these tests some day, but in the mean time, they're a useful sanity check for future changes.)
381 lines
11 KiB
C
381 lines
11 KiB
C
/*-
|
|
* Copyright (c) 2008-2011 David Schultz <das@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Tests for corner cases in cexp*().
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <assert.h>
|
|
#include <complex.h>
|
|
#include <fenv.h>
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
|
|
#define ALL_STD_EXCEPT (FE_DIVBYZERO | FE_INEXACT | FE_INVALID | \
|
|
FE_OVERFLOW | FE_UNDERFLOW)
|
|
#define FLT_ULP() ldexpl(1.0, 1 - FLT_MANT_DIG)
|
|
#define DBL_ULP() ldexpl(1.0, 1 - DBL_MANT_DIG)
|
|
#define LDBL_ULP() ldexpl(1.0, 1 - LDBL_MANT_DIG)
|
|
|
|
#define N(i) (sizeof(i) / sizeof((i)[0]))
|
|
|
|
#pragma STDC FENV_ACCESS ON
|
|
#pragma STDC CX_LIMITED_RANGE OFF
|
|
|
|
/*
|
|
* XXX gcc implements complex multiplication incorrectly. In
|
|
* particular, it implements it as if the CX_LIMITED_RANGE pragma
|
|
* were ON. Consequently, we need this function to form numbers
|
|
* such as x + INFINITY * I, since gcc evalutes INFINITY * I as
|
|
* NaN + INFINITY * I.
|
|
*/
|
|
static inline long double complex
|
|
cpackl(long double x, long double y)
|
|
{
|
|
long double complex z;
|
|
|
|
__real__ z = x;
|
|
__imag__ z = y;
|
|
return (z);
|
|
}
|
|
|
|
/*
|
|
* Test that a function returns the correct value and sets the
|
|
* exception flags correctly. The exceptmask specifies which
|
|
* exceptions we should check. We need to be lenient for several
|
|
* reasons, but mainly because on some architectures it's impossible
|
|
* to raise FE_OVERFLOW without raising FE_INEXACT. In some cases,
|
|
* whether cexp() raises an invalid exception is unspecified.
|
|
*
|
|
* These are macros instead of functions so that assert provides more
|
|
* meaningful error messages.
|
|
*
|
|
* XXX The volatile here is to avoid gcc's bogus constant folding and work
|
|
* around the lack of support for the FENV_ACCESS pragma.
|
|
*/
|
|
#define test(func, z, result, exceptmask, excepts, checksign) do { \
|
|
volatile long double complex _d = z; \
|
|
assert(feclearexcept(FE_ALL_EXCEPT) == 0); \
|
|
assert(cfpequal((func)(_d), (result), (checksign))); \
|
|
assert(((func), fetestexcept(exceptmask) == (excepts))); \
|
|
} while (0)
|
|
|
|
/* Test within a given tolerance. */
|
|
#define test_tol(func, z, result, tol) do { \
|
|
volatile long double complex _d = z; \
|
|
assert(cfpequal_tol((func)(_d), (result), (tol))); \
|
|
} while (0)
|
|
|
|
/* Test all the functions that compute cexp(x). */
|
|
#define testall(x, result, exceptmask, excepts, checksign) do { \
|
|
test(cexp, x, result, exceptmask, excepts, checksign); \
|
|
test(cexpf, x, result, exceptmask, excepts, checksign); \
|
|
} while (0)
|
|
|
|
/*
|
|
* Test all the functions that compute cexp(x), within a given tolerance.
|
|
* The tolerance is specified in ulps.
|
|
*/
|
|
#define testall_tol(x, result, tol) do { \
|
|
test_tol(cexp, x, result, tol * DBL_ULP()); \
|
|
test_tol(cexpf, x, result, tol * FLT_ULP()); \
|
|
} while (0)
|
|
|
|
/* Various finite non-zero numbers to test. */
|
|
static const float finites[] =
|
|
{ -42.0e20, -1.0 -1.0e-10, -0.0, 0.0, 1.0e-10, 1.0, 42.0e20 };
|
|
|
|
/*
|
|
* Determine whether x and y are equal, with two special rules:
|
|
* +0.0 != -0.0
|
|
* NaN == NaN
|
|
* If checksign is 0, we compare the absolute values instead.
