1405 lines
57 KiB
C++
1405 lines
57 KiB
C++
//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the ASTContext interface.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
|
|
#define LLVM_CLANG_AST_ASTCONTEXT_H
|
|
|
|
#include "clang/Basic/IdentifierTable.h"
|
|
#include "clang/Basic/LangOptions.h"
|
|
#include "clang/Basic/OperatorKinds.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/NestedNameSpecifier.h"
|
|
#include "clang/AST/PrettyPrinter.h"
|
|
#include "clang/AST/TemplateName.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/AST/CanonicalType.h"
|
|
#include "clang/AST/UsuallyTinyPtrVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/OwningPtr.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
struct fltSemantics;
|
|
class raw_ostream;
|
|
}
|
|
|
|
namespace clang {
|
|
class FileManager;
|
|
class ASTRecordLayout;
|
|
class BlockExpr;
|
|
class CharUnits;
|
|
class Diagnostic;
|
|
class Expr;
|
|
class ExternalASTSource;
|
|
class IdentifierTable;
|
|
class SelectorTable;
|
|
class SourceManager;
|
|
class TargetInfo;
|
|
// Decls
|
|
class DeclContext;
|
|
class CXXMethodDecl;
|
|
class CXXRecordDecl;
|
|
class Decl;
|
|
class FieldDecl;
|
|
class ObjCIvarDecl;
|
|
class ObjCIvarRefExpr;
|
|
class ObjCPropertyDecl;
|
|
class RecordDecl;
|
|
class StoredDeclsMap;
|
|
class TagDecl;
|
|
class TemplateTypeParmDecl;
|
|
class TranslationUnitDecl;
|
|
class TypeDecl;
|
|
class TypedefDecl;
|
|
class UsingDecl;
|
|
class UsingShadowDecl;
|
|
class UnresolvedSetIterator;
|
|
|
|
namespace Builtin { class Context; }
|
|
|
|
/// ASTContext - This class holds long-lived AST nodes (such as types and
|
|
/// decls) that can be referred to throughout the semantic analysis of a file.
|
|
class ASTContext {
|
|
std::vector<Type*> Types;
|
|
llvm::FoldingSet<ExtQuals> ExtQualNodes;
|
|
llvm::FoldingSet<ComplexType> ComplexTypes;
|
|
llvm::FoldingSet<PointerType> PointerTypes;
|
|
llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
|
|
llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
|
|
llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
|
|
llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
|
|
llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
|
|
llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
|
|
std::vector<VariableArrayType*> VariableArrayTypes;
|
|
llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
|
|
llvm::FoldingSet<DependentSizedExtVectorType> DependentSizedExtVectorTypes;
|
|
llvm::FoldingSet<VectorType> VectorTypes;
|
|
llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
|
|
llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
|
|
llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
|
|
llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
|
|
llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
|
|
llvm::FoldingSet<SubstTemplateTypeParmType> SubstTemplateTypeParmTypes;
|
|
llvm::FoldingSet<TemplateSpecializationType> TemplateSpecializationTypes;
|
|
llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
|
|
llvm::FoldingSet<DependentNameType> DependentNameTypes;
|
|
llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
|
|
llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
|
|
|
|
llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
|
|
llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
|
|
|
|
/// \brief The set of nested name specifiers.
|
|
///
|
|
/// This set is managed by the NestedNameSpecifier class.
|
|
llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
|
|
NestedNameSpecifier *GlobalNestedNameSpecifier;
|
|
friend class NestedNameSpecifier;
|
|
|
|
/// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
|
|
/// This is lazily created. This is intentionally not serialized.
|
|
llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
|
|
llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*> ObjCLayouts;
|
|
|
|
/// KeyFunctions - A cache mapping from CXXRecordDecls to key functions.
|
|
llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
|
|
|
|
/// \brief Mapping from ObjCContainers to their ObjCImplementations.
|
|
llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
|
|
|
|
/// BuiltinVaListType - built-in va list type.
|
|
/// This is initially null and set by Sema::LazilyCreateBuiltin when
|
|
/// a builtin that takes a valist is encountered.
|
|
QualType BuiltinVaListType;
|
|
|
|
/// ObjCIdType - a pseudo built-in typedef type (set by Sema).
|
|
QualType ObjCIdTypedefType;
|
|
|
|
/// ObjCSelType - another pseudo built-in typedef type (set by Sema).
|
|
QualType ObjCSelTypedefType;
|
|
|
|
/// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
|
|
QualType ObjCProtoType;
|
|
const RecordType *ProtoStructType;
|
|
|
|
/// ObjCClassType - another pseudo built-in typedef type (set by Sema).
|
|
QualType ObjCClassTypedefType;
|
|
|
|
QualType ObjCConstantStringType;
|
|
RecordDecl *CFConstantStringTypeDecl;
|
|
|
|
RecordDecl *NSConstantStringTypeDecl;
|
|
|
|
RecordDecl *ObjCFastEnumerationStateTypeDecl;
|
|
|
|
/// \brief The type for the C FILE type.
|
|
TypeDecl *FILEDecl;
|
|
|
|
/// \brief The type for the C jmp_buf type.
|
|
TypeDecl *jmp_bufDecl;
|
|
|
|
/// \brief The type for the C sigjmp_buf type.
|
|
TypeDecl *sigjmp_bufDecl;
|
|
|
|
/// \brief Type for the Block descriptor for Blocks CodeGen.
|
|
RecordDecl *BlockDescriptorType;
|
|
|
|
/// \brief Type for the Block descriptor for Blocks CodeGen.
|
|
RecordDecl *BlockDescriptorExtendedType;
|
|
|
|
/// \brief Keeps track of all declaration attributes.
|
|
///
|
|
/// Since so few decls have attrs, we keep them in a hash map instead of
|
|
/// wasting space in the Decl class.
|
|
llvm::DenseMap<const Decl*, Attr*> DeclAttrs;
|
|
|
|
/// \brief Keeps track of the static data member templates from which
|
|
/// static data members of class template specializations were instantiated.
|
|
///
|
|
/// This data structure stores the mapping from instantiations of static
|
|
/// data members to the static data member representations within the
|
|
/// class template from which they were instantiated along with the kind
|
|
/// of instantiation or specialization (a TemplateSpecializationKind - 1).
|
|
///
|
|
/// Given the following example:
|
|
///
|
|
/// \code
|
|
/// template<typename T>
|
|
/// struct X {
|
|
/// static T value;
|
|
/// };
|
|
///
|
|
/// template<typename T>
|
|
/// T X<T>::value = T(17);
|
|
///
|
|
/// int *x = &X<int>::value;
|
|
/// \endcode
|
|
///
|
|
/// This mapping will contain an entry that maps from the VarDecl for
|
|
/// X<int>::value to the corresponding VarDecl for X<T>::value (within the
|
|
/// class template X) and will be marked TSK_ImplicitInstantiation.
