02a2aacbe2
Places that will wait for curproc->p_singlethr to become zero (in the next commit, the counter of number of external single-threading is to be introduced), must wait for it interruptible, otherwise we deadlock. On the other hand, a signal delivered during this window, if directed to the waiting thread, would cause the wait loop to become a busy loop. Since we are exiting, it is safe to ignore the signals. Reviewed by: markj Tested by: pho Sponsored by: The FreeBSD Foundation MFC after: 2 weeks Differential revision: https://reviews.freebsd.org/D35310
4394 lines
105 KiB
C
4394 lines
105 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 1982, 1986, 1989, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_sig.c 8.7 (Berkeley) 4/18/94
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ktrace.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/ctype.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/acct.h>
|
|
#include <sys/capsicum.h>
|
|
#include <sys/compressor.h>
|
|
#include <sys/condvar.h>
|
|
#include <sys/devctl.h>
|
|
#include <sys/event.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/imgact.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/ktrace.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/procdesc.h>
|
|
#include <sys/ptrace.h>
|
|
#include <sys/posix4.h>
|
|
#include <sys/racct.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/sdt.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/sleepqueue.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/syscallsubr.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sysent.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/timers.h>
|
|
#include <sys/unistd.h>
|
|
#include <sys/wait.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/uma.h>
|
|
|
|
#include <sys/jail.h>
|
|
|
|
#include <machine/cpu.h>
|
|
|
|
#include <security/audit/audit.h>
|
|
|
|
#define ONSIG 32 /* NSIG for osig* syscalls. XXX. */
|
|
|
|
SDT_PROVIDER_DECLARE(proc);
|
|
SDT_PROBE_DEFINE3(proc, , , signal__send,
|
|
"struct thread *", "struct proc *", "int");
|
|
SDT_PROBE_DEFINE2(proc, , , signal__clear,
|
|
"int", "ksiginfo_t *");
|
|
SDT_PROBE_DEFINE3(proc, , , signal__discard,
|
|
"struct thread *", "struct proc *", "int");
|
|
|
|
static int coredump(struct thread *);
|
|
static int killpg1(struct thread *td, int sig, int pgid, int all,
|
|
ksiginfo_t *ksi);
|
|
static int issignal(struct thread *td);
|
|
static void reschedule_signals(struct proc *p, sigset_t block, int flags);
|
|
static int sigprop(int sig);
|
|
static void tdsigwakeup(struct thread *, int, sig_t, int);
|
|
static int sig_suspend_threads(struct thread *, struct proc *, int);
|
|
static int filt_sigattach(struct knote *kn);
|
|
static void filt_sigdetach(struct knote *kn);
|
|
static int filt_signal(struct knote *kn, long hint);
|
|
static struct thread *sigtd(struct proc *p, int sig, bool fast_sigblock);
|
|
static void sigqueue_start(void);
|
|
|
|
static uma_zone_t ksiginfo_zone = NULL;
|
|
struct filterops sig_filtops = {
|
|
.f_isfd = 0,
|
|
.f_attach = filt_sigattach,
|
|
.f_detach = filt_sigdetach,
|
|
.f_event = filt_signal,
|
|
};
|
|
|
|
static int kern_logsigexit = 1;
|
|
SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
|
|
&kern_logsigexit, 0,
|
|
"Log processes quitting on abnormal signals to syslog(3)");
|
|
|
|
static int kern_forcesigexit = 1;
|
|
SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
|
|
&kern_forcesigexit, 0, "Force trap signal to be handled");
|
|
|
|
static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
|
|
"POSIX real time signal");
|
|
|
|
static int max_pending_per_proc = 128;
|
|
SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
|
|
&max_pending_per_proc, 0, "Max pending signals per proc");
|
|
|
|
static int preallocate_siginfo = 1024;
|
|
SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
|
|
&preallocate_siginfo, 0, "Preallocated signal memory size");
|
|
|
|
static int signal_overflow = 0;
|
|
SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
|
|
&signal_overflow, 0, "Number of signals overflew");
|
|
|
|
static int signal_alloc_fail = 0;
|
|
SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
|
|
&signal_alloc_fail, 0, "signals failed to be allocated");
|
|
|
|
static int kern_lognosys = 0;
|
|
SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
|
|
"Log invalid syscalls");
|
|
|
|
__read_frequently bool sigfastblock_fetch_always = false;
|
|
SYSCTL_BOOL(_kern, OID_AUTO, sigfastblock_fetch_always, CTLFLAG_RWTUN,
|
|
&sigfastblock_fetch_always, 0,
|
|
"Fetch sigfastblock word on each syscall entry for proper "
|
|
"blocking semantic");
|
|
|
|
static bool kern_sig_discard_ign = true;
|
|
SYSCTL_BOOL(_kern, OID_AUTO, sig_discard_ign, CTLFLAG_RWTUN,
|
|
&kern_sig_discard_ign, 0,
|
|
"Discard ignored signals on delivery, otherwise queue them to "
|
|
"the target queue");
|
|
|
|
SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
|
|
|
|
/*
|
|
* Policy -- Can ucred cr1 send SIGIO to process cr2?
|
|
* Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
|
|
* in the right situations.
|
|
*/
|
|
#define CANSIGIO(cr1, cr2) \
|
|
((cr1)->cr_uid == 0 || \
|
|
(cr1)->cr_ruid == (cr2)->cr_ruid || \
|
|
(cr1)->cr_uid == (cr2)->cr_ruid || \
|
|
(cr1)->cr_ruid == (cr2)->cr_uid || \
|
|
(cr1)->cr_uid == (cr2)->cr_uid)
|
|
|
|
static int sugid_coredump;
|
|
SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
|
|
&sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
|
|
|
|
static int capmode_coredump;
|
|
SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
|
|
&capmode_coredump, 0, "Allow processes in capability mode to dump core");
|
|
|
|
static int do_coredump = 1;
|
|
SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
|
|
&do_coredump, 0, "Enable/Disable coredumps");
|
|
|
|
static int set_core_nodump_flag = 0;
|
|
SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
|
|
0, "Enable setting the NODUMP flag on coredump files");
|
|
|
|
static int coredump_devctl = 0;
|
|
SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
|
|
0, "Generate a devctl notification when processes coredump");
|
|
|
|
/*
|
|
* Signal properties and actions.
|
|
* The array below categorizes the signals and their default actions
|
|
* according to the following properties:
|
|
*/
|
|
#define SIGPROP_KILL 0x01 /* terminates process by default */
|
|
#define SIGPROP_CORE 0x02 /* ditto and coredumps */
|
|
#define SIGPROP_STOP 0x04 /* suspend process */
|
|
#define SIGPROP_TTYSTOP 0x08 /* ditto, from tty */
|
|
#define SIGPROP_IGNORE 0x10 /* ignore by default */
|
|
#define SIGPROP_CONT 0x20 /* continue if suspended */
|
|
|
|
static int sigproptbl[NSIG] = {
|
|
[SIGHUP] = SIGPROP_KILL,
|
|
[SIGINT] = SIGPROP_KILL,
|
|
[SIGQUIT] = SIGPROP_KILL | SIGPROP_CORE,
|
|
[SIGILL] = SIGPROP_KILL | SIGPROP_CORE,
|
|
[SIGTRAP] = SIGPROP_KILL | SIGPROP_CORE,
|
|
[SIGABRT] = SIGPROP_KILL | SIGPROP_CORE,
|
|
[SIGEMT] = SIGPROP_KILL | SIGPROP_CORE,
|
|
[SIGFPE] = SIGPROP_KILL | SIGPROP_CORE,
|
|
[SIGKILL] = SIGPROP_KILL,
|
|
[SIGBUS] = SIGPROP_KILL | SIGPROP_CORE,
|
|
[SIGSEGV] = SIGPROP_KILL | SIGPROP_CORE,
|
|
[SIGSYS] = SIGPROP_KILL | SIGPROP_CORE,
|
|
[SIGPIPE] = SIGPROP_KILL,
|
|
[SIGALRM] = SIGPROP_KILL,
|
|
[SIGTERM] = SIGPROP_KILL,
|
|
[SIGURG] = SIGPROP_IGNORE,
|
|
[SIGSTOP] = SIGPROP_STOP,
|
|
[SIGTSTP] = SIGPROP_STOP | SIGPROP_TTYSTOP,
|
|
[SIGCONT] = SIGPROP_IGNORE | SIGPROP_CONT,
|
|
[SIGCHLD] = SIGPROP_IGNORE,
|
|
[SIGTTIN] = SIGPROP_STOP | SIGPROP_TTYSTOP,
|
|
[SIGTTOU] = SIGPROP_STOP | SIGPROP_TTYSTOP,
|
|
[SIGIO] = SIGPROP_IGNORE,
|
|
[SIGXCPU] = SIGPROP_KILL,
|
|
[SIGXFSZ] = SIGPROP_KILL,
|
|
[SIGVTALRM] = SIGPROP_KILL,
|
|
[SIGPROF] = SIGPROP_KILL,
|
|
[SIGWINCH] = SIGPROP_IGNORE,
|
|
[SIGINFO] = SIGPROP_IGNORE,
|
|
[SIGUSR1] = SIGPROP_KILL,
|
|
[SIGUSR2] = SIGPROP_KILL,
|
|
};
|
|
|
|
#define _SIG_FOREACH_ADVANCE(i, set) ({ \
|
|
int __found; \
|
|
for (;;) { \
|
|
if (__bits != 0) { \
|
|
int __sig = ffs(__bits); \
|
|
__bits &= ~(1u << (__sig - 1)); \
|
|
sig = __i * sizeof((set)->__bits[0]) * NBBY + __sig; \
|
|
__found = 1; \
|
|
break; \
|
|
} \
|
|
if (++__i == _SIG_WORDS) { \
|
|
__found = 0; \
|
|
break; \
|
|
} \
|
|
__bits = (set)->__bits[__i]; \
|
|
} \
|
|
__found != 0; \
|
|
})
|
|
|
|
#define SIG_FOREACH(i, set) \
|
|
for (int32_t __i = -1, __bits = 0; \
|
|
_SIG_FOREACH_ADVANCE(i, set); ) \
|
|
|
|
sigset_t fastblock_mask;
|
|
|
|
static void
|
|
sigqueue_start(void)
|
|
{
|
|
ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
|
|
uma_prealloc(ksiginfo_zone, preallocate_siginfo);
|
|
p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
|
|
p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
|
|
p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
|
|
SIGFILLSET(fastblock_mask);
|
|
SIG_CANTMASK(fastblock_mask);
|
|
}
|
|
|
|
ksiginfo_t *
|
|
ksiginfo_alloc(int wait)
|
|
{
|
|
int flags;
|
|
|
|
flags = M_ZERO | (wait ? M_WAITOK : M_NOWAIT);
|
|
if (ksiginfo_zone != NULL)
|
|
return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
|
|
return (NULL);
|
|
}
|
|
|
|
void
|
|
ksiginfo_free(ksiginfo_t *ksi)
|
|
{
|
|
uma_zfree(ksiginfo_zone, ksi);
|
|
}
|
|
|
|
static __inline int
|
|
ksiginfo_tryfree(ksiginfo_t *ksi)
|
|
{
|
|
if (!(ksi->ksi_flags & KSI_EXT)) {
|
|
uma_zfree(ksiginfo_zone, ksi);
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
sigqueue_init(sigqueue_t *list, struct proc *p)
|
|
{
|
|
SIGEMPTYSET(list->sq_signals);
|
|
SIGEMPTYSET(list->sq_kill);
|
|
SIGEMPTYSET(list->sq_ptrace);
|
|
TAILQ_INIT(&list->sq_list);
|
|
list->sq_proc = p;
|
|
list->sq_flags = SQ_INIT;
|
|
}
|
|
|
|
/*
|
|
* Get a signal's ksiginfo.
|
|
* Return:
|
|
* 0 - signal not found
|
|
* others - signal number
|
|
*/
|
|
static int
|
|
sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
|
|
{
|
|
struct proc *p = sq->sq_proc;
|
|
struct ksiginfo *ksi, *next;
|
|
int count = 0;
|
|
|
|
KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
|
|
|
|
if (!SIGISMEMBER(sq->sq_signals, signo))
|
|
return (0);
|
|
|
|
if (SIGISMEMBER(sq->sq_ptrace, signo)) {
|
|
count++;
|
|
SIGDELSET(sq->sq_ptrace, signo);
|
|
si->ksi_flags |= KSI_PTRACE;
|
|
}
|
|
if (SIGISMEMBER(sq->sq_kill, signo)) {
|
|
count++;
|
|
if (count == 1)
|
|
SIGDELSET(sq->sq_kill, signo);
|
|
}
|
|
|
|
TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
|
|
if (ksi->ksi_signo == signo) {
|
|
if (count == 0) {
|
|
TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
|
|
ksi->ksi_sigq = NULL;
|
|
ksiginfo_copy(ksi, si);
|
|
if (ksiginfo_tryfree(ksi) && p != NULL)
|
|
p->p_pendingcnt--;
|
|
}
|
|
if (++count > 1)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (count <= 1)
|
|
SIGDELSET(sq->sq_signals, signo);
|
|
si->ksi_signo = signo;
|
|
return (signo);
|
|
}
|
|
|
|
void
|
|
sigqueue_take(ksiginfo_t *ksi)
|
|
{
|
|
struct ksiginfo *kp;
|
|
struct proc *p;
|
|
sigqueue_t *sq;
|
|
|
|
if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
|
|
return;
|
|
|
|
p = sq->sq_proc;
|
|
TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
|
|
ksi->ksi_sigq = NULL;
|
|
if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
|
|
p->p_pendingcnt--;
|
|
|
|
for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
|
|
kp = TAILQ_NEXT(kp, ksi_link)) {
|
|
if (kp->ksi_signo == ksi->ksi_signo)
|
|
break;
|
|
}
|
|
if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
|
|
!SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
|
|
SIGDELSET(sq->sq_signals, ksi->ksi_signo);
|
|
}
|
|
|
|
static int
|
|
sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
|
|
{
|
|
struct proc *p = sq->sq_proc;
|
|
struct ksiginfo *ksi;
|
|
int ret = 0;
|
|
|
|
KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
|
|
|
|
/*
|
|
* SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
|
|
* for these signals.
|
|
*/
|
|
if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
|
|
SIGADDSET(sq->sq_kill, signo);
|
|
goto out_set_bit;
|
|
}
|
|
|
|
/* directly insert the ksi, don't copy it */
|
|
if (si->ksi_flags & KSI_INS) {
|
|
if (si->ksi_flags & KSI_HEAD)
|
|
TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
|
|
else
|
|
TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
|
|
si->ksi_sigq = sq;
|
|
goto out_set_bit;
|
|
}
|
|
|
|
if (__predict_false(ksiginfo_zone == NULL)) {
|
|
SIGADDSET(sq->sq_kill, signo);
|
|
goto out_set_bit;
|
|
}
|
|
|
|
if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
|
|
signal_overflow++;
|
|
ret = EAGAIN;
|
|
} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
|
|
signal_alloc_fail++;
|
|
ret = EAGAIN;
|
|
} else {
|
|
if (p != NULL)
|
|
p->p_pendingcnt++;
|
|
ksiginfo_copy(si, ksi);
|
|
ksi->ksi_signo = signo;
|
|
if (si->ksi_flags & KSI_HEAD)
|
|
TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
|
|
else
|
|
TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
|
|
ksi->ksi_sigq = sq;
|
|
}
|
|
|
|
if (ret != 0) {
|
|
if ((si->ksi_flags & KSI_PTRACE) != 0) {
|
|
SIGADDSET(sq->sq_ptrace, signo);
|
|
ret = 0;
|
|
goto out_set_bit;
|
|
} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
|
|
(si->ksi_flags & KSI_SIGQ) == 0) {
|
|
SIGADDSET(sq->sq_kill, signo);
|
|
ret = 0;
|
|
goto out_set_bit;
|
|
}
|
|
return (ret);
|
|
}
|
|
|
|
out_set_bit:
|
|
SIGADDSET(sq->sq_signals, signo);
|
|
return (ret);
|
|
}
|
|
|
|
void
|
|
sigqueue_flush(sigqueue_t *sq)
|
|
{
|
|
struct proc *p = sq->sq_proc;
|
|
ksiginfo_t *ksi;
|
|
|
|
KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
|
|
|
|
if (p != NULL)
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
|
|
while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
|
|
TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
|
|
ksi->ksi_sigq = NULL;
|
|
if (ksiginfo_tryfree(ksi) && p != NULL)
|
|
p->p_pendingcnt--;
|
|
}
|
|
|
|
SIGEMPTYSET(sq->sq_signals);
|
|
SIGEMPTYSET(sq->sq_kill);
|
|
SIGEMPTYSET(sq->sq_ptrace);
|
|
}
|
|
|
|
static void
|
|
sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
|
|
{
|
|
sigset_t tmp;
|
|
struct proc *p1, *p2;
|
|
ksiginfo_t *ksi, *next;
|
|
|
|
KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
|
|
KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
|
|
p1 = src->sq_proc;
|
|
p2 = dst->sq_proc;
|
|
/* Move siginfo to target list */
|
|
TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
|
|
if (SIGISMEMBER(*set, ksi->ksi_signo)) {
|
|
TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
|
|
if (p1 != NULL)
|
|
p1->p_pendingcnt--;
|
|
TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
|
|
ksi->ksi_sigq = dst;
|
|
if (p2 != NULL)
|
|
p2->p_pendingcnt++;
|
|
}
|
|
}
|
|
|
|
/* Move pending bits to target list */
|
|
tmp = src->sq_kill;
|
|
SIGSETAND(tmp, *set);
|
|
SIGSETOR(dst->sq_kill, tmp);
|
|
SIGSETNAND(src->sq_kill, tmp);
|
|
|
|
tmp = src->sq_ptrace;
|
|
SIGSETAND(tmp, *set);
|
|
SIGSETOR(dst->sq_ptrace, tmp);
|
|
SIGSETNAND(src->sq_ptrace, tmp);
|
|
|
|
tmp = src->sq_signals;
|
|
SIGSETAND(tmp, *set);
|
|
SIGSETOR(dst->sq_signals, tmp);
|
|
SIGSETNAND(src->sq_signals, tmp);
|
|
}
|
|
|
|
#if 0
|
|
static void
|
|
sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
|
|
{
|
|
sigset_t set;
|
|
|
|
SIGEMPTYSET(set);
|
|
SIGADDSET(set, signo);
|
|
sigqueue_move_set(src, dst, &set);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
|
|
{
|
|
struct proc *p = sq->sq_proc;
|
|
ksiginfo_t *ksi, *next;
|
|
|
|
KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
|
|
|
|
/* Remove siginfo queue */
|
|
TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
|
|
if (SIGISMEMBER(*set, ksi->ksi_signo)) {
|
|
TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
|
|
ksi->ksi_sigq = NULL;
|
|
if (ksiginfo_tryfree(ksi) && p != NULL)
|
|
p->p_pendingcnt--;
|
|
}
|
|
}
|
|
SIGSETNAND(sq->sq_kill, *set);
|
|
SIGSETNAND(sq->sq_ptrace, *set);
|
|
SIGSETNAND(sq->sq_signals, *set);
|
|
}
|
|
|
|
void
|
|
sigqueue_delete(sigqueue_t *sq, int signo)
|
|
{
|
|
sigset_t set;
|
|
|
|
SIGEMPTYSET(set);
|
|
SIGADDSET(set, signo);
|
|
sigqueue_delete_set(sq, &set);
|
|
}
|
|
|
|
/* Remove a set of signals for a process */
|
|
static void
|
|
sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
|
|
{
|
|
sigqueue_t worklist;
|
|
struct thread *td0;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
|
|
sigqueue_init(&worklist, NULL);
|
|
sigqueue_move_set(&p->p_sigqueue, &worklist, set);
|
|
|
|
FOREACH_THREAD_IN_PROC(p, td0)
|
|
sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
|
|
|
|
sigqueue_flush(&worklist);
|
|
}
|
|
|
|
void
|
|
sigqueue_delete_proc(struct proc *p, int signo)
|
|
{
|
|
sigset_t set;
|
|
|
|
SIGEMPTYSET(set);
|
|
SIGADDSET(set, signo);
|
|
sigqueue_delete_set_proc(p, &set);
|
|
}
|
|
|
|
static void
|
|
sigqueue_delete_stopmask_proc(struct proc *p)
|
|
{
|
|
sigset_t set;
|
|
|
|
SIGEMPTYSET(set);
|
|
SIGADDSET(set, SIGSTOP);
|
|
SIGADDSET(set, SIGTSTP);
|
|
SIGADDSET(set, SIGTTIN);
|
|
SIGADDSET(set, SIGTTOU);
|
|
sigqueue_delete_set_proc(p, &set);
|
|
}
|
|
|
|
/*
|
|
* Determine signal that should be delivered to thread td, the current
|
|
* thread, 0 if none. If there is a pending stop signal with default
|
|
* action, the process stops in issignal().
