2010-03-16 16:52:15 +00:00

513 lines
20 KiB
C++

//===--- CFG.h - Classes for representing and building CFGs------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the CFG and CFGBuilder classes for representing and
// building Control-Flow Graphs (CFGs) from ASTs.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_CFG_H
#define LLVM_CLANG_CFG_H
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "clang/Analysis/Support/BumpVector.h"
#include "clang/Basic/SourceLocation.h"
#include <cassert>
namespace llvm {
class raw_ostream;
}
namespace clang {
class Decl;
class Stmt;
class Expr;
class CFG;
class PrinterHelper;
class LangOptions;
class ASTContext;
namespace {
// An element of the CFG for implicit descructor calls implied by the language
// rules.
class Dtor {
// Statement that introduces the variable.
Stmt *S;
// A token which ends the scope, return, goto, throw, }.
SourceLocation Loc;
public:
Dtor(Stmt *s, SourceLocation l) : S(s), Loc(l) {
}
SourceLocation getLoc() { return Loc; }
Stmt *getStmt() { return S; }
};
}
/// CFGElement - Represents a top-level expression in a basic block.
class CFGElement {
llvm::PointerIntPair<Stmt *, 2> Data;
public:
enum Type { StartScope, EndScope };
explicit CFGElement() {}
CFGElement(Stmt *S, bool lvalue) : Data(S, lvalue ? 1 : 0) {}
CFGElement(Stmt *S, Type t) : Data(S, t == StartScope ? 2 : 3) {}
// CFGElement(Dtor *S, Type t) : Data(reinterpret_cast<Stmt*>(S), 4) {}
Stmt *getStmt() const { return Data.getPointer(); }
bool asLValue() const { return Data.getInt() == 1; }
bool asStartScope() const { return Data.getInt() == 2; }
bool asEndScope() const { return Data.getInt() == 3; }
bool asDtor() const { return Data.getInt() == 4; }
operator Stmt*() const { return getStmt(); }
operator bool() const { return getStmt() != 0; }
operator Dtor*() const { return reinterpret_cast<Dtor*>(getStmt()); }
};
/// CFGBlock - Represents a single basic block in a source-level CFG.
/// It consists of:
///
/// (1) A set of statements/expressions (which may contain subexpressions).
/// (2) A "terminator" statement (not in the set of statements).
/// (3) A list of successors and predecessors.
///
/// Terminator: The terminator represents the type of control-flow that occurs
/// at the end of the basic block. The terminator is a Stmt* referring to an
/// AST node that has control-flow: if-statements, breaks, loops, etc.
/// If the control-flow is conditional, the condition expression will appear
/// within the set of statements in the block (usually the last statement).
///
/// Predecessors: the order in the set of predecessors is arbitrary.
///
/// Successors: the order in the set of successors is NOT arbitrary. We
/// currently have the following orderings based on the terminator:
///
/// Terminator Successor Ordering
/// -----------------------------------------------------
/// if Then Block; Else Block
/// ? operator LHS expression; RHS expression
/// &&, || expression that uses result of && or ||, RHS
///
class CFGBlock {
class StatementList {
typedef BumpVector<CFGElement> ImplTy;
ImplTy Impl;
public:
StatementList(BumpVectorContext &C) : Impl(C, 4) {}
typedef std::reverse_iterator<ImplTy::iterator> iterator;
typedef std::reverse_iterator<ImplTy::const_iterator> const_iterator;
typedef ImplTy::iterator reverse_iterator;
typedef ImplTy::const_iterator const_reverse_iterator;
void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); }
CFGElement front() const { return Impl.back(); }
CFGElement back() const { return Impl.front(); }
iterator begin() { return Impl.rbegin(); }
iterator end() { return Impl.rend(); }
const_iterator begin() const { return Impl.rbegin(); }
const_iterator end() const { return Impl.rend(); }
reverse_iterator rbegin() { return Impl.begin(); }
reverse_iterator rend() { return Impl.end(); }
const_reverse_iterator rbegin() const { return Impl.begin(); }
const_reverse_iterator rend() const { return Impl.end(); }
CFGElement operator[](size_t i) const {
assert(i < Impl.size());
return Impl[Impl.size() - 1 - i];
}
size_t size() const { return Impl.size(); }
bool empty() const { return Impl.empty(); }
};
/// Stmts - The set of statements in the basic block.
StatementList Stmts;
/// Label - An (optional) label that prefixes the executable
/// statements in the block. When this variable is non-NULL, it is
/// either an instance of LabelStmt, SwitchCase or CXXCatchStmt.
Stmt *Label;
/// Terminator - The terminator for a basic block that
/// indicates the type of control-flow that occurs between a block
/// and its successors.