|
|
llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
|
|
InstantiatedFromStaticDataMember;
|
|
|
|
/// \brief Keeps track of the declaration from which a UsingDecl was
|
|
/// created during instantiation. The source declaration is always
|
|
/// a UsingDecl, an UnresolvedUsingValueDecl, or an
|
|
/// UnresolvedUsingTypenameDecl.
|
|
///
|
|
/// For example:
|
|
/// \code
|
|
/// template<typename T>
|
|
/// struct A {
|
|
/// void f();
|
|
/// };
|
|
///
|
|
/// template<typename T>
|
|
/// struct B : A<T> {
|
|
/// using A<T>::f;
|
|
/// };
|
|
///
|
|
/// template struct B<int>;
|
|
/// \endcode
|
|
///
|
|
/// This mapping will contain an entry that maps from the UsingDecl in
|
|
/// B<int> to the UnresolvedUsingDecl in B<T>.
|
|
llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
|
|
|
|
llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
|
|
InstantiatedFromUsingShadowDecl;
|
|
|
|
llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
|
|
|
|
/// \brief Mapping that stores the methods overridden by a given C++
|
|
/// member function.
|
|
///
|
|
/// Since most C++ member functions aren't virtual and therefore
|
|
/// don't override anything, we store the overridden functions in
|
|
/// this map on the side rather than within the CXXMethodDecl structure.
|
|
typedef UsuallyTinyPtrVector<const CXXMethodDecl> CXXMethodVector;
|
|
llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
|
|
|
|
TranslationUnitDecl *TUDecl;
|
|
|
|
/// SourceMgr - The associated SourceManager object.
|
|
SourceManager &SourceMgr;
|
|
|
|
/// LangOpts - The language options used to create the AST associated with
|
|
/// this ASTContext object.
|
|
LangOptions LangOpts;
|
|
|
|
/// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
|
|
bool FreeMemory;
|
|
llvm::MallocAllocator MallocAlloc;
|
|
llvm::BumpPtrAllocator BumpAlloc;
|
|
|
|
/// \brief Allocator for partial diagnostics.
|
|
PartialDiagnostic::StorageAllocator DiagAllocator;
|
|
|
|
public:
|
|
const TargetInfo &Target;
|
|
IdentifierTable &Idents;
|
|
SelectorTable &Selectors;
|
|
Builtin::Context &BuiltinInfo;
|
|
DeclarationNameTable DeclarationNames;
|
|
llvm::OwningPtr<ExternalASTSource> ExternalSource;
|
|
clang::PrintingPolicy PrintingPolicy;
|
|
|
|
// Typedefs which may be provided defining the structure of Objective-C
|
|
// pseudo-builtins
|
|
QualType ObjCIdRedefinitionType;
|
|
QualType ObjCClassRedefinitionType;
|
|
QualType ObjCSelRedefinitionType;
|
|
|
|
SourceManager& getSourceManager() { return SourceMgr; }
|
|
const SourceManager& getSourceManager() const { return SourceMgr; }
|
|
void *Allocate(unsigned Size, unsigned Align = 8) {
|
|
return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
|
|
BumpAlloc.Allocate(Size, Align);
|
|
}
|
|
void Deallocate(void *Ptr) {
|
|
if (FreeMemory)
|
|
MallocAlloc.Deallocate(Ptr);
|
|
}
|
|
|
|
PartialDiagnostic::StorageAllocator &getDiagAllocator() {
|
|
return DiagAllocator;
|
|
}
|
|
|
|
const LangOptions& getLangOptions() const { return LangOpts; }
|
|
|
|
FullSourceLoc getFullLoc(SourceLocation Loc) const {
|
|
return FullSourceLoc(Loc,SourceMgr);
|
|
}
|
|
|
|
/// \brief Retrieve the attributes for the given declaration.
|
|
Attr*& getDeclAttrs(const Decl *D) { return DeclAttrs[D]; }
|
|
|
|
/// \brief Erase the attributes corresponding to the given declaration.
|
|
void eraseDeclAttrs(const Decl *D) { DeclAttrs.erase(D); }
|
|
|
|
/// \brief If this variable is an instantiated static data member of a
|
|
/// class template specialization, returns the templated static data member
|
|
/// from which it was instantiated.
|
|
MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
|
|
const VarDecl *Var);
|
|
|
|
/// \brief Note that the static data member \p Inst is an instantiation of
|
|
/// the static data member template \p Tmpl of a class template.
|
|
void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
|
|
TemplateSpecializationKind TSK);
|
|
|
|
/// \brief If the given using decl is an instantiation of a
|
|
/// (possibly unresolved) using decl from a template instantiation,
|
|
/// return it.
|
|
NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
|
|
|
|
/// \brief Remember that the using decl \p Inst is an instantiation
|
|
/// of the using decl \p Pattern of a class template.
|
|
void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
|
|
|
|
void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
|
|
UsingShadowDecl *Pattern);
|
|
UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
|
|
|
|
FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
|
|
|
|
void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
|
|
|
|
// Access to the set of methods overridden by the given C++ method.
|
|
typedef CXXMethodVector::iterator overridden_cxx_method_iterator;
|
|
overridden_cxx_method_iterator
|
|
overridden_methods_begin(const CXXMethodDecl *Method) const;
|
|
|
|
overridden_cxx_method_iterator
|
|
overridden_methods_end(const CXXMethodDecl *Method) const;
|
|
|
|
/// \brief Note that the given C++ \p Method overrides the given \p
|
|
/// Overridden method.
|
|
void addOverriddenMethod(const CXXMethodDecl *Method,
|
|
const CXXMethodDecl *Overridden);
|
|
|
|
TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
|
|
|
|
|
|
// Builtin Types.
|
|
CanQualType VoidTy;
|
|
CanQualType BoolTy;
|
|
CanQualType CharTy;
|
|
CanQualType WCharTy; // [C++ 3.9.1p5], integer type in C99.
|
|
CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
|
|
CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
|
|
CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
|
|
CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
|
|
CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
|
|
CanQualType FloatTy, DoubleTy, LongDoubleTy;
|
|
CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
|
|
CanQualType VoidPtrTy, NullPtrTy;
|
|
CanQualType OverloadTy;
|
|
CanQualType DependentTy;
|
|
CanQualType UndeducedAutoTy;
|
|
CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
|
|
|
|
ASTContext(const LangOptions& LOpts, SourceManager &SM, const TargetInfo &t,
|
|
IdentifierTable &idents, SelectorTable &sels,
|
|
Builtin::Context &builtins,
|
|
bool FreeMemory = true, unsigned size_reserve=0);
|
|
|
|
~ASTContext();
|
|
|
|
/// \brief Attach an external AST source to the AST context.
|
|
///
|
|
/// The external AST source provides the ability to load parts of
|
|
/// the abstract syntax tree as needed from some external storage,
|
|
/// e.g., a precompiled header.
|
|
void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
|
|
|
|
/// \brief Retrieve a pointer to the external AST source associated
|
|
/// with this AST context, if any.
