freebsd-nq/sys/dev/bxe/if_bxe.c
David Christensen 76dbe6498b - Major reorganization of mbuf handling throughout the driver to
increase robustness (no more calls to panic(9)) and simplify
  code.
- Allocate RX/TX data structures as a single buffer rather than
  an array of 4KB pages to simplify code.
- Fixed LRO (aka TPA) code.  Removed kernel module parameter and
  support enabling disabling LRO through ifconfig(8) command line.
  LRO is still disabled by default but should be enabled for best
  performance on an endpoint device.
- Fixed statistcs code and removed kernel module parameter (stats
  should just work).
- Added many software counters to help identify the cause of some
  performance issues.
- Streamlined adapter internal init/stop code paths.
- Fiddled with debug code (adding some here, removing some there).
- Continued style(9) adjustments.
2011-06-08 21:18:14 +00:00

17589 lines
464 KiB
C

/*-
* Copyright (c) 2007-2011 Broadcom Corporation. All rights reserved.
*
* Gary Zambrano <zambrano@broadcom.com>
* David Christensen <davidch@broadcom.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Broadcom Corporation nor the name of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written consent.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* The following controllers are supported by this driver:
* BCM57710 A1+
* BCM57711 A0+
* BCM57711E A0+
*
* The following controllers are not supported by this driver:
* BCM57710 A0 (pre-production)
*
* External PHY References:
* ------------------------
* BCM8073 - Dual Port 10GBase-KR Ethernet PHY
* BCM8705 - 10Gb Ethernet Serial Transceiver
* BCM8706 - 10Gb Ethernet LRM PHY
* BCM8726 - Dual Port 10Gb Ethernet LRM PHY
* BCM8727 - Dual Port 10Gb Ethernet LRM PHY
* BCM8481 - Single Port 10GBase-T Ethernet PHY
* BCM84823 - Dual Port 10GBase-T Ethernet PHY
* SFX7101 - Solarflare 10GBase-T Ethernet PHY
*
*/
#include "opt_bxe.h"
#include "bxe_include.h"
#include "if_bxe.h"
#include "bxe_init.h"
#include "hw_dump_reg_st.h"
#include "dump_e1.h"
#include "dump_e1h.h"
#include "bxe_self_test.h"
/* BXE Debug Options */
#ifdef BXE_DEBUG
uint32_t bxe_debug = BXE_WARN;
/* 0 = Never */
/* 1 = 1 in 2,147,483,648 */
/* 256 = 1 in 8,388,608 */
/* 2048 = 1 in 1,048,576 */
/* 65536 = 1 in 32,768 */
/* 1048576 = 1 in 2,048 */
/* 268435456 = 1 in 8 */
/* 536870912 = 1 in 4 */
/* 1073741824 = 1 in 2 */
/* Controls how often to simulate an mbuf allocation failure. */
int bxe_debug_mbuf_allocation_failure = 0;
/* Controls how often to simulate a DMA mapping failure. */
int bxe_debug_dma_map_addr_failure = 0;
/* Controls how often to simulate a bootcode failure. */
int bxe_debug_bootcode_running_failure = 0;
#endif
#define MDIO_INDIRECT_REG_ADDR 0x1f
#define MDIO_SET_REG_BANK(sc, reg_bank) \
bxe_mdio22_write(sc, MDIO_INDIRECT_REG_ADDR, reg_bank)
#define MDIO_ACCESS_TIMEOUT 1000
#define BMAC_CONTROL_RX_ENABLE 2
/* BXE Build Time Options */
/* #define BXE_NVRAM_WRITE 1 */
#define BXE_USE_DMAE 1
/*
* PCI Device ID Table
* Used by bxe_probe() to identify the devices supported by this driver.
*/
#define BXE_DEVDESC_MAX 64
static struct bxe_type bxe_devs[] = {
/* BCM57710 Controllers and OEM boards. */
{ BRCM_VENDORID, BRCM_DEVICEID_BCM57710, PCI_ANY_ID, PCI_ANY_ID,
"Broadcom NetXtreme II BCM57710 10GbE" },
/* BCM57711 Controllers and OEM boards. */
{ BRCM_VENDORID, BRCM_DEVICEID_BCM57711, PCI_ANY_ID, PCI_ANY_ID,
"Broadcom NetXtreme II BCM57711 10GbE" },
/* BCM57711E Controllers and OEM boards. */
{ BRCM_VENDORID, BRCM_DEVICEID_BCM57711E, PCI_ANY_ID, PCI_ANY_ID,
"Broadcom NetXtreme II BCM57711E 10GbE" },
{0, 0, 0, 0, NULL}
};
/*
* FreeBSD device entry points.
*/
static int bxe_probe(device_t);
static int bxe_attach(device_t);
static int bxe_detach(device_t);
static int bxe_shutdown(device_t);
/*
* Driver local functions.
*/
static void bxe_tunables_set(struct bxe_softc *);
static void bxe_print_adapter_info(struct bxe_softc *);
static void bxe_probe_pci_caps(struct bxe_softc *);
static void bxe_link_settings_supported(struct bxe_softc *, uint32_t);
static void bxe_link_settings_requested(struct bxe_softc *);
static int bxe_hwinfo_function_get(struct bxe_softc *);
static int bxe_hwinfo_port_get(struct bxe_softc *);
static int bxe_hwinfo_common_get(struct bxe_softc *);
static void bxe_undi_unload(struct bxe_softc *);
static int bxe_setup_leading(struct bxe_softc *);
static int bxe_stop_leading(struct bxe_softc *);
static int bxe_setup_multi(struct bxe_softc *, int);
static int bxe_stop_multi(struct bxe_softc *, int);
static int bxe_stop_locked(struct bxe_softc *, int);
static int bxe_alloc_buf_rings(struct bxe_softc *);
static void bxe_free_buf_rings(struct bxe_softc *);
static void bxe_init_locked(struct bxe_softc *, int);
static int bxe_wait_ramrod(struct bxe_softc *, int, int, int *, int);
static void bxe_init_str_wr(struct bxe_softc *, uint32_t, const uint32_t *,
uint32_t);
static void bxe_init_ind_wr(struct bxe_softc *, uint32_t, const uint32_t *,
uint16_t);
static void bxe_init_wr_64(struct bxe_softc *, uint32_t, const uint32_t *,
uint32_t);
static void bxe_write_big_buf(struct bxe_softc *, uint32_t, uint32_t);
static void bxe_init_fill(struct bxe_softc *, uint32_t, int, uint32_t);
static void bxe_init_block(struct bxe_softc *, uint32_t, uint32_t);
static void bxe_init(void *);
static void bxe_release_resources(struct bxe_softc *);
static void bxe_reg_wr_ind(struct bxe_softc *, uint32_t, uint32_t);
static uint32_t bxe_reg_rd_ind(struct bxe_softc *, uint32_t);
static void bxe_post_dmae(struct bxe_softc *, struct dmae_command *, int);
static void bxe_wb_wr(struct bxe_softc *, int, uint32_t, uint32_t);
static __inline uint32_t bxe_reg_poll(struct bxe_softc *, uint32_t,
uint32_t, int, int);
static int bxe_mc_assert(struct bxe_softc *);
static void bxe_panic_dump(struct bxe_softc *);
static void bxe_int_enable(struct bxe_softc *);
static void bxe_int_disable(struct bxe_softc *);
static int bxe_nvram_acquire_lock(struct bxe_softc *);
static int bxe_nvram_release_lock(struct bxe_softc *);
static void bxe_nvram_enable_access(struct bxe_softc *);
static void bxe_nvram_disable_access(struct bxe_softc *);
static int bxe_nvram_read_dword (struct bxe_softc *, uint32_t, uint32_t *,
uint32_t);
static int bxe_nvram_read(struct bxe_softc *, uint32_t, uint8_t *, int);
#ifdef BXE_NVRAM_WRITE_SUPPORT
static int bxe_nvram_write_dword(struct bxe_softc *, uint32_t, uint32_t,
uint32_t);
static int bxe_nvram_write1(struct bxe_softc *, uint32_t, uint8_t *, int);
static int bxe_nvram_write(struct bxe_softc *, uint32_t, uint8_t *, int);
#endif
static int bxe_nvram_test(struct bxe_softc *);
static __inline void bxe_ack_sb(struct bxe_softc *, uint8_t, uint8_t, uint16_t,
uint8_t, uint8_t);
static __inline uint16_t bxe_update_fpsb_idx(struct bxe_fastpath *);
static uint16_t bxe_ack_int(struct bxe_softc *);
static void bxe_sp_event(struct bxe_fastpath *, union eth_rx_cqe *);
static int bxe_acquire_hw_lock(struct bxe_softc *, uint32_t);
static int bxe_release_hw_lock(struct bxe_softc *, uint32_t);
static void bxe_acquire_phy_lock(struct bxe_softc *);
static void bxe_release_phy_lock(struct bxe_softc *);
static void bxe_pmf_update(struct bxe_softc *);
static void bxe_init_port_minmax(struct bxe_softc *);
static void bxe_link_attn(struct bxe_softc *);
static int bxe_sp_post(struct bxe_softc *, int, int, uint32_t, uint32_t, int);
static int bxe_acquire_alr(struct bxe_softc *);
static void bxe_release_alr(struct bxe_softc *);
static uint16_t bxe_update_dsb_idx(struct bxe_softc *);
static void bxe_attn_int_asserted(struct bxe_softc *, uint32_t);
static __inline void bxe_attn_int_deasserted0(struct bxe_softc *, uint32_t);
static __inline void bxe_attn_int_deasserted1(struct bxe_softc *, uint32_t);
static __inline void bxe_attn_int_deasserted2(struct bxe_softc *, uint32_t);
static __inline void bxe_attn_int_deasserted3(struct bxe_softc *, uint32_t);
static void bxe_attn_int_deasserted(struct bxe_softc *, uint32_t);
static void bxe_attn_int(struct bxe_softc *);
static void bxe_stats_storm_post(struct bxe_softc *);
static void bxe_stats_init(struct bxe_softc *);
static void bxe_stats_hw_post(struct bxe_softc *);
static int bxe_stats_comp(struct bxe_softc *);
static void bxe_stats_pmf_update(struct bxe_softc *);
static void bxe_stats_port_base_init(struct bxe_softc *);
static void bxe_stats_port_init(struct bxe_softc *);
static void bxe_stats_func_base_init(struct bxe_softc *);
static void bxe_stats_func_init(struct bxe_softc *);
static void bxe_stats_start(struct bxe_softc *);
static void bxe_stats_pmf_start(struct bxe_softc *);
static void bxe_stats_restart(struct bxe_softc *);
static void bxe_stats_bmac_update(struct bxe_softc *);
static void bxe_stats_emac_update(struct bxe_softc *);
static int bxe_stats_hw_update(struct bxe_softc *);
static int bxe_stats_storm_update(struct bxe_softc *);
static void bxe_stats_func_base_update(struct bxe_softc *);
static void bxe_stats_update(struct bxe_softc *);
static void bxe_stats_port_stop(struct bxe_softc *);
static void bxe_stats_stop(struct bxe_softc *);
static void bxe_stats_do_nothing(struct bxe_softc *);
static void bxe_stats_handle(struct bxe_softc *, enum bxe_stats_event);
static int bxe_tx_encap(struct bxe_fastpath *, struct mbuf **);
static void bxe_tx_start(struct ifnet *);
static void bxe_tx_start_locked(struct ifnet *, struct bxe_fastpath *);
static int bxe_tx_mq_start(struct ifnet *, struct mbuf *);
static int bxe_tx_mq_start_locked(struct ifnet *,
struct bxe_fastpath *, struct mbuf *);
static void bxe_mq_flush(struct ifnet *ifp);
static int bxe_ioctl(struct ifnet *, u_long, caddr_t);
static __inline int bxe_has_rx_work(struct bxe_fastpath *);
static __inline int bxe_has_tx_work(struct bxe_fastpath *);
static void bxe_intr_legacy(void *);
static void bxe_task_sp(void *, int);
static void bxe_intr_sp(void *);
static void bxe_task_fp(void *, int);
static void bxe_intr_fp(void *);
static void bxe_zero_sb(struct bxe_softc *, int);
static void bxe_init_sb(struct bxe_softc *,
struct host_status_block *, bus_addr_t, int);
static void bxe_zero_def_sb(struct bxe_softc *);
static void bxe_init_def_sb(struct bxe_softc *,
struct host_def_status_block *, bus_addr_t, int);
static void bxe_update_coalesce(struct bxe_softc *);
static __inline void bxe_update_rx_prod(struct bxe_softc *,
struct bxe_fastpath *, uint16_t, uint16_t, uint16_t);
static void bxe_clear_sge_mask_next_elems(struct bxe_fastpath *);
static __inline void bxe_init_sge_ring_bit_mask(struct bxe_fastpath *);
static int bxe_alloc_tpa_mbuf(struct bxe_fastpath *, int);
static int bxe_fill_tpa_pool(struct bxe_fastpath *);
static void bxe_free_tpa_pool(struct bxe_fastpath *);
static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *, uint16_t);
static int bxe_fill_sg_chain(struct bxe_fastpath *);
static void bxe_free_sg_chain(struct bxe_fastpath *);
static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *, uint16_t);
static int bxe_fill_rx_bd_chain(struct bxe_fastpath *);
static void bxe_free_rx_bd_chain(struct bxe_fastpath *);
static void bxe_mutexes_alloc(struct bxe_softc *);
static void bxe_mutexes_free(struct bxe_softc *);
static void bxe_clear_rx_chains(struct bxe_softc *);
static int bxe_init_rx_chains(struct bxe_softc *);
static void bxe_clear_tx_chains(struct bxe_softc *);
static void bxe_init_tx_chains(struct bxe_softc *);
static void bxe_init_sp_ring(struct bxe_softc *);
static void bxe_init_context(struct bxe_softc *);
static void bxe_init_ind_table(struct bxe_softc *);
static void bxe_set_client_config(struct bxe_softc *);
static void bxe_set_storm_rx_mode(struct bxe_softc *);
static void bxe_init_internal_common(struct bxe_softc *);
static void bxe_init_internal_port(struct bxe_softc *);
static void bxe_init_internal_func(struct bxe_softc *);
static void bxe_init_internal(struct bxe_softc *, uint32_t);
static int bxe_init_nic(struct bxe_softc *, uint32_t);
static void bxe_lb_pckt(struct bxe_softc *);
static int bxe_int_mem_test(struct bxe_softc *);
static void bxe_enable_blocks_attention (struct bxe_softc *);
static void bxe_init_pxp(struct bxe_softc *);
static int bxe_init_common(struct bxe_softc *);
static int bxe_init_port(struct bxe_softc *);
static void bxe_ilt_wr(struct bxe_softc *, uint32_t, bus_addr_t);
static int bxe_init_func(struct bxe_softc *);
static int bxe_init_hw(struct bxe_softc *, uint32_t);
static int bxe_fw_command(struct bxe_softc *, uint32_t);
static void bxe_host_structures_free(struct bxe_softc *);
static void bxe_dma_map_addr(void *, bus_dma_segment_t *, int, int);
static int bxe_host_structures_alloc(device_t);
static void bxe_set_mac_addr_e1(struct bxe_softc *, int);
static void bxe_set_mac_addr_e1h(struct bxe_softc *, int);
static void bxe_set_rx_mode(struct bxe_softc *);
static void bxe_reset_func(struct bxe_softc *);
static void bxe_reset_port(struct bxe_softc *);
static void bxe_reset_common(struct bxe_softc *);
static void bxe_reset_chip(struct bxe_softc *, uint32_t);
static int bxe_ifmedia_upd(struct ifnet *);
static void bxe_ifmedia_status(struct ifnet *, struct ifmediareq *);
static __inline void bxe_update_last_max_sge(struct bxe_fastpath *, uint16_t);
static void bxe_update_sge_prod(struct bxe_fastpath *,
struct eth_fast_path_rx_cqe *);
static void bxe_tpa_start(struct bxe_fastpath *, uint16_t, uint16_t, uint16_t);
static int bxe_fill_frag_mbuf(struct bxe_softc *, struct bxe_fastpath *,
struct mbuf *, struct eth_fast_path_rx_cqe *, uint16_t);
static void bxe_tpa_stop(struct bxe_softc *, struct bxe_fastpath *, uint16_t,
int, int, union eth_rx_cqe *, uint16_t);
static void bxe_rxeof(struct bxe_fastpath *);
static void bxe_txeof(struct bxe_fastpath *);
static int bxe_watchdog(struct bxe_fastpath *fp);
static void bxe_tick(void *);
static void bxe_add_sysctls(struct bxe_softc *);
static void bxe_write_dmae_phys_len(struct bxe_softc *,
bus_addr_t, uint32_t, uint32_t);
void bxe_write_dmae(struct bxe_softc *, bus_addr_t, uint32_t, uint32_t);
void bxe_read_dmae(struct bxe_softc *, uint32_t, uint32_t);
int bxe_set_gpio(struct bxe_softc *, int, uint32_t, uint8_t);
int bxe_get_gpio(struct bxe_softc *, int, uint8_t);
int bxe_set_spio(struct bxe_softc *, int, uint32_t);
int bxe_set_gpio_int(struct bxe_softc *, int, uint32_t, uint8_t);
/*
* BXE Debug Data Structure Dump Routines
*/
#ifdef BXE_DEBUG
static int bxe_sysctl_driver_state(SYSCTL_HANDLER_ARGS);
static int bxe_sysctl_hw_state(SYSCTL_HANDLER_ARGS);
static int bxe_sysctl_dump_fw(SYSCTL_HANDLER_ARGS);
static int bxe_sysctl_dump_rx_cq_chain(SYSCTL_HANDLER_ARGS);
static int bxe_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS);
static int bxe_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS);
static int bxe_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
static int bxe_sysctl_breakpoint(SYSCTL_HANDLER_ARGS);
static __noinline void bxe_validate_rx_packet(struct bxe_fastpath *,
uint16_t, union eth_rx_cqe *, struct mbuf *);
static void bxe_grcdump(struct bxe_softc *, int);
static __noinline void bxe_dump_enet(struct bxe_softc *,struct mbuf *);
static __noinline void bxe_dump_mbuf (struct bxe_softc *, struct mbuf *);
static __noinline void bxe_dump_tx_mbuf_chain(struct bxe_softc *, int, int);
static __noinline void bxe_dump_rx_mbuf_chain(struct bxe_softc *, int, int);
static __noinline void bxe_dump_tx_parsing_bd(struct bxe_fastpath *,int,
struct eth_tx_parse_bd *);
static __noinline void bxe_dump_txbd(struct bxe_fastpath *, int,
union eth_tx_bd_types *);
static __noinline void bxe_dump_rxbd(struct bxe_fastpath *, int,
struct eth_rx_bd *);
static __noinline void bxe_dump_cqe(struct bxe_fastpath *,
int, union eth_rx_cqe *);
static __noinline void bxe_dump_tx_chain(struct bxe_fastpath *, int, int);
static __noinline void bxe_dump_rx_cq_chain(struct bxe_fastpath *, int, int);
static __noinline void bxe_dump_rx_bd_chain(struct bxe_fastpath *, int, int);
static __noinline void bxe_dump_status_block(struct bxe_softc *);
static __noinline void bxe_dump_stats_block(struct bxe_softc *);
static __noinline void bxe_dump_fp_state(struct bxe_fastpath *);
static __noinline void bxe_dump_port_state_locked(struct bxe_softc *);
static __noinline void bxe_dump_link_vars_state_locked(struct bxe_softc *);
static __noinline void bxe_dump_link_params_state_locked(struct bxe_softc *);
static __noinline void bxe_dump_driver_state(struct bxe_softc *);
static __noinline void bxe_dump_hw_state(struct bxe_softc *);
static __noinline void bxe_dump_fw(struct bxe_softc *);
static void bxe_decode_mb_msgs(struct bxe_softc *, uint32_t, uint32_t);
static void bxe_decode_ramrod_cmd(struct bxe_softc *, int);
static void bxe_breakpoint(struct bxe_softc *);
#endif
#define BXE_DRIVER_VERSION "1.5.52"
static void bxe_init_e1_firmware(struct bxe_softc *sc);
static void bxe_init_e1h_firmware(struct bxe_softc *sc);
/*
* FreeBSD device dispatch table.
*/
static device_method_t bxe_methods[] = {
/* Device interface (device_if.h) */
DEVMETHOD(device_probe, bxe_probe),
DEVMETHOD(device_attach, bxe_attach),
DEVMETHOD(device_detach, bxe_detach),
DEVMETHOD(device_shutdown, bxe_shutdown),
/* Bus interface (bus_if.h) */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
KOBJMETHOD_END
};
static driver_t bxe_driver = {
"bxe",
bxe_methods,
sizeof(struct bxe_softc)
};
static devclass_t bxe_devclass;
MODULE_DEPEND(bxe, pci, 1, 1, 1);
MODULE_DEPEND(bxe, ether, 1, 1, 1);
DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
/*
* Tunable device values
*/
SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
/* Allowable values are TRUE (1) or FALSE (0). */
static int bxe_dcc_enable = FALSE;
TUNABLE_INT("hw.bxe.dcc_enable", &bxe_dcc_enable);
SYSCTL_UINT(_hw_bxe, OID_AUTO, dcc_enable, CTLFLAG_RDTUN, &bxe_dcc_enable,
0, "dcc Enable/Disable");
/* Allowable values are TRUE (1) or FALSE (0). */
static int bxe_tso_enable = TRUE;
TUNABLE_INT("hw.bxe.tso_enable", &bxe_tso_enable);
SYSCTL_UINT(_hw_bxe, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bxe_tso_enable,
0, "TSO Enable/Disable");
/* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ). */
static int bxe_int_mode = 2;
TUNABLE_INT("hw.bxe.int_mode", &bxe_int_mode);
SYSCTL_UINT(_hw_bxe, OID_AUTO, int_mode, CTLFLAG_RDTUN, &bxe_int_mode,
0, "Interrupt (MSI-X|MSI|INTx) mode");
/*
* Specifies the number of queues that will be used when a multi-queue
* RSS mode is selected using bxe_multi_mode below.
*
* Allowable values are 0 (Auto) or 1 to MAX_CONTEXT (fixed queue number).
*/
static int bxe_queue_count = 0;
TUNABLE_INT("hw.bxe.queue_count", &bxe_queue_count);
SYSCTL_UINT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, &bxe_queue_count,
0, "Multi-Queue queue count");
/*
* ETH_RSS_MODE_DISABLED (0)
* Disables all multi-queue/packet sorting algorithms. All
* received frames are routed to a single receive queue.
*
* ETH_RSS_MODE_REGULAR (1)
* The default mode which assigns incoming frames to receive
* queues according to RSS (i.e a 2-tuple match on the source/
* destination IP address or a 4-tuple match on the source/
* destination IP address and the source/destination TCP port).
*
*/
static int bxe_multi_mode = ETH_RSS_MODE_REGULAR;
TUNABLE_INT("hw.bxe.multi_mode", &bxe_multi_mode);
SYSCTL_UINT(_hw_bxe, OID_AUTO, multi_mode, CTLFLAG_RDTUN, &bxe_multi_mode,
0, "Multi-Queue Mode");
/*
* Host interrupt coalescing is controller by these values.
* The first frame always causes an interrupt but subsequent
* frames are coalesced until the RX/TX ticks timer value
* expires and another interrupt occurs. (Ticks are measured
* in microseconds.)
*/
static uint32_t bxe_rx_ticks = 25;
TUNABLE_INT("hw.bxe.rx_ticks", &bxe_rx_ticks);
SYSCTL_UINT(_hw_bxe, OID_AUTO, rx_ticks, CTLFLAG_RDTUN, &bxe_rx_ticks,
0, "Receive ticks");
static uint32_t bxe_tx_ticks = 50;
TUNABLE_INT("hw.bxe.tx_ticks", &bxe_tx_ticks);
SYSCTL_UINT(_hw_bxe, OID_AUTO, tx_ticks, CTLFLAG_RDTUN, &bxe_tx_ticks,
0, "Transmit ticks");
/*
* Allows the PCIe maximum read request size value to be manually
* set during initialization rather than automatically determined
* by the driver.
*
* Allowable values are:
* -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB)
*/
static int bxe_mrrs = -1;
TUNABLE_INT("hw.bxe.mrrs", &bxe_mrrs);
SYSCTL_UINT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, &bxe_mrrs,
0, "PCIe maximum read request size.");
#if 0
/*
* Allows setting the maximum number of received frames to process
* during an interrupt.
*
* Allowable values are:
* -1 (Unlimited), 0 (None), otherwise specifies the number of RX frames.
*/
static int bxe_rx_limit = -1;
TUNABLE_INT("hw.bxe.rx_limit", &bxe_rx_limit);
SYSCTL_UINT(_hw_bxe, OID_AUTO, rx_limit, CTLFLAG_RDTUN, &bxe_rx_limit,
0, "Maximum received frames processed during an interrupt.");
/*
* Allows setting the maximum number of transmit frames to process
* during an interrupt.
*
* Allowable values are:
* -1 (Unlimited), 0 (None), otherwise specifies the number of TX frames.
*/
static int bxe_tx_limit = -1;
TUNABLE_INT("hw.bxe.tx_limit", &bxe_tx_limit);
SYSCTL_UINT(_hw_bxe, OID_AUTO, tx_limit, CTLFLAG_RDTUN, &bxe_tx_limit,
0, "Maximum transmit frames processed during an interrupt.");
#endif
/*
* Global variables
*/
/* 0 is common, 1 is port 0, 2 is port 1. */
static int load_count[3];
/* Tracks whether MCP firmware is running. */
static int nomcp;
#ifdef BXE_DEBUG
/*
* A debug version of the 32 bit OS register write function to
* capture/display values written to the controller.
*
* Returns:
* None.
*/
void
bxe_reg_write32(struct bxe_softc *sc, bus_size_t offset, uint32_t val)
{
if ((offset % 4) != 0) {
DBPRINT(sc, BXE_WARN,
"%s(): Warning! Unaligned write to 0x%jX!\n", __FUNCTION__,
(uintmax_t)offset);
}
DBPRINT(sc, BXE_INSANE_REGS, "%s(): offset = 0x%jX, val = 0x%08X\n",
__FUNCTION__, (uintmax_t)offset, val);
bus_space_write_4(sc->bxe_btag, sc->bxe_bhandle, offset, val);
}
/*
* A debug version of the 16 bit OS register write function to
* capture/display values written to the controller.
*
* Returns:
* None.
*/
static void
bxe_reg_write16(struct bxe_softc *sc, bus_size_t offset, uint16_t val)
{
if ((offset % 2) != 0) {
DBPRINT(sc, BXE_WARN,
"%s(): Warning! Unaligned write to 0x%jX!\n", __FUNCTION__,
(uintmax_t)offset);
}
DBPRINT(sc, BXE_INSANE_REGS, "%s(): offset = 0x%jX, val = 0x%04X\n",
__FUNCTION__, (uintmax_t)offset, val);
bus_space_write_2(sc->bxe_btag, sc->bxe_bhandle, offset, val);
}
/*
* A debug version of the 8 bit OS register write function to
* capture/display values written to the controller.
*
* Returns:
* None.
*/
static void
bxe_reg_write8(struct bxe_softc *sc, bus_size_t offset, uint8_t val)
{
DBPRINT(sc, BXE_INSANE_REGS, "%s(): offset = 0x%jX, val = 0x%02X\n",
__FUNCTION__, (uintmax_t)offset, val);
bus_space_write_1(sc->bxe_btag, sc->bxe_bhandle, offset, val);
}
/*
* A debug version of the 32 bit OS register read function to
* capture/display values read from the controller.
*
* Returns:
* 32bit value read.
*/
uint32_t
bxe_reg_read32(struct bxe_softc *sc, bus_size_t offset)
{
uint32_t val;
if ((offset % 4) != 0) {
DBPRINT(sc, BXE_WARN,
"%s(): Warning! Unaligned read from 0x%jX!\n",
__FUNCTION__, (uintmax_t)offset);
}
val = bus_space_read_4(sc->bxe_btag, sc->bxe_bhandle, offset);
DBPRINT(sc, BXE_INSANE_REGS, "%s(): offset = 0x%jX, val = 0x%08X\n",
__FUNCTION__, (uintmax_t)offset, val);
return (val);
}
/*
* A debug version of the 16 bit OS register read function to
* capture/display values read from the controller.
*
* Returns:
* 16bit value read.
*/
static uint16_t
bxe_reg_read16(struct bxe_softc *sc, bus_size_t offset)
{
uint16_t val;
if ((offset % 2) != 0) {
DBPRINT(sc, BXE_WARN,
"%s(): Warning! Unaligned read from 0x%jX!\n",
__FUNCTION__, (uintmax_t)offset);
}
val = bus_space_read_2(sc->bxe_btag, sc->bxe_bhandle, offset);
DBPRINT(sc, BXE_INSANE_REGS, "%s(): offset = 0x%jX, val = 0x%08X\n",
__FUNCTION__, (uintmax_t)offset, val);
return (val);
}
/*
* A debug version of the 8 bit OS register write function to
* capture/display values written to the controller.
*
* Returns:
* 8bit value read.
*/
static uint8_t
bxe_reg_read8(struct bxe_softc *sc, bus_size_t offset)
{
uint8_t val = bus_space_read_1(sc->bxe_btag, sc->bxe_bhandle, offset);
DBPRINT(sc, BXE_INSANE_REGS, "%s(): offset = 0x%jX, val = 0x%02X\n",
__FUNCTION__, (uintmax_t)offset, val);
return (val);
}
#endif
static void
bxe_read_mf_cfg(struct bxe_softc *sc)
{
int func, vn;
for (vn = VN_0; vn < E1HVN_MAX; vn++) {
func = 2 * vn + BP_PORT(sc);
sc->mf_config[vn] =
SHMEM_RD(sc,mf_cfg.func_mf_config[func].config);
}
}
static void
bxe_e1h_disable(struct bxe_softc *sc)
{
int port;
port = BP_PORT(sc);
REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
sc->bxe_ifp->if_drv_flags = 0;
}
static void
bxe_e1h_enable(struct bxe_softc *sc)
{
int port;
port = BP_PORT(sc);
REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
sc->bxe_ifp->if_drv_flags = IFF_DRV_RUNNING;
}
/*
* Calculates the sum of vn_min_rates.
* It's needed for further normalizing of the min_rates.
* Returns:
* sum of vn_min_rates.
* or
* 0 - if all the min_rates are 0. In the later case fainess
* algorithm should be deactivated. If not all min_rates are
* zero then those that are zeroes will be set to 1.
*/
static void
bxe_calc_vn_wsum(struct bxe_softc *sc)
{
uint32_t vn_cfg, vn_min_rate;
int all_zero, vn;
DBENTER(BXE_VERBOSE_LOAD);
all_zero = 1;
sc->vn_wsum = 0;
for (vn = VN_0; vn < E1HVN_MAX; vn++) {
vn_cfg = sc->mf_config[vn];
vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
/* Skip hidden vns */
if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
continue;
/* If min rate is zero - set it to 1. */
if (!vn_min_rate)
vn_min_rate = DEF_MIN_RATE;
else
all_zero = 0;
sc->vn_wsum += vn_min_rate;
}
/* ... only if all min rates are zeros - disable fairness */
if (all_zero)
sc->cmng.flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
else
sc->cmng.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
DBEXIT(BXE_VERBOSE_LOAD);
}
/*
*
* Returns:
* None.
*/
static void
bxe_init_vn_minmax(struct bxe_softc *sc, int vn)
{
struct rate_shaping_vars_per_vn m_rs_vn;
struct fairness_vars_per_vn m_fair_vn;
uint32_t vn_cfg;
uint16_t vn_min_rate, vn_max_rate;
int func, i;
vn_cfg = sc->mf_config[vn];
func = 2 * vn + BP_PORT(sc);
DBENTER(BXE_VERBOSE_LOAD);
/* If function is hidden - set min and max to zeroes. */
if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
vn_min_rate = 0;
vn_max_rate = 0;
} else {
vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
/*
* If fairness is enabled (i.e. not all min rates are zero),
* and if the current min rate is zero, set it to 1.
* This is a requirement of the algorithm.
*/
if (sc->vn_wsum && (vn_min_rate == 0))
vn_min_rate = DEF_MIN_RATE;
vn_max_rate = ((vn_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
FUNC_MF_CFG_MAX_BW_SHIFT) * 100;
if (vn_max_rate == 0)
return;
}
DBPRINT(sc, BXE_INFO_LOAD,
"%s(): func %d: vn_min_rate = %d, vn_max_rate = %d, wsum = %d.\n",
__FUNCTION__, func, vn_min_rate, vn_max_rate, sc->vn_wsum);
memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
/* Global VNIC counter - maximal Mbps for this VNIC. */
m_rs_vn.vn_counter.rate = vn_max_rate;
/* Quota - number of bytes transmitted in this period. */
m_rs_vn.vn_counter.quota =
(vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
if (sc->vn_wsum) {
/*
* Credit for each period of the fairness algorithm. The
* number of bytes in T_FAIR (the VNIC shares the port rate).
* vn_wsum should not be larger than 10000, thus
* T_FAIR_COEF / (8 * vn_wsum) will always be grater than zero.
*/
m_fair_vn.vn_credit_delta =
max((uint32_t)(vn_min_rate * (T_FAIR_COEF /
(8 * sc->vn_wsum))),
(uint32_t)(sc->cmng.fair_vars.fair_threshold * 2));
}
func = BP_FUNC(sc);
/* Store it to internal memory */
for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn) / 4; i++)
REG_WR(sc, BAR_XSTORM_INTMEM +
XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + (i * 4),
((uint32_t *)(&m_rs_vn))[i]);
for (i = 0; i < sizeof(struct fairness_vars_per_vn) / 4; i++)
REG_WR(sc, BAR_XSTORM_INTMEM +
XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + (i * 4),
((uint32_t *)(&m_fair_vn))[i]);
DBEXIT(BXE_VERBOSE_LOAD);
}
static void
bxe_congestionmgmt(struct bxe_softc *sc, uint8_t readshm)
{
int vn;
DBENTER(BXE_VERBOSE_LOAD);
/* Read mf conf from shmem. */
if (readshm)
bxe_read_mf_cfg(sc);
/* Init rate shaping and fairness contexts */
bxe_init_port_minmax(sc);
/* vn_weight_sum and enable fairness if not 0 */
bxe_calc_vn_wsum(sc);
/* calculate and set min-max rate for each vn */
for (vn = 0; vn < E1HVN_MAX; vn++)
bxe_init_vn_minmax(sc, vn);
/* Always enable rate shaping and fairness. */
sc->cmng.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
DBPRINT(sc, BXE_VERBOSE_LOAD,
"%s(): Rate shaping set\n", __FUNCTION__);
if (!sc->vn_wsum)
DBPRINT(sc, BXE_INFO_LOAD, "%s(): All MIN values "
"are zeroes, fairness is disabled\n", __FUNCTION__);
DBEXIT(BXE_VERBOSE_LOAD);
}
static void
bxe_dcc_event(struct bxe_softc *sc, uint32_t dcc_event)
{
int i, port;
DBENTER(BXE_VERBOSE_LOAD);
if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
if (sc->mf_config[BP_E1HVN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
DBPRINT(sc, BXE_INFO_LOAD, "%s(): mf_cfg function "
"disabled\n", __FUNCTION__);
sc->state = BXE_STATE_DISABLED;
bxe_e1h_disable(sc);
} else {
DBPRINT(sc, BXE_INFO_LOAD, "%s(): mf_cfg function "
"enabled\n", __FUNCTION__);
sc->state = BXE_STATE_OPEN;
bxe_e1h_enable(sc);
}
dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
}
if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
port = BP_PORT(sc);
bxe_congestionmgmt(sc, TRUE);
for (i = 0; i < sizeof(struct cmng_struct_per_port) / 4; i++)
REG_WR(sc, BAR_XSTORM_INTMEM +
XSTORM_CMNG_PER_PORT_VARS_OFFSET(port) + i*4,
((uint32_t *)(&sc->cmng))[i]);
dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
}
/* Report results to MCP */
if (dcc_event)
bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE);
else
bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK);
DBEXIT(BXE_VERBOSE_LOAD);
}
/*
* Device probe function.
*
* Compares the device to the driver's list of supported devices and
* reports back to the OS whether this is the right driver for the device.
*
* Returns:
* BUS_PROBE_DEFAULT on success, positive value on failure.
*/
static int
bxe_probe(device_t dev)
{
struct bxe_softc *sc;
struct bxe_type *t;
char *descbuf;
uint16_t did, sdid, svid, vid;
sc = device_get_softc(dev);
sc->dev = dev;
t = bxe_devs;
/* Get the data for the device to be probed. */
vid = pci_get_vendor(dev);
did = pci_get_device(dev);
svid = pci_get_subvendor(dev);
sdid = pci_get_subdevice(dev);
DBPRINT(sc, BXE_VERBOSE_LOAD,
"%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
"SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
/* Look through the list of known devices for a match. */
while (t->bxe_name != NULL) {
if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
if (descbuf == NULL)
return (ENOMEM);
/* Print out the device identity. */
snprintf(descbuf, BXE_DEVDESC_MAX,
"%s (%c%d) BXE v:%s\n", t->bxe_name,
(((pci_read_config(dev, PCIR_REVID, 4) &
0xf0) >> 4) + 'A'),
(pci_read_config(dev, PCIR_REVID, 4) & 0xf),
BXE_DRIVER_VERSION);
device_set_desc_copy(dev, descbuf);
free(descbuf, M_TEMP);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return (ENXIO);
}
/*
* Prints useful adapter info.
*
* Returns:
* None.
*/
/* ToDo: Create a sysctl for this info. */
static void
bxe_print_adapter_info(struct bxe_softc *sc)
{
int i = 0;
DBENTER(BXE_EXTREME_LOAD);
/* Hardware chip info. */
BXE_PRINTF("ASIC (0x%08X); ", sc->common.chip_id);
printf("Rev (%c%d); ", (CHIP_REV(sc) >> 12) + 'A',
(CHIP_METAL(sc) >> 4));
/* Bus info. */
printf("Bus (PCIe x%d, ", sc->pcie_link_width);
switch (sc->pcie_link_speed) {
case 1:
printf("2.5Gbps");
break;
case 2:
printf("5Gbps");
break;
default:
printf("Unknown link speed");
}
/* Device features. */
printf("); Flags (");
/* Miscellaneous flags. */
if (sc->msi_count > 0)
printf("MSI");
if (sc->msix_count > 0) {
if (i > 0) printf("|");
printf("MSI-X"); i++;
}
if (TPA_ENABLED(sc)) {
if (i > 0) printf("|");
printf("TPA"); i++;
}
printf("); Queues (");
switch (sc->multi_mode) {
case ETH_RSS_MODE_DISABLED:
printf("None");
break;
case ETH_RSS_MODE_REGULAR:
printf("RSS:%d", sc->num_queues);
break;
default:
printf("Unknown");
break;
}
printf("); BD's (RX:%d,TX:%d",
(int) USABLE_RX_BD, (int) USABLE_TX_BD);
/* Firmware versions and device features. */
printf("); Firmware (%d.%d.%d); Bootcode (%d.%d.%d)\n",
BCM_5710_FW_MAJOR_VERSION,
BCM_5710_FW_MINOR_VERSION,
BCM_5710_FW_REVISION_VERSION,
(int)((sc->common.bc_ver & 0xff0000) >> 16),
(int)((sc->common.bc_ver & 0x00ff00) >> 8),
(int)((sc->common.bc_ver & 0x0000ff)));
DBEXIT(BXE_EXTREME_LOAD);
}
/*
* Release any interrupts allocated by the driver.
*
* Returns:
* None
*/
static void
bxe_interrupt_free(struct bxe_softc *sc)
{
device_t dev;
int i;
DBENTER(BXE_VERBOSE_RESET | BXE_VERBOSE_UNLOAD);
dev = sc->dev;
if (sc->msix_count > 0) {
/* Free MSI-X resources. */
for (i = 0; i < sc->msix_count; i++) {
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET |
BXE_VERBOSE_INTR), "%s(): Releasing MSI-X[%d] "
"vector.\n", __FUNCTION__, i);
if (sc->bxe_msix_res[i] && sc->bxe_msix_rid[i])
bus_release_resource(dev, SYS_RES_IRQ,
sc->bxe_msix_rid[i], sc->bxe_msix_res[i]);
}
pci_release_msi(dev);
} else if (sc->msi_count > 0) {
/* Free MSI resources. */
for (i = 0; i < sc->msi_count; i++) {
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET |
BXE_VERBOSE_INTR), "%s(): Releasing MSI[%d] "
"vector.\n", __FUNCTION__, i);
if (sc->bxe_msi_res[i] && sc->bxe_msi_rid[i])
bus_release_resource(dev, SYS_RES_IRQ,
sc->bxe_msi_rid[i], sc->bxe_msi_res[i]);
}
pci_release_msi(dev);
} else {
/* Free legacy interrupt resources. */
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET |
BXE_VERBOSE_INTR), "%s(): Releasing legacy interrupt.\n",
__FUNCTION__);
if (sc->bxe_irq_res != NULL)
bus_release_resource(dev, SYS_RES_IRQ,
sc->bxe_irq_rid, sc->bxe_irq_res);
}
DBEXIT(BXE_VERBOSE_RESET | BXE_VERBOSE_UNLOAD);
}
/*
* This function determines and allocates the appropriate
* interrupt based on system capabilites and user request.