|
|
*/
|
|
static int
|
|
fpequal(long double x, long double y, int checksign)
|
|
{
|
|
if (isnan(x) || isnan(y))
|
|
return (1);
|
|
if (checksign)
|
|
return (x == y && !signbit(x) == !signbit(y));
|
|
else
|
|
return (fabsl(x) == fabsl(y));
|
|
}
|
|
|
|
static int
|
|
fpequal_tol(long double x, long double y, long double tol)
|
|
{
|
|
fenv_t env;
|
|
int ret;
|
|
|
|
if (isnan(x) && isnan(y))
|
|
return (1);
|
|
if (!signbit(x) != !signbit(y))
|
|
return (0);
|
|
if (x == y)
|
|
return (1);
|
|
if (tol == 0)
|
|
return (0);
|
|
|
|
/* Hard case: need to check the tolerance. */
|
|
feholdexcept(&env);
|
|
/*
|
|
* For our purposes here, if y=0, we interpret tol as an absolute
|
|
* tolerance. This is to account for roundoff in the input, e.g.,
|
|
* cos(Pi/2) ~= 0.
|
|
*/
|
|
if (y == 0.0)
|
|
ret = fabsl(x - y) <= fabsl(tol);
|
|
else
|
|
ret = fabsl(x - y) <= fabsl(y * tol);
|
|
fesetenv(&env);
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
cfpequal(long double complex x, long double complex y, int checksign)
|
|
{
|
|
return (fpequal(creal(x), creal(y), checksign)
|
|
&& fpequal(cimag(x), cimag(y), checksign));
|
|
}
|
|
|
|
static int
|
|
cfpequal_tol(long double complex x, long double complex y, long double tol)
|
|
{
|
|
return (fpequal_tol(creal(x), creal(y), tol)
|
|
&& fpequal_tol(cimag(x), cimag(y), tol));
|
|
}
|
|
|
|
|
|
/* Tests for 0 */
|
|
void
|
|
test_zero(void)
|
|
{
|
|
|
|
/* cexp(0) = 1, no exceptions raised */
|
|
testall(0.0, 1.0, ALL_STD_EXCEPT, 0, 1);
|
|
testall(-0.0, 1.0, ALL_STD_EXCEPT, 0, 1);
|
|
testall(cpackl(0.0, -0.0), cpackl(1.0, -0.0), ALL_STD_EXCEPT, 0, 1);
|
|
testall(cpackl(-0.0, -0.0), cpackl(1.0, -0.0), ALL_STD_EXCEPT, 0, 1);
|
|
}
|
|
|
|
/*
|
|
* Tests for NaN. The signs of the results are indeterminate unless the
|
|
* imaginary part is 0.
