freebsd-nq/sys/dev/qlxge/qls_os.c

1502 lines
37 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2013-2014 Qlogic Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* and ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* File: qls_os.c
* Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "qls_os.h"
#include "qls_hw.h"
#include "qls_def.h"
#include "qls_inline.h"
#include "qls_ver.h"
#include "qls_glbl.h"
#include "qls_dbg.h"
#include <sys/smp.h>
/*
* Some PCI Configuration Space Related Defines
*/
#ifndef PCI_VENDOR_QLOGIC
#define PCI_VENDOR_QLOGIC 0x1077
#endif
#ifndef PCI_DEVICE_QLOGIC_8000
#define PCI_DEVICE_QLOGIC_8000 0x8000
#endif
#define PCI_QLOGIC_DEV8000 \
((PCI_DEVICE_QLOGIC_8000 << 16) | PCI_VENDOR_QLOGIC)
/*
* static functions
*/
static int qls_alloc_parent_dma_tag(qla_host_t *ha);
static void qls_free_parent_dma_tag(qla_host_t *ha);
static void qls_flush_xmt_bufs(qla_host_t *ha);
static int qls_alloc_rcv_bufs(qla_host_t *ha);
static void qls_free_rcv_bufs(qla_host_t *ha);
static void qls_init_ifnet(device_t dev, qla_host_t *ha);
static void qls_release(qla_host_t *ha);
static void qls_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs,
int error);
static void qls_stop(qla_host_t *ha);
static int qls_send(qla_host_t *ha, struct mbuf **m_headp);
static void qls_tx_done(void *context, int pending);
static int qls_config_lro(qla_host_t *ha);
static void qls_free_lro(qla_host_t *ha);
static void qls_error_recovery(void *context, int pending);
/*
* Hooks to the Operating Systems
*/
static int qls_pci_probe (device_t);
static int qls_pci_attach (device_t);
static int qls_pci_detach (device_t);
static void qls_start(struct ifnet *ifp);
static void qls_init(void *arg);
static int qls_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
static int qls_media_change(struct ifnet *ifp);
static void qls_media_status(struct ifnet *ifp, struct ifmediareq *ifmr);
static device_method_t qla_pci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, qls_pci_probe),
DEVMETHOD(device_attach, qls_pci_attach),
DEVMETHOD(device_detach, qls_pci_detach),
{ 0, 0 }
};
static driver_t qla_pci_driver = {
"ql", qla_pci_methods, sizeof (qla_host_t),
};
DRIVER_MODULE(qla8000, pci, qla_pci_driver, 0, 0);
MODULE_DEPEND(qla8000, pci, 1, 1, 1);
MODULE_DEPEND(qla8000, ether, 1, 1, 1);
MALLOC_DEFINE(M_QLA8000BUF, "qla8000buf", "Buffers for qla8000 driver");
static char dev_str[64];
static char ver_str[64];
/*
* Name: qls_pci_probe
* Function: Validate the PCI device to be a QLA80XX device
*/
static int
qls_pci_probe(device_t dev)
{
switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
case PCI_QLOGIC_DEV8000:
snprintf(dev_str, sizeof(dev_str), "%s v%d.%d.%d",
"Qlogic ISP 8000 PCI CNA Adapter-Ethernet Function",
QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
QLA_VERSION_BUILD);
snprintf(ver_str, sizeof(ver_str), "v%d.%d.%d",
QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
QLA_VERSION_BUILD);
device_set_desc(dev, dev_str);
break;
default:
return (ENXIO);
}
if (bootverbose)
printf("%s: %s\n ", __func__, dev_str);
return (BUS_PROBE_DEFAULT);
}
static int
qls_sysctl_get_drvr_stats(SYSCTL_HANDLER_ARGS)
{
int err = 0, ret;
qla_host_t *ha;
uint32_t i;
err = sysctl_handle_int(oidp, &ret, 0, req);
if (err || !req->newptr)
return (err);
if (ret == 1) {
ha = (qla_host_t *)arg1;
for (i = 0; i < ha->num_tx_rings; i++) {
device_printf(ha->pci_dev,
"%s: tx_ring[%d].tx_frames= %p\n",
__func__, i,
(void *)ha->tx_ring[i].tx_frames);
device_printf(ha->pci_dev,
"%s: tx_ring[%d].tx_tso_frames= %p\n",
__func__, i,
(void *)ha->tx_ring[i].tx_tso_frames);
device_printf(ha->pci_dev,
"%s: tx_ring[%d].tx_vlan_frames= %p\n",
__func__, i,
(void *)ha->tx_ring[i].tx_vlan_frames);
device_printf(ha->pci_dev,