*
* The user may force a particular interrupt mode, specify
* the number of receive queues, specify the method for
* distribuitng received frames to receive queues, or use
* the default settings which will automatically select the
* best supported combination. In addition, the OS may or
* may not support certain combinations of these settings.
* This routine attempts to reconcile the settings requested
* by the user with the capabilites available from the system
* to select the optimal combination of features.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_interrupt_alloc(struct bxe_softc *sc)
{
device_t dev;
int error, i, rid, rc;
int msi_count, msi_required, msi_allocated;
int msix_count, msix_required, msix_allocated;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_INTR);
rc = 0;
dev = sc->dev;
msi_count = msi_required = msi_allocated = 0;
msix_count = msix_required = msix_allocated = 0;
/* Get the number of available MSI/MSI-X interrupts from the OS. */
if (sc->int_mode > 0) {
if (sc->bxe_cap_flags & BXE_MSIX_CAPABLE_FLAG)
msix_count = pci_msix_count(dev);
if (sc->bxe_cap_flags & BXE_MSI_CAPABLE_FLAG)
msi_count = pci_msi_count(dev);
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_INTR),
"%s(): %d MSI and %d MSI-X vectors available.\n",
__FUNCTION__, msi_count, msix_count);
}
/* Try allocating MSI-X interrupt resources. */
if ((sc->bxe_cap_flags & BXE_MSIX_CAPABLE_FLAG) &&
(sc->int_mode > 1) && (msix_count > 0) &&
(msix_count >= sc->num_queues)) {
/* Ask for the necessary number of MSI-X vectors. */
if (sc->num_queues == 1)
msix_allocated = msix_required = 2;
else
msix_allocated = msix_required = sc->num_queues + 1;
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_INTR),
"%s(): Requesting %d MSI-X vectors.\n",
__FUNCTION__, msix_required);
/* BSD resource identifier */
rid = 1;
error = pci_alloc_msix(dev, &msix_allocated);
if (error == 0) {
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_INTR),
"%s(): Required/Allocated (%d/%d) MSI-X vector(s).\n",
__FUNCTION__, msix_required, msix_allocated);
/* Make sure we got all the interrupts we asked for. */
if (msix_allocated >= msix_required) {
sc->msix_count = msix_required;
msi_count = 0;
/* Allocate the MSI-X vectors. */
for (i = 0; i < msix_required; i++) {
sc->bxe_msix_rid[i] = rid + i +
BP_L_ID(sc);
sc->bxe_msix_res[i] =
bus_alloc_resource_any(dev,
SYS_RES_IRQ, &sc->bxe_msix_rid[i],
RF_ACTIVE);
/* Report any IRQ allocation errors. */
if (sc->bxe_msix_res[i] == NULL) {
BXE_PRINTF(
"%s(%d): Failed to map MSI-X[%d] vector!\n",
__FILE__, __LINE__, (3));
rc = ENXIO;
goto bxe_interrupt_alloc_exit;
}
}
} else {
DBPRINT(sc, BXE_WARN,
"%s(): MSI-X allocation failed!\n",
__FUNCTION__);
/* Release any resources acquired. */
pci_release_msi(dev);
sc->msix_count = msix_count = 0;
/* We'll try MSI next. */
sc->int_mode = 1;
}
}
}
/* Try allocating MSI vector resources. */
if ((sc->bxe_cap_flags & BXE_MSI_CAPABLE_FLAG) &&
(sc->int_mode > 0) && (msi_count > 0) &&
(msi_count >= sc->num_queues)) {
/* Ask for the necessary number of MSI vectors. */
if (sc->num_queues == 1)
msi_required = msi_allocated = 1;
else
msi_required = msi_allocated = BXE_MSI_VECTOR_COUNT;
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_INTR),
"%s(): Requesting %d MSI vectors.\n", __FUNCTION__,
msi_required);
rid = 1;
error = pci_alloc_msi(dev, &msi_allocated);
if (error == 0) {
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_INTR),
"%s(): Required/Allocated (%d/%d) MSI vector(s).\n",
__FUNCTION__, msi_required, msi_allocated);
/*
* Make sure we got all the vectors we asked for.
* XXX
* FreeBSD always gives 8 even if we ask for less.
*/
if (msi_required >= msi_allocated) {
sc->msi_count = msi_required;
/* Allocate the MSI vectors. */
for (i = 0; i < msi_required; i++) {
sc->bxe_msi_rid[i] = i + rid;
sc->bxe_msi_res[i] =
bus_alloc_resource_any(dev,
SYS_RES_IRQ, &sc->bxe_msi_rid[i],
RF_ACTIVE);
/* Report any IRQ allocation errors. */
if (sc->bxe_msi_res[i] == NULL) {
BXE_PRINTF(
"%s(%d): Failed to map MSI vector (%d)!\n",
__FILE__, __LINE__, (i));
rc = ENXIO;
goto bxe_interrupt_alloc_exit;
}
}
}
} else {
DBPRINT(sc, BXE_WARN, "%s(): MSI allocation failed!\n",
__FUNCTION__);
/* Release any resources acquired. */
pci_release_msi(dev);
sc->msi_count = msi_count = 0;
/* We'll try INTx next. */
sc->int_mode = 0;
}
}
/* Try allocating INTx resources. */
if (sc->int_mode == 0) {
sc->num_queues = 1;
sc->multi_mode = ETH_RSS_MODE_DISABLED;
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_INTR),
"%s(): Requesting legacy INTx interrupt.\n",
__FUNCTION__);
rid = 0;
sc->bxe_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
/* Report any IRQ allocation errors. */
if (sc->bxe_irq_res == NULL) {
BXE_PRINTF("%s(%d): PCI map interrupt failed!\n",
__FILE__, __LINE__);
rc = ENXIO;
goto bxe_interrupt_alloc_exit;
}
sc->bxe_irq_rid = rid;
}
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_INTR),
"%s(): Actual: int_mode = %d, multi_mode = %d, num_queues = %d\n",
__FUNCTION__, sc->int_mode, sc->multi_mode, sc->num_queues);
bxe_interrupt_alloc_exit:
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_INTR);
return (rc);
}
/*
* This function releases taskqueues.
*
* Returns:
* None
*/
static void
bxe_interrupt_detach(struct bxe_softc *sc)
{
#ifdef BXE_TASK
struct bxe_fastpath *fp;
#endif
device_t dev;
int i;
DBENTER(BXE_VERBOSE_UNLOAD);
dev = sc->dev;
#ifdef BXE_TASK
/* Free the OS taskqueue resources. */
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
if (fp->tq != NULL) {
taskqueue_drain(fp->tq, &fp->task);
taskqueue_free(fp->tq);
}
}
if (sc->tq != NULL) {
taskqueue_drain(sc->tq, &sc->task);
taskqueue_free(sc->tq);
}
#endif
/* Release interrupt resources. */
if (sc->msix_count > 0) {
for (i = 0; i < sc->msix_count; i++) {
if (sc->bxe_msix_tag[i] && sc->bxe_msix_res[i])
bus_teardown_intr(dev, sc->bxe_msix_res[i],
sc->bxe_msix_tag[i]);
}
} else if (sc->msi_count > 0) {
for (i = 0; i < sc->msi_count; i++) {
if (sc->bxe_msi_tag[i] && sc->bxe_msi_res[i])
bus_teardown_intr(dev, sc->bxe_msi_res[i],
sc->bxe_msi_tag[i]);
}
} else {
if (sc->bxe_irq_tag != NULL)
bus_teardown_intr(dev, sc->bxe_irq_res,
sc->bxe_irq_tag);
}
DBEXIT(BXE_VERBOSE_UNLOAD);
}
/*
* This function enables interrupts and attachs to the ISR.
*
* When using multiple MSI/MSI-X vectors the first vector
* is used for slowpath operations while all remaining
* vectors are used for fastpath operations. If only a
* single MSI/MSI-X vector is used (SINGLE_ISR) then the
* ISR must look for both slowpath and fastpath completions.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_interrupt_attach(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int i, rc;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_INTR);
rc = 0;
#ifdef BXE_TASK
/* Setup the slowpath deferred task queue. */
TASK_INIT(&sc->task, 0, bxe_task_sp, sc);
sc->tq = taskqueue_create_fast("bxe_spq", M_NOWAIT,
taskqueue_thread_enqueue, &sc->tq);
taskqueue_start_threads(&sc->tq, 1, PI_NET, "%s spq",
device_get_nameunit(sc->dev));
#endif
/* Setup interrupt handlers. */
if (sc->msix_count > 0) {
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_INTR),
"%s(): Enabling slowpath MSI-X[0] vector.\n",__FUNCTION__);
/*
* Setup the interrupt handler. Note that we pass the
* driver instance to the interrupt handler for the
* slowpath.
*/
rc = bus_setup_intr(sc->dev, sc->bxe_msix_res[0],
INTR_TYPE_NET | INTR_MPSAFE, NULL, bxe_intr_sp,
sc, &sc->bxe_msix_tag[0]);
if (rc) {
BXE_PRINTF(
"%s(%d): Failed to allocate MSI-X[0] vector!\n",
__FILE__, __LINE__);
goto bxe_interrupt_attach_exit;
}
#if __FreeBSD_version >= 800504
bus_describe_intr(sc->dev, sc->bxe_msix_res[0],
sc->bxe_msix_tag[0], "sp");
#endif
/* Now initialize the fastpath vectors. */
for (i = 0; i < (sc->num_queues); i++) {
fp = &sc->fp[i];
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_INTR),
"%s(): Enabling MSI-X[%d] vector.\n",
__FUNCTION__, i + 1);
/*
* Setup the interrupt handler. Note that we pass the
* fastpath context to the interrupt handler in this
* case. Also the first msix_res was used by the sp.
*/
rc = bus_setup_intr(sc->dev, sc->bxe_msix_res[i + 1],
INTR_TYPE_NET | INTR_MPSAFE, NULL, bxe_intr_fp,
fp, &sc->bxe_msix_tag[i + 1]);
if (rc) {
BXE_PRINTF(
"%s(%d): Failed to allocate MSI-X[%d] vector!\n",
__FILE__, __LINE__, (i + 1));
goto bxe_interrupt_attach_exit;
}
#if __FreeBSD_version >= 800504
bus_describe_intr(sc->dev, sc->bxe_msix_res[i + 1],
sc->bxe_msix_tag[i + 1], "fp[%02d]", i);
#endif
/* Bind the fastpath instance to a CPU. */
if (sc->num_queues > 1) {
bus_bind_intr(sc->dev,
sc->bxe_msix_res[i + 1], i);
}
#ifdef BXE_TASK
TASK_INIT(&fp->task, 0, bxe_task_fp, fp);
fp->tq = taskqueue_create_fast("bxe_fpq", M_NOWAIT,
taskqueue_thread_enqueue, &fp->tq);
taskqueue_start_threads(&fp->tq, 1, PI_NET, "%s fpq",
device_get_nameunit(sc->dev));
#endif
fp->state = BXE_FP_STATE_IRQ;
}
} else if (sc->msi_count > 0) {
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_INTR),
"%s(): Enabling slowpath MSI[0] vector.\n",
__FUNCTION__);
/*
* Setup the interrupt handler. Note that we pass the driver
* instance to the interrupt handler for the slowpath.
*/
rc = bus_setup_intr(sc->dev,sc->bxe_msi_res[0],
INTR_TYPE_NET | INTR_MPSAFE, NULL, bxe_intr_sp,
sc, &sc->bxe_msi_tag[0]);
if (rc) {
BXE_PRINTF(
"%s(%d): Failed to allocate MSI[0] vector!\n",
__FILE__, __LINE__);
goto bxe_interrupt_attach_exit;
}
#if __FreeBSD_version >= 800504
bus_describe_intr(sc->dev, sc->bxe_msi_res[0],
sc->bxe_msi_tag[0], "sp");
#endif
/* Now initialize the fastpath vectors. */
for (i = 0; i < (sc->num_queues); i++) {
fp = &sc->fp[i];
DBPRINT(sc,
(BXE_VERBOSE_LOAD | BXE_VERBOSE_INTR),
"%s(): Enabling MSI[%d] vector.\n",
__FUNCTION__, i + 1);
/*
* Setup the interrupt handler. Note that we pass the
* fastpath context to the interrupt handler in this
* case.
*/
rc = bus_setup_intr(sc->dev, sc->bxe_msi_res[i + 1],
INTR_TYPE_NET | INTR_MPSAFE, NULL, bxe_intr_fp,
fp, &sc->bxe_msi_tag[i + 1]);
if (rc) {
BXE_PRINTF(
"%s(%d): Failed to allocate MSI[%d] vector!\n",
__FILE__, __LINE__, (i + 1));
goto bxe_interrupt_attach_exit;
}
#if __FreeBSD_version >= 800504
bus_describe_intr(sc->dev, sc->bxe_msi_res[i + 1],
sc->bxe_msi_tag[i + 1], "fp[%02d]", i);
#endif
#ifdef BXE_TASK
TASK_INIT(&fp->task, 0, bxe_task_fp, fp);
fp->tq = taskqueue_create_fast("bxe_fpq", M_NOWAIT,
taskqueue_thread_enqueue, &fp->tq);
taskqueue_start_threads(&fp->tq, 1, PI_NET, "%s fpq",
device_get_nameunit(sc->dev));
#endif
}
} else {
#ifdef BXE_TASK
fp = &sc->fp[0];
#endif
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_INTR),
"%s(): Enabling INTx interrupts.\n", __FUNCTION__);
/*
* Setup the interrupt handler. Note that we pass the
* driver instance to the interrupt handler which
* will handle both the slowpath and fastpath.
*/
rc = bus_setup_intr(sc->dev,sc->bxe_irq_res, INTR_TYPE_NET |
INTR_MPSAFE, NULL, bxe_intr_legacy, sc, &sc->bxe_irq_tag);
if (rc) {
BXE_PRINTF("%s(%d): Failed to allocate interrupt!\n",
__FILE__, __LINE__);
goto bxe_interrupt_attach_exit;
}
#ifdef BXE_TASK
TASK_INIT(&fp->task, 0, bxe_task_fp, fp);
fp->tq = taskqueue_create_fast("bxe_fpq",
M_NOWAIT, taskqueue_thread_enqueue, &fp->tq);
taskqueue_start_threads(&fp->tq, 1,
PI_NET, "%s fpq", device_get_nameunit(sc->dev));
#endif
}
bxe_interrupt_attach_exit:
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_INTR);
return (rc);
}
/*
* PCI Capabilities Probe Function.
*
* Walks the PCI capabiites list for the device to find what features are
* supported. These capabilites may be enabled/disabled by firmware so it's
* best to walk the list rather than hard code any values.
*
* Returns:
* None.
*/
static void
bxe_probe_pci_caps(struct bxe_softc *sc)
{
device_t dev;
uint32_t reg;
uint16_t link_status;
dev = sc->dev;
DBENTER(BXE_EXTREME_LOAD);
/* Check if PCI Power Management capability is enabled. */
if (pci_find_cap(dev, PCIY_PMG, &reg) == 0) {
if (reg != 0) {
DBPRINT(sc, BXE_EXTREME_LOAD,
"%s(): Found PM capability at 0x%04X\n",
__FUNCTION__, reg);
sc->pm_cap = reg;
}
}
/* Check if PCIe capability is enabled. */
if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
if (reg != 0) {
link_status = pci_read_config(dev, reg + 0x12, 2);
DBPRINT(sc, BXE_EXTREME_LOAD,
"%s(): Found PCIe capability at 0x%04X\n",
__FUNCTION__, reg);
/* Handle PCIe 2.0 workarounds for the 57710. */
if (CHIP_IS_E1(sc)) {
/* Workaround for 57710 errata E4_57710_27462. */
sc->pcie_link_speed =
(REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
/* Workaround for 57710 errata E4_57710_27488. */
sc->pcie_link_width = (link_status >> 4) & 0x3f;
if (sc->pcie_link_speed > 1)
sc->pcie_link_width =
((link_status >> 4) & 0x3f) >> 1;
} else {
sc->pcie_link_speed = link_status & 0xf;
sc->pcie_link_width = (link_status >> 4) & 0x3f;
}
sc->bxe_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
sc->pcie_cap = reg;
}
}
/* Check if MSI capability is enabled. */
if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
if (reg != 0) {
DBPRINT(sc, BXE_EXTREME_LOAD,
"%s(): Found MSI capability at 0x%04X\n",
__FUNCTION__, reg);
sc->bxe_cap_flags |= BXE_MSI_CAPABLE_FLAG;
}
}
/* Check if MSI-X capability is enabled. */
if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
if (reg != 0) {
DBPRINT(sc, BXE_EXTREME_LOAD,
"%s(): Found MSI-X capability at 0x%04X\n",
__FUNCTION__, reg);
sc->bxe_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
}
}
DBEXIT(BXE_EXTREME_LOAD);
}
/*
* Setup firmware pointers for BCM57710.
*
* Returns:
* None
*/
static void
bxe_init_e1_firmware(struct bxe_softc *sc)
{
INIT_OPS(sc) = (struct raw_op *)init_ops_e1;
INIT_DATA(sc) = (const uint32_t *)init_data_e1;
INIT_OPS_OFFSETS(sc) = (const uint16_t *)init_ops_offsets_e1;
INIT_TSEM_INT_TABLE_DATA(sc) = tsem_int_table_data_e1;
INIT_TSEM_PRAM_DATA(sc) = tsem_pram_data_e1;
INIT_USEM_INT_TABLE_DATA(sc) = usem_int_table_data_e1;
INIT_USEM_PRAM_DATA(sc) = usem_pram_data_e1;
INIT_XSEM_INT_TABLE_DATA(sc) = xsem_int_table_data_e1;
INIT_XSEM_PRAM_DATA(sc) = xsem_pram_data_e1;
INIT_CSEM_INT_TABLE_DATA(sc) = csem_int_table_data_e1;
INIT_CSEM_PRAM_DATA(sc) = csem_pram_data_e1;
}
/*
* Setup firmware pointers for BCM57711.
*
* Returns:
* None
*/
static void
bxe_init_e1h_firmware(struct bxe_softc *sc)
{
INIT_OPS(sc) = (struct raw_op *)init_ops_e1h;
INIT_DATA(sc) = (const uint32_t *)init_data_e1h;
INIT_OPS_OFFSETS(sc) = (const uint16_t *)init_ops_offsets_e1h;
INIT_TSEM_INT_TABLE_DATA(sc) = tsem_int_table_data_e1h;
INIT_TSEM_PRAM_DATA(sc) = tsem_pram_data_e1h;
INIT_USEM_INT_TABLE_DATA(sc) = usem_int_table_data_e1h;
INIT_USEM_PRAM_DATA(sc) = usem_pram_data_e1h;
INIT_XSEM_INT_TABLE_DATA(sc) = xsem_int_table_data_e1h;
INIT_XSEM_PRAM_DATA(sc) = xsem_pram_data_e1h;
INIT_CSEM_INT_TABLE_DATA(sc) = csem_int_table_data_e1h;
INIT_CSEM_PRAM_DATA(sc) = csem_pram_data_e1h;
}
/*
* Sets up pointers for loading controller firmware.
*
* Returns:
* 0 = Success, !0 = Failure
*/
static int
bxe_init_firmware(struct bxe_softc *sc)
{
int rc;
rc = 0;
if (CHIP_IS_E1(sc))
bxe_init_e1_firmware(sc);
else if (CHIP_IS_E1H(sc))
bxe_init_e1h_firmware(sc);
else {
BXE_PRINTF("%s(%d): No firmware to support chip revision!\n",
__FILE__, __LINE__);
rc = ENXIO;
}
return (rc);
}
static void
bxe_tunables_set(struct bxe_softc *sc)
{
/*
* Get our starting point for interrupt mode/number of queues.
* We will progressively step down from MSI-X to MSI to INTx
* and reduce the number of receive queues as necessary to
* match the system capabilities.
*/
sc->multi_mode = bxe_multi_mode;
sc->int_mode = bxe_int_mode;
sc->tso_enable = bxe_tso_enable;
/*
* Verify the Priority -> Receive Queue mappings.
*/
if (sc->int_mode > 0) {
/* Multi-queue modes require MSI/MSI-X. */
switch (sc->multi_mode) {
case ETH_RSS_MODE_DISABLED:
/* No multi-queue mode requested. */
sc->num_queues = 1;
break;
case ETH_RSS_MODE_REGULAR:
if (sc->int_mode > 1) {
/*
* Assume we can use MSI-X
* (max of 16 receive queues).
*/
sc->num_queues = min((bxe_queue_count ?
bxe_queue_count : mp_ncpus), MAX_CONTEXT);
} else {
/*
* Assume we can use MSI
* (max of 7 receive queues).
*/
sc->num_queues = min((bxe_queue_count ?
bxe_queue_count : mp_ncpus),
BXE_MSI_VECTOR_COUNT - 1);
}
break;
default:
BXE_PRINTF(
"%s(%d): Unsupported multi_mode parameter (%d), "
"disabling multi-queue support!\n", __FILE__,
__LINE__, sc->multi_mode);
sc->multi_mode = ETH_RSS_MODE_DISABLED;
sc->num_queues = 1;
break;
}
} else {
/* User has forced INTx mode. */
sc->multi_mode = ETH_RSS_MODE_DISABLED;
sc->num_queues = 1;
}
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_INTR),
"%s(): Requested: int_mode = %d, multi_mode = %d num_queues = %d\n",
__FUNCTION__, sc->int_mode, sc->multi_mode, sc->num_queues);
sc->stats_enable = TRUE;
/* Select the host coalescing tick count values (limit values). */
if (bxe_tx_ticks > 100) {
BXE_PRINTF("%s(%d): bxe_tx_ticks too large "
"(%d), setting default value of 50.\n",
__FILE__, __LINE__, bxe_tx_ticks);
sc->tx_ticks = 50;
} else
sc->tx_ticks = bxe_tx_ticks;
if (bxe_rx_ticks > 100) {
BXE_PRINTF("%s(%d): bxe_rx_ticks too large "
"(%d), setting default value of 25.\n",
__FILE__, __LINE__, bxe_rx_ticks);
sc->rx_ticks = 25;
} else
sc->rx_ticks = bxe_rx_ticks;
/* Select the PCIe maximum read request size (MRRS). */
if (bxe_mrrs > 3)
sc->mrrs = 3;
else
sc->mrrs = bxe_mrrs;
/* Check for DCC support. */
if (bxe_dcc_enable == FALSE)
sc->dcc_enable = FALSE;
else
sc->dcc_enable = TRUE;
}
/*
* Allocates PCI resources from OS.
*
* Returns:
* 0 = Success, !0 = Failure
*/
static int
bxe_pci_resources_alloc(struct bxe_softc *sc)
{
int rid, rc = 0;
DBENTER(BXE_VERBOSE_LOAD);
/*
* Allocate PCI memory resources for BAR0.
* This includes device registers and internal
* processor memory.
*/
rid = PCIR_BAR(0);
sc->bxe_res = bus_alloc_resource_any(sc->dev,
SYS_RES_MEMORY, &rid, RF_ACTIVE);
if (sc->bxe_res == NULL) {
BXE_PRINTF("%s(%d):PCI BAR0 memory allocation failed\n",
__FILE__, __LINE__);
rc = ENXIO;
goto bxe_pci_resources_alloc_exit;
}
/* Get OS resource handles for BAR0 memory. */
sc->bxe_btag = rman_get_bustag(sc->bxe_res);
sc->bxe_bhandle = rman_get_bushandle(sc->bxe_res);
sc->bxe_vhandle = (vm_offset_t) rman_get_virtual(sc->bxe_res);
/*
* Allocate PCI memory resources for BAR2.
* Doorbell (DB) memory.
*/
rid = PCIR_BAR(2);
sc->bxe_db_res = bus_alloc_resource_any(sc->dev,
SYS_RES_MEMORY, &rid, RF_ACTIVE);
if (sc->bxe_db_res == NULL) {
BXE_PRINTF("%s(%d): PCI BAR2 memory allocation failed\n",
__FILE__, __LINE__);
rc = ENXIO;
goto bxe_pci_resources_alloc_exit;
}
/* Get OS resource handles for BAR2 memory. */
sc->bxe_db_btag = rman_get_bustag(sc->bxe_db_res);
sc->bxe_db_bhandle = rman_get_bushandle(sc->bxe_db_res);
sc->bxe_db_vhandle = (vm_offset_t) rman_get_virtual(sc->bxe_db_res);
bxe_pci_resources_alloc_exit:
DBEXIT(BXE_VERBOSE_LOAD);
return (rc);
}
/*
* Frees PCI resources allocated in bxe_pci_resources_alloc().
*
* Returns:
* None
*/
static void
bxe_pci_resources_free(struct bxe_softc *sc)
{
DBENTER(BXE_VERBOSE_UNLOAD);
/* Release the PCIe BAR0 mapped memory. */
if (sc->bxe_res != NULL) {
bus_release_resource(sc->dev, SYS_RES_MEMORY,
PCIR_BAR(0), sc->bxe_res);
}
/* Release the PCIe BAR2 (doorbell) mapped memory. */
if (sc->bxe_db_res != NULL) {
bus_release_resource(sc->dev, SYS_RES_MEMORY,
PCIR_BAR(2), sc->bxe_db_res);
}
DBENTER(BXE_VERBOSE_UNLOAD);
}
/*
* Determines the media reported to the OS by examining
* the installed PHY type.
*
* Returns:
* 0 = Success, !0 = Failure
*/
static int
bxe_media_detect(struct bxe_softc *sc)
{
int rc;
rc = 0;
/* Identify supported media based on the PHY type. */
switch (XGXS_EXT_PHY_TYPE(sc->link_params.ext_phy_config)) {
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT:
DBPRINT(sc, BXE_INFO_LOAD,
"%s(): Found 10GBase-CX4 media.\n", __FUNCTION__);
sc->media = IFM_10G_CX4;
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073:
/* Technically 10GBase-KR but report as 10GBase-SR*/
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727_NOC:
DBPRINT(sc, BXE_INFO_LOAD,
"%s(): Found 10GBase-SR media.\n", __FUNCTION__);
sc->media = IFM_10G_SR;
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8705:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8706:
DBPRINT(sc, BXE_INFO_LOAD,
"%s(): Found 10Gb twinax media.\n", __FUNCTION__);
sc->media = IFM_10G_TWINAX;
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SFX7101:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84823:
DBPRINT(sc, BXE_INFO_LOAD,
"%s(): Found 10GBase-T media.\n", __FUNCTION__);
sc->media = IFM_10G_T;
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN:
default:
sc->media = 0;
rc = ENODEV;
}
return (rc);
}
/*
* Device attach function.
*
* Allocates device resources, performs secondary chip identification,
* resets and initializes the hardware, and initializes driver instance
* variables.
*
* Returns:
* 0 = Success, Positive value on failure.
*/
static int
bxe_attach(device_t dev)
{
struct bxe_softc *sc;
struct ifnet *ifp;
int rc;
sc = device_get_softc(dev);
DBENTER(BXE_INFO_LOAD | BXE_INFO_RESET);
sc->dev = dev;
sc->bxe_unit = device_get_unit(dev);
sc->bxe_func = pci_get_function(dev);
sc->bxe_flags = 0;
sc->state = BXE_STATE_CLOSED;
rc = 0;
DBPRINT(sc, BXE_FATAL, "%s(): ************************\n",
__FUNCTION__);
DBPRINT(sc, BXE_FATAL, "%s(): ** Debug mode enabled **\n",
__FUNCTION__);
DBPRINT(sc, BXE_FATAL, "%s(): ************************\n",
__FUNCTION__);
DBPRINT(sc, BXE_FATAL, "%s(): sc vaddr = 0x%08X:%08X\n",
__FUNCTION__, (uint32_t) U64_HI(sc), (uint32_t) U64_LO(sc));
/* Get the user configurable values for driver load. */
bxe_tunables_set(sc);
bxe_mutexes_alloc(sc);
/* Prepare tick routine. */
callout_init_mtx(&sc->bxe_tick_callout, &sc->bxe_core_mtx, 0);
/* Enable bus master capability */
pci_enable_busmaster(dev);
/* Enable PCI BAR mapped memory for register access. */
rc = bxe_pci_resources_alloc(sc);
if (rc != 0) {
BXE_PRINTF("%s(%d): Error allocating PCI resources!\n",
__FILE__, __LINE__);
goto bxe_attach_fail;
}
/* Put indirect address registers into a sane state. */
pci_write_config(sc->dev, PCICFG_GRC_ADDRESS,
PCICFG_VENDOR_ID_OFFSET, 4);
REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0 + BP_PORT(sc) * 16, 0);
REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0 + BP_PORT(sc) * 16, 0);
REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0 + BP_PORT(sc) * 16, 0);
REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0 + BP_PORT(sc) * 16, 0);
/* Get hardware info from shared memory and validate data. */
rc = bxe_hwinfo_function_get(sc);
if (rc != 0) {
DBPRINT(sc, BXE_WARN,
"%s(): Failed to get hardware info!\n", __FUNCTION__);
goto bxe_attach_fail;
}
/* Setup supported media options. */
rc = bxe_media_detect(sc);
if (rc != 0) {
BXE_PRINTF("%s(%d): Unknown media (PHY) type!\n",
__FILE__, __LINE__);
goto bxe_attach_fail;
}
/* Interface entrypoint for media type/status reporting. */
ifmedia_init(&sc->bxe_ifmedia,
IFM_IMASK, bxe_ifmedia_upd, bxe_ifmedia_status);
/* Default interface values. */
ifmedia_add(&sc->bxe_ifmedia,
IFM_ETHER | sc->media | IFM_FDX, 0, NULL);
ifmedia_add(&sc->bxe_ifmedia,
IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(&sc->bxe_ifmedia,
IFM_ETHER | IFM_AUTO);
sc->bxe_ifmedia.ifm_media =
sc->bxe_ifmedia.ifm_cur->ifm_media;
/* Setup firmware arrays (firmware load comes later). */
rc = bxe_init_firmware(sc);
if (rc) {
BXE_PRINTF("%s(%d): Error preparing firmware load!\n",
__FILE__, __LINE__);
goto bxe_attach_fail;
}
#ifdef BXE_DEBUG
/* Allocate a memory buffer for grcdump output.*/
sc->grcdump_buffer = malloc(BXE_GRCDUMP_BUF_SIZE, M_TEMP, M_NOWAIT);
if (sc->grcdump_buffer == NULL) {
BXE_PRINTF("%s(%d): Failed to allocate grcdump memory "
"buffer!\n", __FILE__, __LINE__);
rc = ENOBUFS;
}
#endif
/* Check that NVRAM contents are valid.*/
rc = bxe_nvram_test(sc);
if (rc != 0) {
BXE_PRINTF("%s(%d): Failed NVRAM test!\n",
__FILE__, __LINE__);
goto bxe_attach_fail;
}
/* Allocate the appropriate interrupts.*/
rc = bxe_interrupt_alloc(sc);
if (rc != 0) {
BXE_PRINTF("%s(%d): Interrupt allocation failed!\n",
__FILE__, __LINE__);
goto bxe_attach_fail;
}
/* Useful for accessing unconfigured devices (i.e. factory diags).*/
if (nomcp)
sc->bxe_flags |= BXE_NO_MCP_FLAG;
/* If bootcode is not running only initialize port 0. */
if (nomcp && BP_PORT(sc)) {
BXE_PRINTF(
"%s(%d): Second device disabled (no bootcode), "
"exiting...\n", __FILE__, __LINE__);
rc = ENODEV;
goto bxe_attach_fail;
}
/* Check if PXE/UNDI is still active and unload it. */
if (!NOMCP(sc))
bxe_undi_unload(sc);
/*
* Select the RX and TX ring sizes. The actual
* ring size for TX is complicated by the fact
* that a single TX frame may be broken up into
* many buffer descriptors (tx_start_bd,
* tx_parse_bd, tx_data_bd). In the best case,
* there are always at least two BD's required
* so we'll assume the best case here.
*/
sc->tx_ring_size = (USABLE_TX_BD >> 1);
sc->rx_ring_size = USABLE_RX_BD;
/* Assume receive IP/TCP/UDP checksum is enabled. */
/* ToDo: Change when IOCTL changes checksum offload? */
sc->rx_csum = 1;
/* Disable WoL. */
sc->wol = 0;
/* Assume a standard 1500 byte MTU size for mbuf allocations. */
sc->mbuf_alloc_size = MCLBYTES;
/* Allocate DMA memory resources. */
rc = bxe_host_structures_alloc(sc->dev);
if (rc != 0) {
BXE_PRINTF("%s(%d): DMA memory allocation failed!\n",
__FILE__, __LINE__);
goto bxe_attach_fail;
}
/* Allocate a FreeBSD ifnet structure. */
ifp = sc->bxe_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
BXE_PRINTF("%s(%d): Interface allocation failed!\n",
__FILE__, __LINE__);
rc = ENXIO;
goto bxe_attach_fail;
}
/* Initialize the FreeBSD ifnet interface. */
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
/* Written by driver before attach, read-only afterwards. */
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
/* Driver entrypoints from the network interface. */
ifp->if_ioctl = bxe_ioctl;
ifp->if_start = bxe_tx_start;
#if __FreeBSD_version >= 800000
ifp->if_transmit = bxe_tx_mq_start;
ifp->if_qflush = bxe_mq_flush;
#endif
#ifdef FreeBSD8_0
ifp->if_timer = 0;
#endif
ifp->if_init = bxe_init;
ifp->if_mtu = ETHERMTU;
ifp->if_hwassist = BXE_IF_HWASSIST;
ifp->if_capabilities = BXE_IF_CAPABILITIES;
/* TPA not enabled by default. */
ifp->if_capenable = BXE_IF_CAPABILITIES & ~IFCAP_LRO;
ifp->if_baudrate = IF_Gbps(10UL);
ifp->if_snd.ifq_drv_maxlen = sc->tx_ring_size;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
/* Attach to the Ethernet interface list. */
ether_ifattach(ifp, sc->link_params.mac_addr);
/* Attach the interrupts to the interrupt handlers. */
rc = bxe_interrupt_attach(sc);
if (rc != 0) {
BXE_PRINTF("%s(%d): Interrupt allocation failed!\n",
__FILE__, __LINE__);
goto bxe_attach_fail;
}
/* Print important adapter info for the user. */
bxe_print_adapter_info(sc);
/* Add the supported sysctls to the kernel. */
bxe_add_sysctls(sc);
bxe_attach_fail:
if (rc != 0)
bxe_detach(dev);
DBEXIT(BXE_INFO_LOAD | BXE_INFO_RESET);
return (rc);
}
/*
* Supported link settings.
*
* Examines hardware configuration present in NVRAM and
* determines the link settings that are supported between
* the external PHY and the switch.
*
* Returns:
* None.
*
* Side effects:
* Sets sc->port.supported
* Sets sc->link_params.phy_addr
*/
static void
bxe_link_settings_supported(struct bxe_softc *sc, uint32_t switch_cfg)
{
uint32_t ext_phy_type;
int port;
DBENTER(BXE_VERBOSE_PHY);
DBPRINT(sc, BXE_VERBOSE_PHY, "%s(): switch_cfg = 0x%08X\n",
__FUNCTION__, switch_cfg);
port = BP_PORT(sc);
/* Get the link settings supported by the external PHY. */
switch (switch_cfg) {
case SWITCH_CFG_1G:
ext_phy_type =
SERDES_EXT_PHY_TYPE(sc->link_params.ext_phy_config);
DBPRINT(sc, BXE_VERBOSE_PHY,
"%s(): 1G switch w/ ext_phy_type = "
"0x%08X\n", __FUNCTION__, ext_phy_type);
switch (ext_phy_type) {
case PORT_HW_CFG_SERDES_EXT_PHY_TYPE_DIRECT:
DBPRINT(sc, BXE_VERBOSE_PHY, "%s(): 1G Direct.\n",
__FUNCTION__);
sc->port.supported |=
(SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full |
SUPPORTED_2500baseX_Full |
SUPPORTED_TP |
SUPPORTED_FIBRE |
SUPPORTED_Autoneg |
SUPPORTED_Pause |
SUPPORTED_Asym_Pause);
break;
case PORT_HW_CFG_SERDES_EXT_PHY_TYPE_BCM5482:
DBPRINT(sc, BXE_VERBOSE_PHY, "%s(): 1G 5482\n",
__FUNCTION__);
sc->port.supported |=
(SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full |
SUPPORTED_TP |
SUPPORTED_FIBRE |
SUPPORTED_Autoneg |
SUPPORTED_Pause |
SUPPORTED_Asym_Pause);
break;
default:
BXE_PRINTF(
"%s(%d): Bad NVRAM 1Gb PHY configuration data "
"(ext_phy_config=0x%08X).\n",
__FILE__, __LINE__,
sc->link_params.ext_phy_config);
goto bxe_link_settings_supported_exit;
}
sc->port.phy_addr =
REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + (port * 0x10));
DBPRINT(sc, BXE_VERBOSE_PHY, "%s(): phy_addr = 0x%08X\n",
__FUNCTION__, sc->port.phy_addr);
break;
case SWITCH_CFG_10G:
ext_phy_type =
XGXS_EXT_PHY_TYPE(sc->link_params.ext_phy_config);
DBPRINT(
sc, BXE_VERBOSE_PHY,
"%s(): 10G switch w/ ext_phy_type = 0x%08X\n",
__FUNCTION__, ext_phy_type);
switch (ext_phy_type) {
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT:
DBPRINT(sc, BXE_VERBOSE_PHY,
"%s(): 10G switch w/ direct connect.\n",
__FUNCTION__);
sc->port.supported |=
(SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full |
SUPPORTED_2500baseX_Full |
SUPPORTED_10000baseT_Full |
SUPPORTED_TP |
SUPPORTED_FIBRE |
SUPPORTED_Autoneg |
SUPPORTED_Pause |
SUPPORTED_Asym_Pause);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8072:
DBPRINT(sc, BXE_VERBOSE_PHY,
"ext_phy_type 0x%x (8072)\n",ext_phy_type);
sc->port.supported |=
(SUPPORTED_10000baseT_Full |
SUPPORTED_1000baseT_Full |
SUPPORTED_FIBRE |
SUPPORTED_Autoneg |
SUPPORTED_Pause |
SUPPORTED_Asym_Pause);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073:
DBPRINT(sc,
BXE_VERBOSE_PHY,"ext_phy_type 0x%x (8073)\n",
ext_phy_type);
sc->port.supported |=
(SUPPORTED_10000baseT_Full |
SUPPORTED_2500baseX_Full |
SUPPORTED_1000baseT_Full |
SUPPORTED_FIBRE |
SUPPORTED_Autoneg |
SUPPORTED_Pause |
SUPPORTED_Asym_Pause);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8705:
DBPRINT(sc, BXE_VERBOSE_PHY,
"%s(): 10G switch w/ 8705.\n",__FUNCTION__);
sc->port.supported |=
(SUPPORTED_10000baseT_Full |
SUPPORTED_FIBRE |
SUPPORTED_Pause |
SUPPORTED_Asym_Pause);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8706:
DBPRINT(sc, BXE_VERBOSE_PHY,
"%s(): 10G switch w/ 8706.\n",
__FUNCTION__);
sc->port.supported |=
(SUPPORTED_10000baseT_Full |
SUPPORTED_1000baseT_Full |
SUPPORTED_FIBRE |
SUPPORTED_Pause |
SUPPORTED_Asym_Pause);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726:
DBPRINT(sc, BXE_VERBOSE_PHY,
"%s(): 10G switch w/ 8726.\n",
__FUNCTION__);
sc->port.supported |=
(SUPPORTED_10000baseT_Full |
SUPPORTED_FIBRE |
SUPPORTED_Pause |
SUPPORTED_Asym_Pause);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727:
DBPRINT(sc, BXE_VERBOSE_PHY,"ext_phy_type 0x%x (8727)\n",
ext_phy_type);
sc->port.supported |=
(SUPPORTED_10000baseT_Full |
SUPPORTED_1000baseT_Full |
SUPPORTED_Autoneg |
SUPPORTED_FIBRE |
SUPPORTED_Pause |
SUPPORTED_Asym_Pause);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SFX7101:
DBPRINT(sc, BXE_VERBOSE_PHY,
"%s(): 10G switch w/ SFX7101.\n",
__FUNCTION__);
sc->port.supported |=
(SUPPORTED_10000baseT_Full |
SUPPORTED_TP |
SUPPORTED_Autoneg |
SUPPORTED_Pause |
SUPPORTED_Asym_Pause);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481:
DBPRINT(sc, BXE_VERBOSE_PHY,
"ext_phy_type 0x%x (BCM8481)\n",
ext_phy_type);
sc->port.supported |=
(SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full |
SUPPORTED_10000baseT_Full |
SUPPORTED_TP |
SUPPORTED_Autoneg |
SUPPORTED_Pause |
SUPPORTED_Asym_Pause);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE:
DBPRINT(sc, BXE_WARN,
"%s(): 10G XGXS PHY failure detected.\n",
__FUNCTION__);
break;
BXE_PRINTF(
"%s(%d): Bad NVRAM 10Gb PHY configuration data "
"(ext_phy_config=0x%08X).\n",
__FILE__, __LINE__,
sc->link_params.ext_phy_config);
goto bxe_link_settings_supported_exit;
}
sc->port.phy_addr =
REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR +(port * 0x18));
break;
default:
DBPRINT(sc, BXE_WARN, "%s(): BAD switch configuration "
"(link_config = 0x%08X)\n", __FUNCTION__,
sc->port.link_config);
goto bxe_link_settings_supported_exit;
}
sc->link_params.phy_addr = sc->port.phy_addr;
/* Mask out unsupported speeds according to NVRAM. */
if ((sc->link_params.speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF) == 0)
sc->port.supported &= ~SUPPORTED_10baseT_Half;
if ((sc->link_params.speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL) == 0)
sc->port.supported &= ~SUPPORTED_10baseT_Full;
if ((sc->link_params.speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF) == 0)
sc->port.supported &= ~SUPPORTED_100baseT_Half;
if ((sc->link_params.speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL) == 0)
sc->port.supported &= ~SUPPORTED_100baseT_Full;
if ((sc->link_params.speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_1G) == 0)
sc->port.supported &= ~(SUPPORTED_1000baseT_Half |
SUPPORTED_1000baseT_Full);
if ((sc->link_params.speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G) == 0)
sc->port.supported &= ~SUPPORTED_2500baseX_Full;
if ((sc->link_params.speed_cap_mask &
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) == 0)
sc->port.supported &= ~SUPPORTED_10000baseT_Full;
DBPRINT(sc, BXE_VERBOSE_PHY,
"%s(): Supported link settings = 0x%b\n", __FUNCTION__,
sc->port.supported, BXE_SUPPORTED_PRINTFB);
bxe_link_settings_supported_exit:
DBEXIT(BXE_VERBOSE_PHY);
}
/*
* Requested link settings.