|
|
*/
|
|
int
|
|
cursig(struct thread *td)
|
|
{
|
|
PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
|
|
mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
|
|
THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
|
|
return (SIGPENDING(td) ? issignal(td) : 0);
|
|
}
|
|
|
|
/*
|
|
* Arrange for ast() to handle unmasked pending signals on return to user
|
|
* mode. This must be called whenever a signal is added to td_sigqueue or
|
|
* unmasked in td_sigmask.
|
|
*/
|
|
void
|
|
signotify(struct thread *td)
|
|
{
|
|
|
|
PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
|
|
|
|
if (SIGPENDING(td)) {
|
|
thread_lock(td);
|
|
td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
|
|
thread_unlock(td);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns 1 (true) if altstack is configured for the thread, and the
|
|
* passed stack bottom address falls into the altstack range. Handles
|
|
* the 43 compat special case where the alt stack size is zero.
|
|
*/
|
|
int
|
|
sigonstack(size_t sp)
|
|
{
|
|
struct thread *td;
|
|
|
|
td = curthread;
|
|
if ((td->td_pflags & TDP_ALTSTACK) == 0)
|
|
return (0);
|
|
#if defined(COMPAT_43)
|
|
if (SV_PROC_FLAG(td->td_proc, SV_AOUT) && td->td_sigstk.ss_size == 0)
|
|
return ((td->td_sigstk.ss_flags & SS_ONSTACK) != 0);
|
|
#endif
|
|
return (sp >= (size_t)td->td_sigstk.ss_sp &&
|
|
sp < td->td_sigstk.ss_size + (size_t)td->td_sigstk.ss_sp);
|
|
}
|
|
|
|
static __inline int
|
|
sigprop(int sig)
|
|
{
|
|
|
|
if (sig > 0 && sig < nitems(sigproptbl))
|
|
return (sigproptbl[sig]);
|
|
return (0);
|
|
}
|
|
|
|
static bool
|
|
sigact_flag_test(const struct sigaction *act, int flag)
|
|
{
|
|
|
|
/*
|
|
* SA_SIGINFO is reset when signal disposition is set to
|
|
* ignore or default. Other flags are kept according to user
|
|
* settings.
|
|
*/
|
|
return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
|
|
((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
|
|
(__sighandler_t *)act->sa_sigaction != SIG_DFL)));
|
|
}
|
|
|
|
/*
|
|
* kern_sigaction
|
|
* sigaction
|
|
* freebsd4_sigaction
|
|
* osigaction
|
|
*/
|
|
int
|
|
kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
|
|
struct sigaction *oact, int flags)
|
|
{
|
|
struct sigacts *ps;
|
|
struct proc *p = td->td_proc;
|
|
|
|
if (!_SIG_VALID(sig))
|
|
return (EINVAL);
|
|
if (act != NULL && act->sa_handler != SIG_DFL &&
|
|
act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
|
|
SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
|
|
SA_NOCLDWAIT | SA_SIGINFO)) != 0)
|
|
return (EINVAL);
|
|
|
|
PROC_LOCK(p);
|
|
ps = p->p_sigacts;
|
|
mtx_lock(&ps->ps_mtx);
|
|
if (oact) {
|
|
memset(oact, 0, sizeof(*oact));
|
|
oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
|
|
if (SIGISMEMBER(ps->ps_sigonstack, sig))
|
|
oact->sa_flags |= SA_ONSTACK;
|
|
if (!SIGISMEMBER(ps->ps_sigintr, sig))
|
|
oact->sa_flags |= SA_RESTART;
|
|
if (SIGISMEMBER(ps->ps_sigreset, sig))
|
|
oact->sa_flags |= SA_RESETHAND;
|
|
if (SIGISMEMBER(ps->ps_signodefer, sig))
|
|
oact->sa_flags |= SA_NODEFER;
|
|
if (SIGISMEMBER(ps->ps_siginfo, sig)) {
|
|
oact->sa_flags |= SA_SIGINFO;
|
|
oact->sa_sigaction =
|
|
(__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
|
|
} else
|
|
oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
|
|
if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
|
|
oact->sa_flags |= SA_NOCLDSTOP;
|
|
if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
|
|
oact->sa_flags |= SA_NOCLDWAIT;
|
|
}
|
|
if (act) {
|
|
if ((sig == SIGKILL || sig == SIGSTOP) &&
|
|
act->sa_handler != SIG_DFL) {
|
|
mtx_unlock(&ps->ps_mtx);
|
|
PROC_UNLOCK(p);
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Change setting atomically.
|
|
*/
|
|
|
|
ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
|
|
SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
|
|
if (sigact_flag_test(act, SA_SIGINFO)) {
|
|
ps->ps_sigact[_SIG_IDX(sig)] =
|
|
(__sighandler_t *)act->sa_sigaction;
|
|
SIGADDSET(ps->ps_siginfo, sig);
|
|
} else {
|
|
ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
|
|
SIGDELSET(ps->ps_siginfo, sig);
|
|
}
|
|
if (!sigact_flag_test(act, SA_RESTART))
|
|
SIGADDSET(ps->ps_sigintr, sig);
|
|
else
|
|
SIGDELSET(ps->ps_sigintr, sig);
|
|
if (sigact_flag_test(act, SA_ONSTACK))
|
|
SIGADDSET(ps->ps_sigonstack, sig);
|
|
else
|
|
SIGDELSET(ps->ps_sigonstack, sig);
|
|
if (sigact_flag_test(act, SA_RESETHAND))
|
|
SIGADDSET(ps->ps_sigreset, sig);
|
|
else
|
|
SIGDELSET(ps->ps_sigreset, sig);
|
|
if (sigact_flag_test(act, SA_NODEFER))
|
|
SIGADDSET(ps->ps_signodefer, sig);
|
|
else
|
|
SIGDELSET(ps->ps_signodefer, sig);
|
|
if (sig == SIGCHLD) {
|
|
if (act->sa_flags & SA_NOCLDSTOP)
|
|
ps->ps_flag |= PS_NOCLDSTOP;
|
|
else
|
|
ps->ps_flag &= ~PS_NOCLDSTOP;
|
|
if (act->sa_flags & SA_NOCLDWAIT) {
|
|
/*
|
|
* Paranoia: since SA_NOCLDWAIT is implemented
|
|
* by reparenting the dying child to PID 1 (and
|
|
* trust it to reap the zombie), PID 1 itself
|
|
* is forbidden to set SA_NOCLDWAIT.
|
|
*/
|
|
if (p->p_pid == 1)
|
|
ps->ps_flag &= ~PS_NOCLDWAIT;
|
|
else
|
|
ps->ps_flag |= PS_NOCLDWAIT;
|
|
} else
|
|
ps->ps_flag &= ~PS_NOCLDWAIT;
|
|
if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
|
|
ps->ps_flag |= PS_CLDSIGIGN;
|
|
else
|
|
ps->ps_flag &= ~PS_CLDSIGIGN;
|
|
}
|
|
/*
|
|
* Set bit in ps_sigignore for signals that are set to SIG_IGN,
|
|
* and for signals set to SIG_DFL where the default is to
|
|
* ignore. However, don't put SIGCONT in ps_sigignore, as we
|
|
* have to restart the process.
|
|
*/
|
|
if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
|
|
(sigprop(sig) & SIGPROP_IGNORE &&
|
|
ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
|
|
/* never to be seen again */
|
|
sigqueue_delete_proc(p, sig);
|
|
if (sig != SIGCONT)
|
|
/* easier in psignal */
|
|
SIGADDSET(ps->ps_sigignore, sig);
|
|
SIGDELSET(ps->ps_sigcatch, sig);
|
|
} else {
|
|
SIGDELSET(ps->ps_sigignore, sig);
|
|
if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
|
|
SIGDELSET(ps->ps_sigcatch, sig);
|
|
else
|
|
SIGADDSET(ps->ps_sigcatch, sig);
|
|
}
|
|
#ifdef COMPAT_FREEBSD4
|
|
if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
|
|
ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
|
|
(flags & KSA_FREEBSD4) == 0)
|
|
SIGDELSET(ps->ps_freebsd4, sig);
|
|
else
|
|
SIGADDSET(ps->ps_freebsd4, sig);
|
|
#endif
|
|
#ifdef COMPAT_43
|
|
if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
|
|
ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
|
|
(flags & KSA_OSIGSET) == 0)
|
|
SIGDELSET(ps->ps_osigset, sig);
|
|
else
|
|
SIGADDSET(ps->ps_osigset, sig);
|
|
#endif
|
|
}
|
|
mtx_unlock(&ps->ps_mtx);
|
|
PROC_UNLOCK(p);
|
|
return (0);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct sigaction_args {
|
|
int sig;
|
|
struct sigaction *act;
|
|
struct sigaction *oact;
|
|
};
|
|
#endif
|
|
int
|
|
sys_sigaction(struct thread *td, struct sigaction_args *uap)
|
|
{
|
|
struct sigaction act, oact;
|
|
struct sigaction *actp, *oactp;
|
|
int error;
|
|
|
|
actp = (uap->act != NULL) ? &act : NULL;
|
|
oactp = (uap->oact != NULL) ? &oact : NULL;
|
|
if (actp) {
|
|
error = copyin(uap->act, actp, sizeof(act));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
error = kern_sigaction(td, uap->sig, actp, oactp, 0);
|
|
if (oactp && !error)
|
|
error = copyout(oactp, uap->oact, sizeof(oact));
|
|
return (error);
|
|
}
|
|
|
|
#ifdef COMPAT_FREEBSD4
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct freebsd4_sigaction_args {
|
|
int sig;
|
|
struct sigaction *act;
|
|
struct sigaction *oact;
|
|
};
|
|
#endif
|
|
int
|
|
freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
|
|
{
|
|
struct sigaction act, oact;
|
|
struct sigaction *actp, *oactp;
|
|
int error;
|
|
|
|
actp = (uap->act != NULL) ? &act : NULL;
|
|
oactp = (uap->oact != NULL) ? &oact : NULL;
|
|
if (actp) {
|
|
error = copyin(uap->act, actp, sizeof(act));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
|
|
if (oactp && !error)
|
|
error = copyout(oactp, uap->oact, sizeof(oact));
|
|
return (error);
|
|
}
|
|
#endif /* COMAPT_FREEBSD4 */
|
|
|
|
#ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct osigaction_args {
|
|
int signum;
|
|
struct osigaction *nsa;
|
|
struct osigaction *osa;
|
|
};
|
|
#endif
|
|
int
|
|
osigaction(struct thread *td, struct osigaction_args *uap)
|
|
{
|
|
struct osigaction sa;
|
|
struct sigaction nsa, osa;
|
|
struct sigaction *nsap, *osap;
|
|
int error;
|
|
|
|
if (uap->signum <= 0 || uap->signum >= ONSIG)
|
|
return (EINVAL);
|
|
|
|
nsap = (uap->nsa != NULL) ? &nsa : NULL;
|
|
osap = (uap->osa != NULL) ? &osa : NULL;
|
|
|
|
if (nsap) {
|
|
error = copyin(uap->nsa, &sa, sizeof(sa));
|
|
if (error)
|
|
return (error);
|
|
nsap->sa_handler = sa.sa_handler;
|
|
nsap->sa_flags = sa.sa_flags;
|
|
OSIG2SIG(sa.sa_mask, nsap->sa_mask);
|
|
}
|
|
error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
|
|
if (osap && !error) {
|
|
sa.sa_handler = osap->sa_handler;
|
|
sa.sa_flags = osap->sa_flags;
|
|
SIG2OSIG(osap->sa_mask, sa.sa_mask);
|
|
error = copyout(&sa, uap->osa, sizeof(sa));
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#if !defined(__i386__)
|
|
/* Avoid replicating the same stub everywhere */
|
|
int
|
|
osigreturn(struct thread *td, struct osigreturn_args *uap)
|
|
{
|
|
|
|
return (nosys(td, (struct nosys_args *)uap));
|
|
}
|
|
#endif
|
|
#endif /* COMPAT_43 */
|
|
|
|
/*
|
|
* Initialize signal state for process 0;
|
|
* set to ignore signals that are ignored by default.
|
|
*/
|
|
void
|
|
siginit(struct proc *p)
|
|
{
|
|
int i;
|
|
struct sigacts *ps;
|
|
|
|
PROC_LOCK(p);
|
|
ps = p->p_sigacts;
|
|
mtx_lock(&ps->ps_mtx);
|
|
for (i = 1; i <= NSIG; i++) {
|
|
if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
|
|
SIGADDSET(ps->ps_sigignore, i);
|
|
}
|
|
}
|
|
mtx_unlock(&ps->ps_mtx);
|
|
PROC_UNLOCK(p);
|
|
}
|
|
|
|
/*
|
|
* Reset specified signal to the default disposition.
|
|
*/
|
|
static void
|
|
sigdflt(struct sigacts *ps, int sig)
|
|
{
|
|
|
|
mtx_assert(&ps->ps_mtx, MA_OWNED);
|
|
SIGDELSET(ps->ps_sigcatch, sig);
|
|
if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
|
|
SIGADDSET(ps->ps_sigignore, sig);
|
|
ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
|
|
SIGDELSET(ps->ps_siginfo, sig);
|
|
}
|
|
|
|
/*
|
|
* Reset signals for an exec of the specified process.
|
|
*/
|
|
void
|
|
execsigs(struct proc *p)
|
|
{
|
|
struct sigacts *ps;
|
|
struct thread *td;
|
|
|
|
/*
|
|
* Reset caught signals. Held signals remain held
|
|
* through td_sigmask (unless they were caught,
|
|
* and are now ignored by default).
|
|
*/
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
ps = p->p_sigacts;
|
|
mtx_lock(&ps->ps_mtx);
|
|
sig_drop_caught(p);
|
|
|
|
/*
|
|
* Reset stack state to the user stack.
|
|
* Clear set of signals caught on the signal stack.
|
|
*/
|
|
td = curthread;
|
|
MPASS(td->td_proc == p);
|
|
td->td_sigstk.ss_flags = SS_DISABLE;
|
|
td->td_sigstk.ss_size = 0;
|
|
td->td_sigstk.ss_sp = 0;
|
|
td->td_pflags &= ~TDP_ALTSTACK;
|
|
/*
|
|
* Reset no zombies if child dies flag as Solaris does.
|
|
*/
|
|
ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
|
|
if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
|
|
ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
|
|
mtx_unlock(&ps->ps_mtx);
|
|
}
|
|
|
|
/*
|
|
* kern_sigprocmask()
|
|
*
|
|
* Manipulate signal mask.
|
|
*/
|
|
int
|
|
kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
|
|
int flags)
|
|
{
|
|
sigset_t new_block, oset1;
|
|
struct proc *p;
|
|
int error;
|
|
|
|
p = td->td_proc;
|
|
if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
else
|
|
PROC_LOCK(p);
|
|
mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
|
|
? MA_OWNED : MA_NOTOWNED);
|
|
if (oset != NULL)
|
|
*oset = td->td_sigmask;
|
|
|
|
error = 0;
|
|
if (set != NULL) {
|
|
switch (how) {
|
|
case SIG_BLOCK:
|
|
SIG_CANTMASK(*set);
|
|
oset1 = td->td_sigmask;
|
|
SIGSETOR(td->td_sigmask, *set);
|
|
new_block = td->td_sigmask;
|
|
SIGSETNAND(new_block, oset1);
|
|
break;
|
|
case SIG_UNBLOCK:
|
|
SIGSETNAND(td->td_sigmask, *set);
|
|
signotify(td);
|
|
goto out;
|
|
case SIG_SETMASK:
|
|
SIG_CANTMASK(*set);
|
|
oset1 = td->td_sigmask;
|
|
if (flags & SIGPROCMASK_OLD)
|
|
SIGSETLO(td->td_sigmask, *set);
|
|
else
|
|
td->td_sigmask = *set;
|
|
new_block = td->td_sigmask;
|
|
SIGSETNAND(new_block, oset1);
|
|
signotify(td);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* The new_block set contains signals that were not previously
|
|
* blocked, but are blocked now.