"%s: tx_ring[%d].txr_free= 0x%08x\n",
__func__, i,
ha->tx_ring[i].txr_free);
device_printf(ha->pci_dev,
"%s: tx_ring[%d].txr_next= 0x%08x\n",
__func__, i,
ha->tx_ring[i].txr_next);
device_printf(ha->pci_dev,
"%s: tx_ring[%d].txr_done= 0x%08x\n",
__func__, i,
ha->tx_ring[i].txr_done);
device_printf(ha->pci_dev,
"%s: tx_ring[%d].txr_cons_idx= 0x%08x\n",
__func__, i,
*(ha->tx_ring[i].txr_cons_vaddr));
}
for (i = 0; i < ha->num_rx_rings; i++) {
device_printf(ha->pci_dev,
"%s: rx_ring[%d].rx_int= %p\n",
__func__, i,
(void *)ha->rx_ring[i].rx_int);
device_printf(ha->pci_dev,
"%s: rx_ring[%d].rss_int= %p\n",
__func__, i,
(void *)ha->rx_ring[i].rss_int);
device_printf(ha->pci_dev,
"%s: rx_ring[%d].lbq_next= 0x%08x\n",
__func__, i,
ha->rx_ring[i].lbq_next);
device_printf(ha->pci_dev,
"%s: rx_ring[%d].lbq_free= 0x%08x\n",
__func__, i,
ha->rx_ring[i].lbq_free);
device_printf(ha->pci_dev,
"%s: rx_ring[%d].lbq_in= 0x%08x\n",
__func__, i,
ha->rx_ring[i].lbq_in);
device_printf(ha->pci_dev,
"%s: rx_ring[%d].sbq_next= 0x%08x\n",
__func__, i,
ha->rx_ring[i].sbq_next);
device_printf(ha->pci_dev,
"%s: rx_ring[%d].sbq_free= 0x%08x\n",
__func__, i,
ha->rx_ring[i].sbq_free);
device_printf(ha->pci_dev,
"%s: rx_ring[%d].sbq_in= 0x%08x\n",
__func__, i,
ha->rx_ring[i].sbq_in);
}
device_printf(ha->pci_dev, "%s: err_m_getcl = 0x%08x\n",
__func__, ha->err_m_getcl);
device_printf(ha->pci_dev, "%s: err_m_getjcl = 0x%08x\n",
__func__, ha->err_m_getjcl);
device_printf(ha->pci_dev,
"%s: err_tx_dmamap_create = 0x%08x\n",
__func__, ha->err_tx_dmamap_create);
device_printf(ha->pci_dev,
"%s: err_tx_dmamap_load = 0x%08x\n",
__func__, ha->err_tx_dmamap_load);
device_printf(ha->pci_dev,
"%s: err_tx_defrag = 0x%08x\n",
__func__, ha->err_tx_defrag);
}
return (err);
}
static void
qls_add_sysctls(qla_host_t *ha)
{
device_t dev = ha->pci_dev;
SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "version", CTLFLAG_RD,
ver_str, 0, "Driver Version");
qls_dbg_level = 0;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "debug", CTLFLAG_RW,
&qls_dbg_level, qls_dbg_level, "Debug Level");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "drvr_stats",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, (void *)ha, 0,
qls_sysctl_get_drvr_stats, "I", "Driver Maintained Statistics");
return;
}
static void
qls_watchdog(void *arg)
{
qla_host_t *ha = arg;
struct ifnet *ifp;
ifp = ha->ifp;
if (ha->flags.qla_watchdog_exit) {
ha->qla_watchdog_exited = 1;
return;
}
ha->qla_watchdog_exited = 0;
if (!ha->flags.qla_watchdog_pause) {
if (ha->qla_initiate_recovery) {
ha->qla_watchdog_paused = 1;
ha->qla_initiate_recovery = 0;
ha->err_inject = 0;
taskqueue_enqueue(ha->err_tq, &ha->err_task);
} else if ((ifp->if_snd.ifq_head != NULL) && QL_RUNNING(ifp)) {
taskqueue_enqueue(ha->tx_tq, &ha->tx_task);
}
ha->qla_watchdog_paused = 0;
} else {
ha->qla_watchdog_paused = 1;
}
ha->watchdog_ticks = (ha->watchdog_ticks + 1) % 1000;
callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
qls_watchdog, ha);
return;
}
/*
* Name: qls_pci_attach
* Function: attaches the device to the operating system
*/
static int
qls_pci_attach(device_t dev)
{
qla_host_t *ha = NULL;
int i;
QL_DPRINT2((dev, "%s: enter\n", __func__));
if ((ha = device_get_softc(dev)) == NULL) {
device_printf(dev, "cannot get softc\n");
return (ENOMEM);
}
memset(ha, 0, sizeof (qla_host_t));
if (pci_get_device(dev) != PCI_DEVICE_QLOGIC_8000) {
device_printf(dev, "device is not QLE8000\n");
return (ENXIO);
}
ha->pci_func = pci_get_function(dev);
ha->pci_dev = dev;
pci_enable_busmaster(dev);
ha->reg_rid = PCIR_BAR(1);
ha->pci_reg = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &ha->reg_rid,
RF_ACTIVE);
if (ha->pci_reg == NULL) {
device_printf(dev, "unable to map any ports\n");