*
* Returns:
* None.
*/
static void
bxe_link_settings_requested(struct bxe_softc *sc)
{
uint32_t ext_phy_type;
DBENTER(BXE_VERBOSE_PHY);
sc->link_params.req_duplex = MEDIUM_FULL_DUPLEX;
switch (sc->port.link_config & PORT_FEATURE_LINK_SPEED_MASK) {
case PORT_FEATURE_LINK_SPEED_AUTO:
if (sc->port.supported & SUPPORTED_Autoneg) {
sc->link_params.req_line_speed |= SPEED_AUTO_NEG;
sc->port.advertising = sc->port.supported;
} else {
ext_phy_type = XGXS_EXT_PHY_TYPE(
sc->link_params.ext_phy_config);
if ((ext_phy_type ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8705) ||
(ext_phy_type ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8706)) {
/* Force 10G, no autonegotiation. */
sc->link_params.req_line_speed = SPEED_10000;
sc->port.advertising =
ADVERTISED_10000baseT_Full |
ADVERTISED_FIBRE;
break;
}
DBPRINT(sc, BXE_FATAL,
"%s(): NVRAM config error. Invalid "
"link_config (0x%08X) - Autoneg not supported!\n",
__FUNCTION__, sc->port.link_config);
goto bxe_link_settings_requested_exit;
}
break;
case PORT_FEATURE_LINK_SPEED_10M_FULL:
if (sc->port.supported & SUPPORTED_10baseT_Full) {
sc->link_params.req_line_speed = SPEED_10;
sc->port.advertising = ADVERTISED_10baseT_Full |
ADVERTISED_TP;
} else {
DBPRINT(sc, BXE_FATAL,
"%s(): NVRAM config error. Invalid "
"link_config (0x%08X) - speed_cap_mask 0x%08X\n",
__FUNCTION__, sc->port.link_config,
sc->link_params.speed_cap_mask);
goto bxe_link_settings_requested_exit;
}
break;
case PORT_FEATURE_LINK_SPEED_10M_HALF:
if (sc->port.supported & SUPPORTED_10baseT_Half) {
sc->link_params.req_line_speed = SPEED_10;
sc->link_params.req_duplex = MEDIUM_HALF_DUPLEX;
sc->port.advertising = ADVERTISED_10baseT_Half |
ADVERTISED_TP;
} else {
DBPRINT(sc, BXE_FATAL,
"%s(): NVRAM config error. Invalid "
"link_config (0x%08X) - speed_cap_mask = 0x%08X\n",
__FUNCTION__, sc->port.link_config,
sc->link_params.speed_cap_mask);
goto bxe_link_settings_requested_exit;
}
break;
case PORT_FEATURE_LINK_SPEED_100M_FULL:
if (sc->port.supported & SUPPORTED_100baseT_Full) {
sc->link_params.req_line_speed = SPEED_100;
sc->port.advertising = ADVERTISED_100baseT_Full |
ADVERTISED_TP;
} else {
DBPRINT(sc, BXE_FATAL,
"%s(): NVRAM config error. Invalid "
"link_config (0x%08X) - speed_cap_mask = 0x%08X\n",
__FUNCTION__, sc->port.link_config,
sc->link_params.speed_cap_mask);
goto bxe_link_settings_requested_exit;
}
break;
case PORT_FEATURE_LINK_SPEED_100M_HALF:
if (sc->port.supported & SUPPORTED_100baseT_Half) {
sc->link_params.req_line_speed = SPEED_100;
sc->link_params.req_duplex = MEDIUM_HALF_DUPLEX;
sc->port.advertising = ADVERTISED_100baseT_Half |
ADVERTISED_TP;
} else {
DBPRINT(sc, BXE_FATAL,
"%s(): NVRAM config error. Invalid "
"link_config (0x%08X) - speed_cap_mask = 0x%08X\n",
__FUNCTION__, sc->port.link_config,
sc->link_params.speed_cap_mask);
goto bxe_link_settings_requested_exit;
}
break;
case PORT_FEATURE_LINK_SPEED_1G:
if (sc->port.supported & SUPPORTED_1000baseT_Full) {
sc->link_params.req_line_speed = SPEED_1000;
sc->port.advertising = ADVERTISED_1000baseT_Full |
ADVERTISED_TP;
} else {
DBPRINT(sc, BXE_FATAL,
"%s(): NVRAM config error. Invalid "
"link_config (0x%08X) - speed_cap_mask = 0x%08X\n",
__FUNCTION__, sc->port.link_config,
sc->link_params.speed_cap_mask);
goto bxe_link_settings_requested_exit;
}
break;
case PORT_FEATURE_LINK_SPEED_2_5G:
if (sc->port.supported & SUPPORTED_2500baseX_Full) {
sc->link_params.req_line_speed = SPEED_2500;
sc->port.advertising = ADVERTISED_2500baseX_Full |
ADVERTISED_TP;
} else {
DBPRINT(sc, BXE_FATAL,
"%s(): NVRAM config error. Invalid "
"link_config (0x%08X) - speed_cap_mask = 0x%08X\n",
__FUNCTION__, sc->port.link_config,
sc->link_params.speed_cap_mask);
goto bxe_link_settings_requested_exit;
}
break;
case PORT_FEATURE_LINK_SPEED_10G_CX4:
case PORT_FEATURE_LINK_SPEED_10G_KX4:
case PORT_FEATURE_LINK_SPEED_10G_KR:
if (sc->port.supported & SUPPORTED_10000baseT_Full) {
sc->link_params.req_line_speed = SPEED_10000;
sc->port.advertising = ADVERTISED_10000baseT_Full |
ADVERTISED_FIBRE;
} else {
DBPRINT(sc, BXE_FATAL,
"%s(): NVRAM config error. Invalid "
"link_config (0x%08X) - speed_cap_mask = 0x%08X\n",
__FUNCTION__, sc->port.link_config,
sc->link_params.speed_cap_mask);
goto bxe_link_settings_requested_exit;
}
break;
default:
DBPRINT(sc, BXE_FATAL, "%s(): NVRAM config error. BAD link "
"speed - link_config = 0x%08X\n", __FUNCTION__,
sc->port.link_config);
sc->link_params.req_line_speed = 0;
sc->port.advertising = sc->port.supported;
break;
}
DBPRINT(sc, BXE_VERBOSE_PHY,
"%s(): req_line_speed = %d, req_duplex = %d\n",
__FUNCTION__, sc->link_params.req_line_speed,
sc->link_params.req_duplex);
sc->link_params.req_flow_ctrl =
sc->port.link_config & PORT_FEATURE_FLOW_CONTROL_MASK;
if ((sc->link_params.req_flow_ctrl == FLOW_CTRL_AUTO) &&
!(sc->port.supported & SUPPORTED_Autoneg))
sc->link_params.req_flow_ctrl = FLOW_CTRL_NONE;
DBPRINT(sc, BXE_VERBOSE_PHY,
"%s(): req_flow_ctrl = 0x%08X, advertising = 0x%08X\n",
__FUNCTION__, sc->link_params.req_flow_ctrl,
sc->port.advertising);
bxe_link_settings_requested_exit:
DBEXIT(BXE_VERBOSE_PHY);
}
/*
* Get function specific hardware configuration.
*
* Multiple function devices such as the BCM57711E have configuration
* information that is specific to each PCIe function of the controller.
* The number of PCIe functions is not necessarily the same as the number
* of Ethernet ports supported by the device.
*
* Returns:
* 0 = Success, !0 = Failure
*/
static int
bxe_hwinfo_function_get(struct bxe_softc *sc)
{
uint32_t mac_hi, mac_lo, val;
int func, rc;
DBENTER(BXE_VERBOSE_LOAD);
rc = 0;
func = BP_FUNC(sc);
/* Get the common hardware configuration first. */
bxe_hwinfo_common_get(sc);
/* Assume no outer VLAN/multi-function support. */
sc->e1hov = sc->e1hmf = 0;
/* Get config info for mf enabled devices. */
if (CHIP_IS_E1H(sc)) {
sc->mf_config[BP_E1HVN(sc)] =
SHMEM_RD(sc, mf_cfg.func_mf_config[func].config);
val = (SHMEM_RD(sc, mf_cfg.func_mf_config[func].e1hov_tag) &
FUNC_MF_CFG_E1HOV_TAG_MASK);
if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
sc->e1hov = (uint16_t) val;
sc->e1hmf = 1;
} else {
if (BP_E1HVN(sc)) {
rc = EPERM;
goto bxe_hwinfo_function_get_exit;
}
}
}
if (!NOMCP(sc)) {
bxe_hwinfo_port_get(sc);
sc->fw_seq = SHMEM_RD(sc, func_mb[func].drv_mb_header) &
DRV_MSG_SEQ_NUMBER_MASK;
}
/*
* Fetch the factory configured MAC address for multi function
* devices. If this is not a multi-function device then the MAC
* address was already read in the bxe_hwinfo_port_get() routine.
* The MAC addresses used by the port are not the same as the MAC
* addressed used by the function.
*/
if (IS_E1HMF(sc)) {
mac_hi = SHMEM_RD(sc, mf_cfg.func_mf_config[func].mac_upper);
mac_lo = SHMEM_RD(sc, mf_cfg.func_mf_config[func].mac_lower);
if ((mac_lo == 0) && (mac_hi == 0)) {
BXE_PRINTF("%s(%d): Invalid Ethernet address!\n",
__FILE__, __LINE__);
rc = ENODEV;
} else {
sc->link_params.mac_addr[0] = (u_char)(mac_hi >> 8);
sc->link_params.mac_addr[1] = (u_char)(mac_hi);
sc->link_params.mac_addr[2] = (u_char)(mac_lo >> 24);
sc->link_params.mac_addr[3] = (u_char)(mac_lo >> 16);
sc->link_params.mac_addr[4] = (u_char)(mac_lo >> 8);
sc->link_params.mac_addr[5] = (u_char)(mac_lo);
}
}
bxe_hwinfo_function_get_exit:
DBEXIT(BXE_VERBOSE_LOAD);
return (rc);
}
/*
* Get port specific hardware configuration.
*
* Multiple port devices such as the BCM57710 have configuration
* information that is specific to each Ethernet port of the
* controller. This function reads that configuration
* information from the bootcode's shared memory and saves it
* for future use.
*
* Returns:
* 0 = Success, !0 = Failure
*/
static int
bxe_hwinfo_port_get(struct bxe_softc *sc)
{
int i, port, rc;
uint32_t val, mac_hi, mac_lo;
DBENTER(BXE_VERBOSE_LOAD);
rc = 0;
port = BP_PORT(sc);
sc->link_params.sc = sc;
sc->link_params.port = port;
/* Fetch several configuration values from bootcode shared memory. */
sc->link_params.lane_config =
SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
sc->link_params.ext_phy_config =
SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
if (XGXS_EXT_PHY_TYPE(sc->link_params.ext_phy_config) ==
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727_NOC) {
sc->link_params.ext_phy_config &=
~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
sc->link_params.ext_phy_config |=
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727;
sc->link_params.feature_config_flags |=
FEATURE_CONFIG_BCM8727_NOC;
}
sc->link_params.speed_cap_mask =
SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
sc->port.link_config =
SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
/* Read the XGXS RX/TX preemphasis values. */
for (i = 0; i < 2; i++) {
val = SHMEM_RD(sc,
dev_info.port_hw_config[port].xgxs_config_rx[i<<1]);
sc->link_params.xgxs_config_rx[i << 1] = ((val >> 16) & 0xffff);
sc->link_params.xgxs_config_rx[(i << 1) + 1] = (val & 0xffff);
val = SHMEM_RD(sc,
dev_info.port_hw_config[port].xgxs_config_tx[i<<1]);
sc->link_params.xgxs_config_tx[i << 1] = ((val >> 16) & 0xffff);
sc->link_params.xgxs_config_tx[(i << 1) + 1] = (val & 0xffff);
}
/* Fetch the device configured link settings. */
sc->link_params.switch_cfg = sc->port.link_config &
PORT_FEATURE_CONNECTED_SWITCH_MASK;
bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
bxe_link_settings_requested(sc);
mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
if (mac_lo == 0 && mac_hi == 0) {
BXE_PRINTF("%s(%d): No Ethernet address programmed on the "
"controller!\n", __FILE__, __LINE__);
rc = ENODEV;
} else {
sc->link_params.mac_addr[0] = (u_char)(mac_hi >> 8);
sc->link_params.mac_addr[1] = (u_char)(mac_hi);
sc->link_params.mac_addr[2] = (u_char)(mac_lo >> 24);
sc->link_params.mac_addr[3] = (u_char)(mac_lo >> 16);
sc->link_params.mac_addr[4] = (u_char)(mac_lo >> 8);
sc->link_params.mac_addr[5] = (u_char)(mac_lo);
}
DBEXIT(BXE_VERBOSE_LOAD);
return (rc);
}
/*
* Get common hardware configuration.
*
* Multiple port devices such as the BCM57710 have configuration
* information that is shared between all ports of the Ethernet
* controller. This function reads that configuration
* information from the bootcode's shared memory and saves it
* for future use.
*
* Returns:
* 0 = Success, !0 = Failure
*/
static int
bxe_hwinfo_common_get(struct bxe_softc *sc)
{
uint32_t val;
int rc;
DBENTER(BXE_VERBOSE_LOAD);
rc = 0;
/* Get the chip revision. */
sc->common.chip_id = sc->link_params.chip_id =
((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
((REG_RD(sc, MISC_REG_CHIP_REV) & 0x000f) << 12) |
((REG_RD(sc, MISC_REG_CHIP_METAL) & 0xff) << 4) |
((REG_RD(sc, MISC_REG_BOND_ID) & 0xf));
DBPRINT(sc, BXE_VERBOSE_LOAD, "%s(): chip_id = 0x%08X.\n",
__FUNCTION__, sc->common.chip_id);
val = (REG_RD(sc, 0x2874) & 0x55);
if ((sc->common.chip_id & 0x1) ||
(CHIP_IS_E1(sc) && val) || (CHIP_IS_E1H(sc) && (val == 0x55))) {
sc->bxe_flags |= BXE_ONE_PORT_FLAG;
DBPRINT(sc, BXE_VERBOSE_LOAD, "%s(): Single port device.\n",
__FUNCTION__);
}
/* Identify enabled PCI capabilites (PCIe, MSI-X, etc.). */
bxe_probe_pci_caps(sc);
/* Get the NVRAM size. */
val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
sc->common.flash_size = (NVRAM_1MB_SIZE <<
(val & MCPR_NVM_CFG4_FLASH_SIZE));
DBPRINT(sc, BXE_VERBOSE_LOAD, "%s(): flash_size = 0x%08x (%dKB)\n",
__FUNCTION__, sc->common.flash_size,(sc->common.flash_size >> 10));
/* Find the shared memory base address. */
sc->common.shmem_base = sc->link_params.shmem_base =
REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
sc->common.shmem2_base = REG_RD(sc, MISC_REG_GENERIC_CR_0);
DBPRINT(sc, BXE_VERBOSE_LOAD, "%s(): shmem_base = 0x%08X\n",
__FUNCTION__, sc->common.shmem_base);
/* Make sure the shared memory address is valid. */
if (!sc->common.shmem_base ||
(sc->common.shmem_base < 0xA0000) ||
(sc->common.shmem_base > 0xC0000)) {
BXE_PRINTF("%s(%d): MCP is not active!\n",
__FILE__, __LINE__);
/* ToDo: Remove the NOMCP support. */
sc->bxe_flags |= BXE_NO_MCP_FLAG;
rc = ENODEV;
goto bxe_hwinfo_common_get_exit;
}
/* Make sure the shared memory contents are valid. */
val = SHMEM_RD(sc, validity_map[BP_PORT(sc)]);
if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
(SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
BXE_PRINTF("%s(%d): Invalid NVRAM! Bad validity "
"signature.\n", __FILE__, __LINE__);
rc = ENODEV;
goto bxe_hwinfo_common_get_exit;
}
/* Read the device configuration from shared memory. */
sc->common.hw_config =
SHMEM_RD(sc, dev_info.shared_hw_config.config);
sc->link_params.hw_led_mode = ((sc->common.hw_config &
SHARED_HW_CFG_LED_MODE_MASK) >> SHARED_HW_CFG_LED_MODE_SHIFT);
/* Check if we need to override the preemphasis values. */
sc->link_params.feature_config_flags = 0;
val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
sc->link_params.feature_config_flags |=
FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
else
sc->link_params.feature_config_flags &=
~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
/* In multifunction mode, we can't support WoL on a VN. */
if (BP_E1HVN(sc) == 0) {
val = REG_RD(sc, PCICFG_OFFSET + PCICFG_PM_CAPABILITY);
sc->bxe_flags |= (val & PCICFG_PM_CAPABILITY_PME_IN_D3_COLD) ?
0 : BXE_NO_WOL_FLAG;
} else
sc->bxe_flags |= BXE_NO_WOL_FLAG;
DBPRINT(sc, BXE_VERBOSE_LOAD, "%s(): %sWoL capable\n", __FUNCTION__,
(sc->bxe_flags & BXE_NO_WOL_FLAG) ? "Not " : "");
/* Check bootcode version */
sc->common.bc_ver = ((SHMEM_RD(sc, dev_info.bc_rev)) >> 8);
if (sc->common.bc_ver < MIN_BXE_BC_VER) {
BXE_PRINTF("%s(%d): Warning: This driver needs bootcode "
"0x%08X but found 0x%08X, please upgrade!\n",
__FILE__, __LINE__, MIN_BXE_BC_VER, sc->common.bc_ver);
rc = ENODEV;
goto bxe_hwinfo_common_get_exit;
}
bxe_hwinfo_common_get_exit:
DBEXIT(BXE_VERBOSE_LOAD);
return (rc);
}
/*
* Remove traces of PXE boot by forcing UNDI driver unload.
*
* Returns:
* None.
*/
static void
bxe_undi_unload(struct bxe_softc *sc)
{
uint32_t reset_code, swap_en, swap_val, val;
int func;
DBENTER(BXE_VERBOSE_LOAD);
/* Check if there is any driver already loaded */
val = REG_RD(sc, MISC_REG_UNPREPARED);
if (val == 0x1) {
/* Check if it is the UNDI driver. */
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_UNDI);
val = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
if (val == 0x7) {
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
func = BP_FUNC(sc);
DBPRINT(sc, BXE_WARN,
"%s(): UNDI is active! Resetting the device.\n",
__FUNCTION__);
/* Clear the UNDI indication. */
REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
/* Try to unload UNDI on port 0. */
sc->bxe_func = 0;
sc->fw_seq = (SHMEM_RD(sc,
func_mb[sc->bxe_func].drv_mb_header) &
DRV_MSG_SEQ_NUMBER_MASK);
reset_code = bxe_fw_command(sc, reset_code);
/* Check if UNDI is active on port 1. */
if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
/* Send "done" for previous unload. */
bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE);
/* Now unload on port 1. */
sc->bxe_func = 1;
sc->fw_seq = (SHMEM_RD(sc,
func_mb[sc->bxe_func].drv_mb_header) &
DRV_MSG_SEQ_NUMBER_MASK);
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
bxe_fw_command(sc, reset_code);
}
/* It's now safe to release the lock. */
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_UNDI);
REG_WR(sc, (BP_PORT(sc) ? HC_REG_CONFIG_1 :
HC_REG_CONFIG_0), 0x1000);
REG_WR(sc, (BP_PORT(sc) ?
NIG_REG_LLH1_BRB1_DRV_MASK :
NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
REG_WR(sc, (BP_PORT(sc) ?
NIG_REG_LLH1_BRB1_NOT_MCP :
NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
/* Clear AEU. */
REG_WR(sc, (BP_PORT(sc) ?
MISC_REG_AEU_MASK_ATTN_FUNC_1 :
MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
DELAY(10000);
/* Save NIG port swap information. */
swap_val = REG_RD(sc, NIG_REG_PORT_SWAP);
swap_en = REG_RD(sc, NIG_REG_STRAP_OVERRIDE);
/* Reset the controller. */
REG_WR(sc, GRCBASE_MISC +
MISC_REGISTERS_RESET_REG_1_CLEAR, 0xd3ffffff);
REG_WR(sc, GRCBASE_MISC +
MISC_REGISTERS_RESET_REG_2_CLEAR, 0x00001403);
/* Take the NIG out of reset and restore swap values.*/
REG_WR(sc, GRCBASE_MISC +
MISC_REGISTERS_RESET_REG_1_SET,
MISC_REGISTERS_RESET_REG_1_RST_NIG);
REG_WR(sc, NIG_REG_PORT_SWAP, swap_val);
REG_WR(sc, NIG_REG_STRAP_OVERRIDE, swap_en);
/* Send completion message to the MCP. */
bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE);
/*
* Restore our function and firmware sequence counter.
*/
sc->bxe_func = func;
sc->fw_seq = (SHMEM_RD(sc,
func_mb[sc->bxe_func].drv_mb_header) &
DRV_MSG_SEQ_NUMBER_MASK);
} else
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_UNDI);
}
DBEXIT(BXE_VERBOSE_LOAD);
}
/*
* Device detach function.
*
* Stops the controller, resets the controller, and releases resources.
*
* Returns:
* 0 on success, !0 = failure.
*/
static int
bxe_detach(device_t dev)
{
struct bxe_softc *sc;
struct ifnet *ifp;
int rc;
sc = device_get_softc(dev);
DBENTER(BXE_INFO_UNLOAD);
rc = 0;
ifp = sc->bxe_ifp;
if (ifp != NULL && ifp->if_vlantrunk != NULL) {
BXE_PRINTF("%s(%d): Cannot detach while VLANs are in use.\n",
__FILE__, __LINE__);
rc = EBUSY;
goto bxe_detach_exit;
}
/* Stop and reset the controller if it was open. */
if (sc->state != BXE_STATE_CLOSED) {
BXE_CORE_LOCK(sc);
rc = bxe_stop_locked(sc, UNLOAD_CLOSE);
BXE_CORE_UNLOCK(sc);
}
#ifdef BXE_DEBUG
/* Free memory buffer for grcdump output.*/
if (sc->grcdump_buffer != NULL)
free(sc->grcdump_buffer, M_TEMP);
#endif
/* Clean-up any remaining interrupt resources. */
bxe_interrupt_detach(sc);
bxe_interrupt_free(sc);
/* Release the network interface. */
if (ifp != NULL)
ether_ifdetach(ifp);
ifmedia_removeall(&sc->bxe_ifmedia);
/* Release all remaining resources. */
bxe_release_resources(sc);
/* Free all PCI resources. */
bxe_pci_resources_free(sc);
pci_disable_busmaster(dev);
bxe_mutexes_free(sc);
bxe_detach_exit:
DBEXIT(BXE_INFO_UNLOAD);
return(0);
}
/*
* Setup a leading connection for the controller.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_setup_leading(struct bxe_softc *sc)
{
int rc;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_RAMROD);
DBPRINT(sc, BXE_VERBOSE_LOAD, "%s(): Setup leading connection "
"on fp[00].\n", __FUNCTION__);
/* Reset IGU state for the leading connection. */
bxe_ack_sb(sc, sc->fp[0].sb_id, CSTORM_ID, 0, IGU_INT_ENABLE, 0);
/* Post a PORT_SETUP ramrod and wait for completion. */
bxe_sp_post(sc, RAMROD_CMD_ID_ETH_PORT_SETUP, 0, 0, 0, 0);
/* Wait for the ramrod to complete on the leading connection. */
rc = bxe_wait_ramrod(sc, BXE_STATE_OPEN, 0, &(sc->state), 1);
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_RAMROD);
return (rc);
}
/*
* Stop the leading connection on the controller.
*
* Returns:
* None.
*/
static int
bxe_stop_leading(struct bxe_softc *sc)
{
uint16_t dsb_sp_prod_idx;
int rc, timeout;
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET |
BXE_VERBOSE_UNLOAD), "%s(): Stop client connection "
"on fp[00].\n", __FUNCTION__);
/* Send the ETH_HALT ramrod. */
sc->fp[0].state = BXE_FP_STATE_HALTING;
bxe_sp_post(sc,RAMROD_CMD_ID_ETH_HALT, 0, 0, sc->fp[0].cl_id, 0);
/* Poll for the ETH_HALT ramrod on the leading connection. */
rc = bxe_wait_ramrod(sc, BXE_FP_STATE_HALTED,
0, &(sc->fp[0].state), 1);
if (rc) {
DBPRINT(sc, BXE_FATAL, "%s(): Timeout waiting for "
"STATE_HALTED ramrod completion!\n", __FUNCTION__);
goto bxe_stop_leading_exit;
}
/* Get the default status block SP producer index. */
dsb_sp_prod_idx = *sc->dsb_sp_prod;
/* After HALT we send PORT_DELETE ramrod. */
bxe_sp_post(sc, RAMROD_CMD_ID_ETH_PORT_DEL, 0, 0, 0, 1);
/* Be patient but don't wait forever. */
timeout = 500;
while (dsb_sp_prod_idx == *sc->dsb_sp_prod) {
if (timeout == 0) {
DBPRINT(sc, BXE_FATAL, "%s(): Timeout waiting for "
"PORT_DEL ramrod completion!\n", __FUNCTION__);
rc = EBUSY;
break;
}
timeout--;
DELAY(1000);
rmb();
}
/* Update the adapter and connection states. */
sc->state = BXE_STATE_CLOSING_WAIT4_UNLOAD;
sc->fp[0].state = BXE_FP_STATE_CLOSED;
bxe_stop_leading_exit:
return (rc);
}
/*
* Setup a client connection when using multi-queue/RSS.
*
* Returns:
* Nothing.
*/
static int
bxe_setup_multi(struct bxe_softc *sc, int index)
{
struct bxe_fastpath *fp;
int rc;
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET |
BXE_VERBOSE_UNLOAD), "%s(): Setup client connection "
"on fp[%02d].\n", __FUNCTION__, index);
fp = &sc->fp[index];
/* Reset IGU state. */
bxe_ack_sb(sc, fp->sb_id, CSTORM_ID, 0, IGU_INT_ENABLE, 0);
/* Post a CLIENT_SETUP ramrod. */
fp->state = BXE_FP_STATE_OPENING;
bxe_sp_post(sc, RAMROD_CMD_ID_ETH_CLIENT_SETUP, index, 0, fp->cl_id, 0);
/* Wait for the ramrod to complete. */
rc = bxe_wait_ramrod(sc, BXE_FP_STATE_OPEN, index, &fp->state, 1);
return (rc);
}
/*
* Stop a client connection.
*
* Stops an individual client connection on the device. Use
* bxe_stop_leading() for the first/default connection.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_stop_multi(struct bxe_softc *sc, int index)
{
struct bxe_fastpath *fp;
int rc;
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET |
BXE_VERBOSE_UNLOAD), "%s(): Stop client connection "
"on fp[%02d].\n", __FUNCTION__, index);
fp = &sc->fp[index];
/* Halt the client connection. */
fp->state = BXE_FP_STATE_HALTING;
bxe_sp_post(sc, RAMROD_CMD_ID_ETH_HALT, index, 0, fp->cl_id, 0);
/* Wait for the HALT ramrod completion. */
rc = bxe_wait_ramrod(sc, BXE_FP_STATE_HALTED, index, &fp->state, 1);
if (rc){
BXE_PRINTF("%s(%d): fp[%02d] client ramrod halt failed!\n",
__FILE__, __LINE__, index);
goto bxe_stop_multi_exit;
}
/* Delete the CFC entry. */
bxe_sp_post(sc, RAMROD_CMD_ID_ETH_CFC_DEL, index, 0, 0, 1);
/* Poll for the DELETE ramrod completion. */
rc = bxe_wait_ramrod(sc, BXE_FP_STATE_CLOSED, index, &fp->state, 1);
bxe_stop_multi_exit:
return (rc);
}
/*
* Hardware lock for shared, dual-port PHYs.
*
* Returns:
* None.
*/
static void
bxe_acquire_phy_lock(struct bxe_softc *sc)
{
uint32_t ext_phy_type;
DBENTER(BXE_VERBOSE_PHY);
ext_phy_type = XGXS_EXT_PHY_TYPE(sc->link_params.ext_phy_config);
switch(ext_phy_type){
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8072:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727:
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_MDIO);
break;
default:
break;
}
DBEXIT(BXE_VERBOSE_PHY);
}
/*
* Hardware unlock for shared, dual-port PHYs.
*
* Returns:
* None.
*/
static void
bxe_release_phy_lock(struct bxe_softc *sc)
{
uint32_t ext_phy_type;
DBENTER(BXE_VERBOSE_PHY);
ext_phy_type = XGXS_EXT_PHY_TYPE(sc->link_params.ext_phy_config);
switch(ext_phy_type){
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8072:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727:
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_MDIO);
break;
default:
break;
}
DBEXIT(BXE_VERBOSE_PHY);
}
/*
*
* Returns:
* None.
*/
static void
bxe__link_reset(struct bxe_softc *sc)
{
DBENTER(BXE_VERBOSE_PHY);
if (!NOMCP(sc)) {
bxe_acquire_phy_lock(sc);
bxe_link_reset(&sc->link_params, &sc->link_vars, 1);
bxe_release_phy_lock(sc);
} else {
DBPRINT(sc, BXE_WARN,
"%s(): Bootcode is not running, not resetting link!\n",
__FUNCTION__);
}
DBEXIT(BXE_VERBOSE_PHY);
}
/*
* Stop the controller.
*
* Returns:
* 0 = Success, !0 = Failure
*/
static int
bxe_stop_locked(struct bxe_softc *sc, int unload_mode)
{
struct ifnet *ifp;
struct mac_configuration_cmd *config;
struct bxe_fastpath *fp;
uint32_t reset_code;
uint32_t emac_base, val;
uint8_t entry, *mac_addr;
int count, i, port, rc;
DBENTER(BXE_INFO_LOAD | BXE_INFO_RESET | BXE_INFO_UNLOAD);
ifp = sc->bxe_ifp;
port = BP_PORT(sc),
rc = reset_code = 0;
BXE_CORE_LOCK_ASSERT(sc);
/* Stop the periodic tick. */
callout_stop(&sc->bxe_tick_callout);
sc->state = BXE_STATE_CLOSING_WAIT4_HALT;
/* Prevent any further RX traffic. */
sc->rx_mode = BXE_RX_MODE_NONE;
bxe_set_storm_rx_mode(sc);
/* Tell the stack the driver is stopped and TX queue is full. */
if (ifp != NULL)
ifp->if_drv_flags = 0;
/* Tell the bootcode to stop watching for a heartbeat. */
SHMEM_WR(sc, func_mb[BP_FUNC(sc)].drv_pulse_mb,
(DRV_PULSE_ALWAYS_ALIVE | sc->fw_drv_pulse_wr_seq));
/* Stop the statistics updates. */
bxe_stats_handle(sc, STATS_EVENT_STOP);
/* Wait until all TX fastpath tasks have completed. */
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
if (fp == NULL || fp->tx_pkt_cons_sb == NULL)
break;
count = 1000;
while (bxe_has_tx_work(fp)) {
bxe_txeof(fp);
if (count == 0) {
BXE_PRINTF(
"%s(%d): Timeout wating for fp[%02d] transmits to complete!\n",
__FILE__, __LINE__, i);
break;
}
count--;
DELAY(1000);
rmb();
}
}
/* Wait until all slowpath tasks have completed. */
count = 1000;
while ((sc->spq_left != MAX_SPQ_PENDING) && count--)
DELAY(1000);
/* Disable Interrupts */
bxe_int_disable(sc);
DELAY(1000);
/* Clear the MAC addresses. */
if (CHIP_IS_E1(sc)) {
config = BXE_SP(sc, mcast_config);
bxe_set_mac_addr_e1(sc, 0);
for (i = 0; i < config->hdr.length; i++)
CAM_INVALIDATE(&config->config_table[i]);
config->hdr.length = i;
config->hdr.offset = BXE_MAX_MULTICAST * (1 + port);
config->hdr.client_id = BP_CL_ID(sc);
config->hdr.reserved1 = 0;
bxe_sp_post(sc, RAMROD_CMD_ID_ETH_SET_MAC, 0,
U64_HI(BXE_SP_MAPPING(sc, mcast_config)),
U64_LO(BXE_SP_MAPPING(sc, mcast_config)), 0);
} else {
REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
bxe_set_mac_addr_e1h(sc, 0);
for (i = 0; i < MC_HASH_SIZE; i++)
REG_WR(sc, MC_HASH_OFFSET(sc, i), 0);
REG_WR(sc, MISC_REG_E1HMF_MODE, 0);
}
/* Determine if any WoL settings needed. */
if (unload_mode == UNLOAD_NORMAL)
/* Driver initiatied WoL is disabled. */
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
else if (sc->bxe_flags & BXE_NO_WOL_FLAG) {
/* Driver initiated WoL is disabled, use OOB WoL settings. */
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
if (CHIP_IS_E1H(sc))
REG_WR(sc, MISC_REG_E1HMF_MODE, 0);
} else if (sc->wol) {
emac_base = BP_PORT(sc) ? GRCBASE_EMAC0 : GRCBASE_EMAC1;
mac_addr = sc->link_params.mac_addr;
entry = (BP_E1HVN(sc) + 1) * 8;
val = (mac_addr[0] << 8) | mac_addr[1];
EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val);
val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
(mac_addr[4] << 8) | mac_addr[5];
EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
} else {
/* Prevent WoL. */
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
}
/* Stop all non-leading client connections. */
for (i = 1; i < sc->num_queues; i++) {
if (bxe_stop_multi(sc, i)){
goto bxe_stop_locked_exit;
}
}
/* Stop the leading client connection. */
rc = bxe_stop_leading(sc);
DELAY(10000);
bxe_stop_locked_exit:
if (NOMCP(sc)) {
DBPRINT(sc, BXE_INFO,
"%s(): Old No MCP load counts: %d, %d, %d\n",
__FUNCTION__, load_count[0], load_count[1], load_count[2]);
load_count[0]--;
load_count[1 + port]--;
DBPRINT(sc, BXE_INFO,
"%s(): New No MCP load counts: %d, %d, %d\n",
__FUNCTION__, load_count[0], load_count[1], load_count[2]);
if (load_count[0] == 0)
reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
else if (load_count[1 + BP_PORT(sc)] == 0)
reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
else
reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
} else {
/* Tell MCP driver unload is complete. */
reset_code = bxe_fw_command(sc, reset_code);
}
if ((reset_code == FW_MSG_CODE_DRV_UNLOAD_COMMON) ||
(reset_code == FW_MSG_CODE_DRV_UNLOAD_PORT))
bxe__link_reset(sc);
DELAY(10000);
/* Reset the chip */
bxe_reset_chip(sc, reset_code);
DELAY(10000);
/* Report UNLOAD_DONE to MCP */
if (!NOMCP(sc))
bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE);
sc->port.pmf = 0;
/* Free RX chains and buffers. */
bxe_clear_rx_chains(sc);
/* Free TX chains and buffers. */
bxe_clear_tx_chains(sc);
sc->state = BXE_STATE_CLOSED;
bxe_ack_int(sc);
DBEXIT(BXE_INFO_LOAD | BXE_INFO_RESET |BXE_INFO_UNLOAD);
return (rc);
}
/*
* Device shutdown function.
*
* Stops and resets the controller.
*
* Returns:
* 0 = Success, !0 = Failure
*/
static int
bxe_shutdown(device_t dev)
{
struct bxe_softc *sc;
sc = device_get_softc(dev);
DBENTER(BXE_INFO_LOAD | BXE_INFO_RESET | BXE_INFO_UNLOAD);
BXE_CORE_LOCK(sc);
bxe_stop_locked(sc, UNLOAD_NORMAL);
BXE_CORE_UNLOCK(sc);
DBEXIT(BXE_INFO_LOAD | BXE_INFO_RESET | BXE_INFO_UNLOAD);
return (0);
}
/*
* Prints out link speed and duplex setting to console.
*
* Returns:
* None.
*/
static void
bxe_link_report(struct bxe_softc *sc)
{
uint32_t line_speed;
uint16_t vn_max_rate;
DBENTER(BXE_VERBOSE_PHY);
if (sc->link_vars.link_up) {
/* Report the link status change to OS. */
if (sc->state == BXE_STATE_OPEN)
if_link_state_change(sc->bxe_ifp, LINK_STATE_UP);
line_speed = sc->link_vars.line_speed;
if (IS_E1HMF(sc)){
vn_max_rate = ((sc->mf_config[BP_E1HVN(sc)] &
FUNC_MF_CFG_MAX_BW_MASK) >>
FUNC_MF_CFG_MAX_BW_SHIFT) * 100;
if (vn_max_rate < line_speed)
line_speed = vn_max_rate;
}
BXE_PRINTF("Link is up, %d Mbps, ", line_speed);
if (sc->link_vars.duplex == MEDIUM_FULL_DUPLEX)
printf("full duplex");
else
printf("half duplex");
if (sc->link_vars.flow_ctrl) {
if (sc->link_vars.flow_ctrl & FLOW_CTRL_RX) {
printf(", receive ");
if (sc->link_vars.flow_ctrl & FLOW_CTRL_TX)
printf("& transmit ");
} else
printf(", transmit ");
printf("flow control ON");
}
printf("\n");
} else {
/* Report the link down */
BXE_PRINTF("Link is down\n");
if_link_state_change(sc->bxe_ifp, LINK_STATE_DOWN);
}
DBEXIT(BXE_VERBOSE_PHY);
}
/*
*
* Returns:
* None.
*/
static void
bxe__link_status_update(struct bxe_softc *sc)
{
DBENTER(BXE_VERBOSE_PHY);
if (sc->stats_enable == FALSE || sc->state != BXE_STATE_OPEN)
return;
bxe_link_status_update(&sc->link_params, &sc->link_vars);
if (sc->link_vars.link_up)
bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
else
bxe_stats_handle(sc, STATS_EVENT_STOP);
bxe_read_mf_cfg(sc);
/* Indicate link status. */
bxe_link_report(sc);
DBEXIT(BXE_VERBOSE_PHY);
}
/*
* Calculate flow control to advertise during autonegotiation.
*
* Returns:
* None.
*/
static void
bxe_calc_fc_adv(struct bxe_softc *sc)
{
DBENTER(BXE_EXTREME_PHY);
switch (sc->link_vars.ieee_fc &
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
sc->port.advertising &= ~(ADVERTISED_Asym_Pause |
ADVERTISED_Pause);
break;
case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
sc->port.advertising |= (ADVERTISED_Asym_Pause |
ADVERTISED_Pause);
break;
case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
sc->port.advertising |= ADVERTISED_Asym_Pause;
break;
default:
sc->port.advertising &= ~(ADVERTISED_Asym_Pause |
ADVERTISED_Pause);
break;
}
DBEXIT(BXE_EXTREME_PHY);
}
/*
*
* Returns:
*
*/
static uint8_t
bxe_initial_phy_init(struct bxe_softc *sc)
{
uint8_t rc;
DBENTER(BXE_VERBOSE_PHY);
rc = 0;
if (!NOMCP(sc)) {
/*
* It is recommended to turn off RX flow control for 5771x
* when using jumbo frames for better performance.