|
|
*
|
|
* In case we block any signal that was not previously blocked
|
|
* for td, and process has the signal pending, try to schedule
|
|
* signal delivery to some thread that does not block the
|
|
* signal, possibly waking it up.
|
|
*/
|
|
if (p->p_numthreads != 1)
|
|
reschedule_signals(p, new_block, flags);
|
|
}
|
|
|
|
out:
|
|
if (!(flags & SIGPROCMASK_PROC_LOCKED))
|
|
PROC_UNLOCK(p);
|
|
return (error);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct sigprocmask_args {
|
|
int how;
|
|
const sigset_t *set;
|
|
sigset_t *oset;
|
|
};
|
|
#endif
|
|
int
|
|
sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
|
|
{
|
|
sigset_t set, oset;
|
|
sigset_t *setp, *osetp;
|
|
int error;
|
|
|
|
setp = (uap->set != NULL) ? &set : NULL;
|
|
osetp = (uap->oset != NULL) ? &oset : NULL;
|
|
if (setp) {
|
|
error = copyin(uap->set, setp, sizeof(set));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
|
|
if (osetp && !error) {
|
|
error = copyout(osetp, uap->oset, sizeof(oset));
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct osigprocmask_args {
|
|
int how;
|
|
osigset_t mask;
|
|
};
|
|
#endif
|
|
int
|
|
osigprocmask(struct thread *td, struct osigprocmask_args *uap)
|
|
{
|
|
sigset_t set, oset;
|
|
int error;
|
|
|
|
OSIG2SIG(uap->mask, set);
|
|
error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
|
|
SIG2OSIG(oset, td->td_retval[0]);
|
|
return (error);
|
|
}
|
|
#endif /* COMPAT_43 */
|
|
|
|
int
|
|
sys_sigwait(struct thread *td, struct sigwait_args *uap)
|
|
{
|
|
ksiginfo_t ksi;
|
|
sigset_t set;
|
|
int error;
|
|
|
|
error = copyin(uap->set, &set, sizeof(set));
|
|
if (error) {
|
|
td->td_retval[0] = error;
|
|
return (0);
|
|
}
|
|
|
|
error = kern_sigtimedwait(td, set, &ksi, NULL);
|
|
if (error) {
|
|
/*
|
|
* sigwait() function shall not return EINTR, but
|
|
* the syscall does. Non-ancient libc provides the
|
|
* wrapper which hides EINTR. Otherwise, EINTR return
|
|
* is used by libthr to handle required cancellation
|
|
* point in the sigwait().
|
|
*/
|
|
if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
|
|
return (ERESTART);
|
|
td->td_retval[0] = error;
|
|
return (0);
|
|
}
|
|
|
|
error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
|
|
td->td_retval[0] = error;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
|
|
{
|
|
struct timespec ts;
|
|
struct timespec *timeout;
|
|
sigset_t set;
|
|
ksiginfo_t ksi;
|
|
int error;
|
|
|
|
if (uap->timeout) {
|
|
error = copyin(uap->timeout, &ts, sizeof(ts));
|
|
if (error)
|
|
return (error);
|
|
|
|
timeout = &ts;
|
|
} else
|
|
timeout = NULL;
|
|
|
|
error = copyin(uap->set, &set, sizeof(set));
|
|
if (error)
|
|
return (error);
|
|
|
|
error = kern_sigtimedwait(td, set, &ksi, timeout);
|
|
if (error)
|
|
return (error);
|
|
|
|
if (uap->info)
|
|
error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
|
|
|
|
if (error == 0)
|
|
td->td_retval[0] = ksi.ksi_signo;
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
|
|
{
|
|
ksiginfo_t ksi;
|
|
sigset_t set;
|
|
int error;
|
|
|
|
error = copyin(uap->set, &set, sizeof(set));
|
|
if (error)
|
|
return (error);
|
|
|
|
error = kern_sigtimedwait(td, set, &ksi, NULL);
|
|
if (error)
|
|
return (error);
|
|
|
|
if (uap->info)
|
|
error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
|
|
|
|
if (error == 0)
|
|
td->td_retval[0] = ksi.ksi_signo;
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
|
|
{
|
|
struct thread *thr;
|
|
|
|
FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
|
|
if (thr == td)
|
|
thr->td_si = *si;
|
|
else
|
|
thr->td_si.si_signo = 0;
|
|
}
|
|
}
|
|
|
|
int
|
|
kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
|
|
struct timespec *timeout)
|
|
{
|
|
struct sigacts *ps;
|
|
sigset_t saved_mask, new_block;
|
|
struct proc *p;
|
|
int error, sig, timevalid = 0;
|
|
sbintime_t sbt, precision, tsbt;
|
|
struct timespec ts;
|
|
bool traced;
|
|
|
|
p = td->td_proc;
|
|
error = 0;
|
|
traced = false;
|
|
|
|
/* Ensure the sigfastblock value is up to date. */
|
|
sigfastblock_fetch(td);
|
|
|
|
if (timeout != NULL) {
|
|
if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
|
|
timevalid = 1;
|
|
ts = *timeout;
|
|
if (ts.tv_sec < INT32_MAX / 2) {
|
|
tsbt = tstosbt(ts);
|
|
precision = tsbt;
|
|
precision >>= tc_precexp;
|
|
if (TIMESEL(&sbt, tsbt))
|
|
sbt += tc_tick_sbt;
|
|
sbt += tsbt;
|
|
} else
|
|
precision = sbt = 0;
|
|
}
|
|
} else
|
|
precision = sbt = 0;
|
|
ksiginfo_init(ksi);
|
|
/* Some signals can not be waited for. */
|
|
SIG_CANTMASK(waitset);
|
|
ps = p->p_sigacts;
|
|
PROC_LOCK(p);
|
|
saved_mask = td->td_sigmask;
|
|
SIGSETNAND(td->td_sigmask, waitset);
|
|
if ((p->p_sysent->sv_flags & SV_SIG_DISCIGN) != 0 ||
|
|
!kern_sig_discard_ign) {
|
|
thread_lock(td);
|
|
td->td_flags |= TDF_SIGWAIT;
|
|
thread_unlock(td);
|
|
}
|
|
for (;;) {
|
|
mtx_lock(&ps->ps_mtx);
|
|
sig = cursig(td);
|
|
mtx_unlock(&ps->ps_mtx);
|
|
KASSERT(sig >= 0, ("sig %d", sig));
|
|
if (sig != 0 && SIGISMEMBER(waitset, sig)) {
|
|
if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
|
|
sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
|
|
error = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (error != 0)
|
|
break;
|
|
|
|
/*
|
|
* POSIX says this must be checked after looking for pending
|
|
* signals.
|
|
*/
|
|
if (timeout != NULL && !timevalid) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (traced) {
|
|
error = EINTR;
|
|
break;
|
|
}
|
|
|
|
error = msleep_sbt(&p->p_sigacts, &p->p_mtx, PPAUSE | PCATCH,
|
|
"sigwait", sbt, precision, C_ABSOLUTE);
|
|
|
|
/* The syscalls can not be restarted. */
|
|
if (error == ERESTART)
|
|
error = EINTR;
|
|
|
|
/*
|
|
* If PTRACE_SCE or PTRACE_SCX were set after
|
|
* userspace entered the syscall, return spurious
|
|
* EINTR after wait was done. Only do this as last
|
|
* resort after rechecking for possible queued signals
|
|
* and expired timeouts.
|
|
*/
|
|
if (error == 0 && (p->p_ptevents & PTRACE_SYSCALL) != 0)
|
|
traced = true;
|
|
}
|
|
thread_lock(td);
|
|
td->td_flags &= ~TDF_SIGWAIT;
|
|
thread_unlock(td);
|
|
|
|
new_block = saved_mask;
|
|
SIGSETNAND(new_block, td->td_sigmask);
|
|
td->td_sigmask = saved_mask;
|
|
/*
|
|
* Fewer signals can be delivered to us, reschedule signal
|
|
* notification.
|
|
*/
|
|
if (p->p_numthreads != 1)
|
|
reschedule_signals(p, new_block, 0);
|
|
|
|
if (error == 0) {
|
|
SDT_PROBE2(proc, , , signal__clear, sig, ksi);
|
|
|
|
if (ksi->ksi_code == SI_TIMER)
|
|
itimer_accept(p, ksi->ksi_timerid, ksi);
|
|
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(td, KTR_PSIG)) {
|
|
sig_t action;
|
|
|
|
mtx_lock(&ps->ps_mtx);
|
|
action = ps->ps_sigact[_SIG_IDX(sig)];
|
|
mtx_unlock(&ps->ps_mtx);
|
|
ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
|
|
}
|
|
#endif
|
|
if (sig == SIGKILL) {
|
|
proc_td_siginfo_capture(td, &ksi->ksi_info);
|
|
sigexit(td, sig);
|
|
}
|
|
}
|
|
PROC_UNLOCK(p);
|
|
return (error);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct sigpending_args {
|
|
sigset_t *set;
|
|
};
|
|
#endif
|
|
int
|
|
sys_sigpending(struct thread *td, struct sigpending_args *uap)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
sigset_t pending;
|
|
|
|
PROC_LOCK(p);
|
|
pending = p->p_sigqueue.sq_signals;
|
|
SIGSETOR(pending, td->td_sigqueue.sq_signals);
|
|
PROC_UNLOCK(p);
|
|
return (copyout(&pending, uap->set, sizeof(sigset_t)));
|
|
}
|
|
|
|
#ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct osigpending_args {
|
|
int dummy;
|
|
};
|
|
#endif
|
|
int
|
|
osigpending(struct thread *td, struct osigpending_args *uap)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
sigset_t pending;
|
|
|
|
PROC_LOCK(p);
|
|
pending = p->p_sigqueue.sq_signals;
|
|
SIGSETOR(pending, td->td_sigqueue.sq_signals);
|
|
PROC_UNLOCK(p);
|
|
SIG2OSIG(pending, td->td_retval[0]);
|
|
return (0);
|
|
}
|
|
#endif /* COMPAT_43 */
|
|
|
|
#if defined(COMPAT_43)
|
|
/*
|
|
* Generalized interface signal handler, 4.3-compatible.
|
|
*/
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct osigvec_args {
|
|
int signum;
|
|
struct sigvec *nsv;
|
|
struct sigvec *osv;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
osigvec(struct thread *td, struct osigvec_args *uap)
|
|
{
|
|
struct sigvec vec;
|
|
struct sigaction nsa, osa;
|
|
struct sigaction *nsap, *osap;
|
|
int error;
|
|
|
|
if (uap->signum <= 0 || uap->signum >= ONSIG)
|
|
return (EINVAL);
|
|
nsap = (uap->nsv != NULL) ? &nsa : NULL;
|
|
osap = (uap->osv != NULL) ? &osa : NULL;
|
|
if (nsap) {
|
|
error = copyin(uap->nsv, &vec, sizeof(vec));
|
|
if (error)
|
|
return (error);
|
|
nsap->sa_handler = vec.sv_handler;
|
|
OSIG2SIG(vec.sv_mask, nsap->sa_mask);
|
|
nsap->sa_flags = vec.sv_flags;
|
|
nsap->sa_flags ^= SA_RESTART; /* opposite of SV_INTERRUPT */
|
|
}
|
|
error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
|
|
if (osap && !error) {
|
|
vec.sv_handler = osap->sa_handler;
|
|
SIG2OSIG(osap->sa_mask, vec.sv_mask);
|
|
vec.sv_flags = osap->sa_flags;
|
|
vec.sv_flags &= ~SA_NOCLDWAIT;
|
|
vec.sv_flags ^= SA_RESTART;
|
|
error = copyout(&vec, uap->osv, sizeof(vec));
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct osigblock_args {
|
|
int mask;
|
|
};
|
|
#endif
|
|
int
|
|
osigblock(struct thread *td, struct osigblock_args *uap)
|
|
{
|
|
sigset_t set, oset;
|
|
|
|
OSIG2SIG(uap->mask, set);
|
|
kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
|
|
SIG2OSIG(oset, td->td_retval[0]);
|
|
return (0);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct osigsetmask_args {
|
|
int mask;
|
|
};
|
|
#endif
|
|
int
|
|
osigsetmask(struct thread *td, struct osigsetmask_args *uap)
|
|
{
|
|
sigset_t set, oset;
|
|
|
|
OSIG2SIG(uap->mask, set);
|
|
kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
|
|
SIG2OSIG(oset, td->td_retval[0]);
|
|
return (0);
|
|
}
|
|
#endif /* COMPAT_43 */
|
|
|
|
/*
|
|
* Suspend calling thread until signal, providing mask to be set in the
|
|
* meantime.
|
|
*/
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct sigsuspend_args {
|
|
const sigset_t *sigmask;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
|
|
{
|
|
sigset_t mask;
|
|
int error;
|
|
|
|
error = copyin(uap->sigmask, &mask, sizeof(mask));
|
|
if (error)
|
|
return (error);
|
|
return (kern_sigsuspend(td, mask));
|
|
}
|
|
|
|
int
|
|
kern_sigsuspend(struct thread *td, sigset_t mask)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
int has_sig, sig;
|
|
|
|
/* Ensure the sigfastblock value is up to date. */
|
|
sigfastblock_fetch(td);
|
|
|
|
/*
|
|
* When returning from sigsuspend, we want
|
|
* the old mask to be restored after the
|
|
* signal handler has finished. Thus, we
|
|
* save it here and mark the sigacts structure
|
|
* to indicate this.
|
|
*/
|
|
PROC_LOCK(p);
|
|
kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
|
|
SIGPROCMASK_PROC_LOCKED);
|
|
td->td_pflags |= TDP_OLDMASK;
|
|
|
|
/*
|
|
* Process signals now. Otherwise, we can get spurious wakeup
|
|
* due to signal entered process queue, but delivered to other
|
|
* thread. But sigsuspend should return only on signal
|
|
* delivery.
|
|
*/
|
|
(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
|
|
for (has_sig = 0; !has_sig;) {
|
|
while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
|
|
0) == 0)
|
|
/* void */;
|
|
thread_suspend_check(0);
|
|
mtx_lock(&p->p_sigacts->ps_mtx);
|
|
while ((sig = cursig(td)) != 0) {
|
|
KASSERT(sig >= 0, ("sig %d", sig));
|
|
has_sig += postsig(sig);
|
|
}
|
|
mtx_unlock(&p->p_sigacts->ps_mtx);
|
|
|
|
/*
|
|
* If PTRACE_SCE or PTRACE_SCX were set after
|
|
* userspace entered the syscall, return spurious
|
|
* EINTR.
|
|
*/
|
|
if ((p->p_ptevents & PTRACE_SYSCALL) != 0)
|
|
has_sig += 1;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
td->td_errno = EINTR;
|
|
td->td_pflags |= TDP_NERRNO;
|
|
return (EJUSTRETURN);
|
|
}
|
|
|
|
#ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */
|
|
/*
|
|
* Compatibility sigsuspend call for old binaries. Note nonstandard calling
|
|
* convention: libc stub passes mask, not pointer, to save a copyin.
|
|
*/
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct osigsuspend_args {
|
|
osigset_t mask;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
osigsuspend(struct thread *td, struct osigsuspend_args *uap)
|
|
{
|
|
sigset_t mask;
|
|
|
|
OSIG2SIG(uap->mask, mask);
|
|
return (kern_sigsuspend(td, mask));
|
|
}
|
|
#endif /* COMPAT_43 */
|
|
|
|
#if defined(COMPAT_43)
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct osigstack_args {
|
|
struct sigstack *nss;
|
|
struct sigstack *oss;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
osigstack(struct thread *td, struct osigstack_args *uap)
|
|
{
|
|
struct sigstack nss, oss;
|
|
int error = 0;
|
|
|
|
if (uap->nss != NULL) {
|
|
error = copyin(uap->nss, &nss, sizeof(nss));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
oss.ss_sp = td->td_sigstk.ss_sp;
|
|
oss.ss_onstack = sigonstack(cpu_getstack(td));
|
|
if (uap->nss != NULL) {
|
|
td->td_sigstk.ss_sp = nss.ss_sp;
|
|
td->td_sigstk.ss_size = 0;
|
|
td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
|
|
td->td_pflags |= TDP_ALTSTACK;
|
|
}
|
|
if (uap->oss != NULL)
|
|
error = copyout(&oss, uap->oss, sizeof(oss));
|
|
|
|
return (error);
|
|
}
|
|
#endif /* COMPAT_43 */
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct sigaltstack_args {
|
|
stack_t *ss;
|
|
stack_t *oss;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
|
|
{
|
|
stack_t ss, oss;
|
|
int error;
|
|
|
|
if (uap->ss != NULL) {
|
|
error = copyin(uap->ss, &ss, sizeof(ss));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
|
|
(uap->oss != NULL) ? &oss : NULL);
|
|
if (error)
|
|
return (error);
|
|
if (uap->oss != NULL)
|
|
error = copyout(&oss, uap->oss, sizeof(stack_t));
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
int oonstack;
|
|
|
|
oonstack = sigonstack(cpu_getstack(td));
|
|
|
|
if (oss != NULL) {
|
|
*oss = td->td_sigstk;
|
|
oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
|
|
? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
|
|
}
|
|
|
|
if (ss != NULL) {
|
|
if (oonstack)
|
|
return (EPERM);
|
|
if ((ss->ss_flags & ~SS_DISABLE) != 0)
|
|
return (EINVAL);
|
|
if (!(ss->ss_flags & SS_DISABLE)) {
|
|
if (ss->ss_size < p->p_sysent->sv_minsigstksz)
|
|
return (ENOMEM);
|
|
|
|
td->td_sigstk = *ss;
|
|
td->td_pflags |= TDP_ALTSTACK;
|
|
} else {
|
|
td->td_pflags &= ~TDP_ALTSTACK;
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
struct killpg1_ctx {
|
|
struct thread *td;
|
|
ksiginfo_t *ksi;
|
|
int sig;
|
|
bool sent;
|
|
bool found;
|
|
int ret;
|
|
};
|
|
|
|
static void
|
|
killpg1_sendsig(struct proc *p, bool notself, struct killpg1_ctx *arg)
|
|
{
|
|
int err;
|
|
|
|
if (p->p_pid <= 1 || (p->p_flag & P_SYSTEM) != 0 ||
|
|
(notself && p == arg->td->td_proc) || p->p_state == PRS_NEW)
|
|
return;
|
|
PROC_LOCK(p);
|
|
err = p_cansignal(arg->td, p, arg->sig);
|
|
if (err == 0 && arg->sig != 0)
|
|
pksignal(p, arg->sig, arg->ksi);
|
|
PROC_UNLOCK(p);
|
|
if (err != ESRCH)
|
|
arg->found = true;
|
|
if (err == 0)
|
|
arg->sent = true;
|
|
else if (arg->ret == 0 && err != ESRCH && err != EPERM)
|
|
arg->ret = err;
|
|
}
|
|
|
|
/*
|
|
* Common code for kill process group/broadcast kill.