|
|
ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
|
|
|
|
void PrintStats() const;
|
|
const std::vector<Type*>& getTypes() const { return Types; }
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Type Constructors
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
private:
|
|
/// getExtQualType - Return a type with extended qualifiers.
|
|
QualType getExtQualType(const Type *Base, Qualifiers Quals);
|
|
|
|
QualType getTypeDeclTypeSlow(const TypeDecl *Decl);
|
|
|
|
public:
|
|
/// getAddSpaceQualType - Return the uniqued reference to the type for an
|
|
/// address space qualified type with the specified type and address space.
|
|
/// The resulting type has a union of the qualifiers from T and the address
|
|
/// space. If T already has an address space specifier, it is silently
|
|
/// replaced.
|
|
QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
|
|
|
|
/// getObjCGCQualType - Returns the uniqued reference to the type for an
|
|
/// objc gc qualified type. The retulting type has a union of the qualifiers
|
|
/// from T and the gc attribute.
|
|
QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr);
|
|
|
|
/// getRestrictType - Returns the uniqued reference to the type for a
|
|
/// 'restrict' qualified type. The resulting type has a union of the
|
|
/// qualifiers from T and 'restrict'.
|
|
QualType getRestrictType(QualType T) {
|
|
return T.withFastQualifiers(Qualifiers::Restrict);
|
|
}
|
|
|
|
/// getVolatileType - Returns the uniqued reference to the type for a
|
|
/// 'volatile' qualified type. The resulting type has a union of the
|
|
/// qualifiers from T and 'volatile'.
|
|
QualType getVolatileType(QualType T);
|
|
|
|
/// getConstType - Returns the uniqued reference to the type for a
|
|
/// 'const' qualified type. The resulting type has a union of the
|
|
/// qualifiers from T and 'const'.
|
|
///
|
|
/// It can be reasonably expected that this will always be
|
|
/// equivalent to calling T.withConst().
|
|
QualType getConstType(QualType T) { return T.withConst(); }
|
|
|
|
/// getNoReturnType - Add or remove the noreturn attribute to the given type
|
|
/// which must be a FunctionType or a pointer to an allowable type or a
|
|
/// BlockPointer.
|
|
QualType getNoReturnType(QualType T, bool AddNoReturn = true);
|
|
|
|
/// getCallConvType - Adds the specified calling convention attribute to
|
|
/// the given type, which must be a FunctionType or a pointer to an
|
|
/// allowable type.
|
|
QualType getCallConvType(QualType T, CallingConv CallConv);
|
|
|
|
/// getRegParmType - Sets the specified regparm attribute to
|
|
/// the given type, which must be a FunctionType or a pointer to an
|
|
/// allowable type.
|
|
QualType getRegParmType(QualType T, unsigned RegParm);
|
|
|
|
/// getComplexType - Return the uniqued reference to the type for a complex
|
|
/// number with the specified element type.
|
|
QualType getComplexType(QualType T);
|
|
CanQualType getComplexType(CanQualType T) {
|
|
return CanQualType::CreateUnsafe(getComplexType((QualType) T));
|
|
}
|
|
|
|
/// getPointerType - Return the uniqued reference to the type for a pointer to
|
|
/// the specified type.
|
|
QualType getPointerType(QualType T);
|
|
CanQualType getPointerType(CanQualType T) {
|
|
return CanQualType::CreateUnsafe(getPointerType((QualType) T));
|
|
}
|
|
|
|
/// getBlockPointerType - Return the uniqued reference to the type for a block
|
|
/// of the specified type.
|
|
QualType getBlockPointerType(QualType T);
|
|
|
|
/// This gets the struct used to keep track of the descriptor for pointer to
|
|
/// blocks.
|
|
QualType getBlockDescriptorType();
|
|
|
|
// Set the type for a Block descriptor type.
|
|
void setBlockDescriptorType(QualType T);
|
|
/// Get the BlockDescriptorType type, or NULL if it hasn't yet been built.
|
|
QualType getRawBlockdescriptorType() {
|
|
if (BlockDescriptorType)
|
|
return getTagDeclType(BlockDescriptorType);
|
|
return QualType();
|
|
}
|
|
|
|
/// This gets the struct used to keep track of the extended descriptor for
|
|
/// pointer to blocks.
|
|
QualType getBlockDescriptorExtendedType();
|
|
|
|
// Set the type for a Block descriptor extended type.
|
|
void setBlockDescriptorExtendedType(QualType T);
|
|
/// Get the BlockDescriptorExtendedType type, or NULL if it hasn't yet been
|
|
/// built.
|
|
QualType getRawBlockdescriptorExtendedType() {
|
|
if (BlockDescriptorExtendedType)
|
|
return getTagDeclType(BlockDescriptorExtendedType);
|
|
return QualType();
|
|
}
|
|
|
|
/// This gets the struct used to keep track of pointer to blocks, complete
|
|
/// with captured variables.
|
|
QualType getBlockParmType(bool BlockHasCopyDispose,
|
|
llvm::SmallVectorImpl<const Expr *> &Layout);
|
|
|
|
/// This builds the struct used for __block variables.
|
|
QualType BuildByRefType(const char *DeclName, QualType Ty);
|
|
|
|
/// Returns true iff we need copy/dispose helpers for the given type.
|
|
bool BlockRequiresCopying(QualType Ty);
|
|
|
|
/// getLValueReferenceType - Return the uniqued reference to the type for an
|
|
/// lvalue reference to the specified type.
|
|
QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true);
|
|
|
|
/// getRValueReferenceType - Return the uniqued reference to the type for an
|
|
/// rvalue reference to the specified type.
|
|
QualType getRValueReferenceType(QualType T);
|
|
|
|
/// getMemberPointerType - Return the uniqued reference to the type for a
|
|
/// member pointer to the specified type in the specified class. The class
|
|
/// is a Type because it could be a dependent name.
|
|
QualType getMemberPointerType(QualType T, const Type *Cls);
|
|
|
|
/// getVariableArrayType - Returns a non-unique reference to the type for a
|
|
/// variable array of the specified element type.
|
|
QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
|
|
ArrayType::ArraySizeModifier ASM,
|
|
unsigned EltTypeQuals,
|
|
SourceRange Brackets);
|
|
|
|
/// getDependentSizedArrayType - Returns a non-unique reference to
|
|
/// the type for a dependently-sized array of the specified element
|
|
/// type. FIXME: We will need these to be uniqued, or at least
|
|
/// comparable, at some point.
|
|
QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
|
|
ArrayType::ArraySizeModifier ASM,
|
|
unsigned EltTypeQuals,
|
|
SourceRange Brackets);
|
|
|
|
/// getIncompleteArrayType - Returns a unique reference to the type for a
|
|
/// incomplete array of the specified element type.
|
|
QualType getIncompleteArrayType(QualType EltTy,
|
|
ArrayType::ArraySizeModifier ASM,
|
|
unsigned EltTypeQuals);
|
|
|
|
/// getConstantArrayType - Return the unique reference to the type for a
|
|
/// constant array of the specified element type.