goto qls_pci_attach_err;
}
ha->reg_rid1 = PCIR_BAR(3);
ha->pci_reg1 = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&ha->reg_rid1, RF_ACTIVE);
if (ha->pci_reg1 == NULL) {
device_printf(dev, "unable to map any ports\n");
goto qls_pci_attach_err;
}
mtx_init(&ha->hw_lock, "qla80xx_hw_lock", MTX_NETWORK_LOCK, MTX_DEF);
mtx_init(&ha->tx_lock, "qla80xx_tx_lock", MTX_NETWORK_LOCK, MTX_DEF);
qls_add_sysctls(ha);
qls_hw_add_sysctls(ha);
ha->flags.lock_init = 1;
ha->msix_count = pci_msix_count(dev);
if (ha->msix_count < qls_get_msix_count(ha)) {
device_printf(dev, "%s: msix_count[%d] not enough\n", __func__,
ha->msix_count);
goto qls_pci_attach_err;
}
ha->msix_count = qls_get_msix_count(ha);
device_printf(dev, "\n%s: ha %p pci_func 0x%x msix_count 0x%x"
" pci_reg %p pci_reg1 %p\n", __func__, ha,
ha->pci_func, ha->msix_count, ha->pci_reg, ha->pci_reg1);
if (pci_alloc_msix(dev, &ha->msix_count)) {
device_printf(dev, "%s: pci_alloc_msi[%d] failed\n", __func__,
ha->msix_count);
ha->msix_count = 0;
goto qls_pci_attach_err;
}
for (i = 0; i < ha->num_rx_rings; i++) {
ha->irq_vec[i].cq_idx = i;
ha->irq_vec[i].ha = ha;
ha->irq_vec[i].irq_rid = 1 + i;
ha->irq_vec[i].irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&ha->irq_vec[i].irq_rid,
(RF_ACTIVE | RF_SHAREABLE));
if (ha->irq_vec[i].irq == NULL) {
device_printf(dev, "could not allocate interrupt\n");
goto qls_pci_attach_err;
}
if (bus_setup_intr(dev, ha->irq_vec[i].irq,
(INTR_TYPE_NET | INTR_MPSAFE), NULL, qls_isr,
&ha->irq_vec[i], &ha->irq_vec[i].handle)) {
device_printf(dev,
"could not setup interrupt\n");
goto qls_pci_attach_err;
}
}
qls_rd_nic_params(ha);
/* allocate parent dma tag */
if (qls_alloc_parent_dma_tag(ha)) {
device_printf(dev, "%s: qls_alloc_parent_dma_tag failed\n",
__func__);
goto qls_pci_attach_err;
}
/* alloc all dma buffers */
if (qls_alloc_dma(ha)) {
device_printf(dev, "%s: qls_alloc_dma failed\n", __func__);
goto qls_pci_attach_err;
}
/* create the o.s ethernet interface */
qls_init_ifnet(dev, ha);
ha->flags.qla_watchdog_active = 1;
ha->flags.qla_watchdog_pause = 1;
TASK_INIT(&ha->tx_task, 0, qls_tx_done, ha);
ha->tx_tq = taskqueue_create_fast("qla_txq", M_NOWAIT,
taskqueue_thread_enqueue, &ha->tx_tq);
taskqueue_start_threads(&ha->tx_tq, 1, PI_NET, "%s txq",
device_get_nameunit(ha->pci_dev));
callout_init(&ha->tx_callout, 1);
ha->flags.qla_callout_init = 1;
/* create ioctl device interface */
if (qls_make_cdev(ha)) {
device_printf(dev, "%s: qls_make_cdev failed\n", __func__);
goto qls_pci_attach_err;
}
callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
qls_watchdog, ha);
TASK_INIT(&ha->err_task, 0, qls_error_recovery, ha);
ha->err_tq = taskqueue_create_fast("qla_errq", M_NOWAIT,
taskqueue_thread_enqueue, &ha->err_tq);
taskqueue_start_threads(&ha->err_tq, 1, PI_NET, "%s errq",
device_get_nameunit(ha->pci_dev));
QL_DPRINT2((dev, "%s: exit 0\n", __func__));
return (0);
qls_pci_attach_err:
qls_release(ha);
QL_DPRINT2((dev, "%s: exit ENXIO\n", __func__));
return (ENXIO);
}
/*
* Name: qls_pci_detach
* Function: Unhooks the device from the operating system
*/
static int
qls_pci_detach(device_t dev)
{
qla_host_t *ha = NULL;
QL_DPRINT2((dev, "%s: enter\n", __func__));
if ((ha = device_get_softc(dev)) == NULL) {
device_printf(dev, "cannot get softc\n");
return (ENOMEM);
}
(void)QLA_LOCK(ha, __func__, 0);
qls_stop(ha);
QLA_UNLOCK(ha, __func__);
qls_release(ha);
QL_DPRINT2((dev, "%s: exit\n", __func__));
return (0);
}
/*
* Name: qls_release
* Function: Releases the resources allocated for the device
*/
static void
qls_release(qla_host_t *ha)
{
device_t dev;
int i;
dev = ha->pci_dev;
if (ha->err_tq) {
taskqueue_drain(ha->err_tq, &ha->err_task);
taskqueue_free(ha->err_tq);
}
if (ha->tx_tq) {
taskqueue_drain(ha->tx_tq, &ha->tx_task);