*/
if (!IS_E1HMF(sc) && (sc->mbuf_alloc_size > 5000))
sc->link_params.req_fc_auto_adv = FLOW_CTRL_TX;
else
sc->link_params.req_fc_auto_adv = FLOW_CTRL_BOTH;
bxe_acquire_phy_lock(sc);
rc = bxe_phy_init(&sc->link_params, &sc->link_vars);
bxe_release_phy_lock(sc);
bxe_calc_fc_adv(sc);
if (sc->link_vars.link_up) {
bxe_stats_handle(sc,STATS_EVENT_LINK_UP);
bxe_link_report(sc);
}
} else {
DBPRINT(sc, BXE_FATAL, "%s(): Bootcode is not running, "
"not initializing link!\n", __FUNCTION__);
rc = EINVAL;
}
DBEXIT(BXE_VERBOSE_PHY);
return (rc);
}
#if __FreeBSD_version >= 800000
/*
* Allocate buffer rings used for multiqueue.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_alloc_buf_rings(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int i, rc;
DBENTER(BXE_VERBOSE_LOAD);
rc = 0;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
if (fp != NULL) {
fp->br = buf_ring_alloc(BXE_BR_SIZE,
M_DEVBUF, M_DONTWAIT, &fp->mtx);
if (fp->br == NULL) {
rc = ENOMEM;
goto bxe_alloc_buf_rings_exit;
}
} else
BXE_PRINTF("%s(%d): Bug!\n", __FILE__, __LINE__);
}
bxe_alloc_buf_rings_exit:
DBEXIT(BXE_VERBOSE_LOAD);
return (rc);
}
/*
* Releases buffer rings used for multiqueue.
*
* Returns:
* None
*/
static void
bxe_free_buf_rings(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int i;
DBENTER(BXE_VERBOSE_UNLOAD);
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
if (fp != NULL) {
if (fp->br != NULL)
buf_ring_free(fp->br, M_DEVBUF);
}
}
DBEXIT(BXE_VERBOSE_UNLOAD);
}
#endif
/*
* Handles controller initialization.
*
* Must be called from a locked routine. Since this code
* may be called from the OS it does not provide a return
* error value and must clean-up it's own mess.
*
* Returns:
* Nothing.
*/
static void
bxe_init_locked(struct bxe_softc *sc, int load_mode)
{
struct ifnet *ifp;
uint32_t load_code;
int error, i, port;
DBENTER(BXE_INFO_LOAD | BXE_INFO_RESET);
BXE_CORE_LOCK_ASSERT(sc);
ifp = sc->bxe_ifp;
/* Skip if we're in panic mode. */
if (sc->panic) {
DBPRINT(sc, BXE_WARN, "%s(): Panic mode enabled, exiting!\n",
__FUNCTION__);
goto bxe_init_locked_exit;
}
/* Check if the driver is still running and bail out if it is. */
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
DBPRINT(sc, BXE_WARN,
"%s(): Init called while driver is running!\n",
__FUNCTION__);
goto bxe_init_locked_exit;
}
/*
* Send LOAD_REQUEST command to MCP.
* The MCP will return the type of LOAD
* the driver should perform.
* - If it is the first port to be initialized
* then all common blocks should be initialized.
* - If it is not the first port to be initialized
* then don't do the common block initialization.
*/
sc->state = BXE_STATE_OPENING_WAIT4_LOAD;
if (NOMCP(sc)) {
port = BP_PORT(sc);
DBPRINT(sc, BXE_INFO,
"%s(): Old No MCP load counts: %d, %d, %d\n",
__FUNCTION__,
load_count[0], load_count[1], load_count[2]);
load_count[0]++;
load_count[1 + port]++;
DBPRINT(sc, BXE_INFO,
"%s(): New No MCP load counts: %d, %d, %d\n",
__FUNCTION__,
load_count[0], load_count[1], load_count[2]);
/* No MCP to tell us what to do. */
if (load_count[0] == 1)
load_code = FW_MSG_CODE_DRV_LOAD_COMMON;
else if (load_count[1 + port] == 1)
load_code = FW_MSG_CODE_DRV_LOAD_PORT;
else
load_code = FW_MSG_CODE_DRV_LOAD_FUNCTION;
} else {
/* Ask the MCP what type of initialization we need to do. */
load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ);
if ((load_code == 0) ||
(load_code == FW_MSG_CODE_DRV_LOAD_REFUSED)) {
BXE_PRINTF("%s(%d): Bootcode refused load request.!\n",
__FILE__, __LINE__);
goto bxe_init_locked_failed1;
}
}
/* Keep track of whether we are controlling the port. */
if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
(load_code == FW_MSG_CODE_DRV_LOAD_PORT))
sc->port.pmf = 1;
else
sc->port.pmf = 0;
/* Block any interrupts until we're ready. */
sc->intr_sem = 1;
/* Initialize hardware. */
error = bxe_init_hw(sc, load_code);
if (error != 0){
BXE_PRINTF("%s(%d): Hardware initialization failed, "
"aborting!\n", __FILE__, __LINE__);
goto bxe_init_locked_failed1;
}
/* Calculate and save the Ethernet MTU size. */
sc->port.ether_mtu = ifp->if_mtu + ETHER_HDR_LEN +
(ETHER_VLAN_ENCAP_LEN * 2) + ETHER_CRC_LEN + 4;
DBPRINT(sc, BXE_INFO, "%s(): Setting MTU = %d\n",
__FUNCTION__, sc->port.ether_mtu);
/* Setup the mbuf allocation size for RX frames. */
if (sc->port.ether_mtu <= MCLBYTES)
sc->mbuf_alloc_size = MCLBYTES;
else if (sc->port.ether_mtu <= PAGE_SIZE)
sc->mbuf_alloc_size = PAGE_SIZE;
else
sc->mbuf_alloc_size = MJUM9BYTES;
DBPRINT(sc, BXE_INFO, "%s(): mbuf_alloc_size = %d, "
"max_frame_size = %d\n", __FUNCTION__,
sc->mbuf_alloc_size, sc->port.ether_mtu);
/* Setup NIC internals and enable interrupts. */
error = bxe_init_nic(sc, load_code);
if (error != 0) {
BXE_PRINTF("%s(%d): NIC initialization failed, "
"aborting!\n", __FILE__, __LINE__);
goto bxe_init_locked_failed1;
}
if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) &&
(sc->common.shmem2_base)){
if (sc->dcc_enable == TRUE) {
BXE_PRINTF("Enabing DCC support\n");
SHMEM2_WR(sc, dcc_support,
(SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
}
}
#if __FreeBSD_version >= 800000
/* Allocate buffer rings for multiqueue operation. */
error = bxe_alloc_buf_rings(sc);
if (error != 0) {
BXE_PRINTF("%s(%d): Buffer ring initialization failed, "
"aborting!\n", __FILE__, __LINE__);
goto bxe_init_locked_failed1;
}
#endif
/* Tell MCP that driver load is done. */
if (!NOMCP(sc)) {
load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE);
if (!load_code) {
BXE_PRINTF("%s(%d): Driver load failed! No MCP "
"response to LOAD_DONE!\n", __FILE__, __LINE__);
goto bxe_init_locked_failed2;
}
}
sc->state = BXE_STATE_OPENING_WAIT4_PORT;
/* Enable ISR for PORT_SETUP ramrod. */
sc->intr_sem = 0;
/* Setup the leading connection for the controller. */
error = bxe_setup_leading(sc);
if (error != 0) {
DBPRINT(sc, BXE_FATAL, "%s(): Initial PORT_SETUP ramrod "
"failed. State is not OPEN!\n", __FUNCTION__);
goto bxe_init_locked_failed3;
}
if (CHIP_IS_E1H(sc)) {
if (sc->mf_config[BP_E1HVN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
BXE_PRINTF("Multi-function mode is disabled\n");
/* sc->state = BXE_STATE_DISABLED; */
}
/* Setup additional client connections for RSS/multi-queue */
if (sc->state == BXE_STATE_OPEN) {
for (i = 1; i < sc->num_queues; i++) {
if (bxe_setup_multi(sc, i)) {
DBPRINT(sc, BXE_FATAL,
"%s(): fp[%02d] CLIENT_SETUP ramrod failed! State not OPEN!\n",
__FUNCTION__, i);
goto bxe_init_locked_failed4;
}
}
}
}
DELAY(5000);
bxe_int_enable(sc);
DELAY(5000);
/* Initialize statistics. */
bxe_stats_init(sc);
DELAY(1000);
/* Load our MAC address. */
bcopy(IF_LLADDR(sc->bxe_ifp), sc->link_params.mac_addr, ETHER_ADDR_LEN);
if (CHIP_IS_E1(sc))
bxe_set_mac_addr_e1(sc, 1);
else
bxe_set_mac_addr_e1h(sc, 1);
DELAY(1000);
/* Perform PHY initialization for the primary port. */
if (sc->port.pmf)
bxe_initial_phy_init(sc);
DELAY(1000);
/* Start fastpath. */
switch (load_mode) {
case LOAD_NORMAL:
case LOAD_OPEN:
/* Initialize the receive filters. */
bxe_set_rx_mode(sc);
break;
case LOAD_DIAG:
/* Initialize the receive filters. */
bxe_set_rx_mode(sc);
sc->state = BXE_STATE_DIAG;
break;
default:
DBPRINT(sc, BXE_WARN, "%s(): Unknown load mode (%d)!\n",
__FUNCTION__, load_mode);
break;
}
if (!sc->port.pmf)
bxe__link_status_update(sc);
DELAY(1000);
/* Tell the stack the driver is running. */
ifp->if_drv_flags = IFF_DRV_RUNNING;
/* Schedule our periodic timer tick. */
callout_reset(&sc->bxe_tick_callout, hz, bxe_tick, sc);
/* Everything went OK, go ahead and exit. */
goto bxe_init_locked_exit;
bxe_init_locked_failed4:
/* Try and gracefully shutdown the device because of a failure. */
for (i = 1; i < sc->num_queues; i++)
bxe_stop_multi(sc, i);
bxe_init_locked_failed3:
bxe_stop_leading(sc);
bxe_stats_handle(sc, STATS_EVENT_STOP);
bxe_init_locked_failed2:
bxe_int_disable(sc);
bxe_init_locked_failed1:
if (!NOMCP(sc)) {
bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE);
bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP);
bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE);
}
sc->port.pmf = 0;
#if __FreeBSD_version >= 800000
bxe_free_buf_rings(sc);
#endif
DBPRINT(sc, BXE_WARN, "%s(): Initialization failed!\n", __FUNCTION__);
bxe_init_locked_exit:
DBEXIT(BXE_INFO_LOAD | BXE_INFO_RESET);
}
/*
* Ramrod wait function.
*
* Waits for a ramrod command to complete.
*
* Returns:
* 0 = Success, !0 = Failure
*/
static int
bxe_wait_ramrod(struct bxe_softc *sc, int state, int idx, int *state_p,
int poll)
{
int rc, timeout;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_RAMROD);
DBPRINT(sc, BXE_VERBOSE_RAMROD, "%s(): %s for state 0x%08X on "
"fp[%02d], currently 0x%08X.\n", __FUNCTION__,
poll ? "Polling" : "Waiting", state, idx, *state_p);
rc = 0;
timeout = 5000;
while (timeout) {
/* Manually check for the completion. */
if (poll) {
bxe_rxeof(sc->fp);
/*
* Some commands don't use the leading client
* connection.
*/
if (idx)
bxe_rxeof(&sc->fp[idx]);
}
/* State may be changed by bxe_sp_event(). */
mb();
if (*state_p == state)
goto bxe_wait_ramrod_exit;
timeout--;
/* Pause 1ms before checking again. */
DELAY(1000);
}
/* We timed out polling for a completion. */
DBPRINT(sc, BXE_FATAL, "%s(): Timeout %s for state 0x%08X on fp[%02d]. "
"Got 0x%x instead\n", __FUNCTION__, poll ? "polling" : "waiting",
state, idx, *state_p);
rc = EBUSY;
bxe_wait_ramrod_exit:
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_RAMROD);
return (rc);
}
/*
*
*
*/
static void
bxe_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr,
uint32_t addr, uint32_t len)
{
int dmae_wr_max, offset;
DBENTER(BXE_INSANE_REGS);
dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
offset = 0;
while (len > dmae_wr_max) {
bxe_write_dmae(sc, phys_addr + offset, addr + offset,
dmae_wr_max);
offset += dmae_wr_max * 4;
len -= dmae_wr_max;
}
bxe_write_dmae(sc, phys_addr + offset, addr + offset, len);
DBEXIT(BXE_INSANE_REGS);
}
#define INIT_MEM_WR(block, reg, part, hw, data, reg_off, len) \
bxe_init_str_wr(sc, GRCBASE_##block + reg + reg_off * 4, data, len)
/*
* Write a block of data to a range of registers.
*
* Returns:
* None.
*/
static void
bxe_init_str_wr(struct bxe_softc *sc, uint32_t addr, const uint32_t *data,
uint32_t len)
{
uint32_t i;
for (i = 0; i < len; i++)
REG_WR(sc, addr + i * 4, data[i]);
}
/*
* Write a block of data to a range of registers using indirect access.
*
* Returns:
* None.
*/
static void
bxe_init_ind_wr(struct bxe_softc *sc, uint32_t addr, const uint32_t *data,
uint16_t len)
{
uint32_t i;
for (i = 0; i < len; i++)
REG_WR_IND(sc, addr + i * 4, data[i]);
}
/*
*
* Returns:
* None.
*/
static void
bxe_write_big_buf(struct bxe_softc *sc, uint32_t addr, uint32_t len)
{
DBENTER(BXE_INSANE_REGS);
#ifdef BXE_USE_DMAE
if (sc->dmae_ready)
bxe_write_dmae_phys_len(sc, sc->gz_dma.paddr, addr, len);
else
bxe_init_str_wr(sc, addr, sc->gz, len);
#else
bxe_init_str_wr(sc, addr, sc->gz, len);
#endif
DBEXIT(BXE_INSANE_REGS);
}
/*
* Fill areas of device memory with the specified value.
*
* Generally used to clear a small area of device memory prior to writing
* firmware to STORM memory or writing STORM firmware to device memory.
*
* Returns:
* None.
*/
static void
bxe_init_fill(struct bxe_softc *sc, uint32_t addr, int fill, uint32_t len)
{
uint32_t cur_len, i, leftovers, length;
DBENTER(BXE_VERBOSE_LOAD);
length = (((len * 4) > BXE_FW_BUF_SIZE) ? BXE_FW_BUF_SIZE : (len * 4));
leftovers = length / 4;
memset(sc->gz, fill, length);
for (i = 0; i < len; i += leftovers) {
cur_len = min(leftovers, len - i);
bxe_write_big_buf(sc, addr + i * 4, cur_len);
}
DBEXIT(BXE_VERBOSE_LOAD);
}
/*
*
* Returns:
* None.
*/
static void
bxe_init_wr_64(struct bxe_softc *sc, uint32_t addr, const uint32_t *data,
uint32_t len64)
{
uint64_t data64, *pdata;
uint32_t buf_len32, cur_len, len;
int i;
DBENTER(BXE_INSANE_REGS);
buf_len32 = BXE_FW_BUF_SIZE / 4;
len = len64 * 2;
/* 64 bit value is in a blob: first low DWORD, then high DWORD. */
data64 = HILO_U64((*(data + 1)), (*data));
len64 = min((uint32_t)(BXE_FW_BUF_SIZE / 8), len64);
for (i = 0; i < len64; i++) {
pdata = ((uint64_t *)(sc->gz)) + i;
*pdata = data64;
}
for (i = 0; i < len; i += buf_len32) {
cur_len = min(buf_len32, len - i);
bxe_write_big_buf(sc, addr + i*4, cur_len);
}
DBEXIT(BXE_INSANE_REGS);
}
/*
* There are different blobs for each PRAM section. In addition, each
* blob write operation is divided into multiple, smaller write
* operations in order to decrease the amount of physically contiguous
* buffer memory needed. Thus, when we select a blob, the address may
* be with some offset from the beginning of PRAM section. The same
* holds for the INT_TABLE sections.
*/
#define IF_IS_INT_TABLE_ADDR(base, addr) \
if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
#define IF_IS_PRAM_ADDR(base, addr) \
if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
/*
*
* Returns:
* None.
*/
static const uint8_t *
bxe_sel_blob(struct bxe_softc *sc, uint32_t addr, const uint8_t *data)
{
IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
data = INIT_TSEM_INT_TABLE_DATA(sc);
else
IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
data = INIT_CSEM_INT_TABLE_DATA(sc);
else
IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
data = INIT_USEM_INT_TABLE_DATA(sc);
else
IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
data = INIT_XSEM_INT_TABLE_DATA(sc);
else
IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
data = INIT_TSEM_PRAM_DATA(sc);
else
IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
data = INIT_CSEM_PRAM_DATA(sc);
else
IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
data = INIT_USEM_PRAM_DATA(sc);
else
IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
data = INIT_XSEM_PRAM_DATA(sc);
return (data);
}
static void
bxe_write_big_buf_wb(struct bxe_softc *sc, uint32_t addr, uint32_t len)
{
if (sc->dmae_ready)
bxe_write_dmae_phys_len(sc, sc->gz_dma.paddr, addr, len);
else
bxe_init_ind_wr(sc, addr, sc->gz, len);
}
#define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap) \
do { \
memcpy(sc->gz, data, (len32)*4); \
bxe_write_big_buf_wb(sc, addr, len32); \
} while (0)
/*
*
* Returns:
* None.
*/
static void
bxe_init_wr_wb(struct bxe_softc *sc, uint32_t addr, const uint32_t *data,
uint32_t len)
{
const uint32_t *old_data;
DBENTER(BXE_INSANE_REGS);
old_data = data;
data = (const uint32_t *)bxe_sel_blob(sc, addr, (const uint8_t *)data);
if (sc->dmae_ready) {
if (old_data != data)
VIRT_WR_DMAE_LEN(sc, data, addr, len, 1);
else
VIRT_WR_DMAE_LEN(sc, data, addr, len, 0);
} else
bxe_init_ind_wr(sc, addr, data, len);
DBEXIT(BXE_INSANE_REGS);
}
static void
bxe_init_wr_zp(struct bxe_softc *sc, uint32_t addr, uint32_t len,
uint32_t blob_off)
{
BXE_PRINTF("%s(%d): Compressed FW is not supported yet. "
"ERROR: address:0x%x len:0x%x blob_offset:0x%x\n",
__FILE__, __LINE__, addr, len, blob_off);
}
/*
* Initialize blocks of the device.
*
* This routine basically performs bulk register programming for different
* blocks within the controller. The file bxe_init_values.h contains a
* series of register access operations (read, write, fill, etc.) as well
* as a BLOB of data to initialize multiple blocks within the controller.
* Block initialization may be supported by all controllers or by specific
* models only.
*
* Returns:
* None.
*/
static void
bxe_init_block(struct bxe_softc *sc, uint32_t block, uint32_t stage)
{
union init_op *op;
const uint32_t *data, *data_base;
uint32_t i, op_type, addr, len;
uint16_t op_end, op_start;
int hw_wr;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
op_start = INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
STAGE_START)];
op_end = INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage, STAGE_END)];
/* If empty block */
if (op_start == op_end)
return;
hw_wr = OP_WR_ASIC;
data_base = INIT_DATA(sc);
for (i = op_start; i < op_end; i++) {
op = (union init_op *)&(INIT_OPS(sc)[i]);
op_type = op->str_wr.op;
addr = op->str_wr.offset;
len = op->str_wr.data_len;
data = data_base + op->str_wr.data_off;
/* HW/EMUL specific */
if ((op_type > OP_WB) && (op_type == hw_wr))
op_type = OP_WR;
switch (op_type) {
case OP_RD:
REG_RD(sc, addr);
break;
case OP_WR:
REG_WR(sc, addr, op->write.val);
break;
case OP_SW:
bxe_init_str_wr(sc, addr, data, len);
break;
case OP_WB:
bxe_init_wr_wb(sc, addr, data, len);
break;
case OP_SI:
bxe_init_ind_wr(sc, addr, data, len);
break;
case OP_ZR:
bxe_init_fill(sc, addr, 0, op->zero.len);
break;
case OP_ZP:
bxe_init_wr_zp(sc, addr, len, op->str_wr.data_off);
break;
case OP_WR_64:
bxe_init_wr_64(sc, addr, data, len);
break;
default:
/* happens whenever an op is of a diff HW */
break;
}
}
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
}
/*
* Handles controller initialization when called from an unlocked routine.
* ifconfig calls this function.
*
* Returns:
* None.
*/
static void
bxe_init(void *xsc)
{
struct bxe_softc *sc;
sc = xsc;
BXE_CORE_LOCK(sc);
bxe_init_locked(sc, LOAD_NORMAL);
BXE_CORE_UNLOCK(sc);
}
/*
* Release all resources used by the driver.
*
* Releases all resources acquired by the driver including interrupts,
* interrupt handler, interfaces, mutexes, and DMA memory.
*
* Returns:
* None.
*/
static void
bxe_release_resources(struct bxe_softc *sc)
{
device_t dev;
DBENTER(BXE_VERBOSE_RESET | BXE_VERBOSE_UNLOAD);
dev = sc->dev;
/* Release the FreeBSD interface. */
if (sc->bxe_ifp != NULL)
if_free(sc->bxe_ifp);
/* Free the DMA resources. */
bxe_host_structures_free(sc);
#if __FreeBSD_version >= 800000
/* Free multiqueue buffer rings. */
bxe_free_buf_rings(sc);
#endif
}
/*
* Indirect register write.
*
* Writes NetXtreme II registers using an index/data register pair in PCI
* configuration space. Using this mechanism avoids issues with posted
* writes but is much slower than memory-mapped I/O.
*
* Returns:
* None.
*/
static void
bxe_reg_wr_ind(struct bxe_softc *sc, uint32_t offset, uint32_t val)
{
DBPRINT(sc, BXE_INSANE_REGS, "%s(); offset = 0x%08X, val = 0x%08X\n",
__FUNCTION__, offset, val);
pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, offset, 4);
pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
/* Return to a safe address. */
pci_write_config(sc->dev, PCICFG_GRC_ADDRESS,
PCICFG_VENDOR_ID_OFFSET, 4);
}
/*
* Indirect register read.
*
* Reads NetXtreme II registers using an index/data register pair in PCI
* configuration space. Using this mechanism avoids issues with posted
* reads but is much slower than memory-mapped I/O.
*
* Returns:
* The value of the register.
*/
static uint32_t
bxe_reg_rd_ind(struct bxe_softc *sc, uint32_t offset)
{
uint32_t val;
pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, offset, 4);
val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
/* Return to a safe address. */
pci_write_config(sc->dev, PCICFG_GRC_ADDRESS,
PCICFG_VENDOR_ID_OFFSET, 4);
DBPRINT(sc, BXE_INSANE_REGS, "%s(); offset = 0x%08X, val = 0x%08X\n",
__FUNCTION__, offset, val);
return (val);
}
static uint32_t dmae_reg_go_c[] = {
DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
};
/*
* Copy DMAE command into memory and start the command.
*
* Returns:
* None.
*/
static void
bxe_post_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int idx)
{
uint32_t cmd_offset;
int i;
cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
for (i = 0; i < (sizeof(struct dmae_command) / 4); i++) {
REG_WR(sc, cmd_offset + i * 4, *(((uint32_t *)dmae) + i));
DBPRINT(sc, BXE_INSANE_REGS, "%s(): DMAE cmd[%d].%d : 0x%08X\n",
__FUNCTION__, idx, i, cmd_offset + i * 4);
}
/* Kick off the command. */
REG_WR(sc, dmae_reg_go_c[idx], 1);
}
/*
* Perform a DMAE write to device memory.
*
* Some of the registers on the 577XX controller are 128bits wide. It is
* required that when accessing those registers that they be written
* atomically and that no intervening bus acceses to the device occur.
* This could be handled by a lock held across all driver instances for
* the device or it can be handled by performing a DMA operation when
* writing to the device. This code implements the latter.
*
* Returns:
* None.
*/
void
bxe_write_dmae(struct bxe_softc *sc, bus_addr_t dma_addr, uint32_t dst_addr,
uint32_t len32)
{
struct dmae_command dmae;
uint32_t *data, *wb_comp;
int timeout;
DBENTER(BXE_INSANE_REGS);
DBPRINT(sc, BXE_EXTREME_REGS,
"%s(): host addr = 0x%jX, device addr = 0x%08X, length = %d.\n",
__FUNCTION__, (uintmax_t)dma_addr, dst_addr, (int)len32);
wb_comp = BXE_SP(sc, wb_comp);
/* Fall back to indirect access if DMAE is not ready. */
if (!sc->dmae_ready) {
data = BXE_SP(sc, wb_data[0]);
DBPRINT(sc, BXE_WARN, "%s(): DMAE not ready, "
"using indirect.\n", __FUNCTION__);
bxe_init_ind_wr(sc, dst_addr, data, len32);
goto bxe_write_dmae_exit;
}
memset(&dmae, 0, sizeof(struct dmae_command));
dmae.opcode = (DMAE_CMD_SRC_PCI | DMAE_CMD_DST_GRC |
DMAE_CMD_C_DST_PCI | DMAE_CMD_C_ENABLE |
DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET |
#ifdef __BIG_ENDIAN
DMAE_CMD_ENDIANITY_B_DW_SWAP |
#else
DMAE_CMD_ENDIANITY_DW_SWAP |
#endif
(BP_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0) |
(BP_E1HVN(sc) << DMAE_CMD_E1HVN_SHIFT));
dmae.src_addr_lo = U64_LO(dma_addr);
dmae.src_addr_hi = U64_HI(dma_addr);
dmae.dst_addr_lo = dst_addr >> 2;
dmae.dst_addr_hi = 0;
dmae.len = len32;
dmae.comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
dmae.comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
dmae.comp_val = BXE_WB_COMP_VAL;
BXE_DMAE_LOCK(sc);
*wb_comp = 0;
bxe_post_dmae(sc, &dmae, INIT_DMAE_C(sc));
DELAY(50);
/* Wait up to 200ms. */
timeout = 4000;
while (*wb_comp != BXE_WB_COMP_VAL) {
if (!timeout) {
DBPRINT(sc, BXE_FATAL,
"%s(): DMAE timeout (dst_addr = 0x%08X, len = %d)!\n",
__FUNCTION__, dst_addr, len32);
break;
}
timeout--;
DELAY(50);
}
BXE_DMAE_UNLOCK(sc);
bxe_write_dmae_exit:
DBEXIT(BXE_INSANE_REGS);
}
/*
* Perform a DMAE read from to device memory.
*
* Some of the registers on the 577XX controller are 128bits wide. It is
* required that when accessing those registers that they be read
* atomically and that no intervening bus acceses to the device occur.
* This could be handled by a lock held across all driver instances for
* the device or it can be handled by performing a DMA operation when
* reading from the device. This code implements the latter.
*
* Returns:
* None.
*/
void
bxe_read_dmae(struct bxe_softc *sc, uint32_t src_addr,
uint32_t len32)
{
struct dmae_command dmae;
uint32_t *data, *wb_comp;
int i, timeout;
DBENTER(BXE_INSANE_REGS);
wb_comp = BXE_SP(sc, wb_comp);
/* Fall back to indirect access if DMAE is not ready. */
if (!sc->dmae_ready) {
data = BXE_SP(sc, wb_data[0]);
DBPRINT(sc, BXE_WARN, "%s(): DMAE not ready, "
"using indirect.\n", __FUNCTION__);
for (i = 0; i < len32; i++)
data[i] = bxe_reg_rd_ind(sc, src_addr + i * 4);
goto bxe_read_dmae_exit;
}
memset(&dmae, 0, sizeof(struct dmae_command));
dmae.opcode = (DMAE_CMD_SRC_GRC | DMAE_CMD_DST_PCI |
DMAE_CMD_C_DST_PCI | DMAE_CMD_C_ENABLE |
DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET |
#ifdef __BIG_ENDIAN
DMAE_CMD_ENDIANITY_B_DW_SWAP |
#else
DMAE_CMD_ENDIANITY_DW_SWAP |
#endif
(BP_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0) |
(BP_E1HVN(sc) << DMAE_CMD_E1HVN_SHIFT));
dmae.src_addr_lo = src_addr >> 2;
dmae.src_addr_hi = 0;
dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
dmae.len = len32;
dmae.comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
dmae.comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
dmae.comp_val = BXE_WB_COMP_VAL;
BXE_DMAE_LOCK(sc);
memset(BXE_SP(sc, wb_data[0]), 0, sizeof(uint32_t) * 4);
*wb_comp = 0;
bxe_post_dmae(sc, &dmae, INIT_DMAE_C(sc));
DELAY(50);
timeout = 4000;
while (*wb_comp != BXE_WB_COMP_VAL) {
if (!timeout) {
DBPRINT(sc, BXE_FATAL,
"%s(): DMAE timeout (src_addr = 0x%08X, len = %d)!\n",
__FUNCTION__, src_addr, len32);
break;
}
timeout--;
DELAY(50);
}
BXE_DMAE_UNLOCK(sc);
bxe_read_dmae_exit:
DBEXIT(BXE_INSANE_REGS);
}
/*
* DMAE write wrapper.
*
* Returns:
* None.
*/
static void
bxe_wb_wr(struct bxe_softc *sc, int reg, uint32_t val_hi, uint32_t val_lo)
{
uint32_t wb_write[2];
wb_write[0] = val_hi;
wb_write[1] = val_lo;
REG_WR_DMAE(sc, reg, wb_write, 2);
}
/*
* Poll a register waiting for a value.
*
* Returns:
* The last read register value.
*/
static __inline
uint32_t bxe_reg_poll(struct bxe_softc *sc, uint32_t reg, uint32_t expected,
int ms, int wait)
{
uint32_t val;
do {
val = REG_RD(sc, reg);
if (val == expected)
break;
ms -= wait;
DELAY(wait * 1000);
} while (ms > 0);
return (val);
}
/*
* Microcode assert display.
*
* This function walks through each STORM processor and prints out a
* listing of all asserts currently in effect. Useful for post-mortem
* debugging.
*
* Returns:
* The number of asserts detected.
*/
static int
bxe_mc_assert(struct bxe_softc *sc)
{
uint32_t row0, row1, row2, row3;
char last_idx;
int i, rc;
DBENTER(BXE_VERBOSE_INTR);
rc = 0;
/* XSTORM */
last_idx = REG_RD8(sc, BAR_XSTORM_INTMEM +
XSTORM_ASSERT_LIST_INDEX_OFFSET);
if (last_idx)
DBPRINT(sc, BXE_FATAL, "DATA XSTORM_ASSERT_LIST_INDEX 0x%x\n",
last_idx);
/* Print the asserts */
for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
row0 = REG_RD(sc, BAR_XSTORM_INTMEM +
XSTORM_ASSERT_LIST_OFFSET(i));
row1 = REG_RD(sc, BAR_XSTORM_INTMEM +
XSTORM_ASSERT_LIST_OFFSET(i) + 4);
row2 = REG_RD(sc, BAR_XSTORM_INTMEM +
XSTORM_ASSERT_LIST_OFFSET(i) + 8);
row3 = REG_RD(sc, BAR_XSTORM_INTMEM +
XSTORM_ASSERT_LIST_OFFSET(i) + 12);
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
DBPRINT(sc, BXE_FATAL, "DATA XSTORM_ASSERT_INDEX %d = "
"0x%08x 0x%08x 0x%08x 0x%08x\n", i, row3, row2,
row1, row0);
rc++;
} else
break;
}
/* TSTORM */
last_idx = REG_RD8(sc, BAR_TSTORM_INTMEM +
TSTORM_ASSERT_LIST_INDEX_OFFSET);
if (last_idx)
DBPRINT(sc, BXE_FATAL, "DATA TSTORM_ASSERT_LIST_INDEX 0x%x\n",
last_idx);
/* Print the asserts */
for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
row0 = REG_RD(sc, BAR_TSTORM_INTMEM +
TSTORM_ASSERT_LIST_OFFSET(i));
row1 = REG_RD(sc, BAR_TSTORM_INTMEM +
TSTORM_ASSERT_LIST_OFFSET(i) + 4);
row2 = REG_RD(sc, BAR_TSTORM_INTMEM +
TSTORM_ASSERT_LIST_OFFSET(i) + 8);
row3 = REG_RD(sc, BAR_TSTORM_INTMEM +
TSTORM_ASSERT_LIST_OFFSET(i) + 12);
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
DBPRINT(sc, BXE_FATAL, "DATA TSTORM_ASSERT_INDEX %d = "
"0x%08x 0x%08x 0x%08x 0x%08x\n", i, row3, row2,
row1, row0);
rc++;
} else
break;
}
/* CSTORM */
last_idx = REG_RD8(sc, BAR_CSTORM_INTMEM +
CSTORM_ASSERT_LIST_INDEX_OFFSET);
if (last_idx)
DBPRINT(sc, BXE_FATAL, "DATA CSTORM_ASSERT_LIST_INDEX 0x%x\n",
last_idx);
/* Print the asserts */
for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
row0 = REG_RD(sc, BAR_CSTORM_INTMEM +
CSTORM_ASSERT_LIST_OFFSET(i));
row1 = REG_RD(sc, BAR_CSTORM_INTMEM +
CSTORM_ASSERT_LIST_OFFSET(i) + 4);
row2 = REG_RD(sc, BAR_CSTORM_INTMEM +
CSTORM_ASSERT_LIST_OFFSET(i) + 8);
row3 = REG_RD(sc, BAR_CSTORM_INTMEM +
CSTORM_ASSERT_LIST_OFFSET(i) + 12);
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
DBPRINT(sc, BXE_FATAL, "DATA CSTORM_ASSERT_INDEX %d = "
"0x%08x 0x%08x 0x%08x 0x%08x\n", i, row3, row2,
row1, row0);
rc++;
} else
break;
}
/* USTORM */
last_idx = REG_RD8(sc, BAR_USTORM_INTMEM +
USTORM_ASSERT_LIST_INDEX_OFFSET);
if (last_idx)
DBPRINT(sc, BXE_FATAL, "DATA USTORM_ASSERT_LIST_INDEX 0x%x\n",
last_idx);
/* Print the asserts */
for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
row0 = REG_RD(sc, BAR_USTORM_INTMEM +
USTORM_ASSERT_LIST_OFFSET(i));
row1 = REG_RD(sc, BAR_USTORM_INTMEM +
USTORM_ASSERT_LIST_OFFSET(i) + 4);
row2 = REG_RD(sc, BAR_USTORM_INTMEM +
USTORM_ASSERT_LIST_OFFSET(i) + 8);
row3 = REG_RD(sc, BAR_USTORM_INTMEM +
USTORM_ASSERT_LIST_OFFSET(i) + 12);
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
DBPRINT(sc, BXE_FATAL, "DATA USTORM_ASSERT_INDEX %d = "
"0x%08x 0x%08x 0x%08x 0x%08x\n", i, row3, row2,
row1, row0);
rc++;
} else
break;
}
DBEXIT(BXE_VERBOSE_INTR);
return (rc);
}
/*
* Perform a panic dump.
*
* Returns:
* None
*/
static void
bxe_panic_dump(struct bxe_softc *sc)
{
DBENTER(BXE_FATAL);
sc->stats_state = STATS_STATE_DISABLED;
BXE_PRINTF("---------- Begin crash dump ----------\n");
/* Idle check is run twice to verify the controller has stopped. */
bxe_idle_chk(sc);
bxe_idle_chk(sc);
bxe_mc_assert(sc);
#ifdef BXE_DEBUG
bxe_breakpoint(sc);
#endif
BXE_PRINTF("---------- End crash dump ----------\n");
DBEXIT(BXE_FATAL);
}
/*
* Enables interrupt generation.
*
* Returns:
* None.
*/
static void
bxe_int_enable(struct bxe_softc *sc)
{
uint32_t hc_addr, val;
int port;
DBENTER(BXE_VERBOSE_INTR);
port = BP_PORT(sc);
hc_addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
val = REG_RD(sc, hc_addr);
if (sc->msix_count > 0) {
if (sc->msix_count == 1) {
/* Single interrupt, multiple queues.*/
DBPRINT(sc, BXE_VERBOSE_INTR,
"%s(): Setting host coalescing registers for MSI-X (SIMQ).\n",
__FUNCTION__);
/* Clear INTx. */
val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
/* Enable single ISR mode, MSI/MSI-X, and attention messages. */
val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
} else {
/* Multiple interrupts, multiple queues.*/
DBPRINT(sc, BXE_VERBOSE_INTR,
"%s(): Setting host coalescing registers for MSI-X (MIMQ).\n",
__FUNCTION__);
/* Clear single ISR mode and INTx. */
val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0);
/* Enable MSI/MSI-X and attention messages. */
val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
}
} else if (sc->msi_count > 0) {
if (sc->msi_count == 1) {
/* Single interrupt, multiple queues.*/
DBPRINT(sc, BXE_VERBOSE_INTR,
"%s(): Setting host coalescing registers for MSI (SIMQ).\n",
__FUNCTION__);
/* Clear INTx. */
val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
/* Enable single ISR mode, MSI/MSI-X, and attention
* messages.
*/
val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
} else {
/* Multiple interrupts, multiple queues.*/
DBPRINT(sc, BXE_VERBOSE_INTR,
"%s(): Setting host coalescing registers for"
"MSI (MIMQ).\n",
__FUNCTION__);
/* Clear single ISR mode and INTx. */
val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0);
/* Enable MSI/MSI-X and attention messages. */
val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
}
} else {
/* Single interrupt, single queue. */
DBPRINT(sc, BXE_VERBOSE_INTR,
"%s(): Setting host coalescing registers for INTA#.\n",
__FUNCTION__);
val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0 |
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
REG_WR(sc, hc_addr, val);
val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
}
/* Write the interrupt mode to the host coalescing block. */
REG_WR(sc, hc_addr, val);
if (CHIP_IS_E1H(sc)) {
/* Init leading/trailing edge attention generation. */
if (IS_E1HMF(sc)) {
val = (0xee0f | (1 << (BP_E1HVN(sc) + 4)));
/*
* Check if this driver instance is the port
* master function.
*/
if (sc->port.pmf)
/* Enable nig & GPIO3 attentions. */
val |= 0x1100;
} else
val = 0xffff;
REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, val);
REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, val);
}
DBEXIT(BXE_VERBOSE_INTR);
}
/*
* Disables interrupt generation.
*
* Returns:
* None.
*/
static void
bxe_int_disable(struct bxe_softc *sc)
{
uint32_t hc_addr, val;
int port;
DBENTER(BXE_VERBOSE_INTR | BXE_VERBOSE_RESET | BXE_VERBOSE_UNLOAD);
port = BP_PORT(sc);
hc_addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
val = REG_RD(sc, hc_addr);
val &= ~(HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0);
REG_WR(sc, hc_addr, val);
if (REG_RD(sc, hc_addr)!= val) {
DBPRINT(sc, BXE_WARN, "%s(): BUG! Returned value from IGU "
"doesn't match value written (0x%08X).\n",
__FUNCTION__, val);
}
DBEXIT(BXE_VERBOSE_INTR | BXE_VERBOSE_RESET | BXE_VERBOSE_UNLOAD);
}
#define BXE_CRC32_RESIDUAL 0xdebb20e3
/*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_nvram_acquire_lock(struct bxe_softc *sc)
{
uint32_t val;
int i, port, rc;
DBENTER(BXE_VERBOSE_NVRAM);
port = BP_PORT(sc);
rc = 0;
val = 0;
/* Acquire the NVRAM lock. */
REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
(MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
for (i = 0; i < NVRAM_TIMEOUT_COUNT * 10; i++) {
val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))
break;
DELAY(5);
}
if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
DBPRINT(sc, BXE_WARN, "%s(): Cannot acquire NVRAM lock!\n",
__FUNCTION__);
rc = EBUSY;
}
DBEXIT(BXE_VERBOSE_NVRAM);
return (rc);
}
/*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_nvram_release_lock(struct bxe_softc *sc)
{
uint32_t val;
int i, port, rc;
DBENTER(BXE_VERBOSE_NVRAM);
port = BP_PORT(sc);
rc = 0;
val = 0;
/* Release the NVRAM lock. */
REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
(MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
for (i = 0; i < NVRAM_TIMEOUT_COUNT * 10; i++) {
val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)))
break;
DELAY(5);
}
if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
DBPRINT(sc, BXE_WARN, "%s(): Cannot release NVRAM lock!\n",
__FUNCTION__);
rc = EBUSY;
}
DBEXIT(BXE_VERBOSE_NVRAM);
return (rc);
}
/*
* Returns:
* None.
*/
static void
bxe_nvram_enable_access(struct bxe_softc *sc)
{
uint32_t val;
DBENTER(BXE_VERBOSE_NVRAM);
val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
/* Enable both bits, even on read */
REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
(val | MCPR_NVM_ACCESS_ENABLE_EN |
MCPR_NVM_ACCESS_ENABLE_WR_EN));
DBEXIT(BXE_VERBOSE_NVRAM);
}
/*
* Returns:
* None.