|
|
QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
|
|
ArrayType::ArraySizeModifier ASM,
|
|
unsigned EltTypeQuals);
|
|
|
|
/// getVectorType - Return the unique reference to a vector type of
|
|
/// the specified element type and size. VectorType must be a built-in type.
|
|
QualType getVectorType(QualType VectorType, unsigned NumElts,
|
|
bool AltiVec, bool IsPixel);
|
|
|
|
/// getExtVectorType - Return the unique reference to an extended vector type
|
|
/// of the specified element type and size. VectorType must be a built-in
|
|
/// type.
|
|
QualType getExtVectorType(QualType VectorType, unsigned NumElts);
|
|
|
|
/// getDependentSizedExtVectorType - Returns a non-unique reference to
|
|
/// the type for a dependently-sized vector of the specified element
|
|
/// type. FIXME: We will need these to be uniqued, or at least
|
|
/// comparable, at some point.
|
|
QualType getDependentSizedExtVectorType(QualType VectorType,
|
|
Expr *SizeExpr,
|
|
SourceLocation AttrLoc);
|
|
|
|
/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
|
|
///
|
|
QualType getFunctionNoProtoType(QualType ResultTy,
|
|
const FunctionType::ExtInfo &Info);
|
|
|
|
QualType getFunctionNoProtoType(QualType ResultTy) {
|
|
return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
|
|
}
|
|
|
|
/// getFunctionType - Return a normal function type with a typed argument
|
|
/// list. isVariadic indicates whether the argument list includes '...'.
|
|
QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
|
|
unsigned NumArgs, bool isVariadic,
|
|
unsigned TypeQuals, bool hasExceptionSpec,
|
|
bool hasAnyExceptionSpec,
|
|
unsigned NumExs, const QualType *ExArray,
|
|
const FunctionType::ExtInfo &Info);
|
|
|
|
/// getTypeDeclType - Return the unique reference to the type for
|
|
/// the specified type declaration.
|
|
QualType getTypeDeclType(const TypeDecl *Decl,
|
|
const TypeDecl *PrevDecl = 0) {
|
|
assert(Decl && "Passed null for Decl param");
|
|
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
|
|
|
|
if (PrevDecl) {
|
|
assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
|
|
Decl->TypeForDecl = PrevDecl->TypeForDecl;
|
|
return QualType(PrevDecl->TypeForDecl, 0);
|
|
}
|
|
|
|
return getTypeDeclTypeSlow(Decl);
|
|
}
|
|
|
|
/// getTypedefType - Return the unique reference to the type for the
|
|
/// specified typename decl.
|
|
QualType getTypedefType(const TypedefDecl *Decl);
|
|
|
|
QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST);
|
|
|
|
QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
|
|
QualType Replacement);
|
|
|
|
QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
|
|
bool ParameterPack,
|
|
IdentifierInfo *Name = 0);
|
|
|
|
QualType getTemplateSpecializationType(TemplateName T,
|
|
const TemplateArgument *Args,
|
|
unsigned NumArgs,
|
|
QualType Canon = QualType(),
|
|
bool IsCurrentInstantiation = false);
|
|
|
|
QualType getTemplateSpecializationType(TemplateName T,
|
|
const TemplateArgumentListInfo &Args,
|
|
QualType Canon = QualType(),
|
|
bool IsCurrentInstantiation = false);
|
|
|
|
TypeSourceInfo *
|
|
getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
|
|
const TemplateArgumentListInfo &Args,
|
|
QualType Canon = QualType());
|
|
|
|
QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
|
|
NestedNameSpecifier *NNS,
|
|
QualType NamedType);
|
|
QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
|
|
NestedNameSpecifier *NNS,
|
|
const IdentifierInfo *Name,
|
|
QualType Canon = QualType());
|
|
QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
|
|
NestedNameSpecifier *NNS,
|
|
const TemplateSpecializationType *TemplateId,
|
|
QualType Canon = QualType());
|
|
|
|
QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl);
|
|
|
|
QualType getObjCObjectType(QualType Base,
|
|
ObjCProtocolDecl * const *Protocols,
|
|
unsigned NumProtocols);
|
|
|
|
/// getObjCObjectPointerType - Return a ObjCObjectPointerType type
|
|
/// for the given ObjCObjectType.
|
|
QualType getObjCObjectPointerType(QualType OIT);
|
|
|
|
/// getTypeOfType - GCC extension.
|
|
QualType getTypeOfExprType(Expr *e);
|
|
QualType getTypeOfType(QualType t);
|
|
|
|
/// getDecltypeType - C++0x decltype.
|
|
QualType getDecltypeType(Expr *e);
|
|
|
|
/// getTagDeclType - Return the unique reference to the type for the
|
|
/// specified TagDecl (struct/union/class/enum) decl.
|
|
QualType getTagDeclType(const TagDecl *Decl);
|
|
|
|
/// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
|
|
/// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
|
|
CanQualType getSizeType() const;
|
|
|
|
/// getWCharType - In C++, this returns the unique wchar_t type. In C99, this
|
|
/// returns a type compatible with the type defined in <stddef.h> as defined
|
|
/// by the target.
|
|
QualType getWCharType() const { return WCharTy; }
|
|
|
|
/// getSignedWCharType - Return the type of "signed wchar_t".
|
|
/// Used when in C++, as a GCC extension.
|
|
QualType getSignedWCharType() const;
|
|
|
|
/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
|
|
/// Used when in C++, as a GCC extension.
|
|
QualType getUnsignedWCharType() const;
|
|
|
|
/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
|
|
/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
|
|
QualType getPointerDiffType() const;
|
|
|
|
// getCFConstantStringType - Return the C structure type used to represent
|
|
// constant CFStrings.
|
|
QualType getCFConstantStringType();
|
|
|
|
// getNSConstantStringType - Return the C structure type used to represent
|
|
// constant NSStrings.
|
|
QualType getNSConstantStringType();
|
|
/// Get the structure type used to representation NSStrings, or NULL
|
|
/// if it hasn't yet been built.
|
|
QualType getRawNSConstantStringType() {
|
|
if (NSConstantStringTypeDecl)
|
|
return getTagDeclType(NSConstantStringTypeDecl);
|
|
return QualType();
|
|
}
|
|
void setNSConstantStringType(QualType T);
|
|
|
|
|
|
/// Get the structure type used to representation CFStrings, or NULL
|
|
/// if it hasn't yet been built.
|
|
QualType getRawCFConstantStringType() {
|
|
if (CFConstantStringTypeDecl)
|
|
return getTagDeclType(CFConstantStringTypeDecl);
|
|
return QualType();
|
|
}
|
|
void setCFConstantStringType(QualType T);
|
|
|
|
// This setter/getter represents the ObjC type for an NSConstantString.
|
|
void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
|
|
QualType getObjCConstantStringInterface() const {
|
|
return ObjCConstantStringType;
|
|
}
|
|
|
|
//// This gets the struct used to keep track of fast enumerations.
|
|
QualType getObjCFastEnumerationStateType();
|
|
|
|
/// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
|
|
/// been built.