Stmt *Terminator;
/// LoopTarget - Some blocks are used to represent the "loop edge" to
/// the start of a loop from within the loop body. This Stmt* will be
/// refer to the loop statement for such blocks (and be null otherwise).
const Stmt *LoopTarget;
/// BlockID - A numerical ID assigned to a CFGBlock during construction
/// of the CFG.
unsigned BlockID;
/// Predecessors/Successors - Keep track of the predecessor / successor
/// CFG blocks.
typedef BumpVector<CFGBlock*> AdjacentBlocks;
AdjacentBlocks Preds;
AdjacentBlocks Succs;
public:
explicit CFGBlock(unsigned blockid, BumpVectorContext &C)
: Stmts(C), Label(NULL), Terminator(NULL), LoopTarget(NULL),
BlockID(blockid), Preds(C, 1), Succs(C, 1) {}
~CFGBlock() {}
// Statement iterators
typedef StatementList::iterator iterator;
typedef StatementList::const_iterator const_iterator;
typedef StatementList::reverse_iterator reverse_iterator;
typedef StatementList::const_reverse_iterator const_reverse_iterator;
CFGElement front() const { return Stmts.front(); }
CFGElement back() const { return Stmts.back(); }
iterator begin() { return Stmts.begin(); }
iterator end() { return Stmts.end(); }
const_iterator begin() const { return Stmts.begin(); }
const_iterator end() const { return Stmts.end(); }
reverse_iterator rbegin() { return Stmts.rbegin(); }
reverse_iterator rend() { return Stmts.rend(); }
const_reverse_iterator rbegin() const { return Stmts.rbegin(); }
const_reverse_iterator rend() const { return Stmts.rend(); }
unsigned size() const { return Stmts.size(); }
bool empty() const { return Stmts.empty(); }
CFGElement operator[](size_t i) const { return Stmts[i]; }
// CFG iterators
typedef AdjacentBlocks::iterator pred_iterator;
typedef AdjacentBlocks::const_iterator const_pred_iterator;
typedef AdjacentBlocks::reverse_iterator pred_reverse_iterator;
typedef AdjacentBlocks::const_reverse_iterator const_pred_reverse_iterator;
typedef AdjacentBlocks::iterator succ_iterator;
typedef AdjacentBlocks::const_iterator const_succ_iterator;
typedef AdjacentBlocks::reverse_iterator succ_reverse_iterator;
typedef AdjacentBlocks::const_reverse_iterator const_succ_reverse_iterator;
pred_iterator pred_begin() { return Preds.begin(); }
pred_iterator pred_end() { return Preds.end(); }
const_pred_iterator pred_begin() const { return Preds.begin(); }
const_pred_iterator pred_end() const { return Preds.end(); }
pred_reverse_iterator pred_rbegin() { return Preds.rbegin(); }
pred_reverse_iterator pred_rend() { return Preds.rend(); }
const_pred_reverse_iterator pred_rbegin() const { return Preds.rbegin(); }
const_pred_reverse_iterator pred_rend() const { return Preds.rend(); }
succ_iterator succ_begin() { return Succs.begin(); }
succ_iterator succ_end() { return Succs.end(); }
const_succ_iterator succ_begin() const { return Succs.begin(); }
const_succ_iterator succ_end() const { return Succs.end(); }
succ_reverse_iterator succ_rbegin() { return Succs.rbegin(); }
succ_reverse_iterator succ_rend() { return Succs.rend(); }
const_succ_reverse_iterator succ_rbegin() const { return Succs.rbegin(); }
const_succ_reverse_iterator succ_rend() const { return Succs.rend(); }
unsigned succ_size() const { return Succs.size(); }
bool succ_empty() const { return Succs.empty(); }
unsigned pred_size() const { return Preds.size(); }
bool pred_empty() const { return Preds.empty(); }
// Manipulation of block contents
void setTerminator(Stmt* Statement) { Terminator = Statement; }
void setLabel(Stmt* Statement) { Label = Statement; }
void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; }
Stmt* getTerminator() { return Terminator; }
const Stmt* getTerminator() const { return Terminator; }
Stmt* getTerminatorCondition();
const Stmt* getTerminatorCondition() const {
return const_cast<CFGBlock*>(this)->getTerminatorCondition();
}
const Stmt *getLoopTarget() const { return LoopTarget; }
bool hasBinaryBranchTerminator() const;
Stmt* getLabel() { return Label; }
const Stmt* getLabel() const { return Label; }
unsigned getBlockID() const { return BlockID; }
void dump(const CFG *cfg, const LangOptions &LO) const;
void print(llvm::raw_ostream &OS, const CFG* cfg, const LangOptions &LO) const;
void printTerminator(llvm::raw_ostream &OS, const LangOptions &LO) const;
void addSuccessor(CFGBlock* Block, BumpVectorContext &C) {
if (Block)
Block->Preds.push_back(this, C);
Succs.push_back(Block, C);
}
void appendStmt(Stmt* Statement, BumpVectorContext &C, bool asLValue) {
Stmts.push_back(CFGElement(Statement, asLValue), C);
}
void StartScope(Stmt* S, BumpVectorContext &C) {
Stmts.push_back(CFGElement(S, CFGElement::StartScope), C);
}
void EndScope(Stmt* S, BumpVectorContext &C) {
Stmts.push_back(CFGElement(S, CFGElement::EndScope), C);
}
};
/// CFG - Represents a source-level, intra-procedural CFG that represents the
/// control-flow of a Stmt. The Stmt can represent an entire function body,
/// or a single expression. A CFG will always contain one empty block that
/// represents the Exit point of the CFG. A CFG will also contain a designated
/// Entry block. The CFG solely represents control-flow; it consists of
/// CFGBlocks which are simply containers of Stmt*'s in the AST the CFG
/// was constructed from.