*/
static void
bxe_nvram_disable_access(struct bxe_softc *sc)
{
uint32_t val;
DBENTER(BXE_VERBOSE_NVRAM);
val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
/* Disable both bits, even after read. */
REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
(val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
MCPR_NVM_ACCESS_ENABLE_WR_EN)));
DBEXIT(BXE_VERBOSE_NVRAM);
}
/*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_nvram_read_dword(struct bxe_softc *sc, uint32_t offset, uint32_t *ret_val,
uint32_t cmd_flags)
{
uint32_t val;
int i, rc;
DBENTER(BXE_INSANE_NVRAM);
/* Build the command word. */
cmd_flags |= MCPR_NVM_COMMAND_DOIT;
/* Need to clear DONE bit separately. */
REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
/* Address within the NVRAM to read. */
REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
(offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
/* Issue a read command. */
REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
/* Wait for completion. */
*ret_val = 0;
rc = EBUSY;
for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
DELAY(5);
val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
if (val & MCPR_NVM_COMMAND_DONE) {
val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
val = htobe32(val);
*ret_val = val;
rc = 0;
break;
}
}
DBPRINT(sc, BXE_INSANE_NVRAM, "%s(): Read 0x%08X from offset 0x%08X.\n",
__FUNCTION__, *ret_val, offset);
DBEXIT(BXE_INSANE_NVRAM);
return (rc);
}
/*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_nvram_read(struct bxe_softc *sc, uint32_t offset, uint8_t *ret_buf,
int buf_size)
{
uint32_t cmd_flags, val;
int rc;
DBENTER(BXE_EXTREME_NVRAM);
if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
DBPRINT(sc, BXE_WARN, "%s(): Unaligned address or invalid "
"buffer for NVRAM read (offset = 0x%08X, buf_size = %d)!\n",
__FUNCTION__, offset, buf_size);
rc = EINVAL;
goto bxe_nvram_read_exit;
}
if (offset + buf_size > sc->common.flash_size) {
DBPRINT(sc, BXE_WARN, "%s(): Read extends beyond the end of "
"the NVRAM (offset (0x%08X) + buf_size (%d) > flash_size "
"(0x%08X))!\n", __FUNCTION__, offset, buf_size,
sc->common.flash_size);
rc = EINVAL;
goto bxe_nvram_read_exit;
}
rc = bxe_nvram_acquire_lock(sc);
if (rc)
goto bxe_nvram_read_exit;
bxe_nvram_enable_access(sc);
/* Read the first word(s). */
cmd_flags = MCPR_NVM_COMMAND_FIRST;
while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
memcpy(ret_buf, &val, 4);
/* Advance to the next DWORD. */
offset += sizeof(uint32_t);
ret_buf += sizeof(uint32_t);
buf_size -= sizeof(uint32_t);
cmd_flags = 0;
}
/* Read the final word. */
if (rc == 0) {
cmd_flags |= MCPR_NVM_COMMAND_LAST;
rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
memcpy(ret_buf, &val, 4);
}
/* Disable access to NVRAM interface. */
bxe_nvram_disable_access(sc);
bxe_nvram_release_lock(sc);
bxe_nvram_read_exit:
DBEXIT(BXE_EXTREME_NVRAM);
return (rc);
}
#ifdef BXE_NVRAM_WRITE_SUPPORT
/*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_nvram_write_dword(struct bxe_softc *sc, uint32_t offset, uint32_t val,
uint32_t cmd_flags)
{
int i, rc;
DBENTER(BXE_VERBOSE_NVRAM);
/* Build the command word. */
cmd_flags |= MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR;
/* Need to clear DONE bit separately. */
REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
/* Write the data. */
REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
/* Address to write within the NVRAM. */
REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
(offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
/* Issue the write command. */
REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
/* Wait for completion. */
rc = EBUSY;
for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
DELAY(5);
val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
if (val & MCPR_NVM_COMMAND_DONE) {
rc = 0;
break;
}
}
DBEXIT(BXE_VERBOSE_NVRAM);
return (rc);
}
#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
/*
* Returns:
*
*/
static int
bxe_nvram_write1(struct bxe_softc *sc, uint32_t offset, uint8_t *data_buf,
int buf_size)
{
uint32_t align_offset, cmd_flags, val;
int rc;
DBENTER(BXE_VERBOSE_NVRAM);
if (offset + buf_size > sc->common.flash_size) {
DBPRINT(sc, BXE_WARN, "%s(): Write extends beyond the end of "
"the NVRAM (offset (0x%08X) + buf_size (%d) > flash_size "
"(0x%08X))!\n", __FUNCTION__, offset, buf_size,
sc->common.flash_size);
rc = EINVAL;
goto bxe_nvram_write1_exit;
}
/* request access to nvram interface */
rc = bxe_nvram_acquire_lock(sc);
if (rc)
goto bxe_nvram_write1_exit;
/* Enable access to the NVRAM interface. */
bxe_nvram_enable_access(sc);
cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
align_offset = (offset & ~0x03);
rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
if (rc == 0) {
val &= ~(0xff << BYTE_OFFSET(offset));
val |= (*data_buf << BYTE_OFFSET(offset));
val = be32toh(val);
rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
}
/* Disable access to the NVRAM interface. */
bxe_nvram_disable_access(sc);
bxe_nvram_release_lock(sc);
bxe_nvram_write1_exit:
DBEXIT(BXE_VERBOSE_NVRAM);
return (rc);
}
/*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_nvram_write(struct bxe_softc *sc, uint32_t offset, uint8_t *data_buf,
int buf_size)
{
uint32_t cmd_flags, val, written_so_far;
int rc;
rc = 0;
if (buf_size == 1)
return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
DBPRINT(sc, BXE_WARN, "%s(): Unaligned address or invalid "
"buffer for NVRAM write "
"(offset = 0x%08X, buf_size = %d)!\n", __FUNCTION__,
offset, buf_size);
rc = EINVAL;
goto bxe_nvram_write_exit;
}
if (offset + buf_size > sc->common.flash_size) {
DBPRINT(sc, BXE_WARN, "%s(): Write extends beyond the end of "
"the NVRAM (offset (0x%08X) + buf_size (%d) > flash_size "
"(0x%08X))!\n", __FUNCTION__, offset, buf_size,
sc->common.flash_size);
rc = EINVAL;
goto bxe_nvram_write_exit;
}
/* Request access to NVRAM interface. */
rc = bxe_nvram_acquire_lock(sc);
if (rc)
goto bxe_nvram_write_exit;
/* Enable access to the NVRAM interface. */
bxe_nvram_enable_access(sc);
written_so_far = 0;
cmd_flags = MCPR_NVM_COMMAND_FIRST;
while ((written_so_far < buf_size) && (rc == 0)) {
if (written_so_far == (buf_size - sizeof(uint32_t)))
cmd_flags |= MCPR_NVM_COMMAND_LAST;
else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0)
cmd_flags |= MCPR_NVM_COMMAND_LAST;
else if ((offset % NVRAM_PAGE_SIZE) == 0)
cmd_flags |= MCPR_NVM_COMMAND_FIRST;
memcpy(&val, data_buf, 4);
rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
/* Advance to the next DWORD. */
offset += sizeof(uint32_t);
data_buf += sizeof(uint32_t);
written_so_far += sizeof(uint32_t);
cmd_flags = 0;
}
/* Disable access to the NVRAM interface. */
bxe_nvram_disable_access(sc);
bxe_nvram_release_lock(sc);
bxe_nvram_write_exit:
DBEXIT(BXE_VERBOSE_NVRAM);
return (rc);
}
#endif
/*
* This function validates NVRAM content by reading spcific
* regions and validating that the NVRAM checksum matches the
* actual content.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_nvram_test(struct bxe_softc *sc)
{
static const struct {
int offset;
int size;
} nvram_tbl[] = {
{ 0, 0x14 }, /* bootstrap area*/
{ 0x14, 0xec }, /* directory area */
{ 0x100, 0x350 }, /* manuf_info */
{ 0x450, 0xf0 }, /* feature_info */
{ 0x640, 0x64 }, /* upgrade_key_info */
{ 0x708, 0x70 }, /* manuf_key_info */
{ 0, 0 }
};
uint32_t magic, csum, buf[0x350 / 4];
uint8_t *data;
int i, rc;
DBENTER(BXE_VERBOSE_NVRAM);
data = (uint8_t *) buf;
/* Read the DWORD at offset 0 in NVRAM. */
rc = bxe_nvram_read(sc, 0, data, 4);
if (rc) {
BXE_PRINTF("%s(%d): Error (%d) returned reading NVRAM!\n",
__FILE__, __LINE__, rc);
goto bxe_nvram_test_exit;
}
/* Make sure we found our magic value. */
magic = be32toh(buf[0]);
if (magic != 0x669955aa) {
BXE_PRINTF("%s(%d): Invalid magic value (0x%08x) found!\n",
__FILE__, __LINE__, magic);
rc = ENODEV;
goto bxe_nvram_test_exit;
}
/* Read through each region in NVRAM and validate the checksum. */
for (i = 0; nvram_tbl[i].size; i++) {
DBPRINT(sc, BXE_VERBOSE_NVRAM, "%s(): Testing NVRAM region %d, "
"starting offset = %d, length = %d\n", __FUNCTION__, i,
nvram_tbl[i].offset, nvram_tbl[i].size);
rc = bxe_nvram_read(sc, nvram_tbl[i].offset, data,
nvram_tbl[i].size);
if (rc) {
BXE_PRINTF("%s(%d): Error (%d) returned reading NVRAM "
"region %d!\n", __FILE__, __LINE__, rc, i);
goto bxe_nvram_test_exit;
}
csum = ether_crc32_le(data, nvram_tbl[i].size);
if (csum != BXE_CRC32_RESIDUAL) {
BXE_PRINTF("%s(%d): Checksum error (0x%08X) for NVRAM "
"region %d!\n", __FILE__, __LINE__, csum, i);
rc = ENODEV;
goto bxe_nvram_test_exit;
}
}
bxe_nvram_test_exit:
DBEXIT(BXE_VERBOSE_NVRAM);
return (rc);
}
/*
* Acknowledge status block and modify interrupt mode.
*
* Returns:
* None.
*/
static __inline void
bxe_ack_sb(struct bxe_softc *sc, uint8_t sb_id, uint8_t storm, uint16_t index,
uint8_t int_mode, uint8_t update)
{
struct igu_ack_register igu_ack;
uint32_t hc_addr;
hc_addr = (HC_REG_COMMAND_REG + BP_PORT(sc) * 32 + COMMAND_REG_INT_ACK);
igu_ack.status_block_index = index;
igu_ack.sb_id_and_flags =
((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
(storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
(update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
(int_mode << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
rmb();
REG_WR(sc, hc_addr, (*(uint32_t *) &igu_ack));
wmb();
}
/*
* Update fastpath status block index.
*
* Returns:
* 0 = Nu completes, 1 = TX completes, 2 = RX completes,
* 3 = RX & TX completes
*/
static __inline uint16_t
bxe_update_fpsb_idx(struct bxe_fastpath *fp)
{
struct host_status_block *fpsb;
uint16_t rc;
fpsb = fp->status_block;
rc = 0;
rmb();
/* Check for any CSTORM transmit completions. */
if (fp->fp_c_idx != le16toh(fpsb->c_status_block.status_block_index)) {
fp->fp_c_idx = le16toh(fpsb->c_status_block.status_block_index);
rc |= 0x1;
}
/* Check for any USTORM receive completions. */
if (fp->fp_u_idx != le16toh(fpsb->u_status_block.status_block_index)) {
fp->fp_u_idx = le16toh(fpsb->u_status_block.status_block_index);
rc |= 0x2;
}
return (rc);
}
/*
* Acknowledge interrupt.
*
* Returns:
* Interrupt value read from IGU.
*/
static uint16_t
bxe_ack_int(struct bxe_softc *sc)
{
uint32_t hc_addr, result;
hc_addr = HC_REG_COMMAND_REG + BP_PORT(sc) * 32 + COMMAND_REG_SIMD_MASK;
result = REG_RD(sc, hc_addr);
DBPRINT(sc, BXE_INSANE_INTR, "%s(): Read 0x%08X from HC addr 0x%08X\n",
__FUNCTION__, result, hc_addr);
return (result);
}
/*
* Slowpath event handler.
*
* Checks that a ramrod completion occurs while the
* controller is in the proper state.
*
* Returns:
* None.
*/
static void
bxe_sp_event(struct bxe_fastpath *fp, union eth_rx_cqe *rr_cqe)
{
struct bxe_softc *sc;
int cid, command;
sc = fp->sc;
DBENTER(BXE_VERBOSE_RAMROD);
cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
DBPRINT(sc, BXE_VERBOSE_RAMROD, "%s(): CID = %d, ramrod command = %d, "
"device state = 0x%08X, fp[%02d].state = 0x%08X, type = %d\n",
__FUNCTION__, cid, command, sc->state, fp->index, fp->state,
rr_cqe->ramrod_cqe.ramrod_type);
/* Free up an entry on the slowpath queue. */
sc->spq_left++;
/* Handle ramrod commands that completed on a client connection. */
if (fp->index) {
/* Check for a completion for the current state. */
switch (command | fp->state) {
case (RAMROD_CMD_ID_ETH_CLIENT_SETUP | BXE_FP_STATE_OPENING):
DBPRINT(sc, BXE_VERBOSE_RAMROD,
"%s(): Completed fp[%02d] CLIENT_SETUP Ramrod.\n",
__FUNCTION__, cid);
fp->state = BXE_FP_STATE_OPEN;
break;
case (RAMROD_CMD_ID_ETH_HALT | BXE_FP_STATE_HALTING):
DBPRINT(sc, BXE_VERBOSE_RAMROD,
"%s(): Completed fp[%02d] ETH_HALT ramrod\n",
__FUNCTION__, cid);
fp->state = BXE_FP_STATE_HALTED;
break;
default:
DBPRINT(sc, BXE_VERBOSE_RAMROD,
"%s(): Unexpected microcode reply (%d) while "
"in state 0x%04X!\n", __FUNCTION__, command,
fp->state);
}
goto bxe_sp_event_exit;
}
/* Handle ramrod commands that completed on the leading connection. */
switch (command | sc->state) {
case (RAMROD_CMD_ID_ETH_PORT_SETUP | BXE_STATE_OPENING_WAIT4_PORT):
DBPRINT(sc, BXE_VERBOSE_RAMROD,
"%s(): Completed PORT_SETUP ramrod.\n", __FUNCTION__);
sc->state = BXE_STATE_OPEN;
break;
case (RAMROD_CMD_ID_ETH_HALT | BXE_STATE_CLOSING_WAIT4_HALT):
DBPRINT(sc, BXE_VERBOSE_RAMROD,
"%s(): Completed ETH_HALT ramrod.\n", __FUNCTION__);
sc->state = BXE_STATE_CLOSING_WAIT4_DELETE;
fp->state = BXE_FP_STATE_HALTED;
break;
case (RAMROD_CMD_ID_ETH_CFC_DEL | BXE_STATE_CLOSING_WAIT4_HALT):
DBPRINT(sc, BXE_VERBOSE_RAMROD,
"%s(): Completed fp[%02d] ETH_CFC_DEL ramrod.\n",
__FUNCTION__, cid);
sc->fp[cid].state = BXE_FP_STATE_CLOSED;
break;
case (RAMROD_CMD_ID_ETH_SET_MAC | BXE_STATE_OPEN):
DBPRINT(sc, BXE_VERBOSE_RAMROD,
"%s(): Completed ETH_SET_MAC ramrod in STATE_OPEN state.\n",
__FUNCTION__);
break;
case (RAMROD_CMD_ID_ETH_SET_MAC | BXE_STATE_CLOSING_WAIT4_HALT):
DBPRINT(sc, BXE_VERBOSE_RAMROD,
"%s(): Completed ETH_SET_MAC ramrod in "
"CLOSING_WAIT4_HALT state.\n", __FUNCTION__);
break;
default:
DBPRINT(sc, BXE_FATAL, "%s(): Unexpected microcode reply (%d)! "
"State is 0x%08X\n", __FUNCTION__, command, sc->state);
}
bxe_sp_event_exit:
/* Force bxe_wait_ramrod() to see the change. */
mb();
DBEXIT(BXE_VERBOSE_RAMROD);
}
/*
* Lock access to a hardware resource using controller arbitration
* register.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_acquire_hw_lock(struct bxe_softc *sc, uint32_t resource)
{
uint32_t hw_lock_control_reg, lock_status, resource_bit;
uint8_t func;
int cnt, rc;
DBENTER(BXE_VERBOSE_MISC);
DBPRINT(sc, BXE_VERBOSE_MISC, "%s(): Locking resource 0x%08X\n",
__FUNCTION__, resource);
func = BP_FUNC(sc);
resource_bit = 1 << resource;
rc = 0;
hw_lock_control_reg = ((func <= 5) ?
(MISC_REG_DRIVER_CONTROL_1 + func * 8) :
(MISC_REG_DRIVER_CONTROL_7 + (func - 6) * 8));
/* Validating that the resource is within range. */
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
DBPRINT(sc, BXE_WARN, "%s(): Resource is out of range! "
"resource(0x%08X) > HW_LOCK_MAX_RESOURCE_VALUE(0x%08X)\n",
__FUNCTION__, resource, HW_LOCK_MAX_RESOURCE_VALUE);
rc = EINVAL;
goto bxe_acquire_hw_lock_exit;
}
/* Validating that the resource is not already taken. */
lock_status = REG_RD(sc, hw_lock_control_reg);
if (lock_status & resource_bit) {
DBPRINT(sc, BXE_WARN, "%s(): Failed to acquire lock! "
"lock_status = 0x%08X, resource_bit = 0x%08X\n",
__FUNCTION__, lock_status, resource_bit);
rc = EEXIST;
goto bxe_acquire_hw_lock_exit;
}
/* Try for 5 seconds every 5ms. */
for (cnt = 0; cnt < 1000; cnt++) {
/* Try to acquire the lock. */
REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
lock_status = REG_RD(sc, hw_lock_control_reg);
if (lock_status & resource_bit)
goto bxe_acquire_hw_lock_exit;
DELAY(5000);
}
DBPRINT(sc, BXE_WARN, "%s(): Timeout!\n", __FUNCTION__);
rc = EAGAIN;
bxe_acquire_hw_lock_exit:
DBEXIT(BXE_VERBOSE_MISC);
return (rc);
}
/*
* Unlock access to a hardware resource using controller arbitration
* register.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_release_hw_lock(struct bxe_softc *sc, uint32_t resource)
{
uint32_t hw_lock_control_reg, lock_status, resource_bit;
uint8_t func;
int rc;
DBENTER(BXE_VERBOSE_MISC);
DBPRINT(sc, BXE_VERBOSE_MISC, "%s(): Unlocking resource 0x%08X\n",
__FUNCTION__, resource);
resource_bit = 1 << resource;
func = BP_FUNC(sc);
rc = 0;
/* Validating that the resource is within range */
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
DBPRINT(sc, BXE_WARN, "%s(): Resource is out of range! "
"resource(0x%08X) > HW_LOCK_MAX_RESOURCE_VALUE(0x%08X)\n",
__FUNCTION__, resource, HW_LOCK_MAX_RESOURCE_VALUE);
rc = EINVAL;
goto bxe_release_hw_lock_exit;
}
/* Find the register for the resource lock. */
hw_lock_control_reg = ((func <= 5) ?
(MISC_REG_DRIVER_CONTROL_1 + func * 8) :
(MISC_REG_DRIVER_CONTROL_7 + (func - 6) * 8));
/* Validating that the resource is currently taken */
lock_status = REG_RD(sc, hw_lock_control_reg);
if (!(lock_status & resource_bit)) {
DBPRINT(sc, BXE_WARN, "%s(): The resource is not currently "
"locked! lock_status = 0x%08X, resource_bit = 0x%08X\n",
__FUNCTION__, lock_status, resource_bit);
rc = EFAULT;
goto bxe_release_hw_lock_exit;
}
/* Free the hardware lock. */
REG_WR(sc, hw_lock_control_reg, resource_bit);
bxe_release_hw_lock_exit:
DBEXIT(BXE_VERBOSE_MISC);
return (rc);
}
int
bxe_get_gpio(struct bxe_softc *sc, int gpio_num, uint8_t port)
{
uint32_t gpio_mask, gpio_reg;
int gpio_port, gpio_shift, value;
/* The GPIO should be swapped if swap register is set and active */
gpio_port = (REG_RD(sc, NIG_REG_PORT_SWAP) && REG_RD(sc,
NIG_REG_STRAP_OVERRIDE)) ^ port;
gpio_shift = gpio_num +
(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
gpio_mask = 1 << gpio_shift;
if (gpio_num > MISC_REGISTERS_GPIO_3) {
DBPRINT(sc, BXE_WARN, "%s(): Invalid GPIO %d\n",
__FUNCTION__, gpio_num);
return (-EINVAL);
}
/* read GPIO value */
gpio_reg = REG_RD(sc, MISC_REG_GPIO);
/* get the requested pin value */
if ((gpio_reg & gpio_mask) == gpio_mask)
value = 1;
else
value = 0;
DBPRINT(sc, BXE_VERBOSE_PHY, "pin %d value 0x%x\n", gpio_num, value);
return (value);
}
/*
* Sets the state of a General Purpose I/O (GPIO).
*
* Returns:
* None.
*/
int
bxe_set_gpio(struct bxe_softc *sc, int gpio_num, uint32_t mode, uint8_t port)
{
uint32_t gpio_reg, gpio_mask;
int gpio_port, gpio_shift, rc;
DBENTER(BXE_VERBOSE_MISC);
/* The GPIO should be swapped if swap register is set and active. */
gpio_port = (REG_RD(sc, NIG_REG_PORT_SWAP) && REG_RD(sc,
NIG_REG_STRAP_OVERRIDE)) ^ port;
gpio_shift = gpio_num +
(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
gpio_mask = (1 << gpio_shift);
rc = 0;
if (gpio_num > MISC_REGISTERS_GPIO_3) {
DBPRINT(sc, BXE_FATAL, "%s(): Invalid GPIO (%d)!\n",
__FUNCTION__, gpio_num);
rc = EINVAL;
goto bxe_set_gpio_exit;
}
/* Make sure no one else is trying to use the GPIO. */
rc = bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
if (rc) {
DBPRINT(sc, BXE_WARN, "%s(): Can't acquire GPIO lock!\n",
__FUNCTION__);
goto bxe_set_gpio_exit;
}
/* Read GPIO and mask all but the float bits. */
gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
switch (mode) {
case MISC_REGISTERS_GPIO_OUTPUT_LOW:
DBPRINT(sc, BXE_VERBOSE, "%s(): Set GPIO %d (shift %d) -> "
"output low\n", __FUNCTION__, gpio_num, gpio_shift);
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
break;
case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
DBPRINT(sc, BXE_VERBOSE, "%s(): Set GPIO %d (shift %d) -> "
"output high\n", __FUNCTION__, gpio_num, gpio_shift);
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
break;
case MISC_REGISTERS_GPIO_INPUT_HI_Z:
DBPRINT(sc, BXE_VERBOSE, "%s(): Set GPIO %d (shift %d) -> "
"input\n", __FUNCTION__, gpio_num, gpio_shift);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
break;
default:
DBPRINT(sc, BXE_FATAL, "%s(): Unknown GPIO mode (0x%08X)!\n",
__FUNCTION__, mode);
break;
}
REG_WR(sc, MISC_REG_GPIO, gpio_reg);
rc = bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
if (rc) {
DBPRINT(sc, BXE_WARN, "%s(): Can't release GPIO lock!\n",
__FUNCTION__);
}
bxe_set_gpio_exit:
DBEXIT(BXE_VERBOSE_MISC);
return (rc);
}
int
bxe_set_gpio_int(struct bxe_softc *sc, int gpio_num, uint32_t mode,
uint8_t port)
{
uint32_t gpio_mask, gpio_reg;
int gpio_port, gpio_shift;
/* The GPIO should be swapped if swap register is set and active */
gpio_port = (REG_RD(sc, NIG_REG_PORT_SWAP) && REG_RD(sc,
NIG_REG_STRAP_OVERRIDE)) ^ port;
gpio_shift = gpio_num +
(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
gpio_mask = (1 << gpio_shift);
if (gpio_num > MISC_REGISTERS_GPIO_3) {
DBPRINT(sc, BXE_WARN, "%s(): Invalid GPIO %d\n",
__FUNCTION__, gpio_num);
return (-EINVAL);
}
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
/* read GPIO int */
gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
switch (mode) {
case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
DBPRINT(sc, BXE_VERBOSE_PHY, "Clear GPIO INT %d (shift %d) -> "
"output low\n", gpio_num, gpio_shift);
/* clear SET and set CLR */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
break;
case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
DBPRINT(sc, BXE_VERBOSE_PHY, "Set GPIO INT %d (shift %d) -> "
"output high\n", gpio_num, gpio_shift);
/* clear CLR and set SET */
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
break;
default:
break;
}
REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
return (0);
}
/*
* Sets the state of a Shared Purpose I/O (SPIO).
*
* Returns:
* 0 = Success, !0 = Failure.
*/
int
bxe_set_spio(struct bxe_softc *sc, int spio_num, uint32_t mode)
{
uint32_t spio_reg, spio_mask;
int rc;
rc = 0;
spio_mask = 1 << spio_num;
/* Validate the SPIO. */
if ((spio_num < MISC_REGISTERS_SPIO_4) ||
(spio_num > MISC_REGISTERS_SPIO_7)) {
DBPRINT(sc, BXE_WARN, "%s(): Invalid SPIO (%d)!\n",
__FUNCTION__, spio_num);
rc = EINVAL;
goto bxe_set_spio_exit;
}
rc = bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
if (rc) {
DBPRINT(sc, BXE_WARN, "%s(): Can't acquire SPIO lock!\n",
__FUNCTION__);
goto bxe_set_spio_exit;
}
/* Read SPIO and mask all but the float bits. */
spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
switch (mode) {
case MISC_REGISTERS_SPIO_OUTPUT_LOW :
DBPRINT(sc, BXE_VERBOSE_MISC, "%s(): Set SPIO %d -> "
"output low\n", __FUNCTION__, spio_num);
spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
break;
case MISC_REGISTERS_SPIO_OUTPUT_HIGH :
DBPRINT(sc, BXE_VERBOSE_MISC, "%s(): Set SPIO %d -> "
"output high\n", __FUNCTION__, spio_num);
spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
break;
case MISC_REGISTERS_SPIO_INPUT_HI_Z:
DBPRINT(sc, BXE_VERBOSE_MISC, "%s(): Set SPIO %d -> "
"input\n", __FUNCTION__, spio_num);
spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
break;
default:
DBPRINT(sc, BXE_WARN, "%s(): Unknown SPIO mode (0x%08X)!\n",
__FUNCTION__, mode);
break;
}
REG_WR(sc, MISC_REG_SPIO, spio_reg);
rc = bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
if (rc) {
DBPRINT(sc, BXE_WARN, "%s(): Can't release SPIO lock!\n",
__FUNCTION__);
}
bxe_set_spio_exit:
return (rc);
}
/*
* When the 57711E is operating in multi-function mode, the controller
* must be configured to arbitrate TX between multiple VNICs.
*
* Returns:
* None.
*/
static void
bxe_init_port_minmax(struct bxe_softc *sc)
{
uint32_t fair_periodic_timeout_usec, r_param, t_fair;
DBENTER(BXE_VERBOSE_MISC);
r_param = sc->link_vars.line_speed / 8;
memset(&(sc->cmng.rs_vars), 0,
sizeof(struct rate_shaping_vars_per_port));
memset(&(sc->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
/* 100 usec in SDM ticks = 25 since each tick is 4 usec. */
sc->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
/*
* This is the threshold below which no timer arming will occur.
* We use a coefficient of 1, 25 so that the threshold is a
* little bigger that real time to compensate for timer
* in-accuracy.
*/
sc->cmng.rs_vars.rs_threshold = (RS_PERIODIC_TIMEOUT_USEC *
r_param * 5) / 4;
/* Resolution of fairness timer. */
fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
/* For 10G it is 1000us, for 1G it is 10000us. */
t_fair = T_FAIR_COEF / sc->link_vars.line_speed;
/* This is the threshold where we won't arm the timer
anymore. */
sc->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
/*
* Multiply by 1e3/8 to get bytes/msec. We don't want the
* credits to pass a credit of the T_FAIR*FAIR_MEM (algorithm
* resolution)
*/
sc->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
/* Since each tick is 4 us. */
sc->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
DBEXIT(BXE_VERBOSE_MISC);
}
/*
* This function is called when a link interrupt is generated
* and configures the controller for the new link state.
*
* Returns:
* None.
*/
static void
bxe_link_attn(struct bxe_softc *sc)
{
struct host_port_stats *pstats;
uint32_t pause_enabled;
int func, i, port, vn;
DBENTER(BXE_VERBOSE_PHY);
/* Make sure that we are synced with the current statistics. */
bxe_stats_handle(sc, STATS_EVENT_STOP);
bxe_link_update(&sc->link_params, &sc->link_vars);
if (sc->link_vars.link_up) {
if (CHIP_IS_E1H(sc)) {
port = BP_PORT(sc);
pause_enabled = 0;
if (sc->link_vars.flow_ctrl & FLOW_CTRL_TX)
pause_enabled = 1;
REG_WR(sc, BAR_USTORM_INTMEM +
USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
pause_enabled);
}
if (sc->link_vars.mac_type == MAC_TYPE_BMAC) {
pstats = BXE_SP(sc, port_stats);
/* Reset old BMAC statistics. */
memset(&(pstats->mac_stx[0]), 0,
sizeof(struct mac_stx));
}
if ((sc->state == BXE_STATE_OPEN) ||
(sc->state == BXE_STATE_DISABLED))
bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
}
/* Need additional handling for multi-function devices. */
if (IS_E1HMF(sc)) {
port = BP_PORT(sc);
if (sc->link_vars.link_up) {
if (sc->dcc_enable == TRUE) {
bxe_congestionmgmt(sc, TRUE);
/* Store in internal memory. */
for (i = 0; i <
sizeof(struct cmng_struct_per_port) / 4;
i++) {
REG_WR(sc, BAR_XSTORM_INTMEM +
XSTORM_CMNG_PER_PORT_VARS_OFFSET(port) + (i*4),
((uint32_t *)(&sc->cmng))[i]);
}
}
}
for (vn = VN_0; vn < E1HVN_MAX; vn++) {
/* Don't send an attention to ourselves. */
if (vn == BP_E1HVN(sc))
continue;
func = ((vn << 1) | port);
/*
* Send an attention to other drivers on the same port.
*/
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_0 +
(LINK_SYNC_ATTENTION_BIT_FUNC_0 + func) * 4, 1);
}
}
DBEXIT(BXE_VERBOSE_PHY);
}
/*
* Sets the driver instance as the port management function (PMF).
*
* This is only used on "multi-function" capable devices such as the
* 57711E and initializes the controller so that the PMF driver instance
* can interact with other driver instances that may be operating on
* the same Ethernet port.
*
* Returns:
* None.
*/
static void
bxe_pmf_update(struct bxe_softc *sc)
{
uint32_t val;
int port;
/* Record that this driver instance is managing the port. */
sc->port.pmf = 1;
DBPRINT(sc, BXE_INFO, "%s(): Enabling this port as PMF.\n",
__FUNCTION__);
/* Enable NIG attention. */
port = BP_PORT(sc);
val = (0xff0f | (1 << (BP_E1HVN(sc) + 4)));
REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, val);
REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, val);
bxe_stats_handle(sc, STATS_EVENT_PMF);
}
/* 8073 Download definitions */
/* spi Parameters.*/
#define SPI_CTRL_1_L 0xC000
#define SPI_CTRL_1_H 0xC002
#define SPI_CTRL_2_L 0xC400
#define SPI_CTRL_2_H 0xC402
#define SPI_TXFIFO 0xD000
#define SPI_RXFIFO 0xD400
/* Input Command Messages.*/
/*
* Write CPU/SPI Control Regs, followed by Count And CPU/SPI Controller
* Reg add/data pairs.
*/
#define WR_CPU_CTRL_REGS 0x11
/*
* Read CPU/SPI Control Regs, followed by Count and CPU/SPI Controller
* Register Add.
*/
#define RD_CPU_CTRL_REGS 0xEE
/*
* Write CPU/SPI Control Regs Continously, followed by Count and
* CPU/SPI Controller Reg addr and data's.
*/
#define WR_CPU_CTRL_FIFO 0x66
/* Output Command Messages.*/
#define DONE 0x4321
/* SPI Controller Commands (known As messages).*/
#define MSGTYPE_HWR 0x40
#define MSGTYPE_HRD 0x80
#define WRSR_OPCODE 0x01
#define WR_OPCODE 0x02
#define RD_OPCODE 0x03
#define WRDI_OPCODE 0x04
#define RDSR_OPCODE 0x05
#define WREN_OPCODE 0x06
#define WR_BLOCK_SIZE 0x40 /* Maximum 64 Bytes Writes.*/
/*
* Post a slowpath command.
*
* A slowpath command is used to propogate a configuration change through
* the controller in a controlled manner, allowing each STORM processor and
* other H/W blocks to phase in the change. The commands sent on the
* slowpath are referred to as ramrods. Depending on the ramrod used the
* completion of the ramrod will occur in different ways. Here's a
* breakdown of ramrods and how they complete:
*
* RAMROD_CMD_ID_ETH_PORT_SETUP
* Used to setup the leading connection on a port. Completes on the
* Receive Completion Queue (RCQ) of that port (typically fp[0]).
*
* RAMROD_CMD_ID_ETH_CLIENT_SETUP
* Used to setup an additional connection on a port. Completes on the
* RCQ of the multi-queue/RSS connection being initialized.
*
* RAMROD_CMD_ID_ETH_STAT_QUERY
* Used to force the storm processors to update the statistics database
* in host memory. This ramrod is send on the leading connection CID and
* completes as an index increment of the CSTORM on the default status
* block.
*
* RAMROD_CMD_ID_ETH_UPDATE
* Used to update the state of the leading connection, usually to udpate
* the RSS indirection table. Completes on the RCQ of the leading
* connection. (Not currently used under FreeBSD until OS support becomes
* available.)
*
* RAMROD_CMD_ID_ETH_HALT
* Used when tearing down a connection prior to driver unload. Completes
* on the RCQ of the multi-queue/RSS connection being torn down. Don't
* use this on the leading connection.
*
* RAMROD_CMD_ID_ETH_SET_MAC
* Sets the Unicast/Broadcast/Multicast used by the port. Completes on
* the RCQ of the leading connection.
*
* RAMROD_CMD_ID_ETH_CFC_DEL
* Used when tearing down a conneciton prior to driver unload. Completes
* on the RCQ of the leading connection (since the current connection
* has been completely removed from controller memory).
*
* RAMROD_CMD_ID_ETH_PORT_DEL
* Used to tear down the leading connection prior to driver unload,
* typically fp[0]. Completes as an index increment of the CSTORM on the
* default status block.
*
* RAMROD_CMD_ID_ETH_FORWARD_SETUP
* Used for connection offload. Completes on the RCQ of the multi-queue
* RSS connection that is being offloaded. (Not currently used under
* FreeBSD.)
*
* There can only be one command pending per function.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_sp_post(struct bxe_softc *sc, int command, int cid, uint32_t data_hi,
uint32_t data_lo, int common)
{
int func, rc;
DBRUNMSG((BXE_EXTREME_LOAD | BXE_EXTREME_RESET |
BXE_EXTREME_UNLOAD | BXE_EXTREME_RAMROD),
bxe_decode_ramrod_cmd(sc, command));
DBPRINT(sc, BXE_VERBOSE_RAMROD, "%s(): cid = %d, data_hi = 0x%08X, "
"data_low = 0x%08X, remaining spq entries = %d\n", __FUNCTION__,
cid, data_hi, data_lo, sc->spq_left);
rc = 0;
/* Skip all slowpath commands if the driver has panic'd. */
if (sc->panic) {
rc = EIO;
goto bxe_sp_post_exit;
}
BXE_SP_LOCK(sc);
/* We are limited to 8 slowpath commands. */
if (!sc->spq_left) {
BXE_PRINTF("%s(%d): Slowpath queue is full!\n",
__FILE__, __LINE__);
bxe_panic_dump(sc);
rc = EBUSY;
goto bxe_sp_post_exit;
}
/* Encode the CID with the command. */
sc->spq_prod_bd->hdr.conn_and_cmd_data =
htole32(((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid)));
sc->spq_prod_bd->hdr.type = htole16(ETH_CONNECTION_TYPE);
if (common)
sc->spq_prod_bd->hdr.type |=
htole16((1 << SPE_HDR_COMMON_RAMROD_SHIFT));
/* Point the hardware at the new configuration data. */
sc->spq_prod_bd->data.mac_config_addr.hi = htole32(data_hi);
sc->spq_prod_bd->data.mac_config_addr.lo = htole32(data_lo);
/* Reduce the number of available slots for slowpath commands. */
sc->spq_left--;
/* Manage the end of the ring. */
if (sc->spq_prod_bd == sc->spq_last_bd) {
sc->spq_prod_bd = sc->spq;
sc->spq_prod_idx = 0;
DBPRINT(sc, BXE_VERBOSE, "%s(): End of slowpath queue.\n",
__FUNCTION__);
} else {
sc->spq_prod_bd++;
sc->spq_prod_idx++;
}
func = BP_FUNC(sc);
/* Kick off the slowpath command. */
REG_WR(sc, BAR_XSTORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
sc->spq_prod_idx);
bxe_sp_post_exit:
BXE_SP_UNLOCK(sc);
return (rc);
}
/*
* Acquire the MCP access lock.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_acquire_alr(struct bxe_softc *sc)
{
uint32_t val;
int i, rc, retries;
DBENTER(BXE_VERBOSE_MISC);
rc = 0;
retries = 100;
/* Acquire lock using mcpr_access_lock SPLIT register. */
for (i = 0; i < retries * 10; i++) {
val = 1UL << 31;
REG_WR(sc, GRCBASE_MCP + 0x9c, val);
val = REG_RD(sc, GRCBASE_MCP + 0x9c);
if (val & (1L << 31))
break;
DELAY(5000);
}
if (!(val & (1L << 31))) {
DBPRINT(sc, BXE_WARN,
"%s(): Cannot acquire MCP split access lock.\n",
__FUNCTION__);
rc = EBUSY;
}
DBEXIT(BXE_VERBOSE_MISC);
return (rc);
}
/*
* Release the MCP access lock.
*
* Returns:
* None.
*/
static void
bxe_release_alr(struct bxe_softc* sc)
{
DBENTER(BXE_VERBOSE_MISC);
REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
DBEXIT(BXE_VERBOSE_MISC);
}
/*
* Update driver's copies of the values in the host default status block.
*
* Returns:
* Bitmap indicating changes to the block.
*/
static __inline uint16_t
bxe_update_dsb_idx(struct bxe_softc *sc)
{
struct host_def_status_block *dsb;
uint16_t rc;
rc = 0;
dsb = sc->def_sb;
/* Read memory barrier since block is written by hardware. */
rmb();
if (sc->def_att_idx !=
le16toh(dsb->atten_status_block.attn_bits_index)) {
sc->def_att_idx =
le16toh(dsb->atten_status_block.attn_bits_index);
rc |= 0x1;
}
if (sc->def_c_idx !=
le16toh(dsb->c_def_status_block.status_block_index)) {
sc->def_c_idx =
le16toh(dsb->c_def_status_block.status_block_index);
rc |= 0x2;
}
if (sc->def_u_idx !=
le16toh(dsb->u_def_status_block.status_block_index)) {
sc->def_u_idx =
le16toh(dsb->u_def_status_block.status_block_index);
rc |= 0x4;
}
if (sc->def_x_idx !=
le16toh(dsb->x_def_status_block.status_block_index)) {
sc->def_x_idx =
le16toh(dsb->x_def_status_block.status_block_index);
rc |= 0x8;
}
if (sc->def_t_idx !=
le16toh(dsb->t_def_status_block.status_block_index)) {
sc->def_t_idx =
le16toh(dsb->t_def_status_block.status_block_index);
rc |= 0x10;
}
return (rc);
}
/*
* Handle any attentions that have been newly asserted.
