_int(&oct->status) == LIO_DEV_RUNNING) {
|
|
lio_write_csr32(oct, iq->doorbell_reg, iq->fill_cnt);
|
|
/* make sure doorbell write goes through */
|
|
__compiler_membar();
|
|
iq->fill_cnt = 0;
|
|
iq->last_db_time = ticks;
|
|
return;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
__lio_copy_cmd_into_iq(struct lio_instr_queue *iq, uint8_t *cmd)
|
|
{
|
|
uint8_t *iqptr, cmdsize;
|
|
|
|
cmdsize = ((iq->iqcmd_64B) ? 64 : 32);
|
|
iqptr = iq->base_addr + (cmdsize * iq->host_write_index);
|
|
|
|
memcpy(iqptr, cmd, cmdsize);
|
|
}
|
|
|
|
static inline struct lio_iq_post_status
|
|
__lio_post_command2(struct lio_instr_queue *iq, uint8_t *cmd)
|
|
{
|
|
struct lio_iq_post_status st;
|
|
|
|
st.status = LIO_IQ_SEND_OK;
|
|
|
|
/*
|
|
* This ensures that the read index does not wrap around to the same
|
|
* position if queue gets full before Octeon could fetch any instr.
|
|
*/
|
|
if (atomic_load_acq_int(&iq->instr_pending) >=
|
|
(int32_t)(iq->max_count - 1)) {
|
|
st.status = LIO_IQ_SEND_FAILED;
|
|
st.index = -1;
|
|
return (st);
|
|
}
|
|
|
|
if (atomic_load_acq_int(&iq->instr_pending) >=
|
|
(int32_t)(iq->max_count - 2))
|
|
st.status = LIO_IQ_SEND_STOP;
|
|
|
|
__lio_copy_cmd_into_iq(iq, cmd);
|
|
|
|
/* "index" is returned, host_write_index is modified. */
|
|
st.index = iq->host_write_index;
|
|
iq->host_write_index = lio_incr_index(iq->host_write_index, 1,
|
|
iq->max_count);
|
|
iq->fill_cnt++;
|
|
|
|
/*
|
|
* Flush the command into memory. We need to be sure the data is in
|
|
* memory before indicating that the instruction is pending.
|
|
*/
|
|
wmb();
|
|
|
|
atomic_add_int(&iq->instr_pending, 1);
|
|
|
|
return (st);
|
|
}
|
|
|
|
static inline void
|
|
__lio_add_to_request_list(struct lio_instr_queue *iq, int idx, void *buf,
|
|
int reqtype)
|
|
{
|
|
|
|
iq->request_list[idx].buf = buf;
|
|
iq->request_list[idx].reqtype = reqtype;
|
|
}
|
|
|
|
/* Can only run in process context */
|
|
int
|
|
lio_process_iq_request_list(struct octeon_device *oct,
|
|
struct lio_instr_queue *iq, uint32_t budget)
|
|
{
|
|
struct lio_soft_command *sc;
|
|
struct octeon_instr_irh *irh = NULL;
|
|
void *buf;
|
|
uint32_t inst_count = 0;
|
|
uint32_t old = iq->flush_index;
|
|
int reqtype;
|
|
|
|
while (old != iq->octeon_read_index) {
|
|
reqtype = iq->request_list[old].reqtype;
|
|
buf = iq->request_list[old].buf;
|
|
|
|
if (reqtype == LIO_REQTYPE_NONE)
|
|
goto skip_this;
|
|
|
|
switch (reqtype) {
|
|
case LIO_REQTYPE_NORESP_NET:
|
|
lio_free_mbuf(iq, buf);
|
|
break;
|
|
case LIO_REQTYPE_NORESP_NET_SG:
|
|
lio_free_sgmbuf(iq, buf);
|
|
break;
|
|
case LIO_REQTYPE_RESP_NET:
|
|
case LIO_REQTYPE_SOFT_COMMAND:
|
|
sc = buf;
|
|
if (LIO_CN23XX_PF(oct))
|
|
irh = (struct octeon_instr_irh *)
|
|
&sc->cmd.cmd3.irh;
|
|
if (irh->rflag) {
|
|
/*
|
|
* We're expecting a response from Octeon.
|
|
* It's up to lio_process_ordered_list() to
|
|
* process sc. Add sc to the ordered soft
|
|
* command response list because we expect
|
|
* a response from Octeon.