taskqueue_free(ha->tx_tq);
}
qls_del_cdev(ha);
if (ha->flags.qla_watchdog_active) {
ha->flags.qla_watchdog_exit = 1;
while (ha->qla_watchdog_exited == 0)
qls_mdelay(__func__, 1);
}
if (ha->flags.qla_callout_init)
callout_stop(&ha->tx_callout);
if (ha->ifp != NULL)
ether_ifdetach(ha->ifp);
qls_free_dma(ha);
qls_free_parent_dma_tag(ha);
for (i = 0; i < ha->num_rx_rings; i++) {
if (ha->irq_vec[i].handle) {
(void)bus_teardown_intr(dev, ha->irq_vec[i].irq,
ha->irq_vec[i].handle);
}
if (ha->irq_vec[i].irq) {
(void)bus_release_resource(dev, SYS_RES_IRQ,
ha->irq_vec[i].irq_rid,
ha->irq_vec[i].irq);
}
}
if (ha->msix_count)
pci_release_msi(dev);
if (ha->flags.lock_init) {
mtx_destroy(&ha->tx_lock);
mtx_destroy(&ha->hw_lock);
}
if (ha->pci_reg)
(void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid,
ha->pci_reg);
if (ha->pci_reg1)
(void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid1,
ha->pci_reg1);
}
/*
* DMA Related Functions
*/
static void
qls_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
*((bus_addr_t *)arg) = 0;
if (error) {
printf("%s: bus_dmamap_load failed (%d)\n", __func__, error);
return;
}
*((bus_addr_t *)arg) = segs[0].ds_addr;
return;
}
int
qls_alloc_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
{
int ret = 0;
device_t dev;
bus_addr_t b_addr;
dev = ha->pci_dev;
QL_DPRINT2((dev, "%s: enter\n", __func__));
ret = bus_dma_tag_create(
ha->parent_tag,/* parent */
dma_buf->alignment,
((bus_size_t)(1ULL << 32)),/* boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
dma_buf->size, /* maxsize */
1, /* nsegments */
dma_buf->size, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&dma_buf->dma_tag);
if (ret) {
device_printf(dev, "%s: could not create dma tag\n", __func__);
goto qls_alloc_dmabuf_exit;
}
ret = bus_dmamem_alloc(dma_buf->dma_tag,
(void **)&dma_buf->dma_b,
(BUS_DMA_ZERO | BUS_DMA_COHERENT | BUS_DMA_NOWAIT),
&dma_buf->dma_map);
if (ret) {
bus_dma_tag_destroy(dma_buf->dma_tag);
device_printf(dev, "%s: bus_dmamem_alloc failed\n", __func__);
goto qls_alloc_dmabuf_exit;
}
ret = bus_dmamap_load(dma_buf->dma_tag,
dma_buf->dma_map,
dma_buf->dma_b,
dma_buf->size,
qls_dmamap_callback,
&b_addr, BUS_DMA_NOWAIT);
if (ret || !b_addr) {
bus_dma_tag_destroy(dma_buf->dma_tag);
bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b,
dma_buf->dma_map);
ret = -1;
goto qls_alloc_dmabuf_exit;
}
dma_buf->dma_addr = b_addr;
qls_alloc_dmabuf_exit:
QL_DPRINT2((dev, "%s: exit ret 0x%08x tag %p map %p b %p sz 0x%x\n",
__func__, ret, (void *)dma_buf->dma_tag,
(void *)dma_buf->dma_map, (void *)dma_buf->dma_b,
dma_buf->size));
return ret;
}
void
qls_free_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
{
bus_dmamap_unload(dma_buf->dma_tag, dma_buf->dma_map);
bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b, dma_buf->dma_map);
bus_dma_tag_destroy(dma_buf->dma_tag);
}
static int
qls_alloc_parent_dma_tag(qla_host_t *ha)
{
int ret;
device_t dev;
dev = ha->pci_dev;
/*
* Allocate parent DMA Tag
*/
ret = bus_dma_tag_create(
bus_get_dma_tag(dev), /* parent */
1,((bus_size_t)(1ULL << 32)),/* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
0, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&ha->parent_tag);
if (ret) {
device_printf(dev, "%s: could not create parent dma tag\n",
__func__);
return (-1);
}
ha->flags.parent_tag = 1;
return (0);
}
static void
qls_free_parent_dma_tag(qla_host_t *ha)
{
if (ha->flags.parent_tag) {
bus_dma_tag_destroy(ha->parent_tag);
ha->flags.parent_tag = 0;
}
}
/*
* Name: qls_init_ifnet
* Function: Creates the Network Device Interface and Registers it with the O.S
*/
static void
qls_init_ifnet(device_t dev, qla_host_t *ha)
{
struct ifnet *ifp;
QL_DPRINT2((dev, "%s: enter\n", __func__));
ifp = ha->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL)