|
|
* cp is calling process.
|
|
*/
|
|
static int
|
|
killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
|
|
{
|
|
struct proc *p;
|
|
struct pgrp *pgrp;
|
|
struct killpg1_ctx arg;
|
|
|
|
arg.td = td;
|
|
arg.ksi = ksi;
|
|
arg.sig = sig;
|
|
arg.sent = false;
|
|
arg.found = false;
|
|
arg.ret = 0;
|
|
if (all) {
|
|
/*
|
|
* broadcast
|
|
*/
|
|
sx_slock(&allproc_lock);
|
|
FOREACH_PROC_IN_SYSTEM(p) {
|
|
killpg1_sendsig(p, true, &arg);
|
|
}
|
|
sx_sunlock(&allproc_lock);
|
|
} else {
|
|
sx_slock(&proctree_lock);
|
|
if (pgid == 0) {
|
|
/*
|
|
* zero pgid means send to my process group.
|
|
*/
|
|
pgrp = td->td_proc->p_pgrp;
|
|
PGRP_LOCK(pgrp);
|
|
} else {
|
|
pgrp = pgfind(pgid);
|
|
if (pgrp == NULL) {
|
|
sx_sunlock(&proctree_lock);
|
|
return (ESRCH);
|
|
}
|
|
}
|
|
sx_sunlock(&proctree_lock);
|
|
LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
|
|
killpg1_sendsig(p, false, &arg);
|
|
}
|
|
PGRP_UNLOCK(pgrp);
|
|
}
|
|
MPASS(arg.ret != 0 || arg.found || !arg.sent);
|
|
if (arg.ret == 0 && !arg.sent)
|
|
arg.ret = arg.found ? EPERM : ESRCH;
|
|
return (arg.ret);
|
|
}
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct kill_args {
|
|
int pid;
|
|
int signum;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
sys_kill(struct thread *td, struct kill_args *uap)
|
|
{
|
|
|
|
return (kern_kill(td, uap->pid, uap->signum));
|
|
}
|
|
|
|
int
|
|
kern_kill(struct thread *td, pid_t pid, int signum)
|
|
{
|
|
ksiginfo_t ksi;
|
|
struct proc *p;
|
|
int error;
|
|
|
|
/*
|
|
* A process in capability mode can send signals only to himself.
|
|
* The main rationale behind this is that abort(3) is implemented as
|
|
* kill(getpid(), SIGABRT).
|
|
*/
|
|
if (IN_CAPABILITY_MODE(td) && pid != td->td_proc->p_pid)
|
|
return (ECAPMODE);
|
|
|
|
AUDIT_ARG_SIGNUM(signum);
|
|
AUDIT_ARG_PID(pid);
|
|
if ((u_int)signum > _SIG_MAXSIG)
|
|
return (EINVAL);
|
|
|
|
ksiginfo_init(&ksi);
|
|
ksi.ksi_signo = signum;
|
|
ksi.ksi_code = SI_USER;
|
|
ksi.ksi_pid = td->td_proc->p_pid;
|
|
ksi.ksi_uid = td->td_ucred->cr_ruid;
|
|
|
|
if (pid > 0) {
|
|
/* kill single process */
|
|
if ((p = pfind_any(pid)) == NULL)
|
|
return (ESRCH);
|
|
AUDIT_ARG_PROCESS(p);
|
|
error = p_cansignal(td, p, signum);
|
|
if (error == 0 && signum)
|
|
pksignal(p, signum, &ksi);
|
|
PROC_UNLOCK(p);
|
|
return (error);
|
|
}
|
|
switch (pid) {
|
|
case -1: /* broadcast signal */
|
|
return (killpg1(td, signum, 0, 1, &ksi));
|
|
case 0: /* signal own process group */
|
|
return (killpg1(td, signum, 0, 0, &ksi));
|
|
default: /* negative explicit process group */
|
|
return (killpg1(td, signum, -pid, 0, &ksi));
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
int
|
|
sys_pdkill(struct thread *td, struct pdkill_args *uap)
|
|
{
|
|
struct proc *p;
|
|
int error;
|
|
|
|
AUDIT_ARG_SIGNUM(uap->signum);
|
|
AUDIT_ARG_FD(uap->fd);
|
|
if ((u_int)uap->signum > _SIG_MAXSIG)
|
|
return (EINVAL);
|
|
|
|
error = procdesc_find(td, uap->fd, &cap_pdkill_rights, &p);
|
|
if (error)
|
|
return (error);
|
|
AUDIT_ARG_PROCESS(p);
|
|
error = p_cansignal(td, p, uap->signum);
|
|
if (error == 0 && uap->signum)
|
|
kern_psignal(p, uap->signum);
|
|
PROC_UNLOCK(p);
|
|
return (error);
|
|
}
|
|
|
|
#if defined(COMPAT_43)
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct okillpg_args {
|
|
int pgid;
|
|
int signum;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
okillpg(struct thread *td, struct okillpg_args *uap)
|
|
{
|
|
ksiginfo_t ksi;
|
|
|
|
AUDIT_ARG_SIGNUM(uap->signum);
|
|
AUDIT_ARG_PID(uap->pgid);
|
|
if ((u_int)uap->signum > _SIG_MAXSIG)
|
|
return (EINVAL);
|
|
|
|
ksiginfo_init(&ksi);
|
|
ksi.ksi_signo = uap->signum;
|
|
ksi.ksi_code = SI_USER;
|
|
ksi.ksi_pid = td->td_proc->p_pid;
|
|
ksi.ksi_uid = td->td_ucred->cr_ruid;
|
|
return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
|
|
}
|
|
#endif /* COMPAT_43 */
|
|
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct sigqueue_args {
|
|
pid_t pid;
|
|
int signum;
|
|
/* union sigval */ void *value;
|
|
};
|
|
#endif
|
|
int
|
|
sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
|
|
{
|
|
union sigval sv;
|
|
|
|
sv.sival_ptr = uap->value;
|
|
|
|
return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
|
|
}
|
|
|
|
int
|
|
kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
|
|
{
|
|
ksiginfo_t ksi;
|
|
struct proc *p;
|
|
int error;
|
|
|
|
if ((u_int)signum > _SIG_MAXSIG)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Specification says sigqueue can only send signal to
|
|
* single process.
|
|
*/
|
|
if (pid <= 0)
|
|
return (EINVAL);
|
|
|
|
if ((p = pfind_any(pid)) == NULL)
|
|
return (ESRCH);
|
|
error = p_cansignal(td, p, signum);
|
|
if (error == 0 && signum != 0) {
|
|
ksiginfo_init(&ksi);
|
|
ksi.ksi_flags = KSI_SIGQ;
|
|
ksi.ksi_signo = signum;
|
|
ksi.ksi_code = SI_QUEUE;
|
|
ksi.ksi_pid = td->td_proc->p_pid;
|
|
ksi.ksi_uid = td->td_ucred->cr_ruid;
|
|
ksi.ksi_value = *value;
|
|
error = pksignal(p, ksi.ksi_signo, &ksi);
|
|
}
|
|
PROC_UNLOCK(p);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Send a signal to a process group.
|
|
*/
|
|
void
|
|
gsignal(int pgid, int sig, ksiginfo_t *ksi)
|
|
{
|
|
struct pgrp *pgrp;
|
|
|
|
if (pgid != 0) {
|
|
sx_slock(&proctree_lock);
|
|
pgrp = pgfind(pgid);
|
|
sx_sunlock(&proctree_lock);
|
|
if (pgrp != NULL) {
|
|
pgsignal(pgrp, sig, 0, ksi);
|
|
PGRP_UNLOCK(pgrp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Send a signal to a process group. If checktty is 1,
|
|
* limit to members which have a controlling terminal.
|
|
*/
|
|
void
|
|
pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
|
|
{
|
|
struct proc *p;
|
|
|
|
if (pgrp) {
|
|
PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
|
|
LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
|
|
PROC_LOCK(p);
|
|
if (p->p_state == PRS_NORMAL &&
|
|
(checkctty == 0 || p->p_flag & P_CONTROLT))
|
|
pksignal(p, sig, ksi);
|
|
PROC_UNLOCK(p);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Recalculate the signal mask and reset the signal disposition after
|
|
* usermode frame for delivery is formed. Should be called after
|
|
* mach-specific routine, because sysent->sv_sendsig() needs correct
|
|
* ps_siginfo and signal mask.
|
|
*/
|
|
static void
|
|
postsig_done(int sig, struct thread *td, struct sigacts *ps)
|
|
{
|
|
sigset_t mask;
|
|
|
|
mtx_assert(&ps->ps_mtx, MA_OWNED);
|
|
td->td_ru.ru_nsignals++;
|
|
mask = ps->ps_catchmask[_SIG_IDX(sig)];
|
|
if (!SIGISMEMBER(ps->ps_signodefer, sig))
|
|
SIGADDSET(mask, sig);
|
|
kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
|
|
SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
|
|
if (SIGISMEMBER(ps->ps_sigreset, sig))
|
|
sigdflt(ps, sig);
|
|
}
|
|
|
|
/*
|
|
* Send a signal caused by a trap to the current thread. If it will be
|
|
* caught immediately, deliver it with correct code. Otherwise, post it
|
|
* normally.
|
|
*/
|
|
void
|
|
trapsignal(struct thread *td, ksiginfo_t *ksi)
|
|
{
|
|
struct sigacts *ps;
|
|
struct proc *p;
|
|
sigset_t sigmask;
|
|
int sig;
|
|
|
|
p = td->td_proc;
|
|
sig = ksi->ksi_signo;
|
|
KASSERT(_SIG_VALID(sig), ("invalid signal"));
|
|
|
|
sigfastblock_fetch(td);
|
|
PROC_LOCK(p);
|
|
ps = p->p_sigacts;
|
|
mtx_lock(&ps->ps_mtx);
|
|
sigmask = td->td_sigmask;
|
|
if (td->td_sigblock_val != 0)
|
|
SIGSETOR(sigmask, fastblock_mask);
|
|
if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
|
|
!SIGISMEMBER(sigmask, sig)) {
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(curthread, KTR_PSIG))
|
|
ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
|
|
&td->td_sigmask, ksi->ksi_code);
|
|
#endif
|
|
(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
|
|
ksi, &td->td_sigmask);
|
|
postsig_done(sig, td, ps);
|
|
mtx_unlock(&ps->ps_mtx);
|
|
} else {
|
|
/*
|
|
* Avoid a possible infinite loop if the thread
|
|
* masking the signal or process is ignoring the
|
|
* signal.
|
|
*/
|
|
if (kern_forcesigexit && (SIGISMEMBER(sigmask, sig) ||
|
|
ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
|
|
SIGDELSET(td->td_sigmask, sig);
|
|
SIGDELSET(ps->ps_sigcatch, sig);
|
|
SIGDELSET(ps->ps_sigignore, sig);
|
|
ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
|
|
td->td_pflags &= ~TDP_SIGFASTBLOCK;
|
|
td->td_sigblock_val = 0;
|
|
}
|
|
mtx_unlock(&ps->ps_mtx);
|
|
p->p_sig = sig; /* XXX to verify code */
|
|
tdsendsignal(p, td, sig, ksi);
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|
|
|
|
static struct thread *
|
|
sigtd(struct proc *p, int sig, bool fast_sigblock)
|
|
{
|
|
struct thread *td, *signal_td;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
MPASS(!fast_sigblock || p == curproc);
|
|
|
|
/*
|
|
* Check if current thread can handle the signal without
|
|
* switching context to another thread.
|
|
*/
|
|
if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig) &&
|
|
(!fast_sigblock || curthread->td_sigblock_val == 0))
|
|
return (curthread);
|
|
signal_td = NULL;
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
if (!SIGISMEMBER(td->td_sigmask, sig) && (!fast_sigblock ||
|
|
td != curthread || td->td_sigblock_val == 0)) {
|
|
signal_td = td;
|
|
break;
|
|
}
|
|
}
|
|
if (signal_td == NULL)
|
|
signal_td = FIRST_THREAD_IN_PROC(p);
|
|
return (signal_td);
|
|
}
|
|
|
|
/*
|
|
* Send the signal to the process. If the signal has an action, the action
|
|
* is usually performed by the target process rather than the caller; we add
|
|
* the signal to the set of pending signals for the process.
|
|
*
|
|
* Exceptions:
|
|
* o When a stop signal is sent to a sleeping process that takes the
|
|
* default action, the process is stopped without awakening it.
|
|
* o SIGCONT restarts stopped processes (or puts them back to sleep)
|
|
* regardless of the signal action (eg, blocked or ignored).
|
|
*
|
|
* Other ignored signals are discarded immediately.
|
|
*
|
|
* NB: This function may be entered from the debugger via the "kill" DDB
|
|
* command. There is little that can be done to mitigate the possibly messy
|
|
* side effects of this unwise possibility.
|
|
*/
|
|
void
|
|
kern_psignal(struct proc *p, int sig)
|
|
{
|
|
ksiginfo_t ksi;
|
|
|
|
ksiginfo_init(&ksi);
|
|
ksi.ksi_signo = sig;
|
|
ksi.ksi_code = SI_KERNEL;
|
|
(void) tdsendsignal(p, NULL, sig, &ksi);
|
|
}
|
|
|
|
int
|
|
pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
|
|
{
|
|
|
|
return (tdsendsignal(p, NULL, sig, ksi));
|
|
}
|
|
|
|
/* Utility function for finding a thread to send signal event to. */
|
|
int
|
|
sigev_findtd(struct proc *p, struct sigevent *sigev, struct thread **ttd)
|
|
{
|
|
struct thread *td;
|
|
|
|
if (sigev->sigev_notify == SIGEV_THREAD_ID) {
|
|
td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
|
|
if (td == NULL)
|
|
return (ESRCH);
|
|
*ttd = td;
|
|
} else {
|
|
*ttd = NULL;
|
|
PROC_LOCK(p);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
tdsignal(struct thread *td, int sig)
|
|
{
|
|
ksiginfo_t ksi;
|
|
|
|
ksiginfo_init(&ksi);
|
|
ksi.ksi_signo = sig;
|
|
ksi.ksi_code = SI_KERNEL;
|
|
(void) tdsendsignal(td->td_proc, td, sig, &ksi);
|
|
}
|
|
|
|
void
|
|
tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
|
|
{
|
|
|
|
(void) tdsendsignal(td->td_proc, td, sig, ksi);
|
|
}
|
|
|
|
static int
|
|
sig_sleepq_abort(struct thread *td, int intrval)
|
|
{
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
|
|
if (intrval == 0 && (td->td_flags & TDF_SIGWAIT) == 0) {
|
|
thread_unlock(td);
|
|
return (0);
|
|
}
|
|
return (sleepq_abort(td, intrval));
|
|
}
|
|
|
|
int
|
|
tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
|
|
{
|
|
sig_t action;
|
|
sigqueue_t *sigqueue;
|
|
int prop;
|
|
struct sigacts *ps;
|
|
int intrval;
|
|
int ret = 0;
|
|
int wakeup_swapper;
|
|
|
|
MPASS(td == NULL || p == td->td_proc);
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
|
|
if (!_SIG_VALID(sig))
|
|
panic("%s(): invalid signal %d", __func__, sig);
|
|
|
|
KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
|
|
|
|
/*
|
|
* IEEE Std 1003.1-2001: return success when killing a zombie.
|
|
*/
|
|
if (p->p_state == PRS_ZOMBIE) {
|
|
if (ksi && (ksi->ksi_flags & KSI_INS))
|
|
ksiginfo_tryfree(ksi);
|
|
return (ret);
|
|
}
|
|
|
|
ps = p->p_sigacts;
|
|
KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
|
|
prop = sigprop(sig);
|
|
|
|
if (td == NULL) {
|
|
td = sigtd(p, sig, false);
|
|
sigqueue = &p->p_sigqueue;
|
|
} else
|
|
sigqueue = &td->td_sigqueue;
|
|
|
|
SDT_PROBE3(proc, , , signal__send, td, p, sig);
|
|
|
|
/*
|
|
* If the signal is being ignored, then we forget about it
|
|
* immediately, except when the target process executes
|
|
* sigwait(). (Note: we don't set SIGCONT in ps_sigignore,
|
|
* and if it is set to SIG_IGN, action will be SIG_DFL here.)
|
|
*/
|
|
mtx_lock(&ps->ps_mtx);
|
|
if (SIGISMEMBER(ps->ps_sigignore, sig)) {
|
|
if (kern_sig_discard_ign &&
|
|
(p->p_sysent->sv_flags & SV_SIG_DISCIGN) == 0) {
|
|
SDT_PROBE3(proc, , , signal__discard, td, p, sig);
|
|
|
|
mtx_unlock(&ps->ps_mtx);
|
|
if (ksi && (ksi->ksi_flags & KSI_INS))
|
|
ksiginfo_tryfree(ksi);
|
|
return (ret);
|
|
} else {
|
|
action = SIG_CATCH;
|
|
intrval = 0;
|
|
}
|
|
} else {
|
|
if (SIGISMEMBER(td->td_sigmask, sig))
|
|
action = SIG_HOLD;
|
|
else if (SIGISMEMBER(ps->ps_sigcatch, sig))
|
|
action = SIG_CATCH;
|
|
else
|
|
action = SIG_DFL;
|
|
if (SIGISMEMBER(ps->ps_sigintr, sig))
|
|
intrval = EINTR;
|
|
else
|
|
intrval = ERESTART;
|
|
}
|
|
mtx_unlock(&ps->ps_mtx);
|
|
|
|
if (prop & SIGPROP_CONT)
|
|
sigqueue_delete_stopmask_proc(p);
|
|
else if (prop & SIGPROP_STOP) {
|
|
/*
|
|
* If sending a tty stop signal to a member of an orphaned
|
|
* process group, discard the signal here if the action
|
|
* is default; don't stop the process below if sleeping,
|
|
* and don't clear any pending SIGCONT.