|
|
*/
|
|
mtx_lock(&oct->response_list
|
|
[LIO_ORDERED_SC_LIST].lock);
|
|
atomic_add_int(&oct->response_list
|
|
[LIO_ORDERED_SC_LIST].
|
|
pending_req_count, 1);
|
|
STAILQ_INSERT_TAIL(&oct->response_list
|
|
[LIO_ORDERED_SC_LIST].
|
|
head, &sc->node, entries);
|
|
mtx_unlock(&oct->response_list
|
|
[LIO_ORDERED_SC_LIST].lock);
|
|
} else {
|
|
if (sc->callback != NULL) {
|
|
/* This callback must not sleep */
|
|
sc->callback(oct, LIO_REQUEST_DONE,
|
|
sc->callback_arg);
|
|
}
|
|
}
|
|
|
|
break;
|
|
default:
|
|
lio_dev_err(oct, "%s Unknown reqtype: %d buf: %p at idx %d\n",
|
|
__func__, reqtype, buf, old);
|
|
}
|
|
|
|
iq->request_list[old].buf = NULL;
|
|
iq->request_list[old].reqtype = 0;
|
|
|
|
skip_this:
|
|
inst_count++;
|
|
old = lio_incr_index(old, 1, iq->max_count);
|
|
|
|
if ((budget) && (inst_count >= budget))
|
|
break;
|
|
}
|
|
|
|
iq->flush_index = old;
|
|
|
|
return (inst_count);
|
|
}
|
|
|
|
/* Can only be called from process context */
|
|
int
|
|
lio_flush_iq(struct octeon_device *oct, struct lio_instr_queue *iq,
|
|
uint32_t budget)
|
|
{
|
|
uint32_t inst_processed = 0;
|
|
uint32_t tot_inst_processed = 0;
|
|
int tx_done = 1;
|
|
|
|
if (!mtx_trylock(&iq->iq_flush_running_lock))
|
|
return (tx_done);
|
|
|
|
mtx_lock(&iq->lock);
|
|
|
|
iq->octeon_read_index = oct->fn_list.update_iq_read_idx(iq);
|
|
|
|
do {
|
|
/* Process any outstanding IQ packets. */
|
|
if (iq->flush_index == iq->octeon_read_index)
|
|
break;
|
|
|
|
if (budget)
|
|
inst_processed =
|
|
lio_process_iq_request_list(oct, iq,
|
|
budget -
|
|
tot_inst_processed);
|
|
else
|
|
inst_processed =
|
|
lio_process_iq_request_list(oct, iq, 0);
|
|
|
|
if (inst_processed) {
|
|
atomic_subtract_int(&iq->instr_pending, inst_processed);
|
|
iq->stats.instr_processed += inst_processed;
|
|
}
|
|
tot_inst_processed += inst_processed;
|
|
inst_processed = 0;
|
|
|
|
} while (tot_inst_processed < budget);
|
|
|
|
if (budget && (tot_inst_processed >= budget))
|
|
tx_done = 0;
|
|
|
|
iq->last_db_time = ticks;
|
|
|
|
mtx_unlock(&iq->lock);
|
|
|
|
mtx_unlock(&iq->iq_flush_running_lock);
|
|
|
|
return (tx_done);
|
|
}
|
|
|
|
/*
|
|
* Process instruction queue after timeout.
|
|
* This routine gets called from a taskqueue or when removing the module.
|
|
*/
|
|
static void
|
|
__lio_check_db_timeout(struct octeon_device *oct, uint64_t iq_no)
|
|
{
|
|
struct lio_instr_queue *iq;
|
|
uint64_t next_time;
|
|
|
|
if (oct == NULL)
|
|
return;
|
|
|
|
iq = oct->instr_queue[iq_no];
|
|
if (iq == NULL)
|
|
return;
|
|
|
|
if (atomic_load_acq_int(&iq->instr_pending)) {
|
|
/* If ticks - last_db_time < db_timeout do nothing */
|
|
next_time = iq->last_db_time + lio_ms_to_ticks(iq->db_timeout);
|
|
if (!lio_check_timeout(ticks, next_time))
|
|
return;
|
|
|
|
iq->last_db_time = ticks;
|
|
|
|
/* Flush the instruction queue */
|
|
lio_flush_iq(oct, iq, 0);
|
|
|
|
lio_enable_irq(NULL, iq);
|
|
}
|
|
|
|
if (oct->props.ifp != NULL && iq->br != NULL) {
|
|
if (mtx_trylock(&iq->enq_lock)) {
|
|
if (!drbr_empty(oct->props.ifp, iq->br))
|
|
lio_mq_start_locked(oct->props.ifp, iq);
|
|
|
|
mtx_unlock(&iq->enq_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called by the Poll thread at regular intervals to check the instruction
|
|
* queue for commands to be posted and for commands that were fetched by Octeon.