panic("%s: cannot if_alloc()\n", device_get_nameunit(dev));
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_baudrate = IF_Gbps(10);
ifp->if_init = qls_init;
ifp->if_softc = ha;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = qls_ioctl;
ifp->if_start = qls_start;
IFQ_SET_MAXLEN(&ifp->if_snd, qls_get_ifq_snd_maxlen(ha));
ifp->if_snd.ifq_drv_maxlen = qls_get_ifq_snd_maxlen(ha);
IFQ_SET_READY(&ifp->if_snd);
ha->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
if (ha->max_frame_size <= MCLBYTES) {
ha->msize = MCLBYTES;
} else if (ha->max_frame_size <= MJUMPAGESIZE) {
ha->msize = MJUMPAGESIZE;
} else
ha->msize = MJUM9BYTES;
ether_ifattach(ifp, qls_get_mac_addr(ha));
ifp->if_capabilities = IFCAP_JUMBO_MTU;
ifp->if_capabilities |= IFCAP_HWCSUM;
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capabilities |= IFCAP_TSO4;
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
ifp->if_capabilities |= IFCAP_VLAN_HWTSO;
ifp->if_capabilities |= IFCAP_LINKSTATE;
ifp->if_capenable = ifp->if_capabilities;
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
ifmedia_init(&ha->media, IFM_IMASK, qls_media_change, qls_media_status);
ifmedia_add(&ha->media, (IFM_ETHER | qls_get_optics(ha) | IFM_FDX), 0,
NULL);
ifmedia_add(&ha->media, (IFM_ETHER | IFM_AUTO), 0, NULL);
ifmedia_set(&ha->media, (IFM_ETHER | IFM_AUTO));
QL_DPRINT2((dev, "%s: exit\n", __func__));
return;
}
static void
qls_init_locked(qla_host_t *ha)
{
struct ifnet *ifp = ha->ifp;
qls_stop(ha);
qls_flush_xmt_bufs(ha);
if (qls_alloc_rcv_bufs(ha) != 0)
return;
if (qls_config_lro(ha))
return;
bcopy(IF_LLADDR(ha->ifp), ha->mac_addr, ETHER_ADDR_LEN);
ifp->if_hwassist = CSUM_IP;
ifp->if_hwassist |= CSUM_TCP;
ifp->if_hwassist |= CSUM_UDP;
ifp->if_hwassist |= CSUM_TSO;
if (qls_init_hw_if(ha) == 0) {
ifp = ha->ifp;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ha->flags.qla_watchdog_pause = 0;
}
return;
}
static void
qls_init(void *arg)
{
qla_host_t *ha;
ha = (qla_host_t *)arg;
QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
(void)QLA_LOCK(ha, __func__, 0);
qls_init_locked(ha);
QLA_UNLOCK(ha, __func__);
QL_DPRINT2((ha->pci_dev, "%s: exit\n", __func__));
}
static u_int
qls_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int mcnt)
{
uint8_t *mta = arg;
if (mcnt == Q8_MAX_NUM_MULTICAST_ADDRS)
return (0);
bcopy(LLADDR(sdl), &mta[mcnt * Q8_MAC_ADDR_LEN], Q8_MAC_ADDR_LEN);
return (1);
}
static void
qls_set_multi(qla_host_t *ha, uint32_t add_multi)
{
uint8_t mta[Q8_MAX_NUM_MULTICAST_ADDRS * Q8_MAC_ADDR_LEN];
struct ifnet *ifp = ha->ifp;
int mcnt;
mcnt = if_foreach_llmaddr(ifp, qls_copy_maddr, mta);
if (QLA_LOCK(ha, __func__, 1) == 0) {
qls_hw_set_multi(ha, mta, mcnt, add_multi);
QLA_UNLOCK(ha, __func__);
}
return;
}
static int
qls_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
int ret = 0;
struct ifreq *ifr = (struct ifreq *)data;
#ifdef INET
struct ifaddr *ifa = (struct ifaddr *)data;
#endif
qla_host_t *ha;
ha = (qla_host_t *)ifp->if_softc;
switch (cmd) {
case SIOCSIFADDR:
QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFADDR (0x%lx)\n",
__func__, cmd));
#ifdef INET
if (ifa->ifa_addr->sa_family == AF_INET) {
ifp->if_flags |= IFF_UP;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
(void)QLA_LOCK(ha, __func__, 0);
qls_init_locked(ha);
QLA_UNLOCK(ha, __func__);
}
QL_DPRINT4((ha->pci_dev,
"%s: SIOCSIFADDR (0x%lx) ipv4 [0x%08x]\n",
__func__, cmd,
ntohl(IA_SIN(ifa)->sin_addr.s_addr)));
arp_ifinit(ifp, ifa);
break;
}
#endif
ether_ioctl(ifp, cmd, data);
break;
case SIOCSIFMTU:
QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFMTU (0x%lx)\n",
__func__, cmd));
if (ifr->ifr_mtu > QLA_MAX_MTU) {
ret = EINVAL;
} else {
(void) QLA_LOCK(ha, __func__, 0);
ifp->if_mtu = ifr->ifr_mtu;
ha->max_frame_size =
ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
QLA_UNLOCK(ha, __func__);
if (ret)
ret = EINVAL;
}
break;
case SIOCSIFFLAGS:
QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFFLAGS (0x%lx)\n",
__func__, cmd));
(void)QLA_LOCK(ha, __func__, 0);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
if ((ifp->if_flags ^ ha->if_flags) &
IFF_PROMISC) {
ret = qls_set_promisc(ha);
} else if ((ifp->if_flags ^ ha->if_flags) &
IFF_ALLMULTI) {
ret = qls_set_allmulti(ha);
}
} else {
ha->max_frame_size = ifp->if_mtu +
ETHER_HDR_LEN + ETHER_CRC_LEN;
qls_init_locked(ha);
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
qls_stop(ha);
ha->if_flags = ifp->if_flags;
}
QLA_UNLOCK(ha, __func__);
break;
case SIOCADDMULTI:
QL_DPRINT4((ha->pci_dev,
"%s: %s (0x%lx)\n", __func__, "SIOCADDMULTI", cmd));
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
qls_set_multi(ha, 1);
}
break;
case SIOCDELMULTI:
QL_DPRINT4((ha->pci_dev,
"%s: %s (0x%lx)\n", __func__, "SIOCDELMULTI", cmd));
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
qls_set_multi(ha, 0);
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
QL_DPRINT4((ha->pci_dev,
"%s: SIOCSIFMEDIA/SIOCGIFMEDIA (0x%lx)\n",
__func__, cmd));
ret = ifmedia_ioctl(ifp, ifr, &ha->media, cmd);
break;
case SIOCSIFCAP:
{
int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFCAP (0x%lx)\n",
__func__, cmd));
if (mask & IFCAP_HWCSUM)
ifp->if_capenable ^= IFCAP_HWCSUM;
if (mask & IFCAP_TSO4)
ifp->if_capenable ^= IFCAP_TSO4;
if (mask & IFCAP_VLAN_HWTAGGING)
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if (mask & IFCAP_VLAN_HWTSO)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
qls_init(ha);
VLAN_CAPABILITIES(ifp);
break;
}
default:
QL_DPRINT4((ha->pci_dev, "%s: default (0x%lx)\n",
__func__, cmd));
ret = ether_ioctl(ifp, cmd, data);
break;
}
return (ret);
}
static int
qls_media_change(struct ifnet *ifp)
{
qla_host_t *ha;
struct ifmedia *ifm;
int ret = 0;
ha = (qla_host_t *)ifp->if_softc;
QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
ifm = &ha->media;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
ret = EINVAL;
QL_DPRINT2((ha->pci_dev, "%s: exit\n", __func__));
return (ret);
}
static void
qls_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
qla_host_t *ha;
ha = (qla_host_t *)ifp->if_softc;
QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
qls_update_link_state(ha);
if (ha->link_up) {
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= (IFM_FDX | qls_get_optics(ha));
}
QL_DPRINT2((ha->pci_dev, "%s: exit (%s)\n", __func__,\
(ha->link_up ? "link_up" : "link_down")));
return;
}
static void
qls_start(struct ifnet *ifp)
{
int i, ret = 0;
struct mbuf *m_head;
qla_host_t *ha = (qla_host_t *)ifp->if_softc;
QL_DPRINT8((ha->pci_dev, "%s: enter\n", __func__));
if (!mtx_trylock(&ha->tx_lock)) {
QL_DPRINT8((ha->pci_dev,
"%s: mtx_trylock(&ha->tx_lock) failed\n", __func__));
return;
}
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) ==
IFF_DRV_RUNNING) {
for (i = 0; i < ha->num_tx_rings; i++) {
ret |= qls_hw_tx_done(ha, i);
}
if (ret == 0)
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING) {
QL_DPRINT8((ha->pci_dev, "%s: !IFF_DRV_RUNNING\n", __func__));
QLA_TX_UNLOCK(ha);
return;
}
if (!ha->link_up) {
qls_update_link_state(ha);
if (!ha->link_up) {
QL_DPRINT8((ha->pci_dev, "%s: link down\n", __func__));
QLA_TX_UNLOCK(ha);
return;
}
}
while (ifp->if_snd.ifq_head != NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL) {
QL_DPRINT8((ha->pci_dev, "%s: m_head == NULL\n",
__func__));
break;
}
if (qls_send(ha, &m_head)) {
if (m_head == NULL)
break;
QL_DPRINT8((ha->pci_dev, "%s: PREPEND\n", __func__));
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IF_PREPEND(&ifp->if_snd, m_head);
break;
}