|
|
*/
|
|
if ((prop & SIGPROP_TTYSTOP) != 0 &&
|
|
(p->p_pgrp->pg_flags & PGRP_ORPHANED) != 0 &&
|
|
action == SIG_DFL) {
|
|
if (ksi && (ksi->ksi_flags & KSI_INS))
|
|
ksiginfo_tryfree(ksi);
|
|
return (ret);
|
|
}
|
|
sigqueue_delete_proc(p, SIGCONT);
|
|
if (p->p_flag & P_CONTINUED) {
|
|
p->p_flag &= ~P_CONTINUED;
|
|
PROC_LOCK(p->p_pptr);
|
|
sigqueue_take(p->p_ksi);
|
|
PROC_UNLOCK(p->p_pptr);
|
|
}
|
|
}
|
|
|
|
ret = sigqueue_add(sigqueue, sig, ksi);
|
|
if (ret != 0)
|
|
return (ret);
|
|
signotify(td);
|
|
/*
|
|
* Defer further processing for signals which are held,
|
|
* except that stopped processes must be continued by SIGCONT.
|
|
*/
|
|
if (action == SIG_HOLD &&
|
|
!((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
|
|
return (ret);
|
|
|
|
wakeup_swapper = 0;
|
|
|
|
/*
|
|
* Some signals have a process-wide effect and a per-thread
|
|
* component. Most processing occurs when the process next
|
|
* tries to cross the user boundary, however there are some
|
|
* times when processing needs to be done immediately, such as
|
|
* waking up threads so that they can cross the user boundary.
|
|
* We try to do the per-process part here.
|
|
*/
|
|
if (P_SHOULDSTOP(p)) {
|
|
KASSERT(!(p->p_flag & P_WEXIT),
|
|
("signal to stopped but exiting process"));
|
|
if (sig == SIGKILL) {
|
|
/*
|
|
* If traced process is already stopped,
|
|
* then no further action is necessary.
|
|
*/
|
|
if (p->p_flag & P_TRACED)
|
|
goto out;
|
|
/*
|
|
* SIGKILL sets process running.
|
|
* It will die elsewhere.
|
|
* All threads must be restarted.
|
|
*/
|
|
p->p_flag &= ~P_STOPPED_SIG;
|
|
goto runfast;
|
|
}
|
|
|
|
if (prop & SIGPROP_CONT) {
|
|
/*
|
|
* If traced process is already stopped,
|
|
* then no further action is necessary.
|
|
*/
|
|
if (p->p_flag & P_TRACED)
|
|
goto out;
|
|
/*
|
|
* If SIGCONT is default (or ignored), we continue the
|
|
* process but don't leave the signal in sigqueue as
|
|
* it has no further action. If SIGCONT is held, we
|
|
* continue the process and leave the signal in
|
|
* sigqueue. If the process catches SIGCONT, let it
|
|
* handle the signal itself. If it isn't waiting on
|
|
* an event, it goes back to run state.
|
|
* Otherwise, process goes back to sleep state.
|
|
*/
|
|
p->p_flag &= ~P_STOPPED_SIG;
|
|
PROC_SLOCK(p);
|
|
if (p->p_numthreads == p->p_suspcount) {
|
|
PROC_SUNLOCK(p);
|
|
p->p_flag |= P_CONTINUED;
|
|
p->p_xsig = SIGCONT;
|
|
PROC_LOCK(p->p_pptr);
|
|
childproc_continued(p);
|
|
PROC_UNLOCK(p->p_pptr);
|
|
PROC_SLOCK(p);
|
|
}
|
|
if (action == SIG_DFL) {
|
|
thread_unsuspend(p);
|
|
PROC_SUNLOCK(p);
|
|
sigqueue_delete(sigqueue, sig);
|
|
goto out_cont;
|
|
}
|
|
if (action == SIG_CATCH) {
|
|
/*
|
|
* The process wants to catch it so it needs
|
|
* to run at least one thread, but which one?
|
|
*/
|
|
PROC_SUNLOCK(p);
|
|
goto runfast;
|
|
}
|
|
/*
|
|
* The signal is not ignored or caught.
|
|
*/
|
|
thread_unsuspend(p);
|
|
PROC_SUNLOCK(p);
|
|
goto out_cont;
|
|
}
|
|
|
|
if (prop & SIGPROP_STOP) {
|
|
/*
|
|
* If traced process is already stopped,
|
|
* then no further action is necessary.
|
|
*/
|
|
if (p->p_flag & P_TRACED)
|
|
goto out;
|
|
/*
|
|
* Already stopped, don't need to stop again
|
|
* (If we did the shell could get confused).
|
|
* Just make sure the signal STOP bit set.
|
|
*/
|
|
p->p_flag |= P_STOPPED_SIG;
|
|
sigqueue_delete(sigqueue, sig);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* All other kinds of signals:
|
|
* If a thread is sleeping interruptibly, simulate a
|
|
* wakeup so that when it is continued it will be made
|
|
* runnable and can look at the signal. However, don't make
|
|
* the PROCESS runnable, leave it stopped.
|
|
* It may run a bit until it hits a thread_suspend_check().
|
|
*/
|
|
PROC_SLOCK(p);
|
|
thread_lock(td);
|
|
if (TD_CAN_ABORT(td))
|
|
wakeup_swapper = sig_sleepq_abort(td, intrval);
|
|
else
|
|
thread_unlock(td);
|
|
PROC_SUNLOCK(p);
|
|
goto out;
|
|
/*
|
|
* Mutexes are short lived. Threads waiting on them will
|
|
* hit thread_suspend_check() soon.
|
|
*/
|
|
} else if (p->p_state == PRS_NORMAL) {
|
|
if (p->p_flag & P_TRACED || action == SIG_CATCH) {
|
|
tdsigwakeup(td, sig, action, intrval);
|
|
goto out;
|
|
}
|
|
|
|
MPASS(action == SIG_DFL);
|
|
|
|
if (prop & SIGPROP_STOP) {
|
|
if (p->p_flag & (P_PPWAIT|P_WEXIT))
|
|
goto out;
|
|
p->p_flag |= P_STOPPED_SIG;
|
|
p->p_xsig = sig;
|
|
PROC_SLOCK(p);
|
|
wakeup_swapper = sig_suspend_threads(td, p, 1);
|
|
if (p->p_numthreads == p->p_suspcount) {
|
|
/*
|
|
* only thread sending signal to another
|
|
* process can reach here, if thread is sending
|
|
* signal to its process, because thread does
|
|
* not suspend itself here, p_numthreads
|
|
* should never be equal to p_suspcount.
|
|
*/
|
|
thread_stopped(p);
|
|
PROC_SUNLOCK(p);
|
|
sigqueue_delete_proc(p, p->p_xsig);
|
|
} else
|
|
PROC_SUNLOCK(p);
|
|
goto out;
|
|
}
|
|
} else {
|
|
/* Not in "NORMAL" state. discard the signal. */
|
|
sigqueue_delete(sigqueue, sig);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* The process is not stopped so we need to apply the signal to all the
|
|
* running threads.
|
|
*/
|
|
runfast:
|
|
tdsigwakeup(td, sig, action, intrval);
|
|
PROC_SLOCK(p);
|
|
thread_unsuspend(p);
|
|
PROC_SUNLOCK(p);
|
|
out_cont:
|
|
itimer_proc_continue(p);
|
|
kqtimer_proc_continue(p);
|
|
out:
|
|
/* If we jump here, proc slock should not be owned. */
|
|
PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
|
|
if (wakeup_swapper)
|
|
kick_proc0();
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* The force of a signal has been directed against a single
|
|
* thread. We need to see what we can do about knocking it
|
|
* out of any sleep it may be in etc.
|
|
*/
|
|
static void
|
|
tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
int prop, wakeup_swapper;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
prop = sigprop(sig);
|
|
|
|
PROC_SLOCK(p);
|
|
thread_lock(td);
|
|
/*
|
|
* Bring the priority of a thread up if we want it to get
|
|
* killed in this lifetime. Be careful to avoid bumping the
|
|
* priority of the idle thread, since we still allow to signal
|
|
* kernel processes.
|
|
*/
|
|
if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
|
|
td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
|
|
sched_prio(td, PUSER);
|
|
if (TD_ON_SLEEPQ(td)) {
|
|
/*
|
|
* If thread is sleeping uninterruptibly
|
|
* we can't interrupt the sleep... the signal will
|
|
* be noticed when the process returns through
|
|
* trap() or syscall().
|
|
*/
|
|
if ((td->td_flags & TDF_SINTR) == 0)
|
|
goto out;
|
|
/*
|
|
* If SIGCONT is default (or ignored) and process is
|
|
* asleep, we are finished; the process should not
|
|
* be awakened.
|
|
*/
|
|
if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
|
|
thread_unlock(td);
|
|
PROC_SUNLOCK(p);
|
|
sigqueue_delete(&p->p_sigqueue, sig);
|
|
/*
|
|
* It may be on either list in this state.
|
|
* Remove from both for now.
|
|
*/
|
|
sigqueue_delete(&td->td_sigqueue, sig);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Don't awaken a sleeping thread for SIGSTOP if the
|
|
* STOP signal is deferred.
|
|
*/
|
|
if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
|
|
TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
|
|
goto out;
|
|
|
|
/*
|
|
* Give low priority threads a better chance to run.
|
|
*/
|
|
if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
|
|
sched_prio(td, PUSER);
|
|
|
|
wakeup_swapper = sig_sleepq_abort(td, intrval);
|
|
PROC_SUNLOCK(p);
|
|
if (wakeup_swapper)
|
|
kick_proc0();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Other states do nothing with the signal immediately,
|
|
* other than kicking ourselves if we are running.
|
|
* It will either never be noticed, or noticed very soon.
|
|
*/
|
|
#ifdef SMP
|
|
if (TD_IS_RUNNING(td) && td != curthread)
|
|
forward_signal(td);
|
|
#endif
|
|
|
|
out:
|
|
PROC_SUNLOCK(p);
|
|
thread_unlock(td);
|
|
}
|
|
|
|
static void
|
|
ptrace_coredump(struct thread *td)
|
|
{
|
|
struct proc *p;
|
|
struct thr_coredump_req *tcq;
|
|
void *rl_cookie;
|
|
|
|
MPASS(td == curthread);
|
|
p = td->td_proc;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
if ((td->td_dbgflags & TDB_COREDUMPRQ) == 0)
|
|
return;
|
|
KASSERT((p->p_flag & P_STOPPED_TRACE) != 0, ("not stopped"));
|
|
|
|
tcq = td->td_coredump;
|
|
KASSERT(tcq != NULL, ("td_coredump is NULL"));
|
|
|
|
if (p->p_sysent->sv_coredump == NULL) {
|
|
tcq->tc_error = ENOSYS;
|
|
goto wake;
|
|
}
|
|
|
|
PROC_UNLOCK(p);
|
|
rl_cookie = vn_rangelock_wlock(tcq->tc_vp, 0, OFF_MAX);
|
|
|
|
tcq->tc_error = p->p_sysent->sv_coredump(td, tcq->tc_vp,
|
|
tcq->tc_limit, tcq->tc_flags);
|
|
|
|
vn_rangelock_unlock(tcq->tc_vp, rl_cookie);
|
|
PROC_LOCK(p);
|
|
wake:
|
|
td->td_dbgflags &= ~TDB_COREDUMPRQ;
|
|
td->td_coredump = NULL;
|
|
wakeup(p);
|
|
}
|
|
|
|
static int
|
|
sig_suspend_threads(struct thread *td, struct proc *p, int sending)
|
|
{
|
|
struct thread *td2;
|
|
int wakeup_swapper;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
PROC_SLOCK_ASSERT(p, MA_OWNED);
|
|
MPASS(sending || td == curthread);
|
|
|
|
wakeup_swapper = 0;
|
|
FOREACH_THREAD_IN_PROC(p, td2) {
|
|
thread_lock(td2);
|
|
td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
|
|
if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
|
|
(td2->td_flags & TDF_SINTR)) {
|
|
if (td2->td_flags & TDF_SBDRY) {
|
|
/*
|
|
* Once a thread is asleep with
|
|
* TDF_SBDRY and without TDF_SERESTART
|
|
* or TDF_SEINTR set, it should never
|
|
* become suspended due to this check.
|
|
*/
|
|
KASSERT(!TD_IS_SUSPENDED(td2),
|
|
("thread with deferred stops suspended"));
|
|
if (TD_SBDRY_INTR(td2)) {
|
|
wakeup_swapper |= sleepq_abort(td2,
|
|
TD_SBDRY_ERRNO(td2));
|
|
continue;
|
|
}
|
|
} else if (!TD_IS_SUSPENDED(td2))
|
|
thread_suspend_one(td2);
|
|
} else if (!TD_IS_SUSPENDED(td2)) {
|
|
if (sending || td != td2)
|
|
td2->td_flags |= TDF_ASTPENDING;
|
|
#ifdef SMP
|
|
if (TD_IS_RUNNING(td2) && td2 != td)
|
|
forward_signal(td2);
|
|
#endif
|
|
}
|
|
thread_unlock(td2);
|
|
}
|
|
return (wakeup_swapper);
|
|
}
|
|
|
|
/*
|
|
* Stop the process for an event deemed interesting to the debugger. If si is
|
|
* non-NULL, this is a signal exchange; the new signal requested by the
|
|
* debugger will be returned for handling. If si is NULL, this is some other
|
|
* type of interesting event. The debugger may request a signal be delivered in
|
|
* that case as well, however it will be deferred until it can be handled.
|
|
*/
|
|
int
|
|
ptracestop(struct thread *td, int sig, ksiginfo_t *si)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct thread *td2;
|
|
ksiginfo_t ksi;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
|
|
&p->p_mtx.lock_object, "Stopping for traced signal");
|
|
|
|
td->td_xsig = sig;
|
|
|
|
if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
|
|
td->td_dbgflags |= TDB_XSIG;
|
|
CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
|
|
td->td_tid, p->p_pid, td->td_dbgflags, sig);
|
|
PROC_SLOCK(p);
|
|
while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
|
|
if (P_KILLED(p)) {
|
|
/*
|
|
* Ensure that, if we've been PT_KILLed, the
|
|
* exit status reflects that. Another thread
|
|
* may also be in ptracestop(), having just
|
|
* received the SIGKILL, but this thread was
|
|
* unsuspended first.
|
|
*/
|
|
td->td_dbgflags &= ~TDB_XSIG;
|
|
td->td_xsig = SIGKILL;
|
|
p->p_ptevents = 0;
|
|
break;
|
|
}
|
|
if (p->p_flag & P_SINGLE_EXIT &&
|
|
!(td->td_dbgflags & TDB_EXIT)) {
|
|
/*
|
|
* Ignore ptrace stops except for thread exit
|
|
* events when the process exits.
|
|
*/
|
|
td->td_dbgflags &= ~TDB_XSIG;
|
|
PROC_SUNLOCK(p);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Make wait(2) work. Ensure that right after the
|
|
* attach, the thread which was decided to become the
|
|
* leader of attach gets reported to the waiter.
|
|
* Otherwise, just avoid overwriting another thread's
|
|
* assignment to p_xthread. If another thread has
|
|
* already set p_xthread, the current thread will get
|
|
* a chance to report itself upon the next iteration.
|
|
*/
|
|
if ((td->td_dbgflags & TDB_FSTP) != 0 ||
|
|
((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
|
|
p->p_xthread == NULL)) {
|
|
p->p_xsig = sig;
|
|
p->p_xthread = td;
|
|
|
|
/*
|
|
* If we are on sleepqueue already,
|
|
* let sleepqueue code decide if it
|
|
* needs to go sleep after attach.
|
|
*/
|
|
if (td->td_wchan == NULL)
|
|
td->td_dbgflags &= ~TDB_FSTP;
|
|
|
|
p->p_flag2 &= ~P2_PTRACE_FSTP;
|
|
p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
|
|
sig_suspend_threads(td, p, 0);
|
|
}
|
|
if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
|
|
td->td_dbgflags &= ~TDB_STOPATFORK;
|
|
}
|
|
stopme:
|
|
td->td_dbgflags |= TDB_SSWITCH;
|
|
thread_suspend_switch(td, p);
|
|
td->td_dbgflags &= ~TDB_SSWITCH;
|
|
if ((td->td_dbgflags & TDB_COREDUMPRQ) != 0) {
|
|
PROC_SUNLOCK(p);
|
|
ptrace_coredump(td);
|
|
PROC_SLOCK(p);
|
|
goto stopme;
|
|
}
|
|
if (p->p_xthread == td)
|
|
p->p_xthread = NULL;
|
|
if (!(p->p_flag & P_TRACED))
|
|
break;
|
|
if (td->td_dbgflags & TDB_SUSPEND) {
|
|
if (p->p_flag & P_SINGLE_EXIT)
|
|
break;
|
|
goto stopme;
|
|
}
|
|
}
|
|
PROC_SUNLOCK(p);
|
|
}
|
|
|
|
if (si != NULL && sig == td->td_xsig) {
|
|
/* Parent wants us to take the original signal unchanged. */
|
|
si->ksi_flags |= KSI_HEAD;
|
|
if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
|
|
si->ksi_signo = 0;
|
|
} else if (td->td_xsig != 0) {
|
|
/*
|
|
* If parent wants us to take a new signal, then it will leave
|
|
* it in td->td_xsig; otherwise we just look for signals again.
|
|
*/
|
|
ksiginfo_init(&ksi);
|
|
ksi.ksi_signo = td->td_xsig;
|
|
ksi.ksi_flags |= KSI_PTRACE;
|
|
td2 = sigtd(p, td->td_xsig, false);
|
|
tdsendsignal(p, td2, td->td_xsig, &ksi);
|
|
if (td != td2)
|
|
return (0);
|
|
}
|
|
|
|
return (td->td_xsig);
|
|
}
|
|
|
|
static void
|
|
reschedule_signals(struct proc *p, sigset_t block, int flags)
|
|
{
|
|
struct sigacts *ps;
|
|
struct thread *td;
|
|
int sig;
|
|
bool fastblk, pslocked;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
ps = p->p_sigacts;
|
|
pslocked = (flags & SIGPROCMASK_PS_LOCKED) != 0;
|
|
mtx_assert(&ps->ps_mtx, pslocked ? MA_OWNED : MA_NOTOWNED);
|
|
if (SIGISEMPTY(p->p_siglist))
|
|
return;
|
|
SIGSETAND(block, p->p_siglist);
|
|
fastblk = (flags & SIGPROCMASK_FASTBLK) != 0;
|
|
SIG_FOREACH(sig, &block) {
|
|
td = sigtd(p, sig, fastblk);
|
|
|
|
/*
|
|
* If sigtd() selected us despite sigfastblock is
|
|
* blocking, do not activate AST or wake us, to avoid
|
|
* loop in AST handler.