|
|
QualType getRawObjCFastEnumerationStateType() {
|
|
if (ObjCFastEnumerationStateTypeDecl)
|
|
return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
|
|
return QualType();
|
|
}
|
|
|
|
void setObjCFastEnumerationStateType(QualType T);
|
|
|
|
/// \brief Set the type for the C FILE type.
|
|
void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
|
|
|
|
/// \brief Retrieve the C FILE type.
|
|
QualType getFILEType() {
|
|
if (FILEDecl)
|
|
return getTypeDeclType(FILEDecl);
|
|
return QualType();
|
|
}
|
|
|
|
/// \brief Set the type for the C jmp_buf type.
|
|
void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
|
|
this->jmp_bufDecl = jmp_bufDecl;
|
|
}
|
|
|
|
/// \brief Retrieve the C jmp_buf type.
|
|
QualType getjmp_bufType() {
|
|
if (jmp_bufDecl)
|
|
return getTypeDeclType(jmp_bufDecl);
|
|
return QualType();
|
|
}
|
|
|
|
/// \brief Set the type for the C sigjmp_buf type.
|
|
void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
|
|
this->sigjmp_bufDecl = sigjmp_bufDecl;
|
|
}
|
|
|
|
/// \brief Retrieve the C sigjmp_buf type.
|
|
QualType getsigjmp_bufType() {
|
|
if (sigjmp_bufDecl)
|
|
return getTypeDeclType(sigjmp_bufDecl);
|
|
return QualType();
|
|
}
|
|
|
|
/// getObjCEncodingForType - Emit the ObjC type encoding for the
|
|
/// given type into \arg S. If \arg NameFields is specified then
|
|
/// record field names are also encoded.
|
|
void getObjCEncodingForType(QualType t, std::string &S,
|
|
const FieldDecl *Field=0);
|
|
|
|
void getLegacyIntegralTypeEncoding(QualType &t) const;
|
|
|
|
// Put the string version of type qualifiers into S.
|
|
void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
|
|
std::string &S) const;
|
|
|
|
/// getObjCEncodingForMethodDecl - Return the encoded type for this method
|
|
/// declaration.
|
|
void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
|
|
|
|
/// getObjCEncodingForBlockDecl - Return the encoded type for this block
|
|
/// declaration.
|
|
void getObjCEncodingForBlock(const BlockExpr *Expr, std::string& S);
|
|
|
|
/// getObjCEncodingForPropertyDecl - Return the encoded type for
|
|
/// this method declaration. If non-NULL, Container must be either
|
|
/// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
|
|
/// only be NULL when getting encodings for protocol properties.
|
|
void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
|
|
const Decl *Container,
|
|
std::string &S);
|
|
|
|
bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
|
|
ObjCProtocolDecl *rProto);
|
|
|
|
/// getObjCEncodingTypeSize returns size of type for objective-c encoding
|
|
/// purpose in characters.
|
|
CharUnits getObjCEncodingTypeSize(QualType t);
|
|
|
|
/// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
|
|
/// Sema. id is always a (typedef for a) pointer type, a pointer to a struct.
|
|
QualType getObjCIdType() const { return ObjCIdTypedefType; }
|
|
void setObjCIdType(QualType T);
|
|
|
|
void setObjCSelType(QualType T);
|
|
QualType getObjCSelType() const { return ObjCSelTypedefType; }
|
|
|
|
void setObjCProtoType(QualType QT);
|
|
QualType getObjCProtoType() const { return ObjCProtoType; }
|
|
|
|
/// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
|
|
/// Sema. 'Class' is always a (typedef for a) pointer type, a pointer to a
|
|
/// struct.
|
|
QualType getObjCClassType() const { return ObjCClassTypedefType; }
|
|
void setObjCClassType(QualType T);
|
|
|
|
void setBuiltinVaListType(QualType T);
|
|
QualType getBuiltinVaListType() const { return BuiltinVaListType; }
|
|
|
|
/// getCVRQualifiedType - Returns a type with additional const,
|
|
/// volatile, or restrict qualifiers.
|
|
QualType getCVRQualifiedType(QualType T, unsigned CVR) {
|
|
return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
|
|
}
|
|
|
|
/// getQualifiedType - Returns a type with additional qualifiers.
|
|
QualType getQualifiedType(QualType T, Qualifiers Qs) {
|
|
if (!Qs.hasNonFastQualifiers())
|
|
return T.withFastQualifiers(Qs.getFastQualifiers());
|
|
QualifierCollector Qc(Qs);
|
|
const Type *Ptr = Qc.strip(T);
|
|
return getExtQualType(Ptr, Qc);
|
|
}
|
|
|
|
/// getQualifiedType - Returns a type with additional qualifiers.
|
|
QualType getQualifiedType(const Type *T, Qualifiers Qs) {
|
|
if (!Qs.hasNonFastQualifiers())
|
|
return QualType(T, Qs.getFastQualifiers());
|
|
return getExtQualType(T, Qs);
|
|
}
|
|
|
|
DeclarationName getNameForTemplate(TemplateName Name);
|
|
|
|
TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
|
|
UnresolvedSetIterator End);
|
|
|
|
TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
|
|
bool TemplateKeyword,
|
|
TemplateDecl *Template);
|
|
|
|
TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
|
|
const IdentifierInfo *Name);
|
|
TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
|
|
OverloadedOperatorKind Operator);
|
|
|
|
enum GetBuiltinTypeError {
|
|
GE_None, //< No error
|
|
GE_Missing_stdio, //< Missing a type from <stdio.h>
|
|
GE_Missing_setjmp //< Missing a type from <setjmp.h>
|
|
};
|
|
|
|
/// GetBuiltinType - Return the type for the specified builtin.
|
|
QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error);
|
|
|
|
private:
|
|
CanQualType getFromTargetType(unsigned Type) const;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Type Predicates.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
public:
|
|
/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
|
|
/// garbage collection attribute.
|
|
///
|
|
Qualifiers::GC getObjCGCAttrKind(const QualType &Ty) const;
|
|
|
|
/// isObjCNSObjectType - Return true if this is an NSObject object with
|
|
/// its NSObject attribute set.
|
|
bool isObjCNSObjectType(QualType Ty) const;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Type Sizing and Analysis
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
|
|
/// scalar floating point type.
|
|
const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
|
|
|
|
/// getTypeInfo - Get the size and alignment of the specified complete type in
|
|
/// bits.
|
|
std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
|
|
std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
|
|
return getTypeInfo(T.getTypePtr());
|
|
}
|
|
|
|
/// getTypeSize - Return the size of the specified type, in bits. This method
|
|
/// does not work on incomplete types.
|
|
uint64_t getTypeSize(QualType T) {
|
|
return getTypeInfo(T).first;
|
|
}
|
|
uint64_t getTypeSize(const Type *T) {
|
|
return getTypeInfo(T).first;
|
|
}
|
|
|
|
/// getCharWidth - Return the size of the character type, in bits
|
|
uint64_t getCharWidth() {
|
|
return getTypeSize(CharTy);
|
|
}
|
|
|
|
/// getTypeSizeInChars - Return the size of the specified type, in characters.
