freebsd-nq/include/clang/AST/ASTVector.h
2010-05-04 16:12:48 +00:00

398 lines
11 KiB
C++

//===- ASTVector.h - Vector that uses ASTContext for allocation --*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides ASTVector, a vector ADT whose contents are
// allocated using the allocator associated with an ASTContext..
//
//===----------------------------------------------------------------------===//
// FIXME: Most of this is copy-and-paste from BumpVector.h and SmallVector.h.
// We can refactor this core logic into something common.
#ifndef LLVM_CLANG_AST_VECTOR
#define LLVM_CLANG_AST_VECTOR
#include "llvm/Support/type_traits.h"
#include "llvm/Support/Allocator.h"
#include "llvm/ADT/PointerIntPair.h"
#include <algorithm>
#include <memory>
#include <cstring>
#ifdef _MSC_VER
namespace std {
#if _MSC_VER <= 1310
// Work around flawed VC++ implementation of std::uninitialized_copy. Define
// additional overloads so that elements with pointer types are recognized as
// scalars and not objects, causing bizarre type conversion errors.
template<class T1, class T2>
inline _Scalar_ptr_iterator_tag _Ptr_cat(T1 **, T2 **) {
_Scalar_ptr_iterator_tag _Cat;
return _Cat;
}
template<class T1, class T2>
inline _Scalar_ptr_iterator_tag _Ptr_cat(T1* const *, T2 **) {
_Scalar_ptr_iterator_tag _Cat;
return _Cat;
}
#else
// FIXME: It is not clear if the problem is fixed in VS 2005. What is clear
// is that the above hack won't work if it wasn't fixed.
#endif
}
#endif
namespace clang {
template<typename T>
class ASTVector {
T *Begin, *End, *Capacity;
void setEnd(T *P) { this->End = P; }
public:
// Default ctor - Initialize to empty.
explicit ASTVector(ASTContext &C, unsigned N = 0)
: Begin(NULL), End(NULL), Capacity(NULL) {
reserve(C, N);
}
~ASTVector() {
if (llvm::is_class<T>::value) {
// Destroy the constructed elements in the vector.
destroy_range(Begin, End);
}
}
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef T* iterator;
typedef const T* const_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef T& reference;
typedef const T& const_reference;
typedef T* pointer;
typedef const T* const_pointer;
// forward iterator creation methods.
iterator begin() { return Begin; }
const_iterator begin() const { return Begin; }
iterator end() { return End; }
const_iterator end() const { return End; }
// reverse iterator creation methods.
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
bool empty() const { return Begin == End; }
size_type size() const { return End-Begin; }
reference operator[](unsigned idx) {
assert(Begin + idx < End);
return Begin[idx];
}
const_reference operator[](unsigned idx) const {
assert(Begin + idx < End);
return Begin[idx];
}
reference front() {
return begin()[0];
}
const_reference front() const {
return begin()[0];
}
reference back() {
return end()[-1];
}
const_reference back() const {
return end()[-1];
}
void pop_back() {
--End;
End->~T();
}
T pop_back_val() {
T Result = back();
pop_back();
return Result;
}
void clear() {
if (llvm::is_class<T>::value) {
destroy_range(Begin, End);
}
End = Begin;
}
/// data - Return a pointer to the vector's buffer, even if empty().
pointer data() {
return pointer(Begin);
}
/// data - Return a pointer to the vector's buffer, even if empty().
const_pointer data() const {
return const_pointer(Begin);
}
void push_back(const_reference Elt, ASTContext &C) {
if (End < Capacity) {
Retry:
new (End) T(Elt);
++End;
return;
}
grow(C);
goto Retry;
}
void reserve(ASTContext &C, unsigned N) {
if (unsigned(Capacity-Begin) < N)
grow(C, N);
}
/// capacity - Return the total number of elements in the currently allocated
/// buffer.
size_t capacity() const { return Capacity - Begin; }
/// append - Add the specified range to the end of the SmallVector.
///
template<typename in_iter>
void append(ASTContext &C, in_iter in_start, in_iter in_end) {
size_type NumInputs = std::distance(in_start, in_end);
if (NumInputs == 0)
return;
// Grow allocated space if needed.
if (NumInputs > size_type(this->capacity_ptr()-this->end()))
this->grow(C, this->size()+NumInputs);
// Copy the new elements over.
// TODO: NEED To compile time dispatch on whether in_iter is a random access
// iterator to use the fast uninitialized_copy.
std::uninitialized_copy(in_start, in_end, this->end());
this->setEnd(this->end() + NumInputs);
}
/// append - Add the specified range to the end of the SmallVector.