|
|
*/
|
|
if (fastblk && td == curthread)
|
|
continue;
|
|
|
|
signotify(td);
|
|
if (!pslocked)
|
|
mtx_lock(&ps->ps_mtx);
|
|
if (p->p_flag & P_TRACED ||
|
|
(SIGISMEMBER(ps->ps_sigcatch, sig) &&
|
|
!SIGISMEMBER(td->td_sigmask, sig))) {
|
|
tdsigwakeup(td, sig, SIG_CATCH,
|
|
(SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
|
|
ERESTART));
|
|
}
|
|
if (!pslocked)
|
|
mtx_unlock(&ps->ps_mtx);
|
|
}
|
|
}
|
|
|
|
void
|
|
tdsigcleanup(struct thread *td)
|
|
{
|
|
struct proc *p;
|
|
sigset_t unblocked;
|
|
|
|
p = td->td_proc;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
|
|
sigqueue_flush(&td->td_sigqueue);
|
|
if (p->p_numthreads == 1)
|
|
return;
|
|
|
|
/*
|
|
* Since we cannot handle signals, notify signal post code
|
|
* about this by filling the sigmask.
|
|
*
|
|
* Also, if needed, wake up thread(s) that do not block the
|
|
* same signals as the exiting thread, since the thread might
|
|
* have been selected for delivery and woken up.
|
|
*/
|
|
SIGFILLSET(unblocked);
|
|
SIGSETNAND(unblocked, td->td_sigmask);
|
|
SIGFILLSET(td->td_sigmask);
|
|
reschedule_signals(p, unblocked, 0);
|
|
|
|
}
|
|
|
|
static int
|
|
sigdeferstop_curr_flags(int cflags)
|
|
{
|
|
|
|
MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
|
|
(cflags & TDF_SBDRY) != 0);
|
|
return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
|
|
}
|
|
|
|
/*
|
|
* Defer the delivery of SIGSTOP for the current thread, according to
|
|
* the requested mode. Returns previous flags, which must be restored
|
|
* by sigallowstop().
|
|
*
|
|
* TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
|
|
* cleared by the current thread, which allow the lock-less read-only
|
|
* accesses below.
|
|
*/
|
|
int
|
|
sigdeferstop_impl(int mode)
|
|
{
|
|
struct thread *td;
|
|
int cflags, nflags;
|
|
|
|
td = curthread;
|
|
cflags = sigdeferstop_curr_flags(td->td_flags);
|
|
switch (mode) {
|
|
case SIGDEFERSTOP_NOP:
|
|
nflags = cflags;
|
|
break;
|
|
case SIGDEFERSTOP_OFF:
|
|
nflags = 0;
|
|
break;
|
|
case SIGDEFERSTOP_SILENT:
|
|
nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
|
|
break;
|
|
case SIGDEFERSTOP_EINTR:
|
|
nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
|
|
break;
|
|
case SIGDEFERSTOP_ERESTART:
|
|
nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
|
|
break;
|
|
default:
|
|
panic("sigdeferstop: invalid mode %x", mode);
|
|
break;
|
|
}
|
|
if (cflags == nflags)
|
|
return (SIGDEFERSTOP_VAL_NCHG);
|
|
thread_lock(td);
|
|
td->td_flags = (td->td_flags & ~cflags) | nflags;
|
|
thread_unlock(td);
|
|
return (cflags);
|
|
}
|
|
|
|
/*
|
|
* Restores the STOP handling mode, typically permitting the delivery
|
|
* of SIGSTOP for the current thread. This does not immediately
|
|
* suspend if a stop was posted. Instead, the thread will suspend
|
|
* either via ast() or a subsequent interruptible sleep.
|
|
*/
|
|
void
|
|
sigallowstop_impl(int prev)
|
|
{
|
|
struct thread *td;
|
|
int cflags;
|
|
|
|
KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
|
|
KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
|
|
("sigallowstop: incorrect previous mode %x", prev));
|
|
td = curthread;
|
|
cflags = sigdeferstop_curr_flags(td->td_flags);
|
|
if (cflags != prev) {
|
|
thread_lock(td);
|
|
td->td_flags = (td->td_flags & ~cflags) | prev;
|
|
thread_unlock(td);
|
|
}
|
|
}
|
|
|
|
enum sigstatus {
|
|
SIGSTATUS_HANDLE,
|
|
SIGSTATUS_HANDLED,
|
|
SIGSTATUS_IGNORE,
|
|
SIGSTATUS_SBDRY_STOP,
|
|
};
|
|
|
|
/*
|
|
* The thread has signal "sig" pending. Figure out what to do with it:
|
|
*
|
|
* _HANDLE -> the caller should handle the signal
|
|
* _HANDLED -> handled internally, reload pending signal set
|
|
* _IGNORE -> ignored, remove from the set of pending signals and try the
|
|
* next pending signal
|
|
* _SBDRY_STOP -> the signal should stop the thread but this is not
|
|
* permitted in the current context
|
|
*/
|
|
static enum sigstatus
|
|
sigprocess(struct thread *td, int sig)
|
|
{
|
|
struct proc *p;
|
|
struct sigacts *ps;
|
|
struct sigqueue *queue;
|
|
ksiginfo_t ksi;
|
|
int prop;
|
|
|
|
KASSERT(_SIG_VALID(sig), ("%s: invalid signal %d", __func__, sig));
|
|
|
|
p = td->td_proc;
|
|
ps = p->p_sigacts;
|
|
mtx_assert(&ps->ps_mtx, MA_OWNED);
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
|
|
/*
|
|
* We should allow pending but ignored signals below
|
|
* if there is sigwait() active, or P_TRACED was
|
|
* on when they were posted.
|
|
*/
|
|
if (SIGISMEMBER(ps->ps_sigignore, sig) &&
|
|
(p->p_flag & P_TRACED) == 0 &&
|
|
(td->td_flags & TDF_SIGWAIT) == 0) {
|
|
return (SIGSTATUS_IGNORE);
|
|
}
|
|
|
|
/*
|
|
* If the process is going to single-thread mode to prepare
|
|
* for exit, there is no sense in delivering any signal
|
|
* to usermode. Another important consequence is that
|
|
* msleep(..., PCATCH, ...) now is only interruptible by a
|
|
* suspend request.
|
|
*/
|
|
if ((p->p_flag2 & P2_WEXIT) != 0)
|
|
return (SIGSTATUS_IGNORE);
|
|
|
|
if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
|
|
/*
|
|
* If traced, always stop.
|
|
* Remove old signal from queue before the stop.
|
|
* XXX shrug off debugger, it causes siginfo to
|
|
* be thrown away.
|
|
*/
|
|
queue = &td->td_sigqueue;
|
|
ksiginfo_init(&ksi);
|
|
if (sigqueue_get(queue, sig, &ksi) == 0) {
|
|
queue = &p->p_sigqueue;
|
|
sigqueue_get(queue, sig, &ksi);
|
|
}
|
|
td->td_si = ksi.ksi_info;
|
|
|
|
mtx_unlock(&ps->ps_mtx);
|
|
sig = ptracestop(td, sig, &ksi);
|
|
mtx_lock(&ps->ps_mtx);
|
|
|
|
td->td_si.si_signo = 0;
|
|
|
|
/*
|
|
* Keep looking if the debugger discarded or
|
|
* replaced the signal.
|
|
*/
|
|
if (sig == 0)
|
|
return (SIGSTATUS_HANDLED);
|
|
|
|
/*
|
|
* If the signal became masked, re-queue it.
|
|
*/
|
|
if (SIGISMEMBER(td->td_sigmask, sig)) {
|
|
ksi.ksi_flags |= KSI_HEAD;
|
|
sigqueue_add(&p->p_sigqueue, sig, &ksi);
|
|
return (SIGSTATUS_HANDLED);
|
|
}
|
|
|
|
/*
|
|
* If the traced bit got turned off, requeue the signal and
|
|
* reload the set of pending signals. This ensures that p_sig*
|
|
* and p_sigact are consistent.
|
|
*/
|
|
if ((p->p_flag & P_TRACED) == 0) {
|
|
if ((ksi.ksi_flags & KSI_PTRACE) == 0) {
|
|
ksi.ksi_flags |= KSI_HEAD;
|
|
sigqueue_add(queue, sig, &ksi);
|
|
}
|
|
return (SIGSTATUS_HANDLED);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Decide whether the signal should be returned.
|
|
* Return the signal's number, or fall through
|
|
* to clear it from the pending mask.
|
|
*/
|
|
switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
|
|
case (intptr_t)SIG_DFL:
|
|
/*
|
|
* Don't take default actions on system processes.
|
|
*/
|
|
if (p->p_pid <= 1) {
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Are you sure you want to ignore SIGSEGV
|
|
* in init? XXX
|
|
*/
|
|
printf("Process (pid %lu) got signal %d\n",
|
|
(u_long)p->p_pid, sig);
|
|
#endif
|
|
return (SIGSTATUS_IGNORE);
|
|
}
|
|
|
|
/*
|
|
* If there is a pending stop signal to process with
|
|
* default action, stop here, then clear the signal.
|
|
* Traced or exiting processes should ignore stops.
|
|
* Additionally, a member of an orphaned process group
|
|
* should ignore tty stops.
|
|
*/
|
|
prop = sigprop(sig);
|
|
if (prop & SIGPROP_STOP) {
|
|
mtx_unlock(&ps->ps_mtx);
|
|
if ((p->p_flag & (P_TRACED | P_WEXIT |
|
|
P_SINGLE_EXIT)) != 0 || ((p->p_pgrp->
|
|
pg_flags & PGRP_ORPHANED) != 0 &&
|
|
(prop & SIGPROP_TTYSTOP) != 0)) {
|
|
mtx_lock(&ps->ps_mtx);
|
|
return (SIGSTATUS_IGNORE);
|
|
}
|
|
if (TD_SBDRY_INTR(td)) {
|
|
KASSERT((td->td_flags & TDF_SBDRY) != 0,
|
|
("lost TDF_SBDRY"));
|
|
mtx_lock(&ps->ps_mtx);
|
|
return (SIGSTATUS_SBDRY_STOP);
|
|
}
|
|
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
|
|
&p->p_mtx.lock_object, "Catching SIGSTOP");
|
|
sigqueue_delete(&td->td_sigqueue, sig);
|
|
sigqueue_delete(&p->p_sigqueue, sig);
|
|
p->p_flag |= P_STOPPED_SIG;
|
|
p->p_xsig = sig;
|
|
PROC_SLOCK(p);
|
|
sig_suspend_threads(td, p, 0);
|
|
thread_suspend_switch(td, p);
|
|
PROC_SUNLOCK(p);
|
|
mtx_lock(&ps->ps_mtx);
|
|
return (SIGSTATUS_HANDLED);
|
|
} else if ((prop & SIGPROP_IGNORE) != 0 &&
|
|
(td->td_flags & TDF_SIGWAIT) == 0) {
|
|
/*
|
|
* Default action is to ignore; drop it if
|
|
* not in kern_sigtimedwait().
|
|
*/
|
|
return (SIGSTATUS_IGNORE);
|
|
} else {
|
|
return (SIGSTATUS_HANDLE);
|
|
}
|
|
|
|
case (intptr_t)SIG_IGN:
|
|
if ((td->td_flags & TDF_SIGWAIT) == 0)
|
|
return (SIGSTATUS_IGNORE);
|
|
else
|
|
return (SIGSTATUS_HANDLE);
|
|
|
|
default:
|
|
/*
|
|
* This signal has an action, let postsig() process it.
|
|
*/
|
|
return (SIGSTATUS_HANDLE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the current process has received a signal (should be caught or cause
|
|
* termination, should interrupt current syscall), return the signal number.
|
|
* Stop signals with default action are processed immediately, then cleared;
|
|
* they aren't returned. This is checked after each entry to the system for
|
|
* a syscall or trap (though this can usually be done without calling
|
|
* issignal by checking the pending signal masks in cursig.) The normal call
|
|
* sequence is
|
|
*
|
|
* while (sig = cursig(curthread))
|
|
* postsig(sig);
|
|
*/
|
|
static int
|
|
issignal(struct thread *td)
|
|
{
|
|
struct proc *p;
|
|
sigset_t sigpending;
|
|
int sig;
|
|
|
|
p = td->td_proc;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
|
|
for (;;) {
|
|
sigpending = td->td_sigqueue.sq_signals;
|
|
SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
|
|
SIGSETNAND(sigpending, td->td_sigmask);
|
|
|
|
if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
|
|
(TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
|
|
SIG_STOPSIGMASK(sigpending);
|
|
if (SIGISEMPTY(sigpending)) /* no signal to send */
|
|
return (0);
|
|
|
|
/*
|
|
* Do fast sigblock if requested by usermode. Since
|
|
* we do know that there was a signal pending at this
|
|
* point, set the FAST_SIGBLOCK_PEND as indicator for
|
|
* usermode to perform a dummy call to
|
|
* FAST_SIGBLOCK_UNBLOCK, which causes immediate
|
|
* delivery of postponed pending signal.
|
|
*/
|
|
if ((td->td_pflags & TDP_SIGFASTBLOCK) != 0) {
|
|
if (td->td_sigblock_val != 0)
|
|
SIGSETNAND(sigpending, fastblock_mask);
|
|
if (SIGISEMPTY(sigpending)) {
|
|
td->td_pflags |= TDP_SIGFASTPENDING;
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
|
|
(p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
|
|
SIGISMEMBER(sigpending, SIGSTOP)) {
|
|
/*
|
|
* If debugger just attached, always consume
|
|
* SIGSTOP from ptrace(PT_ATTACH) first, to
|
|
* execute the debugger attach ritual in
|
|
* order.
|
|
*/
|
|
td->td_dbgflags |= TDB_FSTP;
|
|
SIGEMPTYSET(sigpending);
|
|
SIGADDSET(sigpending, SIGSTOP);
|
|
}
|
|
|
|
SIG_FOREACH(sig, &sigpending) {
|
|
switch (sigprocess(td, sig)) {
|
|
case SIGSTATUS_HANDLE:
|
|
return (sig);
|
|
case SIGSTATUS_HANDLED:
|
|
goto next;
|
|
case SIGSTATUS_IGNORE:
|
|
sigqueue_delete(&td->td_sigqueue, sig);
|
|
sigqueue_delete(&p->p_sigqueue, sig);
|
|
break;
|
|
case SIGSTATUS_SBDRY_STOP:
|
|
return (-1);
|
|
}
|
|
}
|
|
next:;
|
|
}
|
|
}
|
|
|
|
void
|
|
thread_stopped(struct proc *p)
|
|
{
|
|
int n;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
PROC_SLOCK_ASSERT(p, MA_OWNED);
|
|
n = p->p_suspcount;
|
|
if (p == curproc)
|
|
n++;
|
|
if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
|
|
PROC_SUNLOCK(p);
|
|
p->p_flag &= ~P_WAITED;
|
|
PROC_LOCK(p->p_pptr);
|
|
childproc_stopped(p, (p->p_flag & P_TRACED) ?
|
|
CLD_TRAPPED : CLD_STOPPED);
|
|
PROC_UNLOCK(p->p_pptr);
|
|
PROC_SLOCK(p);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Take the action for the specified signal
|
|
* from the current set of pending signals.
|
|
*/
|
|
int
|
|
postsig(int sig)
|
|
{
|
|
struct thread *td;
|
|
struct proc *p;
|
|
struct sigacts *ps;
|
|
sig_t action;
|
|
ksiginfo_t ksi;
|
|
sigset_t returnmask;
|
|
|
|
KASSERT(sig != 0, ("postsig"));
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
ps = p->p_sigacts;
|
|
mtx_assert(&ps->ps_mtx, MA_OWNED);
|
|
ksiginfo_init(&ksi);
|
|
if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
|
|
sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
|
|
return (0);
|
|
ksi.ksi_signo = sig;
|
|
if (ksi.ksi_code == SI_TIMER)
|
|
itimer_accept(p, ksi.ksi_timerid, &ksi);
|
|
action = ps->ps_sigact[_SIG_IDX(sig)];
|
|
#ifdef KTRACE
|
|
if (KTRPOINT(td, KTR_PSIG))
|
|
ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
|
|
&td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
|
|
#endif
|
|
|
|
if (action == SIG_DFL) {
|
|
/*
|
|
* Default action, where the default is to kill
|
|
* the process. (Other cases were ignored above.)
|
|
*/
|
|
mtx_unlock(&ps->ps_mtx);
|
|
proc_td_siginfo_capture(td, &ksi.ksi_info);
|
|
sigexit(td, sig);
|
|
/* NOTREACHED */
|
|
} else {
|
|
/*
|
|
* If we get here, the signal must be caught.
|
|
*/
|
|
KASSERT(action != SIG_IGN, ("postsig action %p", action));
|
|
KASSERT(!SIGISMEMBER(td->td_sigmask, sig),
|
|
("postsig action: blocked sig %d", sig));
|
|
|
|
/*
|
|
* Set the new mask value and also defer further
|
|
* occurrences of this signal.
|
|
*
|
|
* Special case: user has done a sigsuspend. Here the
|
|
* current mask is not of interest, but rather the
|
|
* mask from before the sigsuspend is what we want
|
|
* restored after the signal processing is completed.