|
|
*/
|
|
static void
|
|
lio_check_db_timeout(void *arg, int pending)
|
|
{
|
|
struct lio_tq *db_tq = (struct lio_tq *)arg;
|
|
struct octeon_device *oct = db_tq->ctxptr;
|
|
uint64_t iq_no = db_tq->ctxul;
|
|
uint32_t delay = 10;
|
|
|
|
__lio_check_db_timeout(oct, iq_no);
|
|
taskqueue_enqueue_timeout(db_tq->tq, &db_tq->work,
|
|
lio_ms_to_ticks(delay));
|
|
}
|
|
|
|
int
|
|
lio_send_command(struct octeon_device *oct, uint32_t iq_no,
|
|
uint32_t force_db, void *cmd, void *buf,
|
|
uint32_t datasize, uint32_t reqtype)
|
|
{
|
|
struct lio_iq_post_status st;
|
|
struct lio_instr_queue *iq = oct->instr_queue[iq_no];
|
|
|
|
/*
|
|
* Get the lock and prevent other tasks and tx interrupt handler
|
|
* from running.
|
|
*/
|
|
mtx_lock(&iq->post_lock);
|
|
|
|
st = __lio_post_command2(iq, cmd);
|
|
|
|
if (st.status != LIO_IQ_SEND_FAILED) {
|
|
__lio_add_to_request_list(iq, st.index, buf, reqtype);
|
|
LIO_INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, bytes_sent, datasize);
|
|
LIO_INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_posted, 1);
|
|
|
|
if (force_db || (st.status == LIO_IQ_SEND_STOP))
|
|
lio_ring_doorbell(oct, iq);
|
|
} else {
|
|
LIO_INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_dropped, 1);
|
|
}
|
|
|
|
mtx_unlock(&iq->post_lock);
|
|
|
|
/*
|
|
* This is only done here to expedite packets being flushed for
|
|
* cases where there are no IQ completion interrupts.
|
|
*/
|
|
|
|
return (st.status);
|
|
}
|
|
|
|
void
|
|
lio_prepare_soft_command(struct octeon_device *oct, struct lio_soft_command *sc,
|
|
uint8_t opcode, uint8_t subcode, uint32_t irh_ossp,
|
|
uint64_t ossp0, uint64_t ossp1)
|
|
{
|
|
struct octeon_instr_ih3 *ih3;
|
|
struct octeon_instr_pki_ih3 *pki_ih3;
|
|
struct octeon_instr_irh *irh;
|
|
struct octeon_instr_rdp *rdp;
|
|
|
|
KASSERT(opcode <= 15, ("%s, %d, opcode > 15", __func__, __LINE__));
|
|
KASSERT(subcode <= 127, ("%s, %d, opcode > 127", __func__, __LINE__));
|
|
|
|
if (LIO_CN23XX_PF(oct)) {
|
|
ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
|
|
|
|
ih3->pkind = oct->instr_queue[sc->iq_no]->txpciq.s.pkind;
|
|
|
|
pki_ih3 = (struct octeon_instr_pki_ih3 *)&sc->cmd.cmd3.pki_ih3;
|
|
|
|
pki_ih3->w = 1;
|
|
pki_ih3->raw = 1;
|
|
pki_ih3->utag = 1;
|
|
pki_ih3->uqpg = oct->instr_queue[sc->iq_no]->txpciq.s.use_qpg;
|
|
pki_ih3->utt = 1;
|
|
pki_ih3->tag = LIO_CONTROL;
|
|
pki_ih3->tagtype = LIO_ATOMIC_TAG;
|
|
pki_ih3->qpg = oct->instr_queue[sc->iq_no]->txpciq.s.qpg;
|
|
pki_ih3->pm = 0x7;
|
|
pki_ih3->sl = 8;
|
|
|
|
if (sc->datasize)
|
|
ih3->dlengsz = sc->datasize;
|
|
|
|
irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