///
void append(ASTContext &C, size_type NumInputs, const T &Elt) {
// Grow allocated space if needed.
if (NumInputs > size_type(this->capacity_ptr()-this->end()))
this->grow(C, this->size()+NumInputs);
// Copy the new elements over.
std::uninitialized_fill_n(this->end(), NumInputs, Elt);
this->setEnd(this->end() + NumInputs);
}
/// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
/// starting with "Dest", constructing elements into it as needed.
template<typename It1, typename It2>
static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
std::uninitialized_copy(I, E, Dest);
}
iterator insert(ASTContext &C, iterator I, const T &Elt) {
if (I == this->end()) { // Important special case for empty vector.
push_back(Elt);
return this->end()-1;
}
if (this->EndX < this->CapacityX) {
Retry:
new (this->end()) T(this->back());
this->setEnd(this->end()+1);
// Push everything else over.
std::copy_backward(I, this->end()-1, this->end());
*I = Elt;
return I;
}
size_t EltNo = I-this->begin();
this->grow(C);
I = this->begin()+EltNo;
goto Retry;
}
iterator insert(ASTContext &C, iterator I, size_type NumToInsert,
const T &Elt) {
if (I == this->end()) { // Important special case for empty vector.
append(C, NumToInsert, Elt);
return this->end()-1;
}
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
size_t InsertElt = I - this->begin();
// Ensure there is enough space.
reserve(C, static_cast<unsigned>(this->size() + NumToInsert));
// Uninvalidate the iterator.
I = this->begin()+InsertElt;
// If there are more elements between the insertion point and the end of the
// range than there are being inserted, we can use a simple approach to
// insertion. Since we already reserved space, we know that this won't
// reallocate the vector.
if (size_t(this->end()-I) >= NumToInsert) {
T *OldEnd = this->end();
append(C, this->end()-NumToInsert, this->end());
// Copy the existing elements that get replaced.
std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
std::fill_n(I, NumToInsert, Elt);
return I;
}
// Otherwise, we're inserting more elements than exist already, and we're
// not inserting at the end.
// Copy over the elements that we're about to overwrite.
T *OldEnd = this->end();
this->setEnd(this->end() + NumToInsert);
size_t NumOverwritten = OldEnd-I;
this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
// Replace the overwritten part.
std::fill_n(I, NumOverwritten, Elt);
// Insert the non-overwritten middle part.
std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
return I;
}
template<typename ItTy>
iterator insert(ASTContext &C, iterator I, ItTy From, ItTy To) {
if (I == this->end()) { // Important special case for empty vector.
append(C, From, To);
return this->end()-1;
}
size_t NumToInsert = std::distance(From, To);
// Convert iterator to elt# to avoid invalidating iterator when we reserve()
size_t InsertElt = I - this->begin();
// Ensure there is enough space.
reserve(C, static_cast<unsigned>(this->size() + NumToInsert));
// Uninvalidate the iterator.
I = this->begin()+InsertElt;
// If there are more elements between the insertion point and the end of the
// range than there are being inserted, we can use a simple approach to
// insertion. Since we already reserved space, we know that this won't
// reallocate the vector.
if (size_t(this->end()-I) >= NumToInsert) {
T *OldEnd = this->end();
append(C, this->end()-NumToInsert, this->end());
// Copy the existing elements that get replaced.
std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
std::copy(From, To, I);
return I;
}
// Otherwise, we're inserting more elements than exist already, and we're
// not inserting at the end.
// Copy over the elements that we're about to overwrite.
T *OldEnd = this->end();
this->setEnd(this->end() + NumToInsert);
size_t NumOverwritten = OldEnd-I;
this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
// Replace the overwritten part.
for (; NumOverwritten > 0; --NumOverwritten) {
*I = *From;
++I; ++From;
}
// Insert the non-overwritten middle part.
this->uninitialized_copy(From, To, OldEnd);
return I;
}
void resize(ASTContext &C, unsigned N, const T &NV) {
if (N < this->size()) {
this->destroy_range(this->begin()+N, this->end());
this->setEnd(this->begin()+N);
} else if (N > this->size()) {
if (this->capacity() < N)
this->grow(C, N);
construct_range(this->end(), this->begin()+N, NV);
this->setEnd(this->begin()+N);
}
}
private:
/// grow - double the size of the allocated memory, guaranteeing space for at
/// least one more element or MinSize if specified.
void grow(ASTContext &C, size_type MinSize = 1);
void construct_range(T *S, T *E, const T &Elt) {
for (; S != E; ++S)
new (S) T(Elt);
}
void destroy_range(T *S, T *E) {
while (S != E) {
--E;
E->~T();
}
}
protected:
iterator capacity_ptr() { return (iterator)this->Capacity; }
};
// Define this out-of-line to dissuade the C++ compiler from inlining it.
template <typename T>
void ASTVector<T>::grow(ASTContext &C, size_t MinSize) {
size_t CurCapacity = Capacity-Begin;
size_t CurSize = size();
size_t NewCapacity = 2*CurCapacity;
if (NewCapacity < MinSize)
NewCapacity = MinSize;
// Allocate the memory from the ASTContext.
T *NewElts = new (C) T[NewCapacity];
// Copy the elements over.
if (llvm::is_class<T>::value) {
std::uninitialized_copy(Begin, End, NewElts);
// Destroy the original elements.
destroy_range(Begin, End);
}
else {
// Use memcpy for PODs (std::uninitialized_copy optimizes to memmove).
memcpy(NewElts, Begin, CurSize * sizeof(T));
}
C.Deallocate(Begin);
Begin = NewElts;
End = NewElts+CurSize;
Capacity = Begin+NewCapacity;
}
} // end: clang namespace
#endif