|
|
*/
|
|
void
|
|
test_nan()
|
|
{
|
|
int i;
|
|
|
|
/* cexp(x + NaNi) = NaN + NaNi and optionally raises invalid */
|
|
/* cexp(NaN + yi) = NaN + NaNi and optionally raises invalid (|y|>0) */
|
|
for (i = 0; i < N(finites); i++) {
|
|
testall(cpackl(finites[i], NAN), cpackl(NAN, NAN),
|
|
ALL_STD_EXCEPT & ~FE_INVALID, 0, 0);
|
|
if (finites[i] == 0.0)
|
|
continue;
|
|
/* XXX FE_INEXACT shouldn't be raised here */
|
|
testall(cpackl(NAN, finites[i]), cpackl(NAN, NAN),
|
|
ALL_STD_EXCEPT & ~(FE_INVALID | FE_INEXACT), 0, 0);
|
|
}
|
|
|
|
/* cexp(NaN +- 0i) = NaN +- 0i */
|
|
testall(cpackl(NAN, 0.0), cpackl(NAN, 0.0), ALL_STD_EXCEPT, 0, 1);
|
|
testall(cpackl(NAN, -0.0), cpackl(NAN, -0.0), ALL_STD_EXCEPT, 0, 1);
|
|
|
|
/* cexp(inf + NaN i) = inf + nan i */
|
|
testall(cpackl(INFINITY, NAN), cpackl(INFINITY, NAN),
|
|
ALL_STD_EXCEPT, 0, 0);
|
|
/* cexp(-inf + NaN i) = 0 */
|
|
testall(cpackl(-INFINITY, NAN), cpackl(0.0, 0.0),
|
|
ALL_STD_EXCEPT, 0, 0);
|
|
/* cexp(NaN + NaN i) = NaN + NaN i */
|
|
testall(cpackl(NAN, NAN), cpackl(NAN, NAN),
|
|
ALL_STD_EXCEPT, 0, 0);
|
|
}
|
|
|
|
void
|
|
test_inf(void)
|
|
{
|
|
int i;
|
|
|
|
/* cexp(x + inf i) = NaN + NaNi and raises invalid */
|
|
/* cexp(inf + yi) = 0 + 0yi */
|
|
/* cexp(-inf + yi) = inf + inf yi (except y=0) */
|
|
for (i = 0; i < N(finites); i++) {
|
|
testall(cpackl(finites[i], INFINITY), cpackl(NAN, NAN),
|
|
ALL_STD_EXCEPT, FE_INVALID, 1);
|
|
/* XXX shouldn't raise an inexact exception */
|
|
testall(cpackl(-INFINITY, finites[i]),
|
|
cpackl(0.0, 0.0 * finites[i]),
|
|
ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
|
|
if (finites[i] == 0)
|
|
continue;
|
|
testall(cpackl(INFINITY, finites[i]),
|
|
cpackl(INFINITY, INFINITY * finites[i]),
|
|
ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
|
|
}
|
|
testall(cpackl(INFINITY, 0.0), cpackl(INFINITY, 0.0),
|
|
ALL_STD_EXCEPT, 0, 1);
|
|
testall(cpackl(INFINITY, -0.0), cpackl(INFINITY, -0.0),
|
|
ALL_STD_EXCEPT, 0, 1);
|
|
}
|
|
|
|
void
|
|
test_reals(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < N(finites); i++) {
|
|
/* XXX could check exceptions more meticulously */
|
|
test(cexp, cpackl(finites[i], 0.0),
|
|
cpackl(exp(finites[i]), 0.0),
|
|
FE_INVALID | FE_DIVBYZERO, 0, 1);
|
|
test(cexp, cpackl(finites[i], -0.0),
|
|
cpackl(exp(finites[i]), -0.0),
|
|
FE_INVALID | FE_DIVBYZERO, 0, 1);
|
|
test(cexpf, cpackl(finites[i], 0.0),
|
|
cpackl(expf(finites[i]), 0.0),
|
|
FE_INVALID | FE_DIVBYZERO, 0, 1);
|
|
test(cexpf, cpackl(finites[i], -0.0),
|
|
cpackl(expf(finites[i]), -0.0),
|
|
FE_INVALID | FE_DIVBYZERO, 0, 1);
|
|
}
|
|
}
|
|
|
|
void
|
|
test_imaginaries(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < N(finites); i++) {
|
|
test(cexp, cpackl(0.0, finites[i]),
|
|
cpackl(cos(finites[i]), sin(finites[i])),
|
|
ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
|
|