|
|
/// This method does not work on incomplete types.
|
|
CharUnits getTypeSizeInChars(QualType T);
|
|
CharUnits getTypeSizeInChars(const Type *T);
|
|
|
|
/// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
|
|
/// This method does not work on incomplete types.
|
|
unsigned getTypeAlign(QualType T) {
|
|
return getTypeInfo(T).second;
|
|
}
|
|
unsigned getTypeAlign(const Type *T) {
|
|
return getTypeInfo(T).second;
|
|
}
|
|
|
|
/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
|
|
/// characters. This method does not work on incomplete types.
|
|
CharUnits getTypeAlignInChars(QualType T);
|
|
CharUnits getTypeAlignInChars(const Type *T);
|
|
|
|
std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T);
|
|
std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T);
|
|
|
|
/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
|
|
/// type for the current target in bits. This can be different than the ABI
|
|
/// alignment in cases where it is beneficial for performance to overalign
|
|
/// a data type.
|
|
unsigned getPreferredTypeAlign(const Type *T);
|
|
|
|
/// getDeclAlign - Return a conservative estimate of the alignment of
|
|
/// the specified decl. Note that bitfields do not have a valid alignment, so
|
|
/// this method will assert on them.
|
|
/// If @p RefAsPointee, references are treated like their underlying type
|
|
/// (for alignof), else they're treated like pointers (for CodeGen).
|
|
CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false);
|
|
|
|
/// getASTRecordLayout - Get or compute information about the layout of the
|
|
/// specified record (struct/union/class), which indicates its size and field
|
|
/// position information.
|
|
const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
|
|
|
|
/// getASTObjCInterfaceLayout - Get or compute information about the
|
|
/// layout of the specified Objective-C interface.
|
|
const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
|
|
|
|
void DumpRecordLayout(const RecordDecl *RD, llvm::raw_ostream &OS);
|
|
|
|
/// getASTObjCImplementationLayout - Get or compute information about
|
|
/// the layout of the specified Objective-C implementation. This may
|
|
/// differ from the interface if synthesized ivars are present.
|
|
const ASTRecordLayout &
|
|
getASTObjCImplementationLayout(const ObjCImplementationDecl *D);
|
|
|
|
/// getKeyFunction - Get the key function for the given record decl.
|
|
/// The key function is, according to the Itanium C++ ABI section 5.2.3:
|
|
///
|
|
/// ...the first non-pure virtual function that is not inline at the point
|
|
/// of class definition.
|
|
const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
|
|
|
|
void CollectObjCIvars(const ObjCInterfaceDecl *OI,
|
|
llvm::SmallVectorImpl<FieldDecl*> &Fields);
|
|
|
|
void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
|
|
llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
|
|
void CollectNonClassIvars(const ObjCInterfaceDecl *OI,
|
|
llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
|
|
unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI);
|
|
void CollectInheritedProtocols(const Decl *CDecl,
|
|
llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Type Operators
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// getCanonicalType - Return the canonical (structural) type corresponding to
|
|
/// the specified potentially non-canonical type. The non-canonical version
|
|
/// of a type may have many "decorated" versions of types. Decorators can
|
|
/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
|
|
/// to be free of any of these, allowing two canonical types to be compared
|
|
/// for exact equality with a simple pointer comparison.
|
|
CanQualType getCanonicalType(QualType T);
|
|
const Type *getCanonicalType(const Type *T) {
|
|
return T->getCanonicalTypeInternal().getTypePtr();
|
|
}
|
|
|
|
/// getCanonicalParamType - Return the canonical parameter type
|
|
/// corresponding to the specific potentially non-canonical one.
|
|
/// Qualifiers are stripped off, functions are turned into function
|
|
/// pointers, and arrays decay one level into pointers.
|
|
CanQualType getCanonicalParamType(QualType T);
|
|
|
|
/// \brief Determine whether the given types are equivalent.
|
|
bool hasSameType(QualType T1, QualType T2) {
|
|
return getCanonicalType(T1) == getCanonicalType(T2);
|
|
}
|
|
|
|
/// \brief Returns this type as a completely-unqualified array type,
|
|
/// capturing the qualifiers in Quals. This will remove the minimal amount of
|
|
/// sugaring from the types, similar to the behavior of
|
|
/// QualType::getUnqualifiedType().
|
|
///
|
|
/// \param T is the qualified type, which may be an ArrayType
|
|
///
|
|
/// \param Quals will receive the full set of qualifiers that were
|
|
/// applied to the array.
|
|
///
|
|
/// \returns if this is an array type, the completely unqualified array type
|
|
/// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
|
|
QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
|
|
|
|
/// \brief Determine whether the given types are equivalent after
|
|
/// cvr-qualifiers have been removed.
|
|
bool hasSameUnqualifiedType(QualType T1, QualType T2) {
|
|
CanQualType CT1 = getCanonicalType(T1);
|
|
CanQualType CT2 = getCanonicalType(T2);
|
|
|
|
Qualifiers Quals;
|
|
QualType UnqualT1 = getUnqualifiedArrayType(CT1, Quals);
|
|
QualType UnqualT2 = getUnqualifiedArrayType(CT2, Quals);
|
|
return UnqualT1 == UnqualT2;
|
|
}
|
|
|
|
/// \brief Retrieves the "canonical" declaration of
|
|
|
|
/// \brief Retrieves the "canonical" nested name specifier for a
|
|
/// given nested name specifier.
|
|
///
|
|
/// The canonical nested name specifier is a nested name specifier
|
|
/// that uniquely identifies a type or namespace within the type
|
|
/// system. For example, given:
|
|
///
|
|
/// \code
|
|
/// namespace N {
|
|
/// struct S {
|
|
/// template<typename T> struct X { typename T* type; };
|
|
/// };
|
|
/// }
|
|
///
|
|
/// template<typename T> struct Y {
|
|
/// typename N::S::X<T>::type member;
|
|
/// };
|
|
/// \endcode
|
|
///
|
|
/// Here, the nested-name-specifier for N::S::X<T>:: will be
|
|
/// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
|
|
/// by declarations in the type system and the canonical type for
|
|
/// the template type parameter 'T' is template-param-0-0.
|
|
NestedNameSpecifier *
|
|
getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
|
|
|
|
/// \brief Retrieves the canonical representation of the given
|
|
/// calling convention.
|
|
CallingConv getCanonicalCallConv(CallingConv CC) {
|
|
if (CC == CC_C)
|
|
return CC_Default;
|
|
return CC;
|
|
}
|
|
|
|
/// \brief Determines whether two calling conventions name the same
|
|
/// calling convention.
|
|
bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
|
|
return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
|
|
}
|
|
|
|
/// \brief Retrieves the "canonical" template name that refers to a
|
|
/// given template.