*
* Returns:
* None
*/
static void
bxe_attn_int_asserted(struct bxe_softc *sc, uint32_t asserted)
{
uint32_t aeu_addr, hc_addr, nig_int_mask_addr;
uint32_t aeu_mask, nig_mask;
int port, rc;
DBENTER(BXE_VERBOSE_INTR);
port = BP_PORT(sc);
hc_addr = (HC_REG_COMMAND_REG + port * 32 + COMMAND_REG_ATTN_BITS_SET);
aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
MISC_REG_AEU_MASK_ATTN_FUNC_0;
nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
NIG_REG_MASK_INTERRUPT_PORT0;
nig_mask = 0;
if (sc->attn_state & asserted)
BXE_PRINTF("%s(%d): IGU attention ERROR!\n",
__FILE__, __LINE__);
rc = bxe_acquire_hw_lock(sc,
HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
if (rc) {
DBPRINT(sc, BXE_WARN,
"%s(): Failed to acquire attention lock for port %d!\n",
__FUNCTION__, port);
goto bxe_attn_int_asserted_exit;
}
aeu_mask = REG_RD(sc, aeu_addr);
DBPRINT(sc, BXE_VERBOSE_INTR,
"%s(): aeu_mask = 0x%08X, newly asserted = 0x%08X\n", __FUNCTION__,
aeu_mask, asserted);
aeu_mask &= ~(asserted & 0xff);
DBPRINT(sc, BXE_VERBOSE_INTR, "%s(): new mask = 0x%08X\n", __FUNCTION__,
aeu_mask);
REG_WR(sc, aeu_addr, aeu_mask);
rc = bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
if (rc) {
DBPRINT(sc, BXE_WARN,
"%s(): Failed to release attention lock!\n", __FUNCTION__);
goto bxe_attn_int_asserted_exit;
}
DBPRINT(sc, BXE_VERBOSE_INTR, "%s(): attn_state = 0x%08X\n",
__FUNCTION__, sc->attn_state);
sc->attn_state |= asserted;
DBPRINT(sc, BXE_VERBOSE_INTR, "%s(): new attn_state = 0x%08X\n",
__FUNCTION__, sc->attn_state);
if (asserted & ATTN_HARD_WIRED_MASK) {
if (asserted & ATTN_NIG_FOR_FUNC) {
bxe_acquire_phy_lock(sc);
/* Save NIG interrupt mask. */
nig_mask = REG_RD(sc, nig_int_mask_addr);
REG_WR(sc, nig_int_mask_addr, 0);
bxe_link_attn(sc);
}
if (asserted & ATTN_SW_TIMER_4_FUNC)
DBPRINT(sc, BXE_WARN, "%s(): ATTN_SW_TIMER_4_FUNC!\n",
__FUNCTION__);
if (asserted & GPIO_2_FUNC)
DBPRINT(sc, BXE_WARN, "%s(): GPIO_2_FUNC!\n",
__FUNCTION__);
if (asserted & GPIO_3_FUNC)
DBPRINT(sc, BXE_WARN, "%s(): GPIO_3_FUNC!\n",
__FUNCTION__);
if (asserted & GPIO_4_FUNC)
DBPRINT(sc, BXE_WARN, "%s(): GPIO_4_FUNC!\n",
__FUNCTION__);
if (port == 0) {
if (asserted & ATTN_GENERAL_ATTN_1) {
DBPRINT(sc, BXE_WARN,
"%s(): ATTN_GENERAL_ATTN_1!\n",
__FUNCTION__);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_2) {
DBPRINT(sc, BXE_WARN,
"%s(): ATTN_GENERAL_ATTN_2!\n",
__FUNCTION__);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_3) {
DBPRINT(sc, BXE_WARN,
"%s(): ATTN_GENERAL_ATTN_3!\n",
__FUNCTION__);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
}
} else {
if (asserted & ATTN_GENERAL_ATTN_4) {
DBPRINT(sc, BXE_WARN,
"%s(): ATTN_GENERAL_ATTN_4!\n",
__FUNCTION__);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_5) {
DBPRINT(sc, BXE_WARN,
"%s(): ATTN_GENERAL_ATTN_5!\n",
__FUNCTION__);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
}
if (asserted & ATTN_GENERAL_ATTN_6) {
DBPRINT(sc, BXE_WARN,
"%s(): ATTN_GENERAL_ATTN_6!\n",
__FUNCTION__);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
}
}
}
DBPRINT(sc, BXE_VERBOSE_INTR,
"%s(): Writing 0x%08X to HC addr 0x%08X\n", __FUNCTION__,
asserted, hc_addr);
REG_WR(sc, hc_addr, asserted);
/* Now set back the NIG mask. */
if (asserted & ATTN_NIG_FOR_FUNC) {
REG_WR(sc, nig_int_mask_addr, nig_mask);
bxe_release_phy_lock(sc);
}
bxe_attn_int_asserted_exit:
DBEXIT(BXE_VERBOSE_INTR);
}
/*
* Handle any attentions that have been newly deasserted.
*
* Returns:
* None
*/
static __inline void
bxe_attn_int_deasserted0(struct bxe_softc *sc, uint32_t attn)
{
uint32_t val, swap_val, swap_override;
int port, reg_offset;
DBENTER(BXE_VERBOSE_INTR);
port = BP_PORT(sc);
reg_offset = port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
/* Handle SPIO5 attention. */
if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
val = REG_RD(sc, reg_offset);
val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
REG_WR(sc, reg_offset, val);
DBPRINT(sc, BXE_FATAL, "%s(): SPIO5 H/W attention!\n",
__FUNCTION__);
/* Fan failure attention */
switch (XGXS_EXT_PHY_TYPE(sc->link_params.ext_phy_config)) {
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SFX7101:
/*
* SPIO5 is used on A1022G boards to indicate
* fan failure. Shutdown the controller and
* associated PHY to avoid damage.
*/
/* Low power mode is controled by GPIO 2. */
bxe_set_gpio(sc, MISC_REGISTERS_GPIO_2,
MISC_REGISTERS_GPIO_OUTPUT_LOW, port);
/* PHY reset is controled by GPIO 1. */
bxe_set_gpio(sc, MISC_REGISTERS_GPIO_1,
MISC_REGISTERS_GPIO_OUTPUT_LOW, port);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481:
/*
* The PHY reset is controlled by GPIO 1.
* Fake the port number to cancel the swap done in
* set_gpio().
*/
swap_val = REG_RD(sc, NIG_REG_PORT_SWAP);
swap_override = REG_RD(sc, NIG_REG_STRAP_OVERRIDE);
port = (swap_val && swap_override) ^ 1;
bxe_set_gpio(sc, MISC_REGISTERS_GPIO_1,
MISC_REGISTERS_GPIO_OUTPUT_LOW, port);
break;
default:
break;
}
/* Mark the failure. */
sc->link_params.ext_phy_config &=
~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
sc->link_params.ext_phy_config |=
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
sc->link_params.ext_phy_config);
/* Log the failure */
BXE_PRINTF("A fan failure has caused the driver to "
"shutdown the device to prevent permanent damage.\n");
}
if (attn & (AEU_INPUTS_ATTN_BITS_GPIO3_FUNCTION_0 |
AEU_INPUTS_ATTN_BITS_GPIO3_FUNCTION_1)) {
bxe_acquire_phy_lock(sc);
bxe_handle_module_detect_int(&sc->link_params);
bxe_release_phy_lock(sc);
}
/* Checking for an assert on the zero block */
if (attn & HW_INTERRUT_ASSERT_SET_0) {
val = REG_RD(sc, reg_offset);
val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
REG_WR(sc, reg_offset, val);
BXE_PRINTF("%s(%d): FATAL hardware block attention "
"(set0 = 0x%08X)!\n", __FILE__, __LINE__,
(attn & (uint32_t)HW_INTERRUT_ASSERT_SET_0));
bxe_panic_dump(sc);
}
DBEXIT(BXE_VERBOSE_INTR);
}
/*
* Handle any attentions that have been newly deasserted.
*
* Returns:
* None
*/
static __inline void
bxe_attn_int_deasserted1(struct bxe_softc *sc, uint32_t attn)
{
uint32_t val;
int port, reg_offset;
DBENTER(BXE_VERBOSE_INTR);
if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
DBPRINT(sc, BXE_FATAL,
"%s(): Doorbell hardware attention (0x%08X).\n",
__FUNCTION__, val);
/* DORQ discard attention */
if (val & 0x2)
DBPRINT(sc, BXE_FATAL,
"%s(): FATAL doorbell queue error!\n",
__FUNCTION__);
}
if (attn & HW_INTERRUT_ASSERT_SET_1) {
port = BP_PORT(sc);
reg_offset = port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1;
val = REG_RD(sc, reg_offset);
val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
REG_WR(sc, reg_offset, val);
BXE_PRINTF("%s(%d): FATAL hardware block attention "
"(set1 = 0x%08X)!\n", __FILE__, __LINE__,
(attn & (uint32_t)HW_INTERRUT_ASSERT_SET_1));
bxe_panic_dump(sc);
}
DBEXIT(BXE_VERBOSE_INTR);
}
/*
* Handle any attentions that have been newly deasserted.
*
* Returns:
* None
*/
static __inline void
bxe_attn_int_deasserted2(struct bxe_softc *sc, uint32_t attn)
{
uint32_t val;
int port, reg_offset;
DBENTER(BXE_VERBOSE_INTR);
if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
DBPRINT(sc, BXE_FATAL,
"%s(): CFC hardware attention (0x%08X).\n", __FUNCTION__,
val);
/* CFC error attention. */
if (val & 0x2)
DBPRINT(sc, BXE_FATAL, "%s(): FATAL CFC error!\n",
__FUNCTION__);
}
if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
DBPRINT(sc, BXE_FATAL,
"%s(): PXP hardware attention (0x%08X).\n", __FUNCTION__,
val);
/* RQ_USDMDP_FIFO_OVERFLOW */
if (val & 0x18000)
DBPRINT(sc, BXE_FATAL, "%s(): FATAL PXP error!\n",
__FUNCTION__);
}
if (attn & HW_INTERRUT_ASSERT_SET_2) {
port = BP_PORT(sc);
reg_offset = port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2;
val = REG_RD(sc, reg_offset);
val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
REG_WR(sc, reg_offset, val);
BXE_PRINTF("%s(%d): FATAL hardware block attention (set2 = "
"0x%08X)! port=%d, val written=0x%x attn=0x%x\n", __FILE__,
__LINE__, (attn & (uint32_t)HW_INTERRUT_ASSERT_SET_2),
port, val, attn);
bxe_panic_dump(sc);
}
DBEXIT(BXE_VERBOSE_INTR);
}
/*
* Handle any attentions that have been newly deasserted.
*
* Returns:
* None
*/
static __inline void
bxe_attn_int_deasserted3(struct bxe_softc *sc, uint32_t attn)
{
uint32_t val;
int func;
DBENTER(BXE_VERBOSE_INTR);
if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
/* Look for any port assertions. */
if (attn & BXE_PMF_LINK_ASSERT) {
/*
* We received a message from the driver instance
* that is managing the Ethernet port (link up/down).
* Go ahead and handle it.
*/
func = BP_FUNC(sc);
DBPRINT(sc, BXE_INFO,
"%s(): Received link attention from PMF.\n",
__FUNCTION__);
/* Clear the attention. */
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
sc->mf_config[BP_E1HVN(sc)] =
SHMEM_RD(sc,
mf_cfg.func_mf_config[(sc->bxe_func & 1)].config);
val = SHMEM_RD(sc, func_mb[func].drv_status);
if (sc->dcc_enable == TRUE) {
if (val & DRV_STATUS_DCC_EVENT_MASK)
bxe_dcc_event(sc,
val & DRV_STATUS_DCC_EVENT_MASK);
}
bxe__link_status_update(sc);
if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
bxe_pmf_update(sc);
/* Look for any microcode assertions. */
} else if (attn & BXE_MC_ASSERT_BITS) {
DBPRINT(sc, BXE_FATAL, "%s(): Microcode assert!\n",
__FUNCTION__);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
bxe_panic_dump(sc);
/* Look for any bootcode assertions. */
} else if (attn & BXE_MCP_ASSERT) {
DBPRINT(sc, BXE_FATAL, "%s(): Bootcode assert!\n",
__FUNCTION__);
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
DBRUN(bxe_dump_fw(sc));
} else
DBPRINT(sc, BXE_FATAL,
"%s(): Unknown hardware assertion "
"(attn = 0x%08X)!\n", __FUNCTION__, attn);
}
/* Look for any hardware latched attentions. */
if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
DBPRINT(sc, BXE_FATAL,
"%s(): Latched attention 0x%08X (masked)!\n", __FUNCTION__,
attn);
/* Check if a GRC register access timeout occurred. */
if (attn & BXE_GRC_TIMEOUT) {
val = CHIP_IS_E1H(sc) ? REG_RD(sc,
MISC_REG_GRC_TIMEOUT_ATTN) : 0;
DBPRINT(sc, BXE_WARN,
"%s(): GRC timeout for register 0x%08X!\n",
__FUNCTION__, val);
}
/* Check if a GRC reserved register was accessed. */
if (attn & BXE_GRC_RSV) {
val = CHIP_IS_E1H(sc) ? REG_RD(sc,
MISC_REG_GRC_RSV_ATTN) : 0;
DBPRINT(sc, BXE_WARN,
"%s(): GRC register 0x%08X is reserved!\n",
__FUNCTION__, val);
}
REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
}
DBEXIT(BXE_VERBOSE_INTR);
}
/*
* Handle any attentions that have been newly deasserted.
*
* Returns:
* None
*/
static void
bxe_attn_int_deasserted(struct bxe_softc *sc, uint32_t deasserted)
{
struct attn_route attn;
struct attn_route group_mask;
uint32_t val, reg_addr, aeu_mask;
int index, port;
DBENTER(BXE_VERBOSE_INTR);
/*
* Need to take HW lock because MCP or other port might also try
* to handle this event.
*/
bxe_acquire_alr(sc);
port = BP_PORT(sc);
/* Get the current attention signal bits. */
attn.sig[0] = REG_RD(sc,
MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
attn.sig[1] = REG_RD(sc,
MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
attn.sig[2] = REG_RD(sc,
MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
attn.sig[3] = REG_RD(sc,
MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
DBPRINT(sc, BXE_EXTREME_INTR,
"%s(): attention = 0x%08X 0x%08X 0x%08X 0x%08X\n", __FUNCTION__,
attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3]);
/*
* Compare the current attention bits to each attention group
* to see if anyone has registered this attention.
*/
for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
if (deasserted & (1 << index)) {
group_mask = sc->attn_group[index];
DBPRINT(sc, BXE_EXTREME_INTR,
"%s(): group[%02d] = 0x%08X 0x%08X 0x%08x 0X%08x\n",
__FUNCTION__, index, group_mask.sig[0],
group_mask.sig[1], group_mask.sig[2],
group_mask.sig[3]);
/* Handle any registered attentions. */
bxe_attn_int_deasserted3(sc,
attn.sig[3] & group_mask.sig[3]);
bxe_attn_int_deasserted1(sc,
attn.sig[1] & group_mask.sig[1]);
bxe_attn_int_deasserted2(sc,
attn.sig[2] & group_mask.sig[2]);
bxe_attn_int_deasserted0(sc,
attn.sig[0] & group_mask.sig[0]);
if ((attn.sig[0] & group_mask.sig[0] &
HW_PRTY_ASSERT_SET_0) ||
(attn.sig[1] & group_mask.sig[1] &
HW_PRTY_ASSERT_SET_1) ||
(attn.sig[2] & group_mask.sig[2] &
HW_PRTY_ASSERT_SET_2))
BXE_PRINTF("%s(%d): FATAL hardware block "
"parity attention!\n", __FILE__, __LINE__);
}
}
bxe_release_alr(sc);
reg_addr = (HC_REG_COMMAND_REG +
port * 32 + COMMAND_REG_ATTN_BITS_CLR);
val = ~deasserted;
DBPRINT(sc, BXE_EXTREME_INTR,
"%s(): About to mask 0x%08X at HC addr 0x%08X\n", __FUNCTION__,
deasserted, reg_addr);
REG_WR(sc, reg_addr, val);
if (~sc->attn_state & deasserted)
DBPRINT(sc, BXE_FATAL, "%s(): IGU Bug!\n", __FUNCTION__);
reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
MISC_REG_AEU_MASK_ATTN_FUNC_0;
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
aeu_mask = REG_RD(sc, reg_addr);
DBPRINT(sc, BXE_EXTREME_INTR,
"%s(): Current aeu_mask = 0x%08X, newly deasserted = 0x%08X\n",
__FUNCTION__, aeu_mask, deasserted);
aeu_mask |= (deasserted & 0xff);
DBPRINT(sc, BXE_EXTREME_INTR, "%s(): New aeu_mask = 0x%08X\n",
__FUNCTION__, aeu_mask);
REG_WR(sc, reg_addr, aeu_mask);
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
DBPRINT(sc, BXE_EXTREME_INTR, "%s(): Current attn_state = 0x%08X\n",
__FUNCTION__, sc->attn_state);
sc->attn_state &= ~deasserted;
DBPRINT(sc, BXE_EXTREME_INTR, "%s(): New attn_state = 0x%08X\n",
__FUNCTION__, sc->attn_state);
DBEXIT(BXE_VERBOSE_INTR);
}
/*
* Handle interrupts caused by internal attentions (everything else other
* than RX, TX, and link state changes).
*
* Returns:
* None
*/
static void
bxe_attn_int(struct bxe_softc* sc)
{
uint32_t attn_ack, attn_bits, attn_state;
uint32_t asserted, deasserted;
DBENTER(BXE_VERBOSE_INTR);
attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
attn_ack =
le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
attn_state = sc->attn_state;
asserted = attn_bits & ~attn_ack & ~attn_state;
deasserted = ~attn_bits & attn_ack & attn_state;
/* Make sure we're in a sane state. */
if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
BXE_PRINTF("%s(%d): Bad attention state!\n",
__FILE__, __LINE__);
/* Handle any attentions that are newly asserted. */
if (asserted) {
DBPRINT(sc, BXE_VERBOSE_INTR,
"%s(): attn_state = 0x%08X, attn_bits = 0x%08X, "
"attn_ack = 0x%08X, asserted = 0x%08X\n", __FUNCTION__,
attn_state, attn_bits, attn_ack, asserted);
bxe_attn_int_asserted(sc, asserted);
}
/* Handle any attentions that are newly deasserted. */
if (deasserted) {
DBPRINT(sc, BXE_VERBOSE_INTR,
"%s(): attn_state = 0x%08X, attn_bits = 0x%08X, "
"attn_ack = 0x%08X, deasserted = 0x%08X\n", __FUNCTION__,
attn_state, attn_bits, attn_ack, deasserted);
bxe_attn_int_deasserted(sc, deasserted);
}
DBEXIT(BXE_VERBOSE_INTR);
}
/* sum[hi:lo] += add[hi:lo] */
#define ADD_64(s_hi, a_hi, s_lo, a_lo) do { \
s_lo += a_lo; \
s_hi += a_hi + (s_lo < a_lo) ? 1 : 0; \
} while (0)
/* Subtraction = minuend -= subtrahend */
#define SUB_64(m_hi, s_hi, m_lo, s_lo) \
do { \
DIFF_64(m_hi, m_hi, s_hi, m_lo, m_lo, s_lo); \
} while (0)
/* difference = minuend - subtrahend */
#define DIFF_64(d_hi, m_hi, s_hi, d_lo, m_lo, s_lo) do { \
if (m_lo < s_lo) { \
/* underflow */ \
d_hi = m_hi - s_hi; \
if (d_hi > 0) { \
/* we can 'loan' 1 */ \
d_hi--; \
d_lo = m_lo + (UINT_MAX - s_lo) + 1; \
} else { \
/* m_hi <= s_hi */ \
d_hi = 0; \
d_lo = 0; \
} \
} else { \
/* m_lo >= s_lo */ \
if (m_hi < s_hi) { \
d_hi = 0; \
d_lo = 0; \
} else { \
/* m_hi >= s_hi */ \
d_hi = m_hi - s_hi; \
d_lo = m_lo - s_lo; \
} \
} \
} while (0)
#define UPDATE_STAT64(s, t) do { \
DIFF_64(diff.hi, new->s##_hi, pstats->mac_stx[0].t##_hi,\
diff.lo, new->s##_lo, pstats->mac_stx[0].t##_lo); \
pstats->mac_stx[0].t##_hi = new->s##_hi; \
pstats->mac_stx[0].t##_lo = new->s##_lo; \
ADD_64(pstats->mac_stx[1].t##_hi, diff.hi, \
pstats->mac_stx[1].t##_lo, diff.lo); \
} while (0)
#define UPDATE_STAT64_NIG(s, t) do { \
DIFF_64(diff.hi, new->s##_hi, old->s##_hi, \
diff.lo, new->s##_lo, old->s##_lo); \
ADD_64(estats->t##_hi, diff.hi, \
estats->t##_lo, diff.lo); \
} while (0)
/* sum[hi:lo] += add */
#define ADD_EXTEND_64(s_hi, s_lo, a) do { \
s_lo += a; \
s_hi += (s_lo < a) ? 1 : 0; \
} while (0)
#define UPDATE_EXTEND_STAT(s) do { \
ADD_EXTEND_64(pstats->mac_stx[1].s##_hi, \
pstats->mac_stx[1].s##_lo, new->s); \
} while (0)
#define UPDATE_EXTEND_TSTAT(s, t) do { \
diff = (tclient->s) - (old_tclient->s); \
old_tclient->s = (tclient->s); \
ADD_EXTEND_64(qstats->t##_hi, qstats->t##_lo, diff); \
} while (0)
#define UPDATE_EXTEND_XSTAT(s, t) do { \
diff = xclient->s - old_xclient->s; \
old_xclient->s = xclient->s; \
ADD_EXTEND_64(qstats->t##_hi, qstats->t##_lo, diff); \
} while (0)
#define UPDATE_EXTEND_USTAT(s, t) do { \
diff = uclient->s - old_uclient->s; \
old_uclient->s = uclient->s; \
ADD_EXTEND_64(qstats->t##_hi, qstats->t##_lo, diff); \
} while (0)
#define SUB_EXTEND_64(m_hi, m_lo, s)do { \
SUB_64(m_hi, 0, m_lo, s); \
} while (0)
#define SUB_EXTEND_USTAT(s, t)do { \
diff = (uclient->s) - (old_uclient->s); \
SUB_EXTEND_64(qstats->t##_hi, qstats->t##_lo, diff); \
} while (0)
#ifdef __i386__
#define BITS_PER_LONG 32
#else
#define BITS_PER_LONG 64
#endif
static __inline long
bxe_hilo(uint32_t *hiref)
{
uint32_t lo;
lo = *(hiref + 1);
#if (BITS_PER_LONG == 64)
uint32_t hi = *hiref;
return (HILO_U64(hi, lo));
#else
return (lo);
#endif
}
/*
* Request the STORM statistics by posting a slowpath ramrod.
*
* Returns:
* None.
*/
static void
bxe_stats_storm_post(struct bxe_softc *sc)
{
struct eth_query_ramrod_data ramrod_data = {0};
int i, rc;
DBENTER(BXE_INSANE_STATS);
if (!sc->stats_pending) {
ramrod_data.drv_counter = sc->stats_counter++;
ramrod_data.collect_port = sc->port.pmf ? 1 : 0;
for (i = 0; i < sc->num_queues; i++)
ramrod_data.ctr_id_vector |= (1 << sc->fp[i].cl_id);
rc = bxe_sp_post(sc, RAMROD_CMD_ID_ETH_STAT_QUERY, 0,
((uint32_t *)&ramrod_data)[1],
((uint32_t *)&ramrod_data)[0], 0);
if (rc == 0) {
/* Stats ramrod has it's own slot on the SPQ. */
sc->spq_left++;
sc->stats_pending = 1;
}
}
DBEXIT(BXE_INSANE_STATS);
}
/*
* Setup the adrress used by the driver to report port-based statistics
* back to the controller.
*
* Returns:
* None.
*/
static void
bxe_stats_port_base_init(struct bxe_softc *sc)
{
uint32_t *stats_comp;
struct dmae_command *dmae;
DBENTER(BXE_VERBOSE_STATS);
/* Only the port management function (PMF) does this work. */
if ((sc->port.pmf == 0) || !sc->port.port_stx) {
BXE_PRINTF("%s(%d): Invalid statistcs port setup!\n",
__FILE__, __LINE__);
goto bxe_stats_port_base_init_exit;
}
stats_comp = BXE_SP(sc, stats_comp);
sc->executer_idx = 0;
/* DMA the address of the drivers port statistics block. */
dmae = BXE_SP(sc, dmae[sc->executer_idx++]);
dmae->opcode = (DMAE_CMD_SRC_PCI | DMAE_CMD_DST_GRC |
DMAE_CMD_C_DST_PCI | DMAE_CMD_C_ENABLE |
DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET |
#ifdef __BIG_ENDIAN
DMAE_CMD_ENDIANITY_B_DW_SWAP |
#else
DMAE_CMD_ENDIANITY_DW_SWAP |
#endif
(BP_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0) |
(BP_E1HVN(sc) << DMAE_CMD_E1HVN_SHIFT));
dmae->src_addr_lo = U64_LO(BXE_SP_MAPPING(sc, port_stats));
dmae->src_addr_hi = U64_HI(BXE_SP_MAPPING(sc, port_stats));
dmae->dst_addr_lo = sc->port.port_stx >> 2;
dmae->dst_addr_hi = 0;
dmae->len = sizeof(struct host_port_stats) >> 2;
dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, stats_comp));
dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, stats_comp));
dmae->comp_val = DMAE_COMP_VAL;
*stats_comp = 0;
bxe_stats_hw_post(sc);
bxe_stats_comp(sc);
bxe_stats_port_base_init_exit:
DBEXIT(BXE_VERBOSE_STATS);
}
/*
* Setup the adrress used by the driver to report function-based statistics
* back to the controller.
*
* Returns:
* None.
*/
static void
bxe_stats_func_base_init(struct bxe_softc *sc)
{
int port, func;
int vn, vn_max;
uint32_t func_stx;
DBENTER(BXE_VERBOSE_STATS);
/* Only the port management function (PMF) does this work. */
if ((sc->port.pmf == 0) || !sc->func_stx) {
BXE_PRINTF("%s(%d): Invalid statistcs function setup!\n",
__FILE__, __LINE__);
goto bxe_stats_func_base_init_exit;
}
port = BP_PORT(sc);
func_stx = sc->func_stx;
vn_max = IS_E1HMF(sc) ? E1HVN_MAX : E1VN_MAX;
/* Initialize each function individually. */
for (vn = VN_0; vn < vn_max; vn++) {
func = 2 * vn + port;
sc->func_stx = SHMEM_RD(sc, func_mb[func].fw_mb_param);
bxe_stats_func_init(sc);
bxe_stats_hw_post(sc);
bxe_stats_comp(sc);
}
sc->func_stx = func_stx;
bxe_stats_func_base_init_exit:
DBEXIT(BXE_VERBOSE_STATS);
}
/*
* DMA the function-based statistics to the controller.
*
* Returns:
* None.
*/
static void
bxe_stats_func_base_update(struct bxe_softc *sc)
{
uint32_t *stats_comp;
struct dmae_command *dmae;
DBENTER(BXE_VERBOSE_STATS);
/* Only the port management function (PMF) does this work. */
if ((sc->port.pmf == 0) || !sc->func_stx) {
BXE_PRINTF("%s(%d): Invalid statistcs function update!\n",
__FILE__, __LINE__);
goto bxe_stats_func_base_update_exit;
}
dmae = &sc->stats_dmae;
stats_comp = BXE_SP(sc, stats_comp);
sc->executer_idx = 0;
memset(dmae, 0, sizeof(struct dmae_command));
/* DMA the function statistics from the driver to the H/W. */
dmae->opcode = (DMAE_CMD_SRC_GRC | DMAE_CMD_DST_PCI |
DMAE_CMD_C_DST_PCI | DMAE_CMD_C_ENABLE |
DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET |
#ifdef __BIG_ENDIAN
DMAE_CMD_ENDIANITY_B_DW_SWAP |
#else
DMAE_CMD_ENDIANITY_DW_SWAP |
#endif
(BP_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0) |
(BP_E1HVN(sc) << DMAE_CMD_E1HVN_SHIFT));
dmae->src_addr_lo = sc->func_stx >> 2;
dmae->src_addr_hi = 0;
dmae->dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, func_stats_base));
dmae->dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, func_stats_base));
dmae->len = sizeof(struct host_func_stats) >> 2;
dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, stats_comp));
dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, stats_comp));
dmae->comp_val = DMAE_COMP_VAL;
*stats_comp = 0;
bxe_stats_hw_post(sc);
bxe_stats_comp(sc);
bxe_stats_func_base_update_exit:
DBEXIT(BXE_VERBOSE_STATS);
}
/*
* Initialize statistics.
*
* Returns:
* Nothing.
*/
static void
bxe_stats_init(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int func, i, port;
DBENTER(BXE_VERBOSE_STATS);
if (sc->stats_enable == FALSE)
goto bxe_stats_init_exit;
port = BP_PORT(sc);
func = BP_FUNC(sc);
sc->executer_idx = 0;
sc->stats_counter = 0;
sc->stats_pending = 0;
/* Fetch the offset of port & function statistics in shared memory. */
if (NOMCP(sc)){
sc->port.port_stx = 0;
sc->func_stx = 0;
} else{
sc->port.port_stx = SHMEM_RD(sc, port_mb[port].port_stx);
sc->func_stx = SHMEM_RD(sc, func_mb[func].fw_mb_param);
}
DBPRINT(sc, BXE_VERBOSE_STATS, "%s(): sc->port.port_stx = 0x%08X\n",
__FUNCTION__, sc->port.port_stx);
DBPRINT(sc, BXE_VERBOSE_STATS, "%s(): sc->func_stx = 0x%08X\n",
__FUNCTION__, sc->func_stx);
/* Port statistics. */
memset(&(sc->port.old_nig_stats), 0, sizeof(struct nig_stats));
sc->port.old_nig_stats.brb_discard = REG_RD(sc,
NIG_REG_STAT0_BRB_DISCARD + port * 0x38);
sc->port.old_nig_stats.brb_truncate = REG_RD(sc,
NIG_REG_STAT0_BRB_TRUNCATE + port * 0x38);
REG_RD_DMAE(sc, NIG_REG_STAT0_EGRESS_MAC_PKT0 + port * 0x50,
&(sc->port.old_nig_stats.egress_mac_pkt0_lo), 2);
REG_RD_DMAE(sc, NIG_REG_STAT0_EGRESS_MAC_PKT1 + port * 0x50,
&(sc->port.old_nig_stats.egress_mac_pkt1_lo), 2);
/* Function statistics. */
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
/* Clear all per-queue statistics. */
memset(&fp->old_tclient, 0,
sizeof(struct tstorm_per_client_stats));
memset(&fp->old_uclient, 0,
sizeof(struct ustorm_per_client_stats));
memset(&fp->old_xclient, 0,
sizeof(struct xstorm_per_client_stats));
memset(&fp->eth_q_stats, 0,
sizeof(struct bxe_q_stats));
}
/* ToDo: Clear any driver specific statistics? */
sc->stats_state = STATS_STATE_DISABLED;
if (sc->port.pmf == 1) {
/* Init port & function stats if we're PMF. */
if (sc->port.port_stx)
bxe_stats_port_base_init(sc);
if (sc->func_stx)
bxe_stats_func_base_init(sc);
} else if (sc->func_stx)
/* Update function stats if we're not PMF. */
bxe_stats_func_base_update(sc);
bxe_stats_init_exit:
DBEXIT(BXE_VERBOSE_STATS);
}
/*
*
* Returns:
* None.
*/
static void
bxe_stats_hw_post(struct bxe_softc *sc)
{
struct dmae_command *dmae;
uint32_t *stats_comp;
int loader_idx;
DBENTER(BXE_INSANE_STATS);
dmae = &sc->stats_dmae;
stats_comp = BXE_SP(sc, stats_comp);
*stats_comp = DMAE_COMP_VAL;
if (sc->executer_idx) {
loader_idx = PMF_DMAE_C(sc);
memset(dmae, 0, sizeof(struct dmae_command));
dmae->opcode = (DMAE_CMD_SRC_PCI | DMAE_CMD_DST_GRC |
DMAE_CMD_C_DST_GRC | DMAE_CMD_C_ENABLE |
DMAE_CMD_DST_RESET |
#ifdef __BIG_ENDIAN
DMAE_CMD_ENDIANITY_B_DW_SWAP |
#else
DMAE_CMD_ENDIANITY_DW_SWAP |
#endif
(BP_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0) |
(BP_E1HVN(sc) << DMAE_CMD_E1HVN_SHIFT));
dmae->src_addr_lo = U64_LO(BXE_SP_MAPPING(sc, dmae[0]));
dmae->src_addr_hi = U64_HI(BXE_SP_MAPPING(sc, dmae[0]));
dmae->dst_addr_lo = (DMAE_REG_CMD_MEM +
sizeof(struct dmae_command) * (loader_idx + 1)) >> 2;
dmae->dst_addr_hi = 0;
dmae->len = sizeof(struct dmae_command) >> 2;
if (CHIP_IS_E1(sc))
dmae->len--;
dmae->comp_addr_lo = dmae_reg_go_c[loader_idx + 1] >> 2;
dmae->comp_addr_hi = 0;
dmae->comp_val = 1;
*stats_comp = 0;
bxe_post_dmae(sc, dmae, loader_idx);
} else if (sc->func_stx) {
*stats_comp = 0;
bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
}
DBEXIT(BXE_INSANE_STATS);
}
/*
* Delay routine which polls for the DMA engine to complete.
*
* Returns:
* 0 = Failure, !0 = Success
*/
static int
bxe_stats_comp(struct bxe_softc *sc)
{
uint32_t *stats_comp;
int cnt;
DBENTER(BXE_VERBOSE_STATS);
stats_comp = BXE_SP(sc, stats_comp);
cnt = 10;
while (*stats_comp != DMAE_COMP_VAL) {
if (!cnt) {
BXE_PRINTF("%s(%d): Timeout waiting for statistics "
"completions.\n", __FILE__, __LINE__);
break;
}
cnt--;
DELAY(1000);
}
DBEXIT(BXE_VERBOSE_STATS);
/* ToDo: Shouldn't this return the value of cnt? */
return (1);
}
/*
* DMA port statistcs from controller to driver.
*
* Returns:
* None.
*/
static void
bxe_stats_pmf_update(struct bxe_softc *sc)
{
struct dmae_command *dmae;
uint32_t opcode, *stats_comp;
int loader_idx;
DBENTER(BXE_VERBOSE_STATS);
stats_comp = BXE_SP(sc, stats_comp);
loader_idx = PMF_DMAE_C(sc);
/* We shouldn't be here if any of the following are false. */
if (!IS_E1HMF(sc) || (sc->port.pmf == 0) || !sc->port.port_stx) {
BXE_PRINTF("%s(%d): Statistics bug!\n", __FILE__, __LINE__);
goto bxe_stats_pmf_update_exit;
}
sc->executer_idx = 0;
/* Instruct DMA engine to copy port statistics from H/W to driver. */
opcode = (DMAE_CMD_SRC_GRC | DMAE_CMD_DST_PCI |
DMAE_CMD_C_DST_PCI | DMAE_CMD_C_ENABLE |
DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET |
#ifdef __BIG_ENDIAN
DMAE_CMD_ENDIANITY_B_DW_SWAP |
#else
DMAE_CMD_ENDIANITY_DW_SWAP |
#endif
(BP_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0) |
(BP_E1HVN(sc) << DMAE_CMD_E1HVN_SHIFT));
dmae = BXE_SP(sc, dmae[sc->executer_idx++]);
dmae->opcode = (opcode | DMAE_CMD_C_DST_GRC);
dmae->src_addr_lo = sc->port.port_stx >> 2;
dmae->src_addr_hi = 0;
dmae->dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, port_stats));
dmae->dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, port_stats));
dmae->len = DMAE_LEN32_RD_MAX;
dmae->comp_addr_lo = dmae_reg_go_c[loader_idx] >> 2;
dmae->comp_addr_hi = 0;
dmae->comp_val = 1;
dmae = BXE_SP(sc, dmae[sc->executer_idx++]);
dmae->opcode = (opcode | DMAE_CMD_C_DST_PCI);
dmae->src_addr_lo = (sc->port.port_stx >> 2) + DMAE_LEN32_RD_MAX;
dmae->src_addr_hi = 0;
dmae->dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, port_stats) +
DMAE_LEN32_RD_MAX * 4);
dmae->dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, port_stats) +
DMAE_LEN32_RD_MAX * 4);
dmae->len = (sizeof(struct host_port_stats) >> 2) -
DMAE_LEN32_RD_MAX;
dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, stats_comp));
dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, stats_comp));
dmae->comp_val = DMAE_COMP_VAL;
/* Start the DMA and wait for the result. */
*stats_comp = 0;
bxe_stats_hw_post(sc);
bxe_stats_comp(sc);
bxe_stats_pmf_update_exit:
DBEXIT(BXE_VERBOSE_STATS);
}
/*
* Prepare the DMAE parameters required for all statistics.
*
* This function should only be called by the driver instance
* that is designated as the port management function (PMF).
*
* Returns:
* None.
*/
static void
bxe_stats_port_init(struct bxe_softc *sc)
{
struct dmae_command *dmae;
uint32_t mac_addr, opcode, *stats_comp;
int loader_idx, port, vn;
DBENTER(BXE_VERBOSE_STATS);
port = BP_PORT(sc);
vn = BP_E1HVN(sc);
loader_idx = PMF_DMAE_C(sc);
stats_comp = BXE_SP(sc, stats_comp);
/* Only the port management function (PMF) does this work. */
if (!sc->link_vars.link_up || (sc->port.pmf == 0)) {
BXE_PRINTF("%s(%d): Invalid statistics port setup!\n",
__FILE__, __LINE__);
goto bxe_stats_port_init_exit;
}
sc->executer_idx = 0;
/* The same opcde is used for multiple DMA operations. */
opcode = (DMAE_CMD_SRC_PCI | DMAE_CMD_DST_GRC |
DMAE_CMD_C_DST_GRC | DMAE_CMD_C_ENABLE |
DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET |
#ifdef __BIG_ENDIAN
DMAE_CMD_ENDIANITY_B_DW_SWAP |
#else
DMAE_CMD_ENDIANITY_DW_SWAP |
#endif
(port ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0) |
(vn << DMAE_CMD_E1HVN_SHIFT));
/* Setup the DMA for port statistics. */
if (sc->port.port_stx) {
dmae = BXE_SP(sc, dmae[sc->executer_idx++]);
dmae->opcode = opcode;
dmae->src_addr_lo = U64_LO(BXE_SP_MAPPING(sc, port_stats));
dmae->src_addr_hi = U64_HI(BXE_SP_MAPPING(sc, port_stats));
dmae->dst_addr_lo = sc->port.port_stx >> 2;
dmae->dst_addr_hi = 0;
dmae->len = sizeof(struct host_port_stats) >> 2;
dmae->comp_addr_lo = dmae_reg_go_c[loader_idx] >> 2;
dmae->comp_addr_hi = 0;
dmae->comp_val = 1;
}
/* Setup the DMA for function statistics. */
if (sc->func_stx) {
dmae = BXE_SP(sc, dmae[sc->executer_idx++]);
dmae->opcode = opcode;
dmae->src_addr_lo = U64_LO(BXE_SP_MAPPING(sc, func_stats));
dmae->src_addr_hi = U64_HI(BXE_SP_MAPPING(sc, func_stats));
dmae->dst_addr_lo = sc->func_stx >> 2;
dmae->dst_addr_hi = 0;
dmae->len = sizeof(struct host_func_stats) >> 2;
dmae->comp_addr_lo = dmae_reg_go_c[loader_idx] >> 2;
dmae->comp_addr_hi = 0;
dmae->comp_val = 1;
}
/* Setup statistics reporting for the MAC. */
opcode = (DMAE_CMD_SRC_GRC | DMAE_CMD_DST_PCI |
DMAE_CMD_C_DST_GRC | DMAE_CMD_C_ENABLE |
DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET |
#ifdef __BIG_ENDIAN
DMAE_CMD_ENDIANITY_B_DW_SWAP |
#else
DMAE_CMD_ENDIANITY_DW_SWAP |
#endif
(port ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0) |
(vn << DMAE_CMD_E1HVN_SHIFT));
if (sc->link_vars.mac_type == MAC_TYPE_BMAC) {
/* Enable statistics for the 10Gb BMAC. */
mac_addr = (port ? NIG_REG_INGRESS_BMAC1_MEM :
NIG_REG_INGRESS_BMAC0_MEM);
/* Setup BMAC TX statistics (TX_STAT_GTPKT .. TX_STAT_GTBYT). */
dmae = BXE_SP(sc, dmae[sc->executer_idx++]);
dmae->opcode = opcode;
dmae->src_addr_lo = (mac_addr +
BIGMAC_REGISTER_TX_STAT_GTPKT) >> 2;
dmae->src_addr_hi = 0;
dmae->dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, mac_stats));
dmae->dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, mac_stats));
dmae->len = (8 + BIGMAC_REGISTER_TX_STAT_GTBYT -
BIGMAC_REGISTER_TX_STAT_GTPKT) >> 2;
dmae->comp_addr_lo = dmae_reg_go_c[loader_idx] >> 2;
dmae->comp_addr_hi = 0;
dmae->comp_val = 1;
/* Setup BMAC RX statistcs (RX_STAT_GR64 .. RX_STAT_GRIPJ). */
dmae = BXE_SP(sc, dmae[sc->executer_idx++]);
dmae->opcode = opcode;
dmae->src_addr_lo = (mac_addr +
BIGMAC_REGISTER_RX_STAT_GR64) >> 2;
dmae->src_addr_hi = 0;
dmae->dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, mac_stats) +
offsetof(struct bmac_stats, rx_stat_gr64_lo));
dmae->dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, mac_stats) +
offsetof(struct bmac_stats, rx_stat_gr64_lo));
dmae->len = (8 + BIGMAC_REGISTER_RX_STAT_GRIPJ -
BIGMAC_REGISTER_RX_STAT_GR64) >> 2;
dmae->comp_addr_lo = dmae_reg_go_c[loader_idx] >> 2;
dmae->comp_addr_hi = 0;
dmae->comp_val = 1;
} else if (sc->link_vars.mac_type == MAC_TYPE_EMAC) {
/* Enable statistics for the 1Gb EMAC. */
mac_addr = (port ? GRCBASE_EMAC1 : GRCBASE_EMAC0);
/* Setup EMAC RX statistics. */
dmae = BXE_SP(sc, dmae[sc->executer_idx++]);
dmae->opcode = opcode;
dmae->src_addr_lo = (mac_addr + EMAC_REG_EMAC_RX_STAT_AC) >> 2;
dmae->src_addr_hi = 0;
dmae->dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, mac_stats));
dmae->dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, mac_stats));
dmae->len = EMAC_REG_EMAC_RX_STAT_AC_COUNT;
dmae->comp_addr_lo = dmae_reg_go_c[loader_idx] >> 2;
dmae->comp_addr_hi = 0;
dmae->comp_val = 1;
/* Setup additional EMAC RX statistics. */
dmae = BXE_SP(sc, dmae[sc->executer_idx++]);
dmae->opcode = opcode;
dmae->src_addr_lo = (mac_addr +
EMAC_REG_EMAC_RX_STAT_AC_28) >> 2;
dmae->src_addr_hi = 0;
dmae->dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, mac_stats) +
offsetof(struct emac_stats, rx_stat_falsecarriererrors));
dmae->dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, mac_stats) +
offsetof(struct emac_stats, rx_stat_falsecarriererrors));
dmae->len = 1;
dmae->comp_addr_lo = dmae_reg_go_c[loader_idx] >> 2;
dmae->comp_addr_hi = 0;
dmae->comp_val = 1;
/* Setup EMAC TX statistics. */
dmae = BXE_SP(sc, dmae[sc->executer_idx++]);
dmae->opcode = opcode;
dmae->src_addr_lo = (mac_addr + EMAC_REG_EMAC_TX_STAT_AC) >> 2;
dmae->src_addr_hi = 0;
dmae->dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, mac_stats) +
offsetof(struct emac_stats, tx_stat_ifhcoutoctets));
dmae->dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, mac_stats) +
offsetof(struct emac_stats, tx_stat_ifhcoutoctets));
dmae->len = EMAC_REG_EMAC_TX_STAT_AC_COUNT;
dmae->comp_addr_lo = dmae_reg_go_c[loader_idx] >> 2;
dmae->comp_addr_hi = 0;
dmae->comp_val = 1;
} else {
DBPRINT(sc, BXE_WARN, "%s(): Undefined MAC type.\n",
__FUNCTION__);
}
/* Enable NIG statistics. */
dmae = BXE_SP(sc, dmae[sc->executer_idx++]);
dmae->opcode = opcode;
dmae->src_addr_lo = (port ? NIG_REG_STAT1_BRB_DISCARD :
NIG_REG_STAT0_BRB_DISCARD) >> 2;
dmae->src_addr_hi = 0;
dmae->dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, nig_stats));
dmae->dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, nig_stats));
dmae->len = (sizeof(struct nig_stats) - 4 * sizeof(uint32_t)) >> 2;
dmae->comp_addr_lo = dmae_reg_go_c[loader_idx] >> 2;
dmae->comp_addr_hi = 0;
dmae->comp_val = 1;
dmae = BXE_SP(sc, dmae[sc->executer_idx++]);
dmae->opcode = opcode;
dmae->src_addr_lo = (port ? NIG_REG_STAT1_EGRESS_MAC_PKT0 :
NIG_REG_STAT0_EGRESS_MAC_PKT0) >> 2;
dmae->src_addr_hi = 0;
dmae->dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, nig_stats) +
offsetof(struct nig_stats, egress_mac_pkt0_lo));
dmae->dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, nig_stats) +
offsetof(struct nig_stats, egress_mac_pkt0_lo));
dmae->len = (2 * sizeof(uint32_t)) >> 2;
dmae->comp_addr_lo = dmae_reg_go_c[loader_idx] >> 2;
dmae->comp_addr_hi = 0;
dmae->comp_val = 1;
dmae = BXE_SP(sc, dmae[sc->executer_idx++]);
dmae->opcode = (DMAE_CMD_SRC_GRC | DMAE_CMD_DST_PCI |
DMAE_CMD_C_DST_PCI | DMAE_CMD_C_ENABLE |
DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET |
#ifdef __BIG_ENDIAN
DMAE_CMD_ENDIANITY_B_DW_SWAP |
#else
DMAE_CMD_ENDIANITY_DW_SWAP |
#endif
(port ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0) |
(vn << DMAE_CMD_E1HVN_SHIFT));
dmae->src_addr_lo = (port ? NIG_REG_STAT1_EGRESS_MAC_PKT1 :
NIG_REG_STAT0_EGRESS_MAC_PKT1) >> 2;
dmae->src_addr_hi = 0;
dmae->dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, nig_stats) +
offsetof(struct nig_stats, egress_mac_pkt1_lo));
dmae->dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, nig_stats) +
offsetof(struct nig_stats, egress_mac_pkt1_lo));
dmae->len = (2 * sizeof(uint32_t)) >> 2;
dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, stats_comp));
dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, stats_comp));
dmae->comp_val = DMAE_COMP_VAL;
/* Clear the statistics completion value. */
*stats_comp = 0;
bxe_stats_port_init_exit:
DBEXIT(BXE_VERBOSE_STATS);
}
/*
* Prepare the DMAE parameters required for function statistics.