|
|
*/
|
|
if (td->td_pflags & TDP_OLDMASK) {
|
|
returnmask = td->td_oldsigmask;
|
|
td->td_pflags &= ~TDP_OLDMASK;
|
|
} else
|
|
returnmask = td->td_sigmask;
|
|
|
|
if (p->p_sig == sig) {
|
|
p->p_sig = 0;
|
|
}
|
|
(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
|
|
postsig_done(sig, td, ps);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
int
|
|
sig_ast_checksusp(struct thread *td)
|
|
{
|
|
struct proc *p __diagused;
|
|
int ret;
|
|
|
|
p = td->td_proc;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
|
|
if ((td->td_flags & TDF_NEEDSUSPCHK) == 0)
|
|
return (0);
|
|
|
|
ret = thread_suspend_check(1);
|
|
MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
sig_ast_needsigchk(struct thread *td)
|
|
{
|
|
struct proc *p;
|
|
struct sigacts *ps;
|
|
int ret, sig;
|
|
|
|
p = td->td_proc;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
|
|
if ((td->td_flags & TDF_NEEDSIGCHK) == 0)
|
|
return (0);
|
|
|
|
ps = p->p_sigacts;
|
|
mtx_lock(&ps->ps_mtx);
|
|
sig = cursig(td);
|
|
if (sig == -1) {
|
|
mtx_unlock(&ps->ps_mtx);
|
|
KASSERT((td->td_flags & TDF_SBDRY) != 0, ("lost TDF_SBDRY"));
|
|
KASSERT(TD_SBDRY_INTR(td),
|
|
("lost TDF_SERESTART of TDF_SEINTR"));
|
|
KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
|
|
(TDF_SEINTR | TDF_SERESTART),
|
|
("both TDF_SEINTR and TDF_SERESTART"));
|
|
ret = TD_SBDRY_ERRNO(td);
|
|
} else if (sig != 0) {
|
|
ret = SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR : ERESTART;
|
|
mtx_unlock(&ps->ps_mtx);
|
|
} else {
|
|
mtx_unlock(&ps->ps_mtx);
|
|
ret = 0;
|
|
}
|
|
|
|
/*
|
|
* Do not go into sleep if this thread was the ptrace(2)
|
|
* attach leader. cursig() consumed SIGSTOP from PT_ATTACH,
|
|
* but we usually act on the signal by interrupting sleep, and
|
|
* should do that here as well.
|
|
*/
|
|
if ((td->td_dbgflags & TDB_FSTP) != 0) {
|
|
if (ret == 0)
|
|
ret = EINTR;
|
|
td->td_dbgflags &= ~TDB_FSTP;
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
int
|
|
sig_intr(void)
|
|
{
|
|
struct thread *td;
|
|
struct proc *p;
|
|
int ret;
|
|
|
|
td = curthread;
|
|
if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0)
|
|
return (0);
|
|
|
|
p = td->td_proc;
|
|
|
|
PROC_LOCK(p);
|
|
ret = sig_ast_checksusp(td);
|
|
if (ret == 0)
|
|
ret = sig_ast_needsigchk(td);
|
|
PROC_UNLOCK(p);
|
|
return (ret);
|
|
}
|
|
|
|
bool
|
|
curproc_sigkilled(void)
|
|
{
|
|
struct thread *td;
|
|
struct proc *p;
|
|
struct sigacts *ps;
|
|
bool res;
|
|
|
|
td = curthread;
|
|
if ((td->td_flags & TDF_NEEDSIGCHK) == 0)
|
|
return (false);
|
|
|
|
p = td->td_proc;
|
|
PROC_LOCK(p);
|
|
ps = p->p_sigacts;
|
|
mtx_lock(&ps->ps_mtx);
|
|
res = SIGISMEMBER(td->td_sigqueue.sq_signals, SIGKILL) ||
|
|
SIGISMEMBER(p->p_sigqueue.sq_signals, SIGKILL);
|
|
mtx_unlock(&ps->ps_mtx);
|
|
PROC_UNLOCK(p);
|
|
return (res);
|
|
}
|
|
|
|
void
|
|
proc_wkilled(struct proc *p)
|
|
{
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
if ((p->p_flag & P_WKILLED) == 0) {
|
|
p->p_flag |= P_WKILLED;
|
|
/*
|
|
* Notify swapper that there is a process to swap in.
|
|
* The notification is racy, at worst it would take 10
|
|
* seconds for the swapper process to notice.
|
|
*/
|
|
if ((p->p_flag & (P_INMEM | P_SWAPPINGIN)) == 0)
|
|
wakeup(&proc0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Kill the current process for stated reason.
|
|
*/
|
|
void
|
|
killproc(struct proc *p, const char *why)
|
|
{
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
|
|
p->p_comm);
|
|
log(LOG_ERR, "pid %d (%s), jid %d, uid %d, was killed: %s\n",
|
|
p->p_pid, p->p_comm, p->p_ucred->cr_prison->pr_id,
|
|
p->p_ucred->cr_uid, why);
|
|
proc_wkilled(p);
|
|
kern_psignal(p, SIGKILL);
|
|
}
|
|
|
|
/*
|
|
* Force the current process to exit with the specified signal, dumping core
|
|
* if appropriate. We bypass the normal tests for masked and caught signals,
|
|
* allowing unrecoverable failures to terminate the process without changing
|
|
* signal state. Mark the accounting record with the signal termination.
|
|
* If dumping core, save the signal number for the debugger. Calls exit and
|
|
* does not return.
|
|
*/
|
|
void
|
|
sigexit(struct thread *td, int sig)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
p->p_flag2 |= P2_WEXIT;
|
|
p->p_acflag |= AXSIG;
|
|
/*
|
|
* We must be single-threading to generate a core dump. This
|
|
* ensures that the registers in the core file are up-to-date.
|
|
* Also, the ELF dump handler assumes that the thread list doesn't
|
|
* change out from under it.
|
|
*
|
|
* XXX If another thread attempts to single-thread before us
|
|
* (e.g. via fork()), we won't get a dump at all.
|
|
*/
|
|
if ((sigprop(sig) & SIGPROP_CORE) &&
|
|
thread_single(p, SINGLE_NO_EXIT) == 0) {
|
|
p->p_sig = sig;
|
|
/*
|
|
* Log signals which would cause core dumps
|
|
* (Log as LOG_INFO to appease those who don't want
|
|
* these messages.)
|
|
* XXX : Todo, as well as euid, write out ruid too
|
|
* Note that coredump() drops proc lock.
|
|
*/
|
|
if (coredump(td) == 0)
|
|
sig |= WCOREFLAG;
|
|
if (kern_logsigexit)
|
|
log(LOG_INFO,
|
|
"pid %d (%s), jid %d, uid %d: exited on "
|
|
"signal %d%s\n", p->p_pid, p->p_comm,
|
|
p->p_ucred->cr_prison->pr_id,
|
|
td->td_ucred->cr_uid,
|
|
sig &~ WCOREFLAG,
|
|
sig & WCOREFLAG ? " (core dumped)" : "");
|
|
} else
|
|
PROC_UNLOCK(p);
|
|
exit1(td, 0, sig);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Send queued SIGCHLD to parent when child process's state
|
|
* is changed.
|
|
*/
|
|
static void
|
|
sigparent(struct proc *p, int reason, int status)
|
|
{
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
|
|
|
|
if (p->p_ksi != NULL) {
|
|
p->p_ksi->ksi_signo = SIGCHLD;
|
|
p->p_ksi->ksi_code = reason;
|
|
p->p_ksi->ksi_status = status;
|
|
p->p_ksi->ksi_pid = p->p_pid;
|
|
p->p_ksi->ksi_uid = p->p_ucred->cr_ruid;
|
|
if (KSI_ONQ(p->p_ksi))
|
|
return;
|
|
}
|
|
pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
|
|
}
|
|
|
|
static void
|
|
childproc_jobstate(struct proc *p, int reason, int sig)
|
|
{
|
|
struct sigacts *ps;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
|
|
|
|
/*
|
|
* Wake up parent sleeping in kern_wait(), also send
|
|
* SIGCHLD to parent, but SIGCHLD does not guarantee
|
|
* that parent will awake, because parent may masked
|
|
* the signal.
|
|
*/
|
|
p->p_pptr->p_flag |= P_STATCHILD;
|
|
wakeup(p->p_pptr);
|
|
|
|
ps = p->p_pptr->p_sigacts;
|
|
mtx_lock(&ps->ps_mtx);
|
|
if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
|
|
mtx_unlock(&ps->ps_mtx);
|
|
sigparent(p, reason, sig);
|
|
} else
|
|
mtx_unlock(&ps->ps_mtx);
|
|
}
|
|
|
|
void
|
|
childproc_stopped(struct proc *p, int reason)
|
|
{
|
|
|
|
childproc_jobstate(p, reason, p->p_xsig);
|
|
}
|
|
|
|
void
|
|
childproc_continued(struct proc *p)
|
|
{
|
|
childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
|
|
}
|
|
|
|
void
|
|
childproc_exited(struct proc *p)
|
|
{
|
|
int reason, status;
|
|
|
|
if (WCOREDUMP(p->p_xsig)) {
|
|
reason = CLD_DUMPED;
|
|
status = WTERMSIG(p->p_xsig);
|
|
} else if (WIFSIGNALED(p->p_xsig)) {
|
|
reason = CLD_KILLED;
|
|
status = WTERMSIG(p->p_xsig);
|
|
} else {
|
|
reason = CLD_EXITED;
|
|
status = p->p_xexit;
|
|
}
|
|
/*
|
|
* XXX avoid calling wakeup(p->p_pptr), the work is
|
|
* done in exit1().
|
|
*/
|
|
sigparent(p, reason, status);
|
|
}
|
|
|
|
#define MAX_NUM_CORE_FILES 100000
|
|
#ifndef NUM_CORE_FILES
|
|
#define NUM_CORE_FILES 5
|
|
#endif
|
|
CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
|
|
static int num_cores = NUM_CORE_FILES;
|
|
|
|
static int
|
|
sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
int new_val;
|
|
|
|
new_val = num_cores;
|
|
error = sysctl_handle_int(oidp, &new_val, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
if (new_val > MAX_NUM_CORE_FILES)
|
|
new_val = MAX_NUM_CORE_FILES;
|
|
if (new_val < 0)
|
|
new_val = 0;
|
|
num_cores = new_val;
|
|
return (0);
|
|
}
|
|
SYSCTL_PROC(_debug, OID_AUTO, ncores,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int),
|
|
sysctl_debug_num_cores_check, "I",
|
|
"Maximum number of generated process corefiles while using index format");
|
|
|
|
#define GZIP_SUFFIX ".gz"
|
|
#define ZSTD_SUFFIX ".zst"
|
|
|
|
int compress_user_cores = 0;
|
|
|
|
static int
|
|
sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, val;
|
|
|
|
val = compress_user_cores;
|
|
error = sysctl_handle_int(oidp, &val, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
if (val != 0 && !compressor_avail(val))
|
|
return (EINVAL);
|
|
compress_user_cores = val;
|
|
return (error);
|
|
}
|
|
SYSCTL_PROC(_kern, OID_AUTO, compress_user_cores,
|
|
CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int),
|
|
sysctl_compress_user_cores, "I",
|
|
"Enable compression of user corefiles ("
|
|
__XSTRING(COMPRESS_GZIP) " = gzip, "
|
|
__XSTRING(COMPRESS_ZSTD) " = zstd)");
|
|
|
|
int compress_user_cores_level = 6;
|
|
SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_level, CTLFLAG_RWTUN,
|
|
&compress_user_cores_level, 0,
|
|
"Corefile compression level");
|
|
|
|
/*
|
|
* Protect the access to corefilename[] by allproc_lock.
|
|
*/
|
|
#define corefilename_lock allproc_lock
|
|
|
|
static char corefilename[MAXPATHLEN] = {"%N.core"};
|
|
TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
|
|
|
|
static int
|
|
sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
|
|
sx_xlock(&corefilename_lock);
|
|
error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
|
|
req);
|
|
sx_xunlock(&corefilename_lock);
|
|
|
|
return (error);
|
|
}
|
|
SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
|
|
CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
|
|
"Process corefile name format string");
|
|
|
|
static void
|
|
vnode_close_locked(struct thread *td, struct vnode *vp)
|
|
{
|
|
|
|
VOP_UNLOCK(vp);
|
|
vn_close(vp, FWRITE, td->td_ucred, td);
|
|
}
|
|
|
|
/*
|
|
* If the core format has a %I in it, then we need to check
|
|
* for existing corefiles before defining a name.
|
|
* To do this we iterate over 0..ncores to find a
|
|
* non-existing core file name to use. If all core files are
|
|
* already used we choose the oldest one.
|
|
*/
|
|
static int
|
|
corefile_open_last(struct thread *td, char *name, int indexpos,
|
|
int indexlen, int ncores, struct vnode **vpp)
|
|
{
|
|
struct vnode *oldvp, *nextvp, *vp;
|
|
struct vattr vattr;
|
|
struct nameidata nd;
|
|
int error, i, flags, oflags, cmode;
|
|
char ch;
|
|
struct timespec lasttime;
|
|
|
|
nextvp = oldvp = NULL;
|
|
cmode = S_IRUSR | S_IWUSR;
|
|
oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
|
|
(capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
|
|
|
|
for (i = 0; i < ncores; i++) {
|
|
flags = O_CREAT | FWRITE | O_NOFOLLOW;
|
|
|
|
ch = name[indexpos + indexlen];
|
|
(void)snprintf(name + indexpos, indexlen + 1, "%.*u", indexlen,
|
|
i);
|
|
name[indexpos + indexlen] = ch;
|
|
|
|
NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name);
|
|
error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
|
|
NULL);
|
|
if (error != 0)
|
|
break;
|
|
|
|
vp = nd.ni_vp;
|
|
NDFREE_PNBUF(&nd);
|
|
if ((flags & O_CREAT) == O_CREAT) {
|
|
nextvp = vp;
|
|
break;
|
|
}
|
|
|
|
error = VOP_GETATTR(vp, &vattr, td->td_ucred);
|
|
if (error != 0) {
|
|
vnode_close_locked(td, vp);
|
|
break;
|
|
}
|
|
|
|
if (oldvp == NULL ||
|
|
lasttime.tv_sec > vattr.va_mtime.tv_sec ||
|
|
(lasttime.tv_sec == vattr.va_mtime.tv_sec &&
|
|
lasttime.tv_nsec >= vattr.va_mtime.tv_nsec)) {
|
|
if (oldvp != NULL)
|
|
vn_close(oldvp, FWRITE, td->td_ucred, td);
|
|
oldvp = vp;
|
|
VOP_UNLOCK(oldvp);
|
|
lasttime = vattr.va_mtime;
|
|
} else {
|
|
vnode_close_locked(td, vp);
|
|
}
|
|
}
|
|
|
|
if (oldvp != NULL) {
|
|
if (nextvp == NULL) {
|
|
if ((td->td_proc->p_flag & P_SUGID) != 0) {
|
|
error = EFAULT;
|
|
vn_close(oldvp, FWRITE, td->td_ucred, td);
|
|
} else {
|
|
nextvp = oldvp;
|
|
error = vn_lock(nextvp, LK_EXCLUSIVE);
|
|
if (error != 0) {
|
|
vn_close(nextvp, FWRITE, td->td_ucred,
|
|
td);
|
|
nextvp = NULL;
|
|
}
|
|
}
|
|
} else {
|
|
vn_close(oldvp, FWRITE, td->td_ucred, td);
|
|
}
|
|
}
|
|
if (error != 0) {
|
|
if (nextvp != NULL)
|
|
vnode_close_locked(td, oldvp);
|
|
} else {
|
|
*vpp = nextvp;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* corefile_open(comm, uid, pid, td, compress, vpp, namep)
|
|
* Expand the name described in corefilename, using name, uid, and pid
|
|
* and open/create core file.
|
|
* corefilename is a printf-like string, with three format specifiers:
|
|
* %N name of process ("name")
|
|
* %P process id (pid)
|
|
* %U user id (uid)
|
|
* For example, "%N.core" is the default; they can be disabled completely
|
|
* by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
|
|
* This is controlled by the sysctl variable kern.corefile (see above).
|
|
*/
|
|
static int
|
|
corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
|
|
int compress, int signum, struct vnode **vpp, char **namep)
|
|
{
|
|
struct sbuf sb;
|
|
struct nameidata nd;
|
|
const char *format;
|
|
char *hostname, *name;
|
|
int cmode, error, flags, i, indexpos, indexlen, oflags, ncores;
|
|
|
|
hostname = NULL;
|
|
format = corefilename;
|
|
name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
|
|
indexlen = 0;
|
|
indexpos = -1;
|
|
ncores = num_cores;
|
|
(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
|
|
sx_slock(&corefilename_lock);
|
|
for (i = 0; format[i] != '\0'; i++) {
|
|
switch (format[i]) {
|
|
case '%': /* Format character */
|
|
i++;
|
|
switch (format[i]) {
|
|
case '%':
|
|
sbuf_putc(&sb, '%');
|
|
break;
|
|
case 'H': /* hostname */
|
|
if (hostname == NULL) {
|
|
hostname = malloc(MAXHOSTNAMELEN,
|
|
M_TEMP, M_WAITOK);
|
|
}
|
|
getcredhostname(td->td_ucred, hostname,
|
|
MAXHOSTNAMELEN);
|
|
sbuf_printf(&sb, "%s", hostname);
|
|
break;
|
|
case 'I': /* autoincrementing index */
|
|
if (indexpos != -1) {
|
|
sbuf_printf(&sb, "%%I");
|
|
break;
|
|
}
|
|
|
|
indexpos = sbuf_len(&sb);
|
|
sbuf_printf(&sb, "%u", ncores - 1);
|
|
indexlen = sbuf_len(&sb) - indexpos;
|
|
break;
|
|
case 'N': /* process name */
|
|
sbuf_printf(&sb, "%s", comm);
|
|
break;
|
|
case 'P': /* process id */
|
|
sbuf_printf(&sb, "%u", pid);
|
|
break;
|
|
case 'S': /* signal number */
|
|
sbuf_printf(&sb, "%i", signum);
|
|
break;
|
|
case 'U': /* user id */
|
|
sbuf_printf(&sb, "%u", uid);
|
|
break;
|
|
default:
|
|
log(LOG_ERR,
|
|
"Unknown format character %c in "
|
|
"corename `%s'\n", format[i], format);
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
sbuf_putc(&sb, format[i]);
|
|
break;
|
|
}
|
|
}
|
|
sx_sunlock(&corefilename_lock);
|
|
free(hostname, M_TEMP);
|
|
if (compress == COMPRESS_GZIP)
|
|
sbuf_printf(&sb, GZIP_SUFFIX);
|
|
else if (compress == COMPRESS_ZSTD)
|
|
sbuf_printf(&sb, ZSTD_SUFFIX);
|
|
if (sbuf_error(&sb) != 0) {
|
|
log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
|
|
"long\n", (long)pid, comm, (u_long)uid);
|
|
sbuf_delete(&sb);
|
|
free(name, M_TEMP);
|
|
return (ENOMEM);
|
|
}
|
|
sbuf_finish(&sb);
|
|
sbuf_delete(&sb);
|
|
|
|
if (indexpos != -1) {
|
|
error = corefile_open_last(td, name, indexpos, indexlen, ncores,
|
|
vpp);
|
|
if (error != 0) {
|
|
log(LOG_ERR,
|
|
"pid %d (%s), uid (%u): Path `%s' failed "
|
|
"on initial open test, error = %d\n",
|
|
pid, comm, uid, name, error);
|
|
}
|
|
} else {
|
|
cmode = S_IRUSR | S_IWUSR;
|
|
oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
|
|
(capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
|
|
flags = O_CREAT | FWRITE | O_NOFOLLOW;
|
|
if ((td->td_proc->p_flag & P_SUGID) != 0)
|
|
flags |= O_EXCL;
|
|
|
|
NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name);
|
|
error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
|
|
NULL);
|
|
if (error == 0) {
|
|
*vpp = nd.ni_vp;
|
|
NDFREE_PNBUF(&nd);
|
|
}
|
|
}
|
|
|
|
if (error != 0) {
|
|
#ifdef AUDIT
|
|
audit_proc_coredump(td, name, error);
|
|
#endif
|
|
free(name, M_TEMP);
|
|
return (error);
|
|
}
|
|
*namep = name;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Dump a process' core. The main routine does some
|
|
* policy checking, and creates the name of the coredump;
|
|
* then it passes on a vnode and a size limit to the process-specific
|
|
* coredump routine if there is one; if there _is not_ one, it returns
|
|
* ENOSYS; otherwise it returns the error from the process-specific routine.