|
|
///
|
|
/// The canonical template name is the simplest expression that can
|
|
/// be used to refer to a given template. For most templates, this
|
|
/// expression is just the template declaration itself. For example,
|
|
/// the template std::vector can be referred to via a variety of
|
|
/// names---std::vector, ::std::vector, vector (if vector is in
|
|
/// scope), etc.---but all of these names map down to the same
|
|
/// TemplateDecl, which is used to form the canonical template name.
|
|
///
|
|
/// Dependent template names are more interesting. Here, the
|
|
/// template name could be something like T::template apply or
|
|
/// std::allocator<T>::template rebind, where the nested name
|
|
/// specifier itself is dependent. In this case, the canonical
|
|
/// template name uses the shortest form of the dependent
|
|
/// nested-name-specifier, which itself contains all canonical
|
|
/// types, values, and templates.
|
|
TemplateName getCanonicalTemplateName(TemplateName Name);
|
|
|
|
/// \brief Determine whether the given template names refer to the same
|
|
/// template.
|
|
bool hasSameTemplateName(TemplateName X, TemplateName Y);
|
|
|
|
/// \brief Retrieve the "canonical" template argument.
|
|
///
|
|
/// The canonical template argument is the simplest template argument
|
|
/// (which may be a type, value, expression, or declaration) that
|
|
/// expresses the value of the argument.
|
|
TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg);
|
|
|
|
/// Type Query functions. If the type is an instance of the specified class,
|
|
/// return the Type pointer for the underlying maximally pretty type. This
|
|
/// is a member of ASTContext because this may need to do some amount of
|
|
/// canonicalization, e.g. to move type qualifiers into the element type.
|
|
const ArrayType *getAsArrayType(QualType T);
|
|
const ConstantArrayType *getAsConstantArrayType(QualType T) {
|
|
return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
|
|
}
|
|
const VariableArrayType *getAsVariableArrayType(QualType T) {
|
|
return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
|
|
}
|
|
const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
|
|
return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
|
|
}
|
|
const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T) {
|
|
return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
|
|
}
|
|
|
|
/// getBaseElementType - Returns the innermost element type of an array type.
|
|
/// For example, will return "int" for int[m][n]
|
|
QualType getBaseElementType(const ArrayType *VAT);
|
|
|
|
/// getBaseElementType - Returns the innermost element type of a type
|
|
/// (which needn't actually be an array type).
|
|
QualType getBaseElementType(QualType QT);
|
|
|
|
/// getConstantArrayElementCount - Returns number of constant array elements.
|
|
uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
|
|
|
|
/// getArrayDecayedType - Return the properly qualified result of decaying the
|
|
/// specified array type to a pointer. This operation is non-trivial when
|
|
/// handling typedefs etc. The canonical type of "T" must be an array type,
|
|
/// this returns a pointer to a properly qualified element of the array.
|
|
///
|
|
/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
|
|
QualType getArrayDecayedType(QualType T);
|
|
|
|
/// getPromotedIntegerType - Returns the type that Promotable will
|
|
/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
|
|
/// integer type.
|
|
QualType getPromotedIntegerType(QualType PromotableType);
|
|
|
|
/// \brief Whether this is a promotable bitfield reference according
|
|
/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
|
|
///
|
|
/// \returns the type this bit-field will promote to, or NULL if no
|
|
/// promotion occurs.
|
|
QualType isPromotableBitField(Expr *E);
|
|
|
|
/// getIntegerTypeOrder - Returns the highest ranked integer type:
|
|
/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
|
|
/// LHS < RHS, return -1.
|
|
int getIntegerTypeOrder(QualType LHS, QualType RHS);
|
|
|
|
/// getFloatingTypeOrder - Compare the rank of the two specified floating
|
|
/// point types, ignoring the domain of the type (i.e. 'double' ==
|
|
/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
|
|
/// LHS < RHS, return -1.
|
|
int getFloatingTypeOrder(QualType LHS, QualType RHS);
|
|
|
|
/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
|
|
/// point or a complex type (based on typeDomain/typeSize).
|
|
/// 'typeDomain' is a real floating point or complex type.
|
|
/// 'typeSize' is a real floating point or complex type.
|
|
QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
|
|
QualType typeDomain) const;
|
|
|
|
private:
|
|
// Helper for integer ordering
|
|
unsigned getIntegerRank(Type* T);
|
|
|
|
public:
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Type Compatibility Predicates
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Compatibility predicates used to check assignment expressions.
|
|
bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
|
|
|
|
bool typesAreBlockPointerCompatible(QualType, QualType);
|
|
|
|
bool isObjCIdType(QualType T) const {
|
|
return T == ObjCIdTypedefType;
|
|
}
|
|
bool isObjCClassType(QualType T) const {
|
|
return T == ObjCClassTypedefType;
|
|
}
|
|
bool isObjCSelType(QualType T) const {
|
|
return T == ObjCSelTypedefType;
|
|
}
|
|
bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
|
|
bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
|
|
bool ForCompare);
|
|
|
|
// Check the safety of assignment from LHS to RHS
|
|
bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
|
|
const ObjCObjectPointerType *RHSOPT);
|
|
bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
|
|
const ObjCObjectType *RHS);
|
|
bool canAssignObjCInterfacesInBlockPointer(
|
|
const ObjCObjectPointerType *LHSOPT,
|
|
const ObjCObjectPointerType *RHSOPT);
|
|
bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
|
|
QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
|
|
const ObjCObjectPointerType *RHSOPT);
|
|
|
|
// Functions for calculating composite types
|
|
QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false);
|
|
QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false);
|
|
|
|
QualType mergeObjCGCQualifiers(QualType, QualType);
|
|
|
|
/// UsualArithmeticConversionsType - handles the various conversions
|
|
/// that are common to binary operators (C99 6.3.1.8, C++ [expr]p9)
|
|
/// and returns the result type of that conversion.
|
|
QualType UsualArithmeticConversionsType(QualType lhs, QualType rhs);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Integer Predicates
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
// The width of an integer, as defined in C99 6.2.6.2. This is the number
|
|
// of bits in an integer type excluding any padding bits.
|
|
unsigned getIntWidth(QualType T);
|
|
|
|
// Per C99 6.2.5p6, for every signed integer type, there is a corresponding
|
|
// unsigned integer type. This method takes a signed type, and returns the
|
|
// corresponding unsigned integer type.
|
|
QualType getCorrespondingUnsignedType(QualType T);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Type Iterators.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
typedef std::vector<Type*>::iterator type_iterator;
|
|
typedef std::vector<Type*>::const_iterator const_type_iterator;
|
|
|
|
type_iterator types_begin() { return Types.begin(); }
|
|
type_iterator types_end() { return Types.end(); }
|
|
const_type_iterator types_begin() const { return Types.begin(); }
|
|
const_type_iterator types_end() const { return Types.end(); }
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Integer Values
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// MakeIntValue - Make an APSInt of the appropriate width and
|
|
/// signedness for the given \arg Value and integer \arg Type.
|
|
llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
|
|
llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
|
|
Res = Value;
|
|
return Res;
|
|
}
|
|
|
|
/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
|
|
ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
|
|
/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
|
|
ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
|
|
|
|
/// \brief Set the implementation of ObjCInterfaceDecl.