*
* This function is called by all driver instances.
*
* Returns:
* None.
*/
static void
bxe_stats_func_init(struct bxe_softc *sc)
{
struct dmae_command *dmae;
uint32_t *stats_comp;
DBENTER(BXE_VERBOSE_STATS);
if (!sc->func_stx) {
BXE_PRINTF("%s(%d): Invalid statistics function setup!\n",
__FILE__, __LINE__);
goto bxe_stats_func_init_exit;
}
dmae = &sc->stats_dmae;
stats_comp = BXE_SP(sc, stats_comp);
sc->executer_idx = 0;
memset(dmae, 0, sizeof(struct dmae_command));
/* Setup the DMA for function statistics. */
dmae->opcode = (DMAE_CMD_SRC_PCI | DMAE_CMD_DST_GRC |
DMAE_CMD_C_DST_PCI | DMAE_CMD_C_ENABLE |
DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET |
#ifdef __BIG_ENDIAN
DMAE_CMD_ENDIANITY_B_DW_SWAP |
#else
DMAE_CMD_ENDIANITY_DW_SWAP |
#endif
(BP_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0) |
(BP_E1HVN(sc) << DMAE_CMD_E1HVN_SHIFT));
dmae->src_addr_lo = U64_LO(BXE_SP_MAPPING(sc, func_stats));
dmae->src_addr_hi = U64_HI(BXE_SP_MAPPING(sc, func_stats));
dmae->dst_addr_lo = sc->func_stx >> 2;
dmae->dst_addr_hi = 0;
dmae->len = sizeof(struct host_func_stats) >> 2;
dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, stats_comp));
dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, stats_comp));
dmae->comp_val = DMAE_COMP_VAL;
*stats_comp = 0;
bxe_stats_func_init_exit:
DBEXIT(BXE_VERBOSE_STATS);
}
/*
* Starts a statistics update DMA and waits for completion.
*
* Returns:
* None.
*/
static void
bxe_stats_start(struct bxe_softc *sc)
{
DBENTER(BXE_VERBOSE_STATS);
if (sc->port.pmf == 1)
bxe_stats_port_init(sc);
else if (sc->func_stx)
bxe_stats_func_init(sc);
bxe_stats_hw_post(sc);
bxe_stats_storm_post(sc);
DBEXIT(BXE_VERBOSE_STATS);
}
/*
* Returns:
* None.
*/
static void
bxe_stats_pmf_start(struct bxe_softc *sc)
{
DBENTER(BXE_VERBOSE_STATS);
bxe_stats_comp(sc);
bxe_stats_pmf_update(sc);
bxe_stats_start(sc);
DBEXIT(BXE_VERBOSE_STATS);
}
/*
* Returns:
* None.
*/
static void
bxe_stats_restart(struct bxe_softc *sc)
{
DBENTER(BXE_VERBOSE_STATS);
bxe_stats_comp(sc);
bxe_stats_start(sc);
DBEXIT(BXE_VERBOSE_STATS);
}
/*
* Update the Big MAC (10Gb BMAC) statistics.
*
* Returns:
* None.
*/
static void
bxe_stats_bmac_update(struct bxe_softc *sc)
{
struct bmac_stats *new;
struct host_port_stats *pstats;
struct bxe_port_stats *estats;
struct regpair diff;
DBENTER(BXE_INSANE_STATS);
new = BXE_SP(sc, mac_stats.bmac_stats);
pstats = BXE_SP(sc, port_stats);
estats = &sc->eth_stats;
UPDATE_STAT64(rx_stat_grerb,
rx_stat_ifhcinbadoctets);
UPDATE_STAT64(rx_stat_grfcs,
rx_stat_dot3statsfcserrors);
UPDATE_STAT64(rx_stat_grund,
rx_stat_etherstatsundersizepkts);
UPDATE_STAT64(rx_stat_grovr,
rx_stat_dot3statsframestoolong);
UPDATE_STAT64(rx_stat_grfrg,
rx_stat_etherstatsfragments);
UPDATE_STAT64(rx_stat_grjbr,
rx_stat_etherstatsjabbers);
UPDATE_STAT64(rx_stat_grxcf,
rx_stat_maccontrolframesreceived);
UPDATE_STAT64(rx_stat_grxpf,
rx_stat_xoffstateentered);
UPDATE_STAT64(rx_stat_grxpf,
rx_stat_bmac_xpf);
UPDATE_STAT64(tx_stat_gtxpf,
tx_stat_outxoffsent);
UPDATE_STAT64(tx_stat_gtxpf,
tx_stat_flowcontroldone);
UPDATE_STAT64(tx_stat_gt64,
tx_stat_etherstatspkts64octets);
UPDATE_STAT64(tx_stat_gt127,
tx_stat_etherstatspkts65octetsto127octets);
UPDATE_STAT64(tx_stat_gt255,
tx_stat_etherstatspkts128octetsto255octets);
UPDATE_STAT64(tx_stat_gt511,
tx_stat_etherstatspkts256octetsto511octets);
UPDATE_STAT64(tx_stat_gt1023,
tx_stat_etherstatspkts512octetsto1023octets);
UPDATE_STAT64(tx_stat_gt1518,
tx_stat_etherstatspkts1024octetsto1522octets);
UPDATE_STAT64(tx_stat_gt2047,
tx_stat_bmac_2047);
UPDATE_STAT64(tx_stat_gt4095,
tx_stat_bmac_4095);
UPDATE_STAT64(tx_stat_gt9216,
tx_stat_bmac_9216);
UPDATE_STAT64(tx_stat_gt16383,
tx_stat_bmac_16383);
UPDATE_STAT64(tx_stat_gterr,
tx_stat_dot3statsinternalmactransmiterrors);
UPDATE_STAT64(tx_stat_gtufl,
tx_stat_bmac_ufl);
estats->pause_frames_received_hi =
pstats->mac_stx[1].rx_stat_bmac_xpf_hi;
estats->pause_frames_received_lo =
pstats->mac_stx[1].rx_stat_bmac_xpf_lo;
estats->pause_frames_sent_hi =
pstats->mac_stx[1].tx_stat_outxoffsent_hi;
estats->pause_frames_sent_lo =
pstats->mac_stx[1].tx_stat_outxoffsent_lo;
DBEXIT(BXE_INSANE_STATS);
}
/*
* Update the Ethernet MAC (1Gb EMAC) statistics.
*
* Returns:
* None.
*/
static void
bxe_stats_emac_update(struct bxe_softc *sc)
{
struct emac_stats *new;
struct host_port_stats *pstats;
struct bxe_port_stats *estats;
DBENTER(BXE_INSANE_STATS);
new = BXE_SP(sc, mac_stats.emac_stats);
pstats = BXE_SP(sc, port_stats);
estats = &sc->eth_stats;
UPDATE_EXTEND_STAT(rx_stat_ifhcinbadoctets);
UPDATE_EXTEND_STAT(tx_stat_ifhcoutbadoctets);
UPDATE_EXTEND_STAT(rx_stat_dot3statsfcserrors);
UPDATE_EXTEND_STAT(rx_stat_dot3statsalignmenterrors);
UPDATE_EXTEND_STAT(rx_stat_dot3statscarriersenseerrors);
UPDATE_EXTEND_STAT(rx_stat_falsecarriererrors);
UPDATE_EXTEND_STAT(rx_stat_etherstatsundersizepkts);
UPDATE_EXTEND_STAT(rx_stat_dot3statsframestoolong);
UPDATE_EXTEND_STAT(rx_stat_etherstatsfragments);
UPDATE_EXTEND_STAT(rx_stat_etherstatsjabbers);
UPDATE_EXTEND_STAT(rx_stat_maccontrolframesreceived);
UPDATE_EXTEND_STAT(rx_stat_xoffstateentered);
UPDATE_EXTEND_STAT(rx_stat_xonpauseframesreceived);
UPDATE_EXTEND_STAT(rx_stat_xoffpauseframesreceived);
UPDATE_EXTEND_STAT(tx_stat_outxonsent);
UPDATE_EXTEND_STAT(tx_stat_outxoffsent);
UPDATE_EXTEND_STAT(tx_stat_flowcontroldone);
UPDATE_EXTEND_STAT(tx_stat_etherstatscollisions);
UPDATE_EXTEND_STAT(tx_stat_dot3statssinglecollisionframes);
UPDATE_EXTEND_STAT(tx_stat_dot3statsmultiplecollisionframes);
UPDATE_EXTEND_STAT(tx_stat_dot3statsdeferredtransmissions);
UPDATE_EXTEND_STAT(tx_stat_dot3statsexcessivecollisions);
UPDATE_EXTEND_STAT(tx_stat_dot3statslatecollisions);
UPDATE_EXTEND_STAT(tx_stat_etherstatspkts64octets);
UPDATE_EXTEND_STAT(tx_stat_etherstatspkts65octetsto127octets);
UPDATE_EXTEND_STAT(tx_stat_etherstatspkts128octetsto255octets);
UPDATE_EXTEND_STAT(tx_stat_etherstatspkts256octetsto511octets);
UPDATE_EXTEND_STAT(tx_stat_etherstatspkts512octetsto1023octets);
UPDATE_EXTEND_STAT(tx_stat_etherstatspkts1024octetsto1522octets);
UPDATE_EXTEND_STAT(tx_stat_etherstatspktsover1522octets);
UPDATE_EXTEND_STAT(tx_stat_dot3statsinternalmactransmiterrors);
estats->pause_frames_received_hi =
pstats->mac_stx[1].rx_stat_xonpauseframesreceived_hi;
estats->pause_frames_received_lo =
pstats->mac_stx[1].rx_stat_xonpauseframesreceived_lo;
ADD_64(estats->pause_frames_received_hi,
pstats->mac_stx[1].rx_stat_xoffpauseframesreceived_hi,
estats->pause_frames_received_lo,
pstats->mac_stx[1].rx_stat_xoffpauseframesreceived_lo);
estats->pause_frames_sent_hi =
pstats->mac_stx[1].tx_stat_outxonsent_hi;
estats->pause_frames_sent_lo =
pstats->mac_stx[1].tx_stat_outxonsent_lo;
ADD_64(estats->pause_frames_sent_hi,
pstats->mac_stx[1].tx_stat_outxoffsent_hi,
estats->pause_frames_sent_lo,
pstats->mac_stx[1].tx_stat_outxoffsent_lo);
DBEXIT(BXE_INSANE_STATS);
}
/*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_stats_hw_update(struct bxe_softc *sc)
{
struct nig_stats *new, *old;
struct host_port_stats *pstats;
struct bxe_port_stats *estats;
struct regpair diff;
uint32_t nig_timer_max;
int rc;
DBENTER(BXE_INSANE_STATS);
rc = 0;
new = BXE_SP(sc, nig_stats);
old = &(sc->port.old_nig_stats);
pstats = BXE_SP(sc, port_stats);
estats = &sc->eth_stats;
/* Update statistics for the active MAC. */
if (sc->link_vars.mac_type == MAC_TYPE_BMAC)
bxe_stats_bmac_update(sc);
else if (sc->link_vars.mac_type == MAC_TYPE_EMAC)
bxe_stats_emac_update(sc);
else {
DBPRINT(sc, BXE_WARN,
"%s(): Statistics updated by DMAE but no MAC is active!\n",
__FUNCTION__);
rc = EINVAL;
goto bxe_stats_hw_update_exit;
}
/* Now update the hardware (NIG) statistics. */
ADD_EXTEND_64(pstats->brb_drop_hi, pstats->brb_drop_lo,
new->brb_discard - old->brb_discard);
ADD_EXTEND_64(estats->brb_truncate_hi, estats->brb_truncate_lo,
new->brb_truncate - old->brb_truncate);
UPDATE_STAT64_NIG(egress_mac_pkt0,
etherstatspkts1024octetsto1522octets);
UPDATE_STAT64_NIG(egress_mac_pkt1, etherstatspktsover1522octets);
memcpy(old, new, sizeof(struct nig_stats));
memcpy(&(estats->rx_stat_ifhcinbadoctets_hi), &(pstats->mac_stx[1]),
sizeof(struct mac_stx));
estats->brb_drop_hi = pstats->brb_drop_hi;
estats->brb_drop_lo = pstats->brb_drop_lo;
pstats->host_port_stats_start = ++pstats->host_port_stats_end;
if (!NOMCP(sc)) {
nig_timer_max =
SHMEM_RD(sc, port_mb[BP_PORT(sc)].stat_nig_timer);
if (nig_timer_max != estats->nig_timer_max) {
estats->nig_timer_max = nig_timer_max;
DBPRINT(sc, BXE_WARN,
"%s(): NIG timer reached max value (%u)!\n",
__FUNCTION__, estats->nig_timer_max);
}
}
bxe_stats_hw_update_exit:
DBEXIT(BXE_INSANE_STATS);
return (rc);
}
/*
* Returns:
* 0 = Success, !0 = Failure.
*/
// DRC - Done
static int
bxe_stats_storm_update(struct bxe_softc *sc)
{
int rc, i, cl_id;
struct eth_stats_query *stats;
struct bxe_port_stats *estats;
struct host_func_stats *fstats;
struct bxe_q_stats *qstats;
struct tstorm_per_port_stats *tport;
struct tstorm_per_client_stats *tclient;
struct ustorm_per_client_stats *uclient;
struct xstorm_per_client_stats *xclient;
struct tstorm_per_client_stats *old_tclient;
struct ustorm_per_client_stats *old_uclient;
struct xstorm_per_client_stats *old_xclient;
struct bxe_fastpath * fp;
uint32_t diff;
DBENTER(BXE_INSANE_STATS);
rc = 0;
diff = 0;
stats = BXE_SP(sc, fw_stats);
tport = &stats->tstorm_common.port_statistics;
fstats = BXE_SP(sc, func_stats);
memcpy(&(fstats->total_bytes_received_hi),
&(BXE_SP(sc, func_stats_base)->total_bytes_received_hi),
sizeof(struct host_func_stats) - 2 * sizeof(uint32_t));
estats = &sc->eth_stats;
estats->no_buff_discard_hi = 0;
estats->no_buff_discard_lo = 0;
estats->error_bytes_received_hi = 0;
estats->error_bytes_received_lo = 0;
estats->etherstatsoverrsizepkts_hi = 0;
estats->etherstatsoverrsizepkts_lo = 0;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
cl_id = fp->cl_id;
tclient = &stats->tstorm_common.client_statistics[cl_id];
old_tclient = &fp->old_tclient;
uclient = &stats->ustorm_common.client_statistics[cl_id];
old_uclient = &fp->old_uclient;
xclient = &stats->xstorm_common.client_statistics[cl_id];
old_xclient = &fp->old_xclient;
qstats = &fp->eth_q_stats;
/* Are TSTORM statistics valid? */
if ((uint16_t)(le16toh(tclient->stats_counter) + 1) !=
sc->stats_counter) {
DBPRINT(sc, BXE_WARN, "%s(): Stats not updated by TSTORM "
"(tstorm counter (%d) != stats_counter (%d))!\n",
__FUNCTION__, tclient->stats_counter, sc->stats_counter);
rc = 1;
goto bxe_stats_storm_update_exit;
}
/* Are USTORM statistics valid? */
if ((uint16_t)(le16toh(uclient->stats_counter) + 1) !=
sc->stats_counter) {
DBPRINT(sc, BXE_WARN, "%s(): Stats not updated by USTORM "
"(ustorm counter (%d) != stats_counter (%d))!\n",
__FUNCTION__, uclient->stats_counter, sc->stats_counter);
rc = 2;
goto bxe_stats_storm_update_exit;
}
/* Are XSTORM statistics valid? */
if ((uint16_t)(le16toh(xclient->stats_counter) + 1) !=
sc->stats_counter) {
DBPRINT(sc, BXE_WARN, "%s(): Stats not updated by XSTORM "
"(xstorm counter (%d) != stats_counter (%d))!\n",
__FUNCTION__, xclient->stats_counter, sc->stats_counter);
rc = 3;
goto bxe_stats_storm_update_exit;
}
qstats->total_bytes_received_hi =
(tclient->rcv_broadcast_bytes.hi);
qstats->total_bytes_received_lo =
le32toh(tclient->rcv_broadcast_bytes.lo);
ADD_64(qstats->total_bytes_received_hi,
le32toh(tclient->rcv_multicast_bytes.hi),
qstats->total_bytes_received_lo,
le32toh(tclient->rcv_multicast_bytes.lo));
ADD_64(qstats->total_bytes_received_hi,
le32toh(tclient->rcv_unicast_bytes.hi),
qstats->total_bytes_received_lo,
le32toh(tclient->rcv_unicast_bytes.lo));
SUB_64(qstats->total_bytes_received_hi,
le32toh(uclient->bcast_no_buff_bytes.hi),
qstats->total_bytes_received_lo,
le32toh(uclient->bcast_no_buff_bytes.lo));
SUB_64(qstats->total_bytes_received_hi,
le32toh(uclient->mcast_no_buff_bytes.hi),
qstats->total_bytes_received_lo,
le32toh(uclient->mcast_no_buff_bytes.lo));
SUB_64(qstats->total_bytes_received_hi,
le32toh(uclient->ucast_no_buff_bytes.hi),
qstats->total_bytes_received_lo,
le32toh(uclient->ucast_no_buff_bytes.lo));
qstats->valid_bytes_received_hi =
qstats->total_bytes_received_hi;
qstats->valid_bytes_received_lo =
qstats->total_bytes_received_lo;
qstats->error_bytes_received_hi =
le32toh(tclient->rcv_error_bytes.hi);
qstats->error_bytes_received_lo =
le32toh(tclient->rcv_error_bytes.lo);
ADD_64(qstats->total_bytes_received_hi,
qstats->error_bytes_received_hi,
qstats->total_bytes_received_lo,
qstats->error_bytes_received_lo);
UPDATE_EXTEND_TSTAT(rcv_unicast_pkts,
total_unicast_packets_received);
UPDATE_EXTEND_TSTAT(rcv_multicast_pkts,
total_multicast_packets_received);
UPDATE_EXTEND_TSTAT(rcv_broadcast_pkts,
total_broadcast_packets_received);
UPDATE_EXTEND_TSTAT(packets_too_big_discard,
etherstatsoverrsizepkts);
UPDATE_EXTEND_TSTAT(no_buff_discard, no_buff_discard);
SUB_EXTEND_USTAT(ucast_no_buff_pkts,
total_unicast_packets_received);
SUB_EXTEND_USTAT(mcast_no_buff_pkts,
total_multicast_packets_received);
SUB_EXTEND_USTAT(bcast_no_buff_pkts,
total_broadcast_packets_received);
UPDATE_EXTEND_USTAT(ucast_no_buff_pkts, no_buff_discard);
UPDATE_EXTEND_USTAT(mcast_no_buff_pkts, no_buff_discard);
UPDATE_EXTEND_USTAT(bcast_no_buff_pkts, no_buff_discard);
qstats->total_bytes_transmitted_hi =
le32toh(xclient->unicast_bytes_sent.hi);
qstats->total_bytes_transmitted_lo =
le32toh(xclient->unicast_bytes_sent.lo);
ADD_64(qstats->total_bytes_transmitted_hi,
le32toh(xclient->multicast_bytes_sent.hi),
qstats->total_bytes_transmitted_lo,
le32toh(xclient->multicast_bytes_sent.lo));
ADD_64(qstats->total_bytes_transmitted_hi,
le32toh(xclient->broadcast_bytes_sent.hi),
qstats->total_bytes_transmitted_lo,
le32toh(xclient->broadcast_bytes_sent.lo));
UPDATE_EXTEND_XSTAT(unicast_pkts_sent,
total_unicast_packets_transmitted);
UPDATE_EXTEND_XSTAT(multicast_pkts_sent,
total_multicast_packets_transmitted);
UPDATE_EXTEND_XSTAT(broadcast_pkts_sent,
total_broadcast_packets_transmitted);
old_tclient->checksum_discard = tclient->checksum_discard;
old_tclient->ttl0_discard = tclient->ttl0_discard;
ADD_64(fstats->total_bytes_received_hi,
qstats->total_bytes_received_hi,
fstats->total_bytes_received_lo,
qstats->total_bytes_received_lo);
ADD_64(fstats->total_bytes_transmitted_hi,
qstats->total_bytes_transmitted_hi,
fstats->total_bytes_transmitted_lo,
qstats->total_bytes_transmitted_lo);
ADD_64(fstats->total_unicast_packets_received_hi,
qstats->total_unicast_packets_received_hi,
fstats->total_unicast_packets_received_lo,
qstats->total_unicast_packets_received_lo);
ADD_64(fstats->total_multicast_packets_received_hi,
qstats->total_multicast_packets_received_hi,
fstats->total_multicast_packets_received_lo,
qstats->total_multicast_packets_received_lo);
ADD_64(fstats->total_broadcast_packets_received_hi,
qstats->total_broadcast_packets_received_hi,
fstats->total_broadcast_packets_received_lo,
qstats->total_broadcast_packets_received_lo);
ADD_64(fstats->total_unicast_packets_transmitted_hi,
qstats->total_unicast_packets_transmitted_hi,
fstats->total_unicast_packets_transmitted_lo,
qstats->total_unicast_packets_transmitted_lo);
ADD_64(fstats->total_multicast_packets_transmitted_hi,
qstats->total_multicast_packets_transmitted_hi,
fstats->total_multicast_packets_transmitted_lo,
qstats->total_multicast_packets_transmitted_lo);
ADD_64(fstats->total_broadcast_packets_transmitted_hi,
qstats->total_broadcast_packets_transmitted_hi,
fstats->total_broadcast_packets_transmitted_lo,
qstats->total_broadcast_packets_transmitted_lo);
ADD_64(fstats->valid_bytes_received_hi,
qstats->valid_bytes_received_hi,
fstats->valid_bytes_received_lo,
qstats->valid_bytes_received_lo);
ADD_64(estats->error_bytes_received_hi,
qstats->error_bytes_received_hi,
estats->error_bytes_received_lo,
qstats->error_bytes_received_lo);
ADD_64(estats->etherstatsoverrsizepkts_hi,
qstats->etherstatsoverrsizepkts_hi,
estats->etherstatsoverrsizepkts_lo,
qstats->etherstatsoverrsizepkts_lo);
ADD_64(estats->no_buff_discard_hi,
qstats->no_buff_discard_hi,
estats->no_buff_discard_lo,
qstats->no_buff_discard_lo);
}
ADD_64(fstats->total_bytes_received_hi,
estats->rx_stat_ifhcinbadoctets_hi,
fstats->total_bytes_received_lo,
estats->rx_stat_ifhcinbadoctets_lo);
memcpy(estats, &(fstats->total_bytes_received_hi),
sizeof(struct host_func_stats) - 2 * sizeof(uint32_t));
ADD_64(estats->etherstatsoverrsizepkts_hi,
estats->rx_stat_dot3statsframestoolong_hi,
estats->etherstatsoverrsizepkts_lo,
estats->rx_stat_dot3statsframestoolong_lo);
ADD_64(estats->error_bytes_received_hi,
estats->rx_stat_ifhcinbadoctets_hi,
estats->error_bytes_received_lo,
estats->rx_stat_ifhcinbadoctets_lo);
if (sc->port.pmf) {
estats->mac_filter_discard =
le32toh(tport->mac_filter_discard);
estats->xxoverflow_discard =
le32toh(tport->xxoverflow_discard);
estats->brb_truncate_discard =
le32toh(tport->brb_truncate_discard);
estats->mac_discard = le32toh(tport->mac_discard);
}
fstats->host_func_stats_start = ++fstats->host_func_stats_end;
sc->stats_pending = 0;
bxe_stats_storm_update_exit:
DBEXIT(BXE_INSANE_STATS);
return (rc);
}
/*
* Copy the controller maintained statistics over to the OS.
*
* Returns:
* None.
*/
static void
bxe_stats_net_update(struct bxe_softc *sc)
{
struct tstorm_per_client_stats *old_tclient;
struct bxe_port_stats *estats;
struct ifnet *ifp;
DBENTER(BXE_INSANE_STATS);
old_tclient = &sc->fp[0].old_tclient;
estats = &sc->eth_stats;
ifp = sc->bxe_ifp;
/*
* Update the OS interface statistics from
* the hardware statistics.
*/
ifp->if_collisions =
(u_long) estats->tx_stat_dot3statssinglecollisionframes_lo +
(u_long) estats->tx_stat_dot3statsmultiplecollisionframes_lo +
(u_long) estats->tx_stat_dot3statslatecollisions_lo +
(u_long) estats->tx_stat_dot3statsexcessivecollisions_lo;
ifp->if_ierrors =
(u_long) old_tclient->checksum_discard +
(u_long) estats->no_buff_discard_lo +
(u_long) estats->mac_discard +
(u_long) estats->rx_stat_etherstatsundersizepkts_lo +
(u_long) estats->brb_drop_lo +
(u_long) estats->brb_truncate_discard +
(u_long) estats->rx_stat_dot3statsfcserrors_lo +
(u_long) estats->rx_stat_dot3statsalignmenterrors_lo +
(u_long) estats->xxoverflow_discard;
ifp->if_oerrors =
(u_long) estats->tx_stat_dot3statslatecollisions_lo +
(u_long) estats->tx_stat_dot3statsexcessivecollisions_lo +
(u_long) estats->tx_stat_dot3statsinternalmactransmiterrors_lo;
ifp->if_ipackets =
bxe_hilo(&estats->total_unicast_packets_received_hi) +
bxe_hilo(&estats->total_multicast_packets_received_hi) +
bxe_hilo(&estats->total_broadcast_packets_received_hi);
ifp->if_opackets =
bxe_hilo(&estats->total_unicast_packets_transmitted_hi) +
bxe_hilo(&estats->total_multicast_packets_transmitted_hi) +
bxe_hilo(&estats->total_broadcast_packets_transmitted_hi);
DBEXIT(BXE_INSANE_STATS);
}
/*
*
* Returns:
* None.
*/
static void
bxe_stats_update(struct bxe_softc *sc)
{
uint32_t *stats_comp;
int update;
DBENTER(BXE_INSANE_STATS);
stats_comp = BXE_SP(sc, stats_comp);
update = 0;
/* Make sure the statistics DMAE update has completed. */
if (*stats_comp != DMAE_COMP_VAL)
goto bxe_stats_update_exit;
/* Check for any hardware statistics updates. */
if (sc->port.pmf == 1)
update = (bxe_stats_hw_update(sc) == 0);
/* Check for any STORM statistics updates. */
update |= (bxe_stats_storm_update(sc) == 0);
/* If we got updated hardware statistics then update the OS. */
if (update)
bxe_stats_net_update(sc);
else {
/* Check if any statistics updates are pending. */
if (sc->stats_pending) {
/* The update hasn't completed, keep waiting. */
sc->stats_pending++;
/* Have we been waiting for too long? */
if (sc->stats_pending >= 3) {
BXE_PRINTF(
"%s(%d): Failed to get statistics after "
"3 tries!\n", __FILE__, __LINE__);
bxe_panic_dump(sc);
goto bxe_stats_update_exit;
}
}
}
/* Kickoff the next statistics request. */
bxe_stats_hw_post(sc);
bxe_stats_storm_post(sc);
bxe_stats_update_exit:
DBEXIT(BXE_INSANE_STATS);
}
/*
*
* Returns:
* None.
*/
static void
bxe_stats_port_stop(struct bxe_softc *sc)
{
struct dmae_command *dmae;
uint32_t opcode, *stats_comp;
int loader_idx;
DBENTER(BXE_VERBOSE_STATS);
stats_comp = BXE_SP(sc, stats_comp);
loader_idx = PMF_DMAE_C(sc);
sc->executer_idx = 0;
opcode = (DMAE_CMD_SRC_PCI | DMAE_CMD_DST_GRC |
DMAE_CMD_C_ENABLE |
DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET |
#ifdef __BIG_ENDIAN
DMAE_CMD_ENDIANITY_B_DW_SWAP |
#else
DMAE_CMD_ENDIANITY_DW_SWAP |
#endif
(BP_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0) |
(BP_E1HVN(sc) << DMAE_CMD_E1HVN_SHIFT));
if (sc->port.port_stx) {
dmae = BXE_SP(sc, dmae[sc->executer_idx++]);
if (sc->func_stx)
dmae->opcode = (opcode | DMAE_CMD_C_DST_GRC);
else
dmae->opcode = (opcode | DMAE_CMD_C_DST_PCI);
dmae->src_addr_lo = U64_LO(BXE_SP_MAPPING(sc, port_stats));
dmae->src_addr_hi = U64_HI(BXE_SP_MAPPING(sc, port_stats));
dmae->dst_addr_lo = sc->port.port_stx >> 2;
dmae->dst_addr_hi = 0;
dmae->len = sizeof(struct host_port_stats) >> 2;
if (sc->func_stx) {
dmae->comp_addr_lo = dmae_reg_go_c[loader_idx] >> 2;
dmae->comp_addr_hi = 0;
dmae->comp_val = 1;
} else {
dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc,
stats_comp));
dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc,
stats_comp));
dmae->comp_val = DMAE_COMP_VAL;
*stats_comp = 0;
}
}
if (sc->func_stx) {
dmae = BXE_SP(sc, dmae[sc->executer_idx++]);
dmae->opcode = (opcode | DMAE_CMD_C_DST_PCI);
dmae->src_addr_lo = U64_LO(BXE_SP_MAPPING(sc, func_stats));
dmae->src_addr_hi = U64_HI(BXE_SP_MAPPING(sc, func_stats));
dmae->dst_addr_lo = sc->func_stx >> 2;
dmae->dst_addr_hi = 0;
dmae->len = sizeof(struct host_func_stats) >> 2;
dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, stats_comp));
dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, stats_comp));
dmae->comp_val = DMAE_COMP_VAL;
*stats_comp = 0;
}
DBEXIT(BXE_VERBOSE_STATS);
}
/*
* Returns:
* None.
*/
static void
bxe_stats_stop(struct bxe_softc *sc)
{
int update;
DBENTER(BXE_VERBOSE_STATS);
update = 0;
/* Wait for any pending completions. */
bxe_stats_comp(sc);
if (sc->port.pmf == 1)
update = (bxe_stats_hw_update(sc) == 0);
update |= (bxe_stats_storm_update(sc) == 0);
if (update) {
bxe_stats_net_update(sc);
if (sc->port.pmf == 1)
bxe_stats_port_stop(sc);
bxe_stats_hw_post(sc);
bxe_stats_comp(sc);
}
DBEXIT(BXE_VERBOSE_STATS);
}
/*
* A dummy function to fill in the statistics state transition table.
*
* Returns:
* None.
*/
static void
bxe_stats_do_nothing(struct bxe_softc *sc)
{
DBENTER(BXE_VERBOSE_STATS);
DBEXIT(BXE_VERBOSE_STATS);
}
static const struct {
void (*action)(struct bxe_softc *sc);
enum bxe_stats_state next_state;
} bxe_stats_stm[STATS_STATE_MAX][STATS_EVENT_MAX] = {
/* State Event */
{
/* DISABLED PMF */ {bxe_stats_pmf_update, STATS_STATE_DISABLED},
/* LINK_UP */ {bxe_stats_start, STATS_STATE_ENABLED},
/* UPDATE */ {bxe_stats_do_nothing, STATS_STATE_DISABLED},
/* STOP */ {bxe_stats_do_nothing, STATS_STATE_DISABLED}
},
{
/* ENABLED PMF */ {bxe_stats_pmf_start, STATS_STATE_ENABLED},
/* LINK_UP */ {bxe_stats_restart, STATS_STATE_ENABLED},
/* UPDATE */ {bxe_stats_update, STATS_STATE_ENABLED},
/* STOP */ {bxe_stats_stop, STATS_STATE_DISABLED}
}
};
/*
* Move to the next state of the statistics state machine.
*
* Returns:
* None.
*/
static void
bxe_stats_handle(struct bxe_softc *sc, enum bxe_stats_event event)
{
enum bxe_stats_state state;
DBENTER(BXE_EXTREME_STATS);
state = sc->stats_state;
#ifdef BXE_DEBUG
if (event != STATS_EVENT_UPDATE)
DBPRINT(sc, BXE_VERBOSE_STATS,
"%s(): Current state = %d, event = %d.\n", __FUNCTION__,
state, event);
#endif
bxe_stats_stm[state][event].action(sc);
sc->stats_state = bxe_stats_stm[state][event].next_state;
#ifdef BXE_DEBUG
if (event != STATS_EVENT_UPDATE)
DBPRINT(sc, BXE_VERBOSE_STATS, "%s(): New state = %d.\n",
__FUNCTION__, sc->stats_state);
#endif
DBEXIT(BXE_EXTREME_STATS);
}
/*
* bxe_chktso_window()
* Checks to ensure the 13 bd sliding window is >= MSS for TSO.
* Check that (13 total bds - 3bds) = 10 bd window >= MSS.
* The window: 3 bds are = 1 (for headers BD) + 2 (for PBD and last BD)
* The headers comes in a seperate bd in FreeBSD. So 13-3=10.
*
* Returns:
* 0 if OK to send, 1 if packet needs further defragmentation.
*/
static int
bxe_chktso_window(struct bxe_softc* sc, int nsegs, bus_dma_segment_t *segs,
struct mbuf *m0)
{
uint32_t num_wnds, wnd_size, wnd_sum;
int32_t frag_idx, wnd_idx;
unsigned short lso_mss;
int defrag;
defrag = 0;
wnd_sum = 0;
wnd_size = 10;
num_wnds = nsegs - wnd_size;
lso_mss = htole16(m0->m_pkthdr.tso_segsz);
/*
* Total Header lengths Eth+IP+TCP in 1st FreeBSD mbuf so
* calculate the first window sum of data skip the first
* assuming it is the header in FreeBSD.
*/
for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++)
wnd_sum += htole16(segs[frag_idx].ds_len);
/* Chk the first 10 bd window size */
if (wnd_sum < lso_mss)
return (defrag = 1);
/* Run through the windows */
for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
/* Subtract the 1st mbuf->m_len of the last wndw(-header). */
wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
/* Add the next mbuf len to the len of our new window. */
wnd_sum += htole16(segs[frag_idx].ds_len);
if (wnd_sum < lso_mss) {
defrag = 1;
break;
}
}
return (defrag);
}
/*
* Encapsultes an mbuf cluster into the tx_bd chain structure and
* makes the memory visible to the controller.
*
* If an mbuf is submitted to this routine and cannot be given to the
* controller (e.g. it has too many fragments) then the function may free
* the mbuf and return to the caller.
*
* Returns:
* 0 = Success, !0 = Failure
* Note the side effect that an mbuf may be freed if it causes a problem.
*/
static int
bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
{
bus_dma_segment_t segs[32];
bus_dmamap_t map;
struct mbuf *m0;
struct eth_tx_parse_bd *tx_parse_bd;
struct eth_tx_bd *tx_data_bd;
struct eth_tx_bd *tx_total_pkt_size_bd;
struct eth_tx_start_bd *tx_start_bd;
uint16_t etype, sw_tx_bd_prod, sw_pkt_prod, total_pkt_size;
// uint16_t bd_index, pkt_index;
uint8_t mac_type;
int i, defragged, e_hlen, error, nsegs, rc, nbds, vlan_off, ovlan;
struct bxe_softc *sc;
sc = fp->sc;
DBENTER(BXE_VERBOSE_SEND);
DBRUN(M_ASSERTPKTHDR(*m_head));
m0 = *m_head;
rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
tx_start_bd = NULL;
tx_data_bd = NULL;
tx_parse_bd = NULL;
tx_total_pkt_size_bd = NULL;
/* Get the H/W pointer (0 to 65535) for packets and BD's. */
sw_pkt_prod = fp->tx_pkt_prod;
sw_tx_bd_prod = fp->tx_bd_prod;
/* Create the S/W index (0 to MAX_TX_BD) for packets and BD's. */
// pkt_index = TX_BD(sw_pkt_prod);
// bd_index = TX_BD(sw_tx_bd_prod);
mac_type = UNICAST_ADDRESS;
/* Map the mbuf into the next open DMAable memory. */
map = fp->tx_mbuf_map[TX_BD(sw_pkt_prod)];
error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, map, m0,
segs, &nsegs, BUS_DMA_NOWAIT);
/* Handle any mapping errors. */
if(__predict_false(error != 0)){
fp->tx_dma_mapping_failure++;
if (error == ENOMEM) {
/* Resource issue, try again later. */
rc = ENOMEM;
} else if (error == EFBIG) {
/* Possibly recoverable with defragmentation. */
fp->mbuf_defrag_attempts++;
m0 = m_defrag(*m_head, M_DONTWAIT);
if (m0 == NULL) {
fp->mbuf_defrag_failures++;
rc = ENOBUFS;
} else {
/* Defrag successful, try mapping again.*/
*m_head = m0;
error = bus_dmamap_load_mbuf_sg(
fp->tx_mbuf_tag, map, m0,
segs, &nsegs, BUS_DMA_NOWAIT);
if (error) {
fp->tx_dma_mapping_failure++;
rc = error;
}
}
} else {
/* Unknown, unrecoverable mapping error. */
DBPRINT(sc, BXE_WARN_SEND,
"%s(): Unknown TX mapping error! "
"rc = %d.\n", __FUNCTION__, error);
DBRUN(bxe_dump_mbuf(sc, m0));
rc = error;
}
goto bxe_tx_encap_continue;
}
/* Make sure there's enough room in the send queue. */
if (__predict_false((nsegs + 2) >
(USABLE_TX_BD - fp->tx_bd_used))) {
/* Recoverable, try again later. */
fp->tx_hw_queue_full++;
bus_dmamap_unload(fp->tx_mbuf_tag, map);
rc = ENOMEM;
goto bxe_tx_encap_continue;
}
/* Capture the current H/W TX chain high watermark. */
if (__predict_false(fp->tx_hw_max_queue_depth <
fp->tx_bd_used))
fp->tx_hw_max_queue_depth = fp->tx_bd_used;
/* Now make sure it fits in the packet window. */
if (__predict_false(nsegs > 12)) {
/*
* The mbuf may be to big for the controller
* to handle. If the frame is a TSO frame
* we'll need to do an additional check.