class CFG {
public:
//===--------------------------------------------------------------------===//
// CFG Construction & Manipulation.
//===--------------------------------------------------------------------===//
/// buildCFG - Builds a CFG from an AST. The responsibility to free the
/// constructed CFG belongs to the caller.
static CFG* buildCFG(const Decl *D, Stmt* AST, ASTContext *C,
bool AddEHEdges = false,
bool AddScopes = false /* NOT FULLY IMPLEMENTED.
NOT READY FOR GENERAL USE. */);
/// createBlock - Create a new block in the CFG. The CFG owns the block;
/// the caller should not directly free it.
CFGBlock* createBlock();
/// setEntry - Set the entry block of the CFG. This is typically used
/// only during CFG construction. Most CFG clients expect that the
/// entry block has no predecessors and contains no statements.
void setEntry(CFGBlock *B) { Entry = B; }
/// setIndirectGotoBlock - Set the block used for indirect goto jumps.
/// This is typically used only during CFG construction.
void setIndirectGotoBlock(CFGBlock* B) { IndirectGotoBlock = B; }
//===--------------------------------------------------------------------===//
// Block Iterators
//===--------------------------------------------------------------------===//
typedef BumpVector<CFGBlock*> CFGBlockListTy;
typedef CFGBlockListTy::iterator iterator;
typedef CFGBlockListTy::const_iterator const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
CFGBlock& front() { return *Blocks.front(); }
CFGBlock& back() { return *Blocks.back(); }
iterator begin() { return Blocks.begin(); }
iterator end() { return Blocks.end(); }
const_iterator begin() const { return Blocks.begin(); }
const_iterator end() const { return Blocks.end(); }
reverse_iterator rbegin() { return Blocks.rbegin(); }
reverse_iterator rend() { return Blocks.rend(); }
const_reverse_iterator rbegin() const { return Blocks.rbegin(); }
const_reverse_iterator rend() const { return Blocks.rend(); }
CFGBlock& getEntry() { return *Entry; }
const CFGBlock& getEntry() const { return *Entry; }
CFGBlock& getExit() { return *Exit; }
const CFGBlock& getExit() const { return *Exit; }
CFGBlock* getIndirectGotoBlock() { return IndirectGotoBlock; }
const CFGBlock* getIndirectGotoBlock() const { return IndirectGotoBlock; }
//===--------------------------------------------------------------------===//
// Member templates useful for various batch operations over CFGs.
//===--------------------------------------------------------------------===//
template <typename CALLBACK>
void VisitBlockStmts(CALLBACK& O) const {
for (const_iterator I=begin(), E=end(); I != E; ++I)
for (CFGBlock::const_iterator BI=(*I)->begin(), BE=(*I)->end();
BI != BE; ++BI)
O(*BI);
}
//===--------------------------------------------------------------------===//
// CFG Introspection.
//===--------------------------------------------------------------------===//
struct BlkExprNumTy {
const signed Idx;
explicit BlkExprNumTy(signed idx) : Idx(idx) {}
explicit BlkExprNumTy() : Idx(-1) {}
operator bool() const { return Idx >= 0; }
operator unsigned() const { assert(Idx >=0); return (unsigned) Idx; }
};
bool isBlkExpr(const Stmt* S) { return getBlkExprNum(S); }
BlkExprNumTy getBlkExprNum(const Stmt* S);
unsigned getNumBlkExprs();
/// getNumBlockIDs - Returns the total number of BlockIDs allocated (which
/// start at 0).
unsigned getNumBlockIDs() const { return NumBlockIDs; }
//===--------------------------------------------------------------------===//
// CFG Debugging: Pretty-Printing and Visualization.