|
|
void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
|
|
ObjCImplementationDecl *ImplD);
|
|
/// \brief Set the implementation of ObjCCategoryDecl.
|
|
void setObjCImplementation(ObjCCategoryDecl *CatD,
|
|
ObjCCategoryImplDecl *ImplD);
|
|
|
|
/// \brief Allocate an uninitialized TypeSourceInfo.
|
|
///
|
|
/// The caller should initialize the memory held by TypeSourceInfo using
|
|
/// the TypeLoc wrappers.
|
|
///
|
|
/// \param T the type that will be the basis for type source info. This type
|
|
/// should refer to how the declarator was written in source code, not to
|
|
/// what type semantic analysis resolved the declarator to.
|
|
///
|
|
/// \param Size the size of the type info to create, or 0 if the size
|
|
/// should be calculated based on the type.
|
|
TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0);
|
|
|
|
/// \brief Allocate a TypeSourceInfo where all locations have been
|
|
/// initialized to a given location, which defaults to the empty
|
|
/// location.
|
|
TypeSourceInfo *
|
|
getTrivialTypeSourceInfo(QualType T, SourceLocation Loc = SourceLocation());
|
|
|
|
/// \brief Add a deallocation callback that will be invoked when the
|
|
/// ASTContext is destroyed.
|
|
///
|
|
/// \brief Callback A callback function that will be invoked on destruction.
|
|
///
|
|
/// \brief Data Pointer data that will be provided to the callback function
|
|
/// when it is called.
|
|
void AddDeallocation(void (*Callback)(void*), void *Data);
|
|
|
|
private:
|
|
ASTContext(const ASTContext&); // DO NOT IMPLEMENT
|
|
void operator=(const ASTContext&); // DO NOT IMPLEMENT
|
|
|
|
void InitBuiltinTypes();
|
|
void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
|
|
|
|
// Return the ObjC type encoding for a given type.
|
|
void getObjCEncodingForTypeImpl(QualType t, std::string &S,
|
|
bool ExpandPointedToStructures,
|
|
bool ExpandStructures,
|
|
const FieldDecl *Field,
|
|
bool OutermostType = false,
|
|
bool EncodingProperty = false);
|
|
|
|
const ASTRecordLayout &getObjCLayout(const ObjCInterfaceDecl *D,
|
|
const ObjCImplementationDecl *Impl);
|
|
|
|
private:
|
|
/// \brief A set of deallocations that should be performed when the
|
|
/// ASTContext is destroyed.
|
|
llvm::SmallVector<std::pair<void (*)(void*), void *>, 16> Deallocations;
|
|
|
|
// FIXME: This currently contains the set of StoredDeclMaps used
|
|
// by DeclContext objects. This probably should not be in ASTContext,
|
|
// but we include it here so that ASTContext can quickly deallocate them.
|
|
llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
|
|
friend class DeclContext;
|
|
friend class DeclarationNameTable;
|
|
void ReleaseDeclContextMaps();
|
|
};
|
|
|
|
/// @brief Utility function for constructing a nullary selector.
|
|
static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
|
|
IdentifierInfo* II = &Ctx.Idents.get(name);
|
|
return Ctx.Selectors.getSelector(0, &II);
|
|
}
|
|
|
|
/// @brief Utility function for constructing an unary selector.
|
|
static inline Selector GetUnarySelector(const char* name, ASTContext& Ctx) {
|
|
IdentifierInfo* II = &Ctx.Idents.get(name);
|
|
return Ctx.Selectors.getSelector(1, &II);
|
|
}
|
|
|
|
} // end namespace clang
|
|
|
|
// operator new and delete aren't allowed inside namespaces.
|
|
// The throw specifications are mandated by the standard.
|
|
/// @brief Placement new for using the ASTContext's allocator.
|
|
///
|
|
/// This placement form of operator new uses the ASTContext's allocator for
|
|
/// obtaining memory. It is a non-throwing new, which means that it returns
|
|
/// null on error. (If that is what the allocator does. The current does, so if
|
|
/// this ever changes, this operator will have to be changed, too.)
|
|
/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
|
|
/// @code
|
|
/// // Default alignment (8)
|
|
/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
|
|
/// // Specific alignment
|
|
/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
|
|
/// @endcode
|
|
/// Please note that you cannot use delete on the pointer; it must be
|
|
/// deallocated using an explicit destructor call followed by
|
|
/// @c Context.Deallocate(Ptr).
|
|
///
|
|
/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
|
|
/// @param C The ASTContext that provides the allocator.
|
|
/// @param Alignment The alignment of the allocated memory (if the underlying
|
|
/// allocator supports it).
|
|
/// @return The allocated memory. Could be NULL.
|
|
inline void *operator new(size_t Bytes, clang::ASTContext &C,
|
|
size_t Alignment) throw () {
|
|
return C.Allocate(Bytes, Alignment);
|
|
}
|
|
/// @brief Placement delete companion to the new above.
|
|
///
|
|
/// This operator is just a companion to the new above. There is no way of
|
|
/// invoking it directly; see the new operator for more details. This operator
|
|
/// is called implicitly by the compiler if a placement new expression using
|
|
/// the ASTContext throws in the object constructor.
|
|
inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
|
|
throw () {
|
|
C.Deallocate(Ptr);
|
|
}
|
|
|
|
/// This placement form of operator new[] uses the ASTContext's allocator for
|
|
/// obtaining memory. It is a non-throwing new[], which means that it returns
|
|
/// null on error.
|
|
/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
|
|
/// @code
|
|
/// // Default alignment (8)
|
|
/// char *data = new (Context) char[10];
|
|
/// // Specific alignment
|
|
/// char *data = new (Context, 4) char[10];
|
|
/// @endcode
|
|
/// Please note that you cannot use delete on the pointer; it must be
|
|
/// deallocated using an explicit destructor call followed by
|
|
/// @c Context.Deallocate(Ptr).
|
|
///
|
|
/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
|
|
/// @param C The ASTContext that provides the allocator.
|
|
/// @param Alignment The alignment of the allocated memory (if the underlying
|
|
/// allocator supports it).
|
|
/// @return The allocated memory. Could be NULL.
|
|
inline void *operator new[](size_t Bytes, clang::ASTContext& C,
|
|
size_t Alignment = 8) throw () {
|
|
return C.Allocate(Bytes, Alignment);
|
|
}
|
|
|
|
/// @brief Placement delete[] companion to the new[] above.
|
|
///
|
|
/// This operator is just a companion to the new[] above. There is no way of
|
|
/// invoking it directly; see the new[] operator for more details. This operator
|
|
/// is called implicitly by the compiler if a placement new[] expression using
|
|
/// the ASTContext throws in the object constructor.
|
|
inline void operator delete[](void *Ptr, clang::ASTContext &C, size_t)
|
|
throw () {
|
|
C.Deallocate(Ptr);
|
|
}
|
|
|
|
#endif
|