/* Send a copy of the frame to the BPF listener */
ETHER_BPF_MTAP(ifp, m_head);
}
QLA_TX_UNLOCK(ha);
QL_DPRINT8((ha->pci_dev, "%s: exit\n", __func__));
return;
}
static int
qls_send(qla_host_t *ha, struct mbuf **m_headp)
{
bus_dma_segment_t segs[QLA_MAX_SEGMENTS];
bus_dmamap_t map;
int nsegs;
int ret = -1;
uint32_t tx_idx;
struct mbuf *m_head = *m_headp;
uint32_t txr_idx = 0;
QL_DPRINT8((ha->pci_dev, "%s: enter\n", __func__));
/* check if flowid is set */
if (M_HASHTYPE_GET(m_head) != M_HASHTYPE_NONE)
txr_idx = m_head->m_pkthdr.flowid & (ha->num_tx_rings - 1);
tx_idx = ha->tx_ring[txr_idx].txr_next;
map = ha->tx_ring[txr_idx].tx_buf[tx_idx].map;
ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head, segs, &nsegs,
BUS_DMA_NOWAIT);
if (ret == EFBIG) {
struct mbuf *m;
QL_DPRINT8((ha->pci_dev, "%s: EFBIG [%d]\n", __func__,
m_head->m_pkthdr.len));
m = m_defrag(m_head, M_NOWAIT);
if (m == NULL) {
ha->err_tx_defrag++;
m_freem(m_head);
*m_headp = NULL;
device_printf(ha->pci_dev,
"%s: m_defrag() = NULL [%d]\n",
__func__, ret);
return (ENOBUFS);
}
m_head = m;
*m_headp = m_head;
if ((ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head,
segs, &nsegs, BUS_DMA_NOWAIT))) {
ha->err_tx_dmamap_load++;
device_printf(ha->pci_dev,
"%s: bus_dmamap_load_mbuf_sg failed0[%d, %d]\n",
__func__, ret, m_head->m_pkthdr.len);
if (ret != ENOMEM) {
m_freem(m_head);
*m_headp = NULL;
}
return (ret);
}
} else if (ret) {
ha->err_tx_dmamap_load++;
device_printf(ha->pci_dev,
"%s: bus_dmamap_load_mbuf_sg failed1[%d, %d]\n",
__func__, ret, m_head->m_pkthdr.len);
if (ret != ENOMEM) {
m_freem(m_head);
*m_headp = NULL;
}
return (ret);
}
QL_ASSERT(ha, (nsegs != 0), ("qls_send: empty packet"));
bus_dmamap_sync(ha->tx_tag, map, BUS_DMASYNC_PREWRITE);
if (!(ret = qls_hw_send(ha, segs, nsegs, tx_idx, m_head, txr_idx))) {
ha->tx_ring[txr_idx].count++;
ha->tx_ring[txr_idx].tx_buf[tx_idx].m_head = m_head;
ha->tx_ring[txr_idx].tx_buf[tx_idx].map = map;
} else {
if (ret == EINVAL) {
if (m_head)
m_freem(m_head);
*m_headp = NULL;
}
}
QL_DPRINT8((ha->pci_dev, "%s: exit\n", __func__));
return (ret);
}
static void
qls_stop(qla_host_t *ha)
{
struct ifnet *ifp = ha->ifp;
ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE | IFF_DRV_RUNNING);
ha->flags.qla_watchdog_pause = 1;
while (!ha->qla_watchdog_paused)
qls_mdelay(__func__, 1);
qls_del_hw_if(ha);
qls_free_lro(ha);
qls_flush_xmt_bufs(ha);
qls_free_rcv_bufs(ha);
return;
}
/*
* Buffer Management Functions for Transmit and Receive Rings
*/
/*
* Release mbuf after it sent on the wire
*/
static void
qls_flush_tx_buf(qla_host_t *ha, qla_tx_buf_t *txb)
{
QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
if (txb->m_head) {
bus_dmamap_unload(ha->tx_tag, txb->map);
m_freem(txb->m_head);
txb->m_head = NULL;
}
QL_DPRINT2((ha->pci_dev, "%s: exit\n", __func__));
}
static void
qls_flush_xmt_bufs(qla_host_t *ha)
{
int i, j;
for (j = 0; j < ha->num_tx_rings; j++) {
for (i = 0; i < NUM_TX_DESCRIPTORS; i++)
qls_flush_tx_buf(ha, &ha->tx_ring[j].tx_buf[i]);
}
return;
}
static int
qls_alloc_rcv_mbufs(qla_host_t *ha, int r)
{
int i, j, ret = 0;
qla_rx_buf_t *rxb;
qla_rx_ring_t *rx_ring;
volatile q81_bq_addr_e_t *sbq_e;
rx_ring = &ha->rx_ring[r];
for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
rxb = &rx_ring->rx_buf[i];
ret = bus_dmamap_create(ha->rx_tag, BUS_DMA_NOWAIT, &rxb->map);
if (ret) {
device_printf(ha->pci_dev,
"%s: dmamap[%d, %d] failed\n", __func__, r, i);
for (j = 0; j < i; j++) {
rxb = &rx_ring->rx_buf[j];
bus_dmamap_destroy(ha->rx_tag, rxb->map);
}
goto qls_alloc_rcv_mbufs_err;
}
}
rx_ring = &ha->rx_ring[r];
sbq_e = rx_ring->sbq_vaddr;
rxb = &rx_ring->rx_buf[0];
for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
if (!(ret = qls_get_mbuf(ha, rxb, NULL))) {
/*
* set the physical address in the