|
|
*/
|
|
|
|
static int
|
|
coredump(struct thread *td)
|
|
{
|
|
struct proc *p = td->td_proc;
|
|
struct ucred *cred = td->td_ucred;
|
|
struct vnode *vp;
|
|
struct flock lf;
|
|
struct vattr vattr;
|
|
size_t fullpathsize;
|
|
int error, error1, locked;
|
|
char *name; /* name of corefile */
|
|
void *rl_cookie;
|
|
off_t limit;
|
|
char *fullpath, *freepath = NULL;
|
|
struct sbuf *sb;
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
|
|
|
|
if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
|
|
(p->p_flag2 & P2_NOTRACE) != 0) {
|
|
PROC_UNLOCK(p);
|
|
return (EFAULT);
|
|
}
|
|
|
|
/*
|
|
* Note that the bulk of limit checking is done after
|
|
* the corefile is created. The exception is if the limit
|
|
* for corefiles is 0, in which case we don't bother
|
|
* creating the corefile at all. This layout means that
|
|
* a corefile is truncated instead of not being created,
|
|
* if it is larger than the limit.
|
|
*/
|
|
limit = (off_t)lim_cur(td, RLIMIT_CORE);
|
|
if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
|
|
PROC_UNLOCK(p);
|
|
return (EFBIG);
|
|
}
|
|
PROC_UNLOCK(p);
|
|
|
|
error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
|
|
compress_user_cores, p->p_sig, &vp, &name);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Don't dump to non-regular files or files with links.
|
|
* Do not dump into system files. Effective user must own the corefile.
|
|
*/
|
|
if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
|
|
vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0 ||
|
|
vattr.va_uid != cred->cr_uid) {
|
|
VOP_UNLOCK(vp);
|
|
error = EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
VOP_UNLOCK(vp);
|
|
|
|
/* Postpone other writers, including core dumps of other processes. */
|
|
rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
|
|
|
|
lf.l_whence = SEEK_SET;
|
|
lf.l_start = 0;
|
|
lf.l_len = 0;
|
|
lf.l_type = F_WRLCK;
|
|
locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
|
|
|
|
VATTR_NULL(&vattr);
|
|
vattr.va_size = 0;
|
|
if (set_core_nodump_flag)
|
|
vattr.va_flags = UF_NODUMP;
|
|
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
|
|
VOP_SETATTR(vp, &vattr, cred);
|
|
VOP_UNLOCK(vp);
|
|
PROC_LOCK(p);
|
|
p->p_acflag |= ACORE;
|
|
PROC_UNLOCK(p);
|
|
|
|
if (p->p_sysent->sv_coredump != NULL) {
|
|
error = p->p_sysent->sv_coredump(td, vp, limit, 0);
|
|
} else {
|
|
error = ENOSYS;
|
|
}
|
|
|
|
if (locked) {
|
|
lf.l_type = F_UNLCK;
|
|
VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
|
|
}
|
|
vn_rangelock_unlock(vp, rl_cookie);
|
|
|
|
/*
|
|
* Notify the userland helper that a process triggered a core dump.
|
|
* This allows the helper to run an automated debugging session.
|
|
*/
|
|
if (error != 0 || coredump_devctl == 0)
|
|
goto out;
|
|
sb = sbuf_new_auto();
|
|
if (vn_fullpath_global(p->p_textvp, &fullpath, &freepath) != 0)
|
|
goto out2;
|
|
sbuf_printf(sb, "comm=\"");
|
|
devctl_safe_quote_sb(sb, fullpath);
|
|
free(freepath, M_TEMP);
|
|
sbuf_printf(sb, "\" core=\"");
|
|
|
|
/*
|
|
* We can't lookup core file vp directly. When we're replacing a core, and
|
|
* other random times, we flush the name cache, so it will fail. Instead,
|
|
* if the path of the core is relative, add the current dir in front if it.
|
|
*/
|
|
if (name[0] != '/') {
|
|
fullpathsize = MAXPATHLEN;
|
|
freepath = malloc(fullpathsize, M_TEMP, M_WAITOK);
|
|
if (vn_getcwd(freepath, &fullpath, &fullpathsize) != 0) {
|
|
free(freepath, M_TEMP);
|
|
goto out2;
|
|
}
|
|
devctl_safe_quote_sb(sb, fullpath);
|
|
free(freepath, M_TEMP);
|
|
sbuf_putc(sb, '/');
|
|
}
|
|
devctl_safe_quote_sb(sb, name);
|
|
sbuf_printf(sb, "\"");
|
|
if (sbuf_finish(sb) == 0)
|
|
devctl_notify("kernel", "signal", "coredump", sbuf_data(sb));
|
|
out2:
|
|
sbuf_delete(sb);
|
|
out:
|
|
error1 = vn_close(vp, FWRITE, cred, td);
|
|
if (error == 0)
|
|
error = error1;
|
|
#ifdef AUDIT
|
|
audit_proc_coredump(td, name, error);
|
|
#endif
|
|
free(name, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Nonexistent system call-- signal process (may want to handle it). Flag
|
|
* error in case process won't see signal immediately (blocked or ignored).
|
|
*/
|
|
#ifndef _SYS_SYSPROTO_H_
|
|
struct nosys_args {
|
|
int dummy;
|
|
};
|
|
#endif
|
|
/* ARGSUSED */
|
|
int
|
|
nosys(struct thread *td, struct nosys_args *args)
|
|
{
|
|
struct proc *p;
|
|
|
|
p = td->td_proc;
|
|
|
|
PROC_LOCK(p);
|
|
tdsignal(td, SIGSYS);
|
|
PROC_UNLOCK(p);
|
|
if (kern_lognosys == 1 || kern_lognosys == 3) {
|
|
uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
|
|
td->td_sa.code);
|
|
}
|
|
if (kern_lognosys == 2 || kern_lognosys == 3 ||
|
|
(p->p_pid == 1 && (kern_lognosys & 3) == 0)) {
|
|
printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
|
|
td->td_sa.code);
|
|
}
|
|
return (ENOSYS);
|
|
}
|
|
|
|
/*
|
|
* Send a SIGIO or SIGURG signal to a process or process group using stored
|
|
* credentials rather than those of the current process.
|
|
*/
|
|
void
|
|
pgsigio(struct sigio **sigiop, int sig, int checkctty)
|
|
{
|
|
ksiginfo_t ksi;
|
|
struct sigio *sigio;
|
|
|
|
ksiginfo_init(&ksi);
|
|
ksi.ksi_signo = sig;
|
|
ksi.ksi_code = SI_KERNEL;
|
|
|
|
SIGIO_LOCK();
|
|
sigio = *sigiop;
|
|
if (sigio == NULL) {
|
|
SIGIO_UNLOCK();
|
|
return;
|
|
}
|
|
if (sigio->sio_pgid > 0) {
|
|
PROC_LOCK(sigio->sio_proc);
|
|
if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
|
|
kern_psignal(sigio->sio_proc, sig);
|
|
PROC_UNLOCK(sigio->sio_proc);
|
|
} else if (sigio->sio_pgid < 0) {
|
|
struct proc *p;
|
|
|
|
PGRP_LOCK(sigio->sio_pgrp);
|
|
LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
|
|
PROC_LOCK(p);
|
|
if (p->p_state == PRS_NORMAL &&
|
|
CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
|
|
(checkctty == 0 || (p->p_flag & P_CONTROLT)))
|
|
kern_psignal(p, sig);
|
|
PROC_UNLOCK(p);
|
|
}
|
|
PGRP_UNLOCK(sigio->sio_pgrp);
|
|
}
|
|
SIGIO_UNLOCK();
|
|
}
|
|
|
|
static int
|
|
filt_sigattach(struct knote *kn)
|
|
{
|
|
struct proc *p = curproc;
|
|
|
|
kn->kn_ptr.p_proc = p;
|
|
kn->kn_flags |= EV_CLEAR; /* automatically set */
|
|
|
|
knlist_add(p->p_klist, kn, 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
filt_sigdetach(struct knote *kn)
|
|
{
|
|
struct proc *p = kn->kn_ptr.p_proc;
|
|
|
|
knlist_remove(p->p_klist, kn, 0);
|
|
}
|
|
|
|
/*
|
|
* signal knotes are shared with proc knotes, so we apply a mask to
|
|
* the hint in order to differentiate them from process hints. This
|
|
* could be avoided by using a signal-specific knote list, but probably
|
|
* isn't worth the trouble.
|
|
*/
|
|
static int
|
|
filt_signal(struct knote *kn, long hint)
|
|
{
|
|
|
|
if (hint & NOTE_SIGNAL) {
|
|
hint &= ~NOTE_SIGNAL;
|
|
|
|
if (kn->kn_id == hint)
|
|
kn->kn_data++;
|
|
}
|
|
return (kn->kn_data != 0);
|
|
}
|
|
|
|
struct sigacts *
|
|
sigacts_alloc(void)
|
|
{
|
|
struct sigacts *ps;
|
|
|
|
ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
|
|
refcount_init(&ps->ps_refcnt, 1);
|
|
mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
|
|
return (ps);
|
|
}
|
|
|
|
void
|
|
sigacts_free(struct sigacts *ps)
|
|
{
|
|
|
|
if (refcount_release(&ps->ps_refcnt) == 0)
|
|
return;
|
|
mtx_destroy(&ps->ps_mtx);
|
|
free(ps, M_SUBPROC);
|
|
}
|
|
|
|
struct sigacts *
|
|
sigacts_hold(struct sigacts *ps)
|
|
{
|
|
|
|
refcount_acquire(&ps->ps_refcnt);
|
|
return (ps);
|
|
}
|
|
|
|
void
|
|
sigacts_copy(struct sigacts *dest, struct sigacts *src)
|
|
{
|
|
|
|
KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
|
|
mtx_lock(&src->ps_mtx);
|
|
bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
|
|
mtx_unlock(&src->ps_mtx);
|
|
}
|
|
|
|
int
|
|
sigacts_shared(struct sigacts *ps)
|
|
{
|
|
|
|
return (ps->ps_refcnt > 1);
|
|
}
|
|
|
|
void
|
|
sig_drop_caught(struct proc *p)
|
|
{
|
|
int sig;
|
|
struct sigacts *ps;
|
|
|
|
ps = p->p_sigacts;
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
mtx_assert(&ps->ps_mtx, MA_OWNED);
|
|
SIG_FOREACH(sig, &ps->ps_sigcatch) {
|
|
sigdflt(ps, sig);
|
|
if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
|
|
sigqueue_delete_proc(p, sig);
|
|
}
|
|
}
|
|
|
|
static void
|
|
sigfastblock_failed(struct thread *td, bool sendsig, bool write)
|
|
{
|
|
ksiginfo_t ksi;
|
|
|
|
/*
|
|
* Prevent further fetches and SIGSEGVs, allowing thread to
|
|
* issue syscalls despite corruption.
|
|
*/
|
|
sigfastblock_clear(td);
|
|
|
|
if (!sendsig)
|
|
return;
|
|
ksiginfo_init_trap(&ksi);
|
|
ksi.ksi_signo = SIGSEGV;
|
|
ksi.ksi_code = write ? SEGV_ACCERR : SEGV_MAPERR;
|
|
ksi.ksi_addr = td->td_sigblock_ptr;
|
|
trapsignal(td, &ksi);
|
|
}
|
|
|
|
static bool
|
|
sigfastblock_fetch_sig(struct thread *td, bool sendsig, uint32_t *valp)
|
|
{
|
|
uint32_t res;
|
|
|
|
if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0)
|
|
return (true);
|
|
if (fueword32((void *)td->td_sigblock_ptr, &res) == -1) {
|
|
sigfastblock_failed(td, sendsig, false);
|
|
return (false);
|
|
}
|
|
*valp = res;
|
|
td->td_sigblock_val = res & ~SIGFASTBLOCK_FLAGS;
|
|
return (true);
|
|
}
|
|
|
|
static void
|
|
sigfastblock_resched(struct thread *td, bool resched)
|
|
{
|
|
struct proc *p;
|
|
|
|
if (resched) {
|
|
p = td->td_proc;
|
|
PROC_LOCK(p);
|
|
reschedule_signals(p, td->td_sigmask, 0);
|
|
PROC_UNLOCK(p);
|
|
}
|
|
thread_lock(td);
|
|
td->td_flags |= TDF_ASTPENDING | TDF_NEEDSIGCHK;
|
|
thread_unlock(td);
|
|
}
|
|
|
|
int
|
|
sys_sigfastblock(struct thread *td, struct sigfastblock_args *uap)
|
|
{
|
|
struct proc *p;
|
|
int error, res;
|
|
uint32_t oldval;
|
|
|
|
error = 0;
|
|
p = td->td_proc;
|
|
switch (uap->cmd) {
|
|
case SIGFASTBLOCK_SETPTR:
|
|
if ((td->td_pflags & TDP_SIGFASTBLOCK) != 0) {
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
if (((uintptr_t)(uap->ptr) & (sizeof(uint32_t) - 1)) != 0) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
td->td_pflags |= TDP_SIGFASTBLOCK;
|
|
td->td_sigblock_ptr = uap->ptr;
|
|
break;
|
|
|
|
case SIGFASTBLOCK_UNBLOCK:
|
|
if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
for (;;) {
|
|
res = casueword32(td->td_sigblock_ptr,
|
|
SIGFASTBLOCK_PEND, &oldval, 0);
|
|
if (res == -1) {
|
|
error = EFAULT;
|
|
sigfastblock_failed(td, false, true);
|
|
break;
|
|
}
|
|
if (res == 0)
|
|
break;
|
|
MPASS(res == 1);
|
|
if (oldval != SIGFASTBLOCK_PEND) {
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
error = thread_check_susp(td, false);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
if (error != 0)
|
|
break;
|
|
|
|
/*
|
|
* td_sigblock_val is cleared there, but not on a
|
|
* syscall exit. The end effect is that a single
|
|
* interruptible sleep, while user sigblock word is
|
|
* set, might return EINTR or ERESTART to usermode
|
|
* without delivering signal. All further sleeps,
|
|
* until userspace clears the word and does
|
|
* sigfastblock(UNBLOCK), observe current word and no
|
|
* longer get interrupted. It is slight
|
|
* non-conformance, with alternative to have read the
|
|
* sigblock word on each syscall entry.
|
|
*/
|
|
td->td_sigblock_val = 0;
|
|
|
|
/*
|
|
* Rely on normal ast mechanism to deliver pending
|
|
* signals to current thread. But notify others about
|
|
* fake unblock.
|
|
*/
|
|
sigfastblock_resched(td, error == 0 && p->p_numthreads != 1);
|
|
|
|
break;
|
|
|
|
case SIGFASTBLOCK_UNSETPTR:
|
|
if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if (!sigfastblock_fetch_sig(td, false, &oldval)) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
if (oldval != 0 && oldval != SIGFASTBLOCK_PEND) {
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
sigfastblock_clear(td);
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
sigfastblock_clear(struct thread *td)
|
|
{
|
|
bool resched;
|
|
|
|
if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0)
|
|
return;
|
|
td->td_sigblock_val = 0;
|
|
resched = (td->td_pflags & TDP_SIGFASTPENDING) != 0 ||
|
|
SIGPENDING(td);
|
|
td->td_pflags &= ~(TDP_SIGFASTBLOCK | TDP_SIGFASTPENDING);
|
|
sigfastblock_resched(td, resched);
|
|
}
|
|
|
|
void
|
|
sigfastblock_fetch(struct thread *td)
|
|
{
|
|
uint32_t val;
|
|
|
|
(void)sigfastblock_fetch_sig(td, true, &val);
|
|
}
|
|
|
|
static void
|
|
sigfastblock_setpend1(struct thread *td)
|
|
{
|
|
int res;
|
|
uint32_t oldval;
|
|
|
|
if ((td->td_pflags & TDP_SIGFASTPENDING) == 0)
|
|
return;
|
|
res = fueword32((void *)td->td_sigblock_ptr, &oldval);
|
|
if (res == -1) {
|
|
sigfastblock_failed(td, true, false);
|
|
return;
|
|
}
|
|
for (;;) {
|
|
res = casueword32(td->td_sigblock_ptr, oldval, &oldval,
|
|
oldval | SIGFASTBLOCK_PEND);
|
|
if (res == -1) {
|
|
sigfastblock_failed(td, true, true);
|
|
return;
|
|
}
|
|
if (res == 0) {
|
|
td->td_sigblock_val = oldval & ~SIGFASTBLOCK_FLAGS;
|
|
td->td_pflags &= ~TDP_SIGFASTPENDING;
|
|
break;
|
|
}
|
|
MPASS(res == 1);
|
|
if (thread_check_susp(td, false) != 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
sigfastblock_setpend(struct thread *td, bool resched)
|
|
{
|
|
struct proc *p;
|
|
|
|
sigfastblock_setpend1(td);
|
|
if (resched) {
|
|
p = td->td_proc;
|
|
PROC_LOCK(p);
|
|
reschedule_signals(p, fastblock_mask, SIGPROCMASK_FASTBLK);
|
|
PROC_UNLOCK(p);
|
|
}
|
|
}
|