test(cexp, cpackl(-0.0, finites[i]),
|
|
cpackl(cos(finites[i]), sin(finites[i])),
|
|
ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
|
|
test(cexpf, cpackl(0.0, finites[i]),
|
|
cpackl(cosf(finites[i]), sinf(finites[i])),
|
|
ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
|
|
test(cexpf, cpackl(-0.0, finites[i]),
|
|
cpackl(cosf(finites[i]), sinf(finites[i])),
|
|
ALL_STD_EXCEPT & ~FE_INEXACT, 0, 1);
|
|
}
|
|
}
|
|
|
|
void
|
|
test_small(void)
|
|
{
|
|
static const double tests[] = {
|
|
/* csqrt(a + bI) = x + yI */
|
|
/* a b x y */
|
|
1.0, M_PI_4, M_SQRT2 * 0.5 * M_E, M_SQRT2 * 0.5 * M_E,
|
|
-1.0, M_PI_4, M_SQRT2 * 0.5 / M_E, M_SQRT2 * 0.5 / M_E,
|
|
2.0, M_PI_2, 0.0, M_E * M_E,
|
|
M_LN2, M_PI, -2.0, 0.0,
|
|
};
|
|
double a, b;
|
|
double x, y;
|
|
int i;
|
|
|
|
for (i = 0; i < N(tests); i += 4) {
|
|
a = tests[i];
|
|
b = tests[i + 1];
|
|
x = tests[i + 2];
|
|
y = tests[i + 3];
|
|
test_tol(cexp, cpackl(a, b), cpackl(x, y), 3 * DBL_ULP());
|
|
|
|
/* float doesn't have enough precision to pass these tests */
|
|
if (x == 0 || y == 0)
|
|
continue;
|
|
test_tol(cexpf, cpackl(a, b), cpackl(x, y), 1 * FLT_ULP());
|
|
}
|
|
}
|
|
|
|
/* Test inputs with a real part r that would overflow exp(r). */
|
|
void
|
|
test_large(void)
|
|
{
|
|
|
|
test_tol(cexp, cpackl(709.79, 0x1p-1074),
|
|
cpackl(INFINITY, 8.94674309915433533273e-16), DBL_ULP());
|
|
test_tol(cexp, cpackl(1000, 0x1p-1074),
|
|
cpackl(INFINITY, 9.73344457300016401328e+110), DBL_ULP());
|
|
test_tol(cexp, cpackl(1400, 0x1p-1074),
|
|
cpackl(INFINITY, 5.08228858149196559681e+284), DBL_ULP());
|
|
test_tol(cexp, cpackl(900, 0x1.23456789abcdep-1020),
|
|
cpackl(INFINITY, 7.42156649354218408074e+83), DBL_ULP());
|
|
test_tol(cexp, cpackl(1300, 0x1.23456789abcdep-1020),
|
|
cpackl(INFINITY, 3.87514844965996756704e+257), DBL_ULP());
|
|
|
|
test_tol(cexpf, cpackl(88.73, 0x1p-149),
|
|
cpackl(INFINITY, 4.80265603e-07), 2 * FLT_ULP());
|
|
test_tol(cexpf, cpackl(90, 0x1p-149),
|
|
cpackl(INFINITY, 1.7101492622e-06f), 2 * FLT_ULP());
|
|
test_tol(cexpf, cpackl(192, 0x1p-149),
|
|
cpackl(INFINITY, 3.396809344e+38f), 2 * FLT_ULP());
|
|
test_tol(cexpf, cpackl(120, 0x1.234568p-120),
|
|
cpackl(INFINITY, 1.1163382522e+16f), 2 * FLT_ULP());
|
|
test_tol(cexpf, cpackl(170, 0x1.234568p-120),
|
|
cpackl(INFINITY, 5.7878851079e+37f), 2 * FLT_ULP());
|
|
}
|
|
|
|
int
|
|
main(int argc, char *argv[])
|
|
{
|
|
|
|
printf("1..7\n");
|
|
|
|
test_zero();
|
|
printf("ok 1 - cexp zero\n");
|
|
|
|
test_nan();
|
|
printf("ok 2 - cexp nan\n");
|
|
|
|
test_inf();
|
|
printf("ok 3 - cexp inf\n");
|
|
|
|
test_reals();
|
|
printf("ok 4 - cexp reals\n");
|
|
|
|
test_imaginaries();
|
|
printf("ok 5 - cexp imaginaries\n");
|
|
|
|
test_small();
|
|
printf("ok 6 - cexp small\n");
|
|
|
|
test_large();
|
|
printf("ok 7 - cexp large\n");
|
|
|
|
return (0);
|
|
}
|