|
|
irh->opcode = opcode;
|
|
irh->subcode = subcode;
|
|
|
|
/* opcode/subcode specific parameters (ossp) */
|
|
irh->ossp = irh_ossp;
|
|
sc->cmd.cmd3.ossp[0] = ossp0;
|
|
sc->cmd.cmd3.ossp[1] = ossp1;
|
|
|
|
if (sc->rdatasize) {
|
|
rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd3.rdp;
|
|
rdp->pcie_port = oct->pcie_port;
|
|
rdp->rlen = sc->rdatasize;
|
|
|
|
irh->rflag = 1;
|
|
/* PKI IH3 */
|
|
/* pki_ih3 irh+ossp[0]+ossp[1]+rdp+rptr = 48 bytes */
|
|
ih3->fsz = LIO_SOFTCMDRESP_IH3;
|
|
} else {
|
|
irh->rflag = 0;
|
|
/* PKI IH3 */
|
|
/* pki_h3 + irh + ossp[0] + ossp[1] = 32 bytes */
|
|
ih3->fsz = LIO_PCICMD_O3;
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
lio_send_soft_command(struct octeon_device *oct, struct lio_soft_command *sc)
|
|
{
|
|
struct octeon_instr_ih3 *ih3;
|
|
struct octeon_instr_irh *irh;
|
|
uint32_t len = 0;
|
|
|
|
if (LIO_CN23XX_PF(oct)) {
|
|
ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
|
|
if (ih3->dlengsz) {
|
|
KASSERT(sc->dmadptr, ("%s, %d, sc->dmadptr is NULL",
|
|
__func__, __LINE__));
|
|
sc->cmd.cmd3.dptr = sc->dmadptr;
|
|
}
|
|
|
|
irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
|
|
if (irh->rflag) {
|
|
KASSERT(sc->dmarptr, ("%s, %d, sc->dmarptr is NULL",
|
|
__func__, __LINE__));
|
|
KASSERT(sc->status_word, ("%s, %d, sc->status_word is NULL",
|
|
__func__, __LINE__));
|
|
*sc->status_word = COMPLETION_WORD_INIT;
|
|
sc->cmd.cmd3.rptr = sc->dmarptr;
|
|
}
|
|
len = (uint32_t)ih3->dlengsz;
|
|
}
|
|
if (sc->wait_time)
|
|
sc->timeout = ticks + lio_ms_to_ticks(sc->wait_time);
|
|
|
|
return (lio_send_command(oct, sc->iq_no, 1, &sc->cmd, sc,
|
|
len, LIO_REQTYPE_SOFT_COMMAND));
|
|
}
|
|
|
|
int
|
|
lio_setup_sc_buffer_pool(struct octeon_device *oct)
|
|
{
|
|
struct lio_soft_command *sc;
|
|
uint64_t dma_addr;
|
|
int i;
|
|
|
|
STAILQ_INIT(&oct->sc_buf_pool.head);
|
|
mtx_init(&oct->sc_buf_pool.lock, "sc_pool_lock", NULL, MTX_DEF);
|
|
atomic_store_rel_int(&oct->sc_buf_pool.alloc_buf_count, 0);
|
|
|
|
for (i = 0; i < LIO_MAX_SOFT_COMMAND_BUFFERS; i++) {
|
|
sc = (struct lio_soft_command *)
|
|
lio_dma_alloc(LIO_SOFT_COMMAND_BUFFER_SIZE, (vm_paddr_t *)&dma_addr);
|
|
if (sc == NULL) {
|
|
lio_free_sc_buffer_pool(oct);
|
|
return (1);
|
|
}
|
|
|
|
sc->dma_addr = dma_addr;
|
|
sc->size = LIO_SOFT_COMMAND_BUFFER_SIZE;
|
|
|
|
STAILQ_INSERT_TAIL(&oct->sc_buf_pool.head, &sc->node, entries);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
lio_free_sc_buffer_pool(struct octeon_device *oct)
|
|
{
|
|
struct lio_stailq_node *tmp, *tmp2;
|
|
struct lio_soft_command *sc;
|
|
|
|
mtx_lock(&oct->sc_buf_pool.lock);