* corresponding descriptor entry in the
* receive ring/queue for the hba
*/
sbq_e->addr_lo = rxb->paddr & 0xFFFFFFFF;
sbq_e->addr_hi = (rxb->paddr >> 32) & 0xFFFFFFFF;
} else {
device_printf(ha->pci_dev,
"%s: qls_get_mbuf [%d, %d] failed\n",
__func__, r, i);
bus_dmamap_destroy(ha->rx_tag, rxb->map);
goto qls_alloc_rcv_mbufs_err;
}
rxb++;
sbq_e++;
}
return 0;
qls_alloc_rcv_mbufs_err:
return (-1);
}
static void
qls_free_rcv_bufs(qla_host_t *ha)
{
int i, r;
qla_rx_buf_t *rxb;
qla_rx_ring_t *rxr;
for (r = 0; r < ha->num_rx_rings; r++) {
rxr = &ha->rx_ring[r];
for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
rxb = &rxr->rx_buf[i];
if (rxb->m_head != NULL) {
bus_dmamap_unload(ha->rx_tag, rxb->map);
bus_dmamap_destroy(ha->rx_tag, rxb->map);
m_freem(rxb->m_head);
}
}
bzero(rxr->rx_buf, (sizeof(qla_rx_buf_t) * NUM_RX_DESCRIPTORS));
}
return;
}
static int
qls_alloc_rcv_bufs(qla_host_t *ha)
{
int r, ret = 0;
qla_rx_ring_t *rxr;
for (r = 0; r < ha->num_rx_rings; r++) {
rxr = &ha->rx_ring[r];
bzero(rxr->rx_buf, (sizeof(qla_rx_buf_t) * NUM_RX_DESCRIPTORS));
}
for (r = 0; r < ha->num_rx_rings; r++) {
ret = qls_alloc_rcv_mbufs(ha, r);
if (ret)
qls_free_rcv_bufs(ha);
}
return (ret);
}
int
qls_get_mbuf(qla_host_t *ha, qla_rx_buf_t *rxb, struct mbuf *nmp)
{
struct mbuf *mp = nmp;
int ret = 0;
uint32_t offset;
bus_dma_segment_t segs[1];
int nsegs;
QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
if (mp == NULL) {
mp = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, ha->msize);
if (mp == NULL) {
if (ha->msize == MCLBYTES)
ha->err_m_getcl++;
else
ha->err_m_getjcl++;
ret = ENOBUFS;
device_printf(ha->pci_dev,
"%s: m_getcl failed\n", __func__);
goto exit_qls_get_mbuf;
}
mp->m_len = mp->m_pkthdr.len = ha->msize;
} else {
mp->m_len = mp->m_pkthdr.len = ha->msize;
mp->m_data = mp->m_ext.ext_buf;
mp->m_next = NULL;
}
/* align the receive buffers to 8 byte boundary */
offset = (uint32_t)((unsigned long long)mp->m_data & 0x7ULL);
if (offset) {
offset = 8 - offset;
m_adj(mp, offset);
}
/*
* Using memory from the mbuf cluster pool, invoke the bus_dma
* machinery to arrange the memory mapping.
*/
ret = bus_dmamap_load_mbuf_sg(ha->rx_tag, rxb->map,
mp, segs, &nsegs, BUS_DMA_NOWAIT);
rxb->paddr = segs[0].ds_addr;
if (ret || !rxb->paddr || (nsegs != 1)) {
m_freem(mp);
rxb->m_head = NULL;
device_printf(ha->pci_dev,
"%s: bus_dmamap_load failed[%d, 0x%016llx, %d]\n",
__func__, ret, (long long unsigned int)rxb->paddr,
nsegs);
ret = -1;
goto exit_qls_get_mbuf;
}
rxb->m_head = mp;
bus_dmamap_sync(ha->rx_tag, rxb->map, BUS_DMASYNC_PREREAD);
exit_qls_get_mbuf:
QL_DPRINT2((ha->pci_dev, "%s: exit ret = 0x%08x\n", __func__, ret));
return (ret);
}
static void
qls_tx_done(void *context, int pending)
{
qla_host_t *ha = context;
struct ifnet *ifp;
ifp = ha->ifp;
if (!ifp)
return;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
QL_DPRINT8((ha->pci_dev, "%s: !IFF_DRV_RUNNING\n", __func__));
return;
}
qls_start(ha->ifp);
return;
}
static int
qls_config_lro(qla_host_t *ha)
{
#if defined(INET) || defined(INET6)
int i;
struct lro_ctrl *lro;
for (i = 0; i < ha->num_rx_rings; i++) {
lro = &ha->rx_ring[i].lro;
if (tcp_lro_init(lro)) {
device_printf(ha->pci_dev, "%s: tcp_lro_init failed\n",
__func__);
return (-1);
}
lro->ifp = ha->ifp;
}
ha->flags.lro_init = 1;
QL_DPRINT2((ha->pci_dev, "%s: LRO initialized\n", __func__));
#endif
return (0);
}
static void
qls_free_lro(qla_host_t *ha)
{
#if defined(INET) || defined(INET6)
int i;
struct lro_ctrl *lro;
if (!ha->flags.lro_init)
return;
for (i = 0; i < ha->num_rx_rings; i++) {
lro = &ha->rx_ring[i].lro;
tcp_lro_free(lro);
}
ha->flags.lro_init = 0;
#endif
}
static void
qls_error_recovery(void *context, int pending)
{
qla_host_t *ha = context;
qls_init(ha);
return;
}