//===--------------------------------------------------------------------===//
void viewCFG(const LangOptions &LO) const;
void print(llvm::raw_ostream& OS, const LangOptions &LO) const;
void dump(const LangOptions &LO) const;
//===--------------------------------------------------------------------===//
// Internal: constructors and data.
//===--------------------------------------------------------------------===//
CFG() : Entry(NULL), Exit(NULL), IndirectGotoBlock(NULL), NumBlockIDs(0),
BlkExprMap(NULL), Blocks(BlkBVC, 10) {}
~CFG();
llvm::BumpPtrAllocator& getAllocator() {
return BlkBVC.getAllocator();
}
BumpVectorContext &getBumpVectorContext() {
return BlkBVC;
}
private:
CFGBlock* Entry;
CFGBlock* Exit;
CFGBlock* IndirectGotoBlock; // Special block to contain collective dispatch
// for indirect gotos
unsigned NumBlockIDs;
// BlkExprMap - An opaque pointer to prevent inclusion of DenseMap.h.
// It represents a map from Expr* to integers to record the set of
// block-level expressions and their "statement number" in the CFG.
void* BlkExprMap;
BumpVectorContext BlkBVC;
CFGBlockListTy Blocks;
};
} // end namespace clang
//===----------------------------------------------------------------------===//
// GraphTraits specializations for CFG basic block graphs (source-level CFGs)
//===----------------------------------------------------------------------===//
namespace llvm {
/// Implement simplify_type for CFGElement, so that we can dyn_cast from
/// CFGElement to a specific Stmt class.
template <> struct simplify_type<const ::clang::CFGElement> {
typedef ::clang::Stmt* SimpleType;
static SimpleType getSimplifiedValue(const ::clang::CFGElement &Val) {
return Val.getStmt();
}
};
template <> struct simplify_type< ::clang::CFGElement>
: public simplify_type<const ::clang::CFGElement> {};
// Traits for: CFGBlock
template <> struct GraphTraits< ::clang::CFGBlock* > {
typedef ::clang::CFGBlock NodeType;
typedef ::clang::CFGBlock::succ_iterator ChildIteratorType;
static NodeType* getEntryNode(::clang::CFGBlock* BB)
{ return BB; }
static inline ChildIteratorType child_begin(NodeType* N)
{ return N->succ_begin(); }
static inline ChildIteratorType child_end(NodeType* N)
{ return N->succ_end(); }
};
template <> struct GraphTraits< const ::clang::CFGBlock* > {
typedef const ::clang::CFGBlock NodeType;
typedef ::clang::CFGBlock::const_succ_iterator ChildIteratorType;
static NodeType* getEntryNode(const clang::CFGBlock* BB)
{ return BB; }
static inline ChildIteratorType child_begin(NodeType* N)
{ return N->succ_begin(); }
static inline ChildIteratorType child_end(NodeType* N)
{ return N->succ_end(); }
};
template <> struct GraphTraits<Inverse<const ::clang::CFGBlock*> > {
typedef const ::clang::CFGBlock NodeType;
typedef ::clang::CFGBlock::const_pred_iterator ChildIteratorType;
static NodeType *getEntryNode(Inverse<const ::clang::CFGBlock*> G)
{ return G.Graph; }
static inline ChildIteratorType child_begin(NodeType* N)
{ return N->pred_begin(); }
static inline ChildIteratorType child_end(NodeType* N)
{ return N->pred_end(); }
};
// Traits for: CFG
template <> struct GraphTraits< ::clang::CFG* >
: public GraphTraits< ::clang::CFGBlock* > {
typedef ::clang::CFG::iterator nodes_iterator;
static NodeType *getEntryNode(::clang::CFG* F) { return &F->getEntry(); }
static nodes_iterator nodes_begin(::clang::CFG* F) { return F->begin(); }
static nodes_iterator nodes_end(::clang::CFG* F) { return F->end(); }
};
template <> struct GraphTraits<const ::clang::CFG* >
: public GraphTraits<const ::clang::CFGBlock* > {
typedef ::clang::CFG::const_iterator nodes_iterator;
static NodeType *getEntryNode( const ::clang::CFG* F) {
return &F->getEntry();
}
static nodes_iterator nodes_begin( const ::clang::CFG* F) {
return F->begin();
}
static nodes_iterator nodes_end( const ::clang::CFG* F) {
return F->end();
}
};
template <> struct GraphTraits<Inverse<const ::clang::CFG*> >
: public GraphTraits<Inverse<const ::clang::CFGBlock*> > {
typedef ::clang::CFG::const_iterator nodes_iterator;
static NodeType *getEntryNode(const ::clang::CFG* F) { return &F->getExit(); }
static nodes_iterator nodes_begin(const ::clang::CFG* F) { return F->begin();}
static nodes_iterator nodes_end(const ::clang::CFG* F) { return F->end(); }
};
} // end llvm namespace
#endif