|
|
|
|
STAILQ_FOREACH_SAFE(tmp, &oct->sc_buf_pool.head, entries, tmp2) {
|
|
sc = LIO_STAILQ_FIRST_ENTRY(&oct->sc_buf_pool.head,
|
|
struct lio_soft_command, node);
|
|
|
|
STAILQ_REMOVE_HEAD(&oct->sc_buf_pool.head, entries);
|
|
|
|
lio_dma_free(sc->size, sc);
|
|
}
|
|
|
|
STAILQ_INIT(&oct->sc_buf_pool.head);
|
|
|
|
mtx_unlock(&oct->sc_buf_pool.lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
struct lio_soft_command *
|
|
lio_alloc_soft_command(struct octeon_device *oct, uint32_t datasize,
|
|
uint32_t rdatasize, uint32_t ctxsize)
|
|
{
|
|
struct lio_soft_command *sc = NULL;
|
|
struct lio_stailq_node *tmp;
|
|
uint64_t dma_addr;
|
|
uint32_t size;
|
|
uint32_t offset = sizeof(struct lio_soft_command);
|
|
|
|
KASSERT((offset + datasize + rdatasize + ctxsize) <=
|
|
LIO_SOFT_COMMAND_BUFFER_SIZE,
|
|
("%s, %d, offset + datasize + rdatasize + ctxsize > LIO_SOFT_COMMAND_BUFFER_SIZE",
|
|
__func__, __LINE__));
|
|
|
|
mtx_lock(&oct->sc_buf_pool.lock);
|
|
|
|
if (STAILQ_EMPTY(&oct->sc_buf_pool.head)) {
|
|
mtx_unlock(&oct->sc_buf_pool.lock);
|
|
return (NULL);
|
|
}
|
|
tmp = STAILQ_LAST(&oct->sc_buf_pool.head, lio_stailq_node, entries);
|
|
|
|
STAILQ_REMOVE(&oct->sc_buf_pool.head, tmp, lio_stailq_node, entries);
|
|
|
|
atomic_add_int(&oct->sc_buf_pool.alloc_buf_count, 1);
|
|
|
|
mtx_unlock(&oct->sc_buf_pool.lock);
|
|
|
|
sc = (struct lio_soft_command *)tmp;
|
|
|
|
dma_addr = sc->dma_addr;
|
|
size = sc->size;
|
|
|
|
bzero(sc, sc->size);
|
|
|
|
sc->dma_addr = dma_addr;
|
|
sc->size = size;
|
|
|
|
if (ctxsize) {
|
|
sc->ctxptr = (uint8_t *)sc + offset;
|
|
sc->ctxsize = ctxsize;
|
|
}
|
|
|
|
/* Start data at 128 byte boundary */
|
|
offset = (offset + ctxsize + 127) & 0xffffff80;
|
|
|
|
if (datasize) {
|
|
sc->virtdptr = (uint8_t *)sc + offset;
|
|
sc->dmadptr = dma_addr + offset;
|
|
sc->datasize = datasize;
|
|
}
|
|
/* Start rdata at 128 byte boundary */
|
|
offset = (offset + datasize + 127) & 0xffffff80;
|
|
|
|
if (rdatasize) {
|
|
KASSERT(rdatasize >= 16, ("%s, %d, rdatasize < 16", __func__,
|
|
__LINE__));
|
|
sc->virtrptr = (uint8_t *)sc + offset;
|
|
sc->dmarptr = dma_addr + offset;
|
|
sc->rdatasize = rdatasize;
|
|
sc->status_word = (uint64_t *)((uint8_t *)(sc->virtrptr) +
|
|
rdatasize - 8);
|
|
}
|
|
return (sc);
|
|
}
|
|
|
|
void
|
|
lio_free_soft_command(struct octeon_device *oct,
|
|
struct lio_soft_command *sc)
|
|
{
|
|
|
|
mtx_lock(&oct->sc_buf_pool.lock);
|
|
|
|
STAILQ_INSERT_TAIL(&oct->sc_buf_pool.head, &sc->node, entries);
|
|
|
|
atomic_subtract_int(&oct->sc_buf_pool.alloc_buf_count, 1);
|
|
|
|
mtx_unlock(&oct->sc_buf_pool.lock);
|
|
}
|