*/
if(m0->m_pkthdr.csum_flags & CSUM_TSO){
if (bxe_chktso_window(sc,nsegs,segs,m0) == 0)
/* OK to send. */
goto bxe_tx_encap_continue;
else
fp->tx_window_violation_tso++;
} else
fp->tx_window_violation_std++;
/* No sense trying to defrag again, we'll drop the frame. */
if (defragged > 0)
rc = ENODEV;
}
bxe_tx_encap_continue:
/* Check for errors */
if (rc){
if(rc == ENOMEM){
/* Recoverable try again later */
}else{
fp->tx_soft_errors++;
fp->tx_mbuf_alloc--;
m_freem(*m_head);
*m_head = NULL;
}
goto bxe_tx_encap_exit;
}
/* Save the mbuf and mapping. */
fp->tx_mbuf_ptr[TX_BD(sw_pkt_prod)] = m0;
fp->tx_mbuf_map[TX_BD(sw_pkt_prod)] = map;
/* Set flag according to packet type (UNICAST_ADDRESS is default). */
if (m0->m_flags & M_BCAST)
mac_type = BROADCAST_ADDRESS;
else if (m0->m_flags & M_MCAST)
mac_type = MULTICAST_ADDRESS;
/* Prepare the first transmit (Start) BD for the mbuf. */
tx_start_bd = &fp->tx_chain[TX_BD(sw_tx_bd_prod)].start_bd;
tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
tx_start_bd->nbytes = htole16(segs[0].ds_len);
total_pkt_size += tx_start_bd->nbytes;
tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
tx_start_bd->general_data =
(mac_type << ETH_TX_START_BD_ETH_ADDR_TYPE_SHIFT);
tx_start_bd->general_data |= (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
/* All frames have at least Start BD + Parsing BD. */
nbds = nsegs + 1;
tx_start_bd->nbd = htole16(nbds);
if (m0->m_flags & M_VLANTAG) {
tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_VLAN_TAG;
tx_start_bd->vlan = htole16(m0->m_pkthdr.ether_vtag);
} else
/*
* In cases where the VLAN tag is not used the firmware
* expects to see a packet counter in the VLAN tag field
* Failure to do so will cause an assertion which will
* stop the controller.
*/
tx_start_bd->vlan = htole16(fp->tx_pkt_prod);
/*
* Add a parsing BD from the chain. The parsing BD is always added,
* however, it is only used for TSO & chksum.
*/
sw_tx_bd_prod = NEXT_TX_BD(sw_tx_bd_prod);
tx_parse_bd = (struct eth_tx_parse_bd *)
&fp->tx_chain[TX_BD(sw_tx_bd_prod)].parse_bd;
memset(tx_parse_bd, 0, sizeof(struct eth_tx_parse_bd));
/* Gather all info about the packet and add to tx_parse_bd */
if (m0->m_pkthdr.csum_flags) {
struct ether_vlan_header *eh;
struct ip *ip = NULL;
struct tcphdr *th = NULL;
uint16_t flags = 0;
struct udphdr *uh = NULL;
/* Map Ethernet header to find type & header length. */
eh = mtod(m0, struct ether_vlan_header *);
/* Handle VLAN encapsulation if present. */
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
etype = ntohs(eh->evl_proto);
e_hlen = ETHER_HDR_LEN + vlan_off;
} else {
etype = ntohs(eh->evl_encap_proto);
e_hlen = ETHER_HDR_LEN;
}
/* Set the Ethernet header length in 16 bit words. */
tx_parse_bd->global_data = (e_hlen + ovlan) >> 1;
tx_parse_bd->global_data |= ((m0->m_flags & M_VLANTAG) <<
ETH_TX_PARSE_BD_LLC_SNAP_EN_SHIFT);
switch (etype) {
case ETHERTYPE_IP:
/* If mbuf len < 20bytes, IP header is in next mbuf. */
if (m0->m_len < sizeof(struct ip))
ip = (struct ip *) m0->m_next->m_data;
else
ip = (struct ip *) (m0->m_data + e_hlen);
/* Calculate IP header length (16 bit words). */
tx_parse_bd->ip_hlen = (ip->ip_hl << 1);
/* Calculate enet + IP header length (16 bit words). */
tx_parse_bd->total_hlen = tx_parse_bd->ip_hlen +
(e_hlen >> 1);
if (m0->m_pkthdr.csum_flags & CSUM_IP) {
fp->tx_offload_frames_csum_ip++;
flags |= ETH_TX_BD_FLAGS_IP_CSUM;
}
/* Handle any checksums requested by the stack. */
if ((m0->m_pkthdr.csum_flags & CSUM_TCP)||
(m0->m_pkthdr.csum_flags & CSUM_TSO)){
/* Get the TCP header. */
th = (struct tcphdr *)((caddr_t)ip +
(ip->ip_hl << 2));
/* Add the TCP checksum offload flag. */
flags |= ETH_TX_BD_FLAGS_L4_CSUM;
fp->tx_offload_frames_csum_tcp++;
/* Update the enet + IP + TCP header length. */
tx_parse_bd->total_hlen +=
(uint16_t)(th->th_off << 1);
/* Get the pseudo header checksum. */
tx_parse_bd->tcp_pseudo_csum =
ntohs(th->th_sum);
} else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
/*
* The hardware doesn't actually support UDP
* checksum offload but we can fake it by
* doing TCP checksum offload and factoring
* out the extra bytes that are different
* between the TCP header and the UDP header.
*
* Calculation will begin 10 bytes before the
* actual start of the UDP header. To work
* around this we need to calculate the
* checksum of the 10 bytes before the UDP
* header and factor that out of the UDP
* pseudo header checksum before asking the
* H/W to calculate the full UDP checksum.
*/
uint16_t tmp_csum;
uint32_t *tmp_uh;
/* This value is 10. */
uint8_t fix = (uint8_t) (offsetof(struct tcphdr, th_sum) -
(int) offsetof(struct udphdr, uh_sum));
/*
* Add the TCP checksum offload flag for
* UDP frames too.*
*/
flags |= ETH_TX_BD_FLAGS_L4_CSUM;
fp->tx_offload_frames_csum_udp++;
tx_parse_bd->global_data |=
ETH_TX_PARSE_BD_UDP_CS_FLG;
/* Get a pointer to the UDP header. */
uh = (struct udphdr *)((caddr_t)ip +
(ip->ip_hl << 2));
/* Set pointer 10 bytes before UDP header. */
tmp_uh = (uint32_t *)((uint8_t *)uh -
fix);
/*
* Calculate a pseudo header checksum over
* the 10 bytes before the UDP header.
*/
tmp_csum = in_pseudo(ntohl(*tmp_uh),
ntohl(*(tmp_uh + 1)),
ntohl((*(tmp_uh + 2)) & 0x0000FFFF));
/* Update the enet + IP + UDP header length. */
tx_parse_bd->total_hlen +=
(sizeof(struct udphdr) >> 1);
tx_parse_bd->tcp_pseudo_csum =
~in_addword(uh->uh_sum, ~tmp_csum);
}
/* Update the offload flags. */
tx_start_bd->bd_flags.as_bitfield |= flags;
break;
case ETHERTYPE_IPV6:
fp->tx_unsupported_tso_request_ipv6++;
/* ToDo: Add IPv6 support. */
break;
default:
fp->tx_unsupported_tso_request_not_tcp++;
/* ToDo - How to handle this error? */
}
/* Setup the Parsing BD with TSO specific info */
if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
uint16_t hdr_len = tx_parse_bd->total_hlen << 1;
tx_start_bd->bd_flags.as_bitfield |=
ETH_TX_BD_FLAGS_SW_LSO;
fp->tx_offload_frames_tso++;
/* ToDo: Does this really help? */
if (__predict_false(tx_start_bd->nbytes > hdr_len)) {
fp->tx_header_splits++;
/*
* Split the first BD into 2 BDs to make the
* firmwares job easy...
*/
tx_start_bd->nbd++;
DBPRINT(sc, BXE_EXTREME_SEND,
"%s(): TSO split headr size is %d (%x:%x) nbds %d\n",
__FUNCTION__, tx_start_bd->nbytes,
tx_start_bd->addr_hi,
tx_start_bd->addr_lo, nbds);
sw_tx_bd_prod = NEXT_TX_BD(sw_tx_bd_prod);
/* New transmit BD (after the tx_parse_bd). */
tx_data_bd =
&fp->tx_chain[TX_BD(sw_tx_bd_prod)].reg_bd;
tx_data_bd->addr_hi =
htole32(U64_HI(segs[0].ds_addr + hdr_len));
tx_data_bd->addr_lo =
htole32(U64_LO(segs[0].ds_addr + hdr_len));
tx_data_bd->nbytes =
htole16(segs[0].ds_len) - hdr_len;
if (tx_total_pkt_size_bd == NULL)
tx_total_pkt_size_bd = tx_data_bd;
}
/*
* The controller needs the following info for TSO:
* MSS, tcp_send_seq, ip_id, and tcp_pseudo_csum.
*/
tx_parse_bd->lso_mss = htole16(m0->m_pkthdr.tso_segsz);
tx_parse_bd->tcp_send_seq = ntohl(th->th_seq);
tx_parse_bd->tcp_flags = th->th_flags;
tx_parse_bd->ip_id = ntohs(ip->ip_id);
tx_parse_bd->tcp_pseudo_csum =
ntohs(in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htons(IPPROTO_TCP)));
tx_parse_bd->global_data |=
ETH_TX_PARSE_BD_PSEUDO_CS_WITHOUT_LEN;
}
}
/* Prepare remaining BDs. Start_tx_bd contains first seg (frag). */
for (i = 1; i < nsegs ; i++) {
sw_tx_bd_prod = NEXT_TX_BD(sw_tx_bd_prod);
tx_data_bd = &fp->tx_chain[TX_BD(sw_tx_bd_prod)].reg_bd;
tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
tx_data_bd->nbytes = htole16(segs[i].ds_len);
if (tx_total_pkt_size_bd == NULL)
tx_total_pkt_size_bd = tx_data_bd;
total_pkt_size += tx_data_bd->nbytes;
}
if(tx_total_pkt_size_bd != NULL)
tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
/* Update TX BD producer index value for next TX */
sw_tx_bd_prod = NEXT_TX_BD(sw_tx_bd_prod);
/* Update the used TX BD counter. */
fp->tx_bd_used += nbds;
/*
* If the chain of tx_bd's describing this frame
* is adjacent to or spans an eth_tx_next_bd element
* then we need to increment the nbds value.
*/
if(TX_IDX(sw_tx_bd_prod) < nbds)
nbds++;
/* Don't allow reordering of writes for nbd and packets. */
mb();
fp->tx_db.data.prod += nbds;
/* Producer points to the next free tx_bd at this point. */
fp->tx_pkt_prod++;
fp->tx_bd_prod = sw_tx_bd_prod;
DOORBELL(sc, fp->index, fp->tx_db.raw);
fp->tx_pkts++;
/* Prevent speculative reads from getting ahead of the status block. */
bus_space_barrier(sc->bxe_btag, sc->bxe_bhandle,
0, 0, BUS_SPACE_BARRIER_READ);
/* Prevent speculative reads from getting ahead of the doorbell. */
bus_space_barrier(sc->bxe_db_btag, sc->bxe_db_bhandle,
0, 0, BUS_SPACE_BARRIER_READ);
bxe_tx_encap_exit:
DBEXIT(BXE_VERBOSE_SEND);
return (rc);
}
/*
* Legacy (non-RSS) dispatch routine.
*
* Returns:
* Nothing.
*/
static void
bxe_tx_start(struct ifnet *ifp)
{
struct bxe_softc *sc;
struct bxe_fastpath *fp;
sc = ifp->if_softc;
DBENTER(BXE_EXTREME_SEND);
/* Exit if the transmit queue is full or link down. */
if (((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING) || !sc->link_vars.link_up) {
DBPRINT(sc, BXE_WARN,
"%s(): No link or TX queue full, ignoring "
"transmit request.\n", __FUNCTION__);
goto bxe_tx_start_exit;
}
/* Set the TX queue for the frame. */
fp = &sc->fp[0];
BXE_FP_LOCK(fp);
bxe_tx_start_locked(ifp, fp);
BXE_FP_UNLOCK(fp);
bxe_tx_start_exit:
DBEXIT(BXE_EXTREME_SEND);
}
/*
* Legacy (non-RSS) transmit routine.
*
* Returns:
* Nothing.
*/
static void
bxe_tx_start_locked(struct ifnet *ifp, struct bxe_fastpath *fp)
{
struct bxe_softc *sc;
struct mbuf *m = NULL;
int tx_count = 0;
sc = fp->sc;
DBENTER(BXE_EXTREME_SEND);
BXE_FP_LOCK_ASSERT(fp);
/* Keep adding entries while there are frames to send. */
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
/* Check for any frames to send. */
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (__predict_false(m == NULL))
break;
/* The transmit mbuf now belongs to us, keep track of it. */
fp->tx_mbuf_alloc++;
/*
* Pack the data into the transmit ring. If we
* don't have room, place the mbuf back at the
* head of the TX queue, set the OACTIVE flag,
* and wait for the NIC to drain the chain.
*/
if (__predict_false(bxe_tx_encap(fp, &m))) {
fp->tx_encap_failures++;
/* Very Bad Frames(tm) may have been dropped. */
if (m != NULL) {
/*
* Mark the TX queue as full and return
* the frame.
*/
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IFQ_DRV_PREPEND(&ifp->if_snd, m);
fp->tx_mbuf_alloc--;
fp->tx_queue_xoff++;
} else {
}
/* Stop looking for more work. */
break;
}
/* The transmit frame was enqueued successfully. */
tx_count++;
/* Send a copy of the frame to any BPF listeners. */
BPF_MTAP(ifp, m);
}
/* No TX packets were dequeued. */
if (tx_count > 0)
/* Reset the TX watchdog timeout timer. */
fp->watchdog_timer = BXE_TX_TIMEOUT;
DBEXIT(BXE_EXTREME_SEND);
}
#if __FreeBSD_version >= 800000
/*
* Multiqueue (RSS) dispatch routine.
*
* Returns:
* 0 if transmit succeeds, !0 otherwise.
*/
static int
bxe_tx_mq_start(struct ifnet *ifp, struct mbuf *m)
{
struct bxe_softc *sc;
struct bxe_fastpath *fp;
int fp_index, rc;
sc = ifp->if_softc;
DBENTER(BXE_EXTREME_SEND);
fp_index = 0;
/* If using flow ID, assign the TX queue based on the flow ID. */
if ((m->m_flags & M_FLOWID) != 0)
fp_index = m->m_pkthdr.flowid % sc->num_queues;
/* Select the fastpath TX queue for the frame. */
fp = &sc->fp[fp_index];
/* Skip H/W enqueue if transmit queue is full or link down. */
if (((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING) || !sc->link_vars.link_up) {
/* Stash the mbuf if we can. */
rc = drbr_enqueue(ifp, fp->br, m);
goto bxe_tx_mq_start_exit;
}
BXE_FP_LOCK(fp);
rc = bxe_tx_mq_start_locked(ifp, fp, m);
BXE_FP_UNLOCK(fp);
bxe_tx_mq_start_exit:
DBEXIT(BXE_EXTREME_SEND);
return (rc);
}
/*
* Multiqueue (TSS) transmit routine. This routine is responsible
* for adding a frame to the hardware's transmit queue.
*
* Returns:
* 0 if transmit succeeds, !0 otherwise.
*/
static int
bxe_tx_mq_start_locked(struct ifnet *ifp,
struct bxe_fastpath *fp, struct mbuf *m)
{
struct bxe_softc *sc;
struct mbuf *next;
int depth, rc, tx_count;
sc = fp->sc;
DBENTER(BXE_EXTREME_SEND);
rc = tx_count = 0;
/* Fetch the depth of the driver queue. */
depth = drbr_inuse(ifp, fp->br);
if (depth > fp->tx_max_drbr_queue_depth)
fp->tx_max_drbr_queue_depth = depth;
BXE_FP_LOCK_ASSERT(fp);
if (m == NULL) {
/* No new work, check for pending frames. */
next = drbr_dequeue(ifp, fp->br);
} else if (drbr_needs_enqueue(ifp, fp->br)) {
/* Both new and pending work, maintain packet order. */
rc = drbr_enqueue(ifp, fp->br, m);
if (rc != 0) {
fp->tx_soft_errors++;
goto bxe_tx_mq_start_locked_exit;
}
next = drbr_dequeue(ifp, fp->br);
} else
/* New work only, nothing pending. */
next = m;
/* Keep adding entries while there are frames to send. */
while (next != NULL) {
/* The transmit mbuf now belongs to us, keep track of it. */
fp->tx_mbuf_alloc++;
/*
* Pack the data into the transmit ring. If we
* don't have room, place the mbuf back at the
* head of the TX queue, set the OACTIVE flag,
* and wait for the NIC to drain the chain.
*/
rc = bxe_tx_encap(fp, &next);
if (__predict_false(rc != 0)) {
fp->tx_encap_failures++;
/* Very Bad Frames(tm) may have been dropped. */
if (next != NULL) {
/*
* Mark the TX queue as full and save
* the frame.
*/
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
fp->tx_frame_deferred++;
/* This may reorder frame. */
rc = drbr_enqueue(ifp, fp->br, next);
fp->tx_mbuf_alloc--;
}
/* Stop looking for more work. */
break;
}
/* The transmit frame was enqueued successfully. */
tx_count++;
/* Send a copy of the frame to any BPF listeners. */
BPF_MTAP(ifp, next);
/* Handle any completions if we're running low. */
if (fp->tx_bd_used >= BXE_TX_CLEANUP_THRESHOLD)
bxe_txeof(fp);
/* Close TX since there's so little room left. */
if (fp->tx_bd_used >= BXE_TX_CLEANUP_THRESHOLD) {
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
break;
}
next = drbr_dequeue(ifp, fp->br);
}
/* No TX packets were dequeued. */
if (tx_count > 0)
/* Reset the TX watchdog timeout timer. */
fp->watchdog_timer = BXE_TX_TIMEOUT;
bxe_tx_mq_start_locked_exit:
DBEXIT(BXE_EXTREME_SEND);
return (rc);
}
static void
bxe_mq_flush(struct ifnet *ifp)
{
struct bxe_softc *sc;
struct bxe_fastpath *fp;
struct mbuf *m;
int i;
sc = ifp->if_softc;
DBENTER(BXE_VERBOSE_UNLOAD);
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
if (fp->br != NULL) {
DBPRINT(sc, BXE_VERBOSE_UNLOAD,
"%s(): Clearing fp[%02d]...\n",
__FUNCTION__, fp->index);
BXE_FP_LOCK(fp);
while ((m = buf_ring_dequeue_sc(fp->br)) != NULL)
m_freem(m);
BXE_FP_UNLOCK(fp);
}
}
if_qflush(ifp);
DBEXIT(BXE_VERBOSE_UNLOAD);
}
#endif /* FreeBSD_version >= 800000 */
/*
* Handles any IOCTL calls from the operating system.
*
* Returns:
* 0 for success, positive value for failure.
*/
static int
bxe_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct bxe_softc *sc;
struct ifreq *ifr;
int error, mask, reinit;
sc = ifp->if_softc;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_MISC);
ifr = (struct ifreq *)data;
error = 0;
reinit = 0;
switch (command) {
case SIOCSIFMTU:
/* Set the MTU. */
DBPRINT(sc, BXE_VERBOSE_MISC, "%s(): Received SIOCSIFMTU\n",
__FUNCTION__);
/* Check that the MTU setting is supported. */
if ((ifr->ifr_mtu < BXE_MIN_MTU) ||
(ifr->ifr_mtu > BXE_JUMBO_MTU)) {
error = EINVAL;
break;
}
BXE_CORE_LOCK(sc);
ifp->if_mtu = ifr->ifr_mtu;
BXE_CORE_UNLOCK(sc);
reinit = 1;
break;
case SIOCSIFFLAGS:
/* Toggle the interface state up or down. */
DBPRINT(sc, BXE_VERBOSE_MISC, "%s(): Received SIOCSIFFLAGS\n",
__FUNCTION__);
BXE_CORE_LOCK(sc);
/* Check if the interface is up. */
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/* Set promiscuous/multicast flags. */
bxe_set_rx_mode(sc);
} else {
/* Start the HW */
bxe_init_locked(sc, LOAD_NORMAL);
}
} else {
/* Bring down the interface. */
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
bxe_stop_locked(sc, UNLOAD_NORMAL);
}
BXE_CORE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* Add/Delete multicast addresses. */
DBPRINT(sc, BXE_VERBOSE_MISC,
"%s(): Received SIOCADDMULTI/SIOCDELMULTI\n", __FUNCTION__);
BXE_CORE_LOCK(sc);
/* Check if the interface is up. */
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
/* Set receive mode flags. */
bxe_set_rx_mode(sc);
BXE_CORE_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
/* Set/Get Interface media */
DBPRINT(sc, BXE_VERBOSE_MISC,
"%s(): Received SIOCSIFMEDIA/SIOCGIFMEDIA\n", __FUNCTION__);
error = ifmedia_ioctl(ifp, ifr, &sc->bxe_ifmedia, command);
break;
case SIOCSIFCAP:
/* Set interface capability */
/* Find out which capabilities have changed. */
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
DBPRINT(sc, BXE_VERBOSE_MISC,
"%s(): Received SIOCSIFCAP (mask = 0x%08X)\n", __FUNCTION__,
(uint32_t)mask);
BXE_CORE_LOCK(sc);
/* Toggle the LRO capabilites enable flag. */
if (mask & IFCAP_LRO) {
ifp->if_capenable ^= IFCAP_LRO;
sc->bxe_flags ^= BXE_TPA_ENABLE_FLAG;
DBPRINT(sc, BXE_INFO_MISC,
"%s(): Toggling LRO (bxe_flags = "
"0x%08X).\n", __FUNCTION__, sc->bxe_flags);
/* LRO requires different buffer setup. */
reinit = 1;
}
/* Toggle the TX checksum capabilites enable flag. */
if (mask & IFCAP_TXCSUM) {
DBPRINT(sc, BXE_VERBOSE_MISC,
"%s(): Toggling IFCAP_TXCSUM.\n", __FUNCTION__);
ifp->if_capenable ^= IFCAP_TXCSUM;
if (IFCAP_TXCSUM & ifp->if_capenable)
ifp->if_hwassist = BXE_IF_HWASSIST;
else
ifp->if_hwassist = 0;
}
/* Toggle the RX checksum capabilities enable flag. */
if (mask & IFCAP_RXCSUM) {
DBPRINT(sc, BXE_VERBOSE_MISC,
"%s(): Toggling IFCAP_RXCSUM.\n", __FUNCTION__);
ifp->if_capenable ^= IFCAP_RXCSUM;
if (IFCAP_RXCSUM & ifp->if_capenable)
ifp->if_hwassist = BXE_IF_HWASSIST;
else
ifp->if_hwassist = 0;
}
/* Toggle VLAN_MTU capabilities enable flag. */
if (mask & IFCAP_VLAN_MTU) {
/* ToDo: Is this really true? */
BXE_PRINTF("%s(%d): Changing VLAN_MTU not supported.\n",
__FILE__, __LINE__);
error = EINVAL;
}
/* Toggle VLANHWTAG capabilities enabled flag. */
if (mask & IFCAP_VLAN_HWTAGGING) {
/* ToDo: Is this really true? */
BXE_PRINTF(
"%s(%d): Changing VLAN_HWTAGGING not supported!\n",
__FILE__, __LINE__);
error = EINVAL;
}
/* Toggle TSO4 capabilities enabled flag. */
if (mask & IFCAP_TSO4) {
DBPRINT(sc, BXE_VERBOSE_MISC,
"%s(): Toggling IFCAP_TSO4.\n", __FUNCTION__);
ifp->if_capenable ^= IFCAP_TSO4;
}
/* Toggle TSO6 capabilities enabled flag. */
if (mask & IFCAP_TSO6) {
/* ToDo: Add TSO6 support. */
BXE_PRINTF(
"%s(%d): Changing TSO6 not supported!\n",
__FILE__, __LINE__);
}
BXE_CORE_UNLOCK(sc);
/*
* ToDo: Look into supporting:
* VLAN_HWFILTER
* VLAN_HWCSUM
* VLAN_HWTSO
* POLLING
* WOL[_UCAST|_MCAST|_MAGIC]
*
*/
break;
default:
/* We don't know how to handle the IOCTL, pass it on. */
error = ether_ioctl(ifp, command, data);
break;
}
/* Restart the controller with the new capabilities. */
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && (reinit != 0)) {
BXE_CORE_LOCK(sc);
bxe_stop_locked(sc, UNLOAD_NORMAL);
bxe_init_locked(sc, LOAD_NORMAL);
BXE_CORE_UNLOCK(sc);
}
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_MISC);
return (error);
}
/*
* Gets the current value of the RX Completion Consumer index
* from the fastpath status block, updates it as necessary if
* it is pointing to a "Next Page" entry, and returns it to the
* caller.
*
* Returns:
* The adjusted value of *fp->rx_cons_sb.
*/
static __inline uint16_t
bxe_rx_cq_cons(struct bxe_fastpath *fp)
{
volatile uint16_t rx_cq_cons_sb = 0;
rmb();
rx_cq_cons_sb = (volatile uint16_t) le16toh(*fp->rx_cq_cons_sb);
/*
* It is valid for the hardware's copy of the completion
* consumer index to be pointing at a "Next Page" entry in
* the completion chain but the driver prefers to assume
* that it is pointing at the next available CQE so we
* need to adjust the value accordingly.
*/
if ((rx_cq_cons_sb & USABLE_RCQ_ENTRIES_PER_PAGE) ==
USABLE_RCQ_ENTRIES_PER_PAGE)
rx_cq_cons_sb++;
return (rx_cq_cons_sb);
}
static __inline int
bxe_has_tx_work(struct bxe_fastpath *fp)
{
rmb();
return (((fp->tx_pkt_prod != le16toh(*fp->tx_pkt_cons_sb)) || \
(fp->tx_pkt_prod != fp->tx_pkt_cons)));
}
/*
* Checks if there are any received frames to process on the
* completion queue.
*
* Returns:
* 0 = No received frames pending, !0 = Received frames
* pending
*/
static __inline int
bxe_has_rx_work(struct bxe_fastpath *fp)
{
rmb();
return (bxe_rx_cq_cons(fp) != fp->rx_cq_cons);
}
/*
* Slowpath task entry point.
*
* Returns:
* None
*/
static void
bxe_task_sp(void *xsc, int pending)
{
struct bxe_softc *sc;
uint32_t sp_status;
sc = xsc;
DBPRINT(sc, BXE_EXTREME_INTR, "%s(): pending = %d.\n", __FUNCTION__,
pending);
/* Check for the source of the interrupt. */
sp_status = bxe_update_dsb_idx(sc);
/* Handle any hardware attentions. */
if (sp_status & 0x1) {
bxe_attn_int(sc);
sp_status &= ~0x1;
}
/* CSTORM event asserted (query_stats, port delete ramrod, etc.). */
if (sp_status & 0x2) {
sc->stats_pending = 0;
sp_status &= ~0x2;
}
/* Check for other weirdness. */
if (sp_status != 0) {
DBPRINT(sc, BXE_WARN, "%s(): Unexpected slowpath interrupt "
"(sp_status = 0x%04X)!\n", __FUNCTION__, sp_status);
}
/* Acknowledge the xSTORM tags and enable slowpath interrupts. */
bxe_ack_sb(sc, DEF_SB_ID, ATTENTION_ID, le16toh(sc->def_att_idx),
IGU_INT_NOP, 1);
bxe_ack_sb(sc, DEF_SB_ID, USTORM_ID, le16toh(sc->def_u_idx),
IGU_INT_NOP, 1);
bxe_ack_sb(sc, DEF_SB_ID, CSTORM_ID, le16toh(sc->def_c_idx),
IGU_INT_NOP, 1);
bxe_ack_sb(sc, DEF_SB_ID, XSTORM_ID, le16toh(sc->def_x_idx),
IGU_INT_NOP, 1);
bxe_ack_sb(sc, DEF_SB_ID, TSTORM_ID, le16toh(sc->def_t_idx),
IGU_INT_ENABLE, 1);
}
/*
* Legacy interrupt entry point.
*
* Verifies that the controller generated the interrupt and
* then calls a separate routine to handle the various
* interrupt causes: link, RX, and TX.
*
* Returns:
* None
*/
static void
bxe_intr_legacy(void *xsc)
{
struct bxe_softc *sc;
struct bxe_fastpath *fp;
uint32_t mask, fp_status;
sc = xsc;
fp = &sc->fp[0];
/* Don't handle any interrupts if we're not ready. */
if (__predict_false(sc->intr_sem != 0))
goto bxe_intr_legacy_exit;
/* Bail out if the interrupt wasn't generated by our hardware. */
fp_status = bxe_ack_int(sc);
if (fp_status == 0)
goto bxe_intr_legacy_exit;
/* Handle the fastpath interrupt. */
/*
* sb_id = 0 for ustorm, 1 for cstorm.
* The bits returned from ack_int() are 0-15,
* bit 0=attention status block
* bit 1=fast path status block
* A mask of 0x2 or more = tx/rx event
* A mask of 1 = slow path event
*/
mask = (0x2 << fp->sb_id);
DBPRINT(sc, BXE_INSANE_INTR, "%s(): fp_status = 0x%08X, mask = "
"0x%08X\n", __FUNCTION__, fp_status, mask);
/* CSTORM event means fastpath completion. */
if (fp_status & mask) {
/* This interrupt must be ours, disable further interrupts. */
bxe_ack_sb(sc, fp->sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
#ifdef BXE_TASK
taskqueue_enqueue(fp->tq, &fp->task);
#else
bxe_task_fp((void *)fp, 0);
#endif
/* Clear this event from the status flags. */
fp_status &= ~mask;
}
/* Handle all slow path interrupts and attentions */
if (fp_status & 0x1) {
/* Acknowledge and disable further slowpath interrupts. */
bxe_ack_sb(sc, DEF_SB_ID, TSTORM_ID, 0, IGU_INT_DISABLE, 0);
#ifdef BXE_TASK
/* Schedule the slowpath task. */
taskqueue_enqueue(sc->tq, &sc->task);
#else
bxe_task_sp(xsc, 0);
#endif
/* Clear this event from the status flags. */
fp_status &= ~0x1;
}
#ifdef BXE_DEBUG
if (fp_status) {
DBPRINT(sc, BXE_WARN,
"%s(): Unexpected fastpath status (fp_status = 0x%08X)!\n",
__FUNCTION__, fp_status);
}
#endif
DBEXIT(BXE_EXTREME_INTR);
bxe_intr_legacy_exit:
return;
}
/*
* Slowpath interrupt entry point.
*
* Acknowledge the interrupt and schedule a slowpath task.
*
* Returns:
* None
*/
static void
bxe_intr_sp(void *xsc)
{
struct bxe_softc *sc;
sc = xsc;
DBPRINT(sc, BXE_INSANE_INTR, "%s(%d): Slowpath interrupt.\n",
__FUNCTION__, curcpu);
/* Don't handle any interrupts if we're not ready. */
if (__predict_false(sc->intr_sem != 0))
goto bxe_intr_sp_exit;
/* Acknowledge and disable further slowpath interrupts. */
bxe_ack_sb(sc, DEF_SB_ID, TSTORM_ID, 0, IGU_INT_DISABLE, 0);
#ifdef BXE_TASK
/* Schedule the slowpath task. */
taskqueue_enqueue(sc->tq, &sc->task);
#else
bxe_task_sp(xsc, 0);
#endif
bxe_intr_sp_exit:
return;
}
/*
* Fastpath interrupt entry point.
*
* Acknowledge the interrupt and schedule a fastpath task.
*
* Returns:
* None
*/
static void
bxe_intr_fp (void *xfp)
{
struct bxe_fastpath *fp;
struct bxe_softc *sc;
fp = xfp;
sc = fp->sc;
DBPRINT(sc, BXE_INSANE_INTR,
"%s(%d): fp[%02d].sb_id = %d interrupt.\n",
__FUNCTION__, curcpu, fp->index, fp->sb_id);
/* Don't handle any interrupts if we're not ready. */
if (__predict_false(sc->intr_sem != 0))
goto bxe_intr_fp_exit;
/* Disable further interrupts. */
bxe_ack_sb(sc, fp->sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
#ifdef BXE_TASK
taskqueue_enqueue(fp->tq, &fp->task);
#else
bxe_task_fp (xfp, 0);
#endif
bxe_intr_fp_exit:
return;
}
/*
* Fastpath task entry point.
*
* Handle any pending transmit or receive events.
*
* Returns:
* None
*/
static void
bxe_task_fp (void *xfp, int pending)
{
struct bxe_fastpath *fp;
struct bxe_softc *sc;
fp = xfp;
sc = fp->sc;
DBPRINT(sc, BXE_EXTREME_INTR, "%s(%d): Fastpath task on fp[%02d]"
".sb_id = %d\n", __FUNCTION__, curcpu, fp->index, fp->sb_id);
/* Update the fast path indices */
bxe_update_fpsb_idx(fp);
/* Service any completed TX frames. */
if (bxe_has_tx_work(fp)) {
BXE_FP_LOCK(fp);
bxe_txeof(fp);
BXE_FP_UNLOCK(fp);
}
/* Service any completed RX frames. */
rmb();
bxe_rxeof(fp);
/* Acknowledge the fastpath status block indices. */
bxe_ack_sb(sc, fp->sb_id, USTORM_ID, fp->fp_u_idx, IGU_INT_NOP, 1);
bxe_ack_sb(sc, fp->sb_id, CSTORM_ID, fp->fp_c_idx, IGU_INT_ENABLE, 1);
}
/*
* Clears the fastpath (per-queue) status block.
*
* Returns:
* None
*/
static void
bxe_zero_sb(struct bxe_softc *sc, int sb_id)
{
int port;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_INTR);
port = BP_PORT(sc);
/* "CSTORM" */
bxe_init_fill(sc, CSEM_REG_FAST_MEMORY +
CSTORM_SB_HOST_STATUS_BLOCK_U_OFFSET(port, sb_id), 0,
CSTORM_SB_STATUS_BLOCK_U_SIZE / 4);
bxe_init_fill(sc, CSEM_REG_FAST_MEMORY +
CSTORM_SB_HOST_STATUS_BLOCK_C_OFFSET(port, sb_id), 0,
CSTORM_SB_STATUS_BLOCK_C_SIZE / 4);
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_INTR);
}
/*
* Initialize the fastpath (per queue) status block.
*
* Returns:
* None
*/
static void
bxe_init_sb(struct bxe_softc *sc, struct host_status_block *sb,
bus_addr_t mapping, int sb_id)
{
uint64_t section;
int func, index, port;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_INTR);
port = BP_PORT(sc);
func = BP_FUNC(sc);
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_INTR),
"%s(): Initializing sb_id = %d on port %d, function %d.\n",
__FUNCTION__, sb_id, port, func);
/* Setup the USTORM status block. */
section = ((uint64_t)mapping) + offsetof(struct host_status_block,
u_status_block);
sb->u_status_block.status_block_id = sb_id;
REG_WR(sc, BAR_CSTORM_INTMEM +
CSTORM_SB_HOST_SB_ADDR_U_OFFSET(port, sb_id), U64_LO(section));
REG_WR(sc, BAR_CSTORM_INTMEM +
((CSTORM_SB_HOST_SB_ADDR_U_OFFSET(port, sb_id)) + 4),
U64_HI(section));
REG_WR8(sc, BAR_CSTORM_INTMEM + FP_USB_FUNC_OFF +
CSTORM_SB_HOST_STATUS_BLOCK_U_OFFSET(port, sb_id), func);
for (index = 0; index < HC_USTORM_SB_NUM_INDICES; index++)
REG_WR16(sc, BAR_CSTORM_INTMEM +
CSTORM_SB_HC_DISABLE_U_OFFSET(port, sb_id, index), 0x1);
/* Setup the CSTORM status block. */
section = ((uint64_t)mapping) + offsetof(struct host_status_block,
c_status_block);
sb->c_status_block.status_block_id = sb_id;
/* Write the status block address to CSTORM. Order is important! */
REG_WR(sc, BAR_CSTORM_INTMEM +
CSTORM_SB_HOST_SB_ADDR_C_OFFSET(port, sb_id), U64_LO(section));
REG_WR(sc, BAR_CSTORM_INTMEM +
((CSTORM_SB_HOST_SB_ADDR_C_OFFSET(port, sb_id)) + 4),
U64_HI(section));
REG_WR8(sc, BAR_CSTORM_INTMEM + FP_CSB_FUNC_OFF +
CSTORM_SB_HOST_STATUS_BLOCK_C_OFFSET(port, sb_id), func);
for (index = 0; index < HC_CSTORM_SB_NUM_INDICES; index++)
REG_WR16(sc, BAR_CSTORM_INTMEM +
CSTORM_SB_HC_DISABLE_C_OFFSET(port, sb_id, index), 0x1);
/* Enable interrupts. */
bxe_ack_sb(sc, sb_id, CSTORM_ID, 0, IGU_INT_ENABLE, 0);
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_INTR);
}
/*
* Clears the default status block.
*
* Returns:
* None
*/
static void
bxe_zero_def_sb(struct bxe_softc *sc)
{
int func;
func = BP_FUNC(sc);
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_INTR);
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_INTR),
"%s(): Clearing default status block on function %d.\n",
__FUNCTION__, func);
/* Fill the STORM's copy of the default status block with 0. */
bxe_init_fill(sc, TSEM_REG_FAST_MEMORY +
TSTORM_DEF_SB_HOST_STATUS_BLOCK_OFFSET(func), 0,
sizeof(struct tstorm_def_status_block) / 4);
bxe_init_fill(sc, CSEM_REG_FAST_MEMORY +
CSTORM_DEF_SB_HOST_STATUS_BLOCK_U_OFFSET(func), 0,
sizeof(struct cstorm_def_status_block_u) / 4);
bxe_init_fill(sc, CSEM_REG_FAST_MEMORY +
CSTORM_DEF_SB_HOST_STATUS_BLOCK_C_OFFSET(func), 0,
sizeof(struct cstorm_def_status_block_c) / 4);
bxe_init_fill(sc, XSEM_REG_FAST_MEMORY +
XSTORM_DEF_SB_HOST_STATUS_BLOCK_OFFSET(func), 0,
sizeof(struct xstorm_def_status_block) / 4);
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_INTR);
}
/*
* Initialize default status block.
*
* Returns:
* None
*/
static void
bxe_init_def_sb(struct bxe_softc *sc, struct host_def_status_block *def_sb,
bus_addr_t mapping, int sb_id)
{
uint64_t section;
int func, index, port, reg_offset, val;
port = BP_PORT(sc);
func = BP_FUNC(sc);
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_INTR);
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_INTR),
"%s(): Initializing default status block on port %d, function %d.\n",
__FUNCTION__, port, func);
/* Setup the default status block (DSB). */
section = ((uint64_t)mapping) + offsetof(struct host_def_status_block,
atten_status_block);
def_sb->atten_status_block.status_block_id = sb_id;
sc->attn_state = 0;
sc->def_att_idx = 0;
/*
* Read routing configuration for attn signal
* output of groups. Currently, only groups
* 0 through 3 are wired.
*/
reg_offset = port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
sc->attn_group[index].sig[0] = REG_RD(sc, reg_offset +
0x10 * index);
sc->attn_group[index].sig[1] = REG_RD(sc, reg_offset +
0x10 * index + 0x4);
sc->attn_group[index].sig[2] = REG_RD(sc, reg_offset +
0x10 * index + 0x8);
sc->attn_group[index].sig[3] = REG_RD(sc, reg_offset +
0x10 * index + 0xc);
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET |
BXE_VERBOSE_INTR),
"%s(): attn_group[%d] = 0x%08X 0x%08X 0x%08x 0X%08x\n",
__FUNCTION__, index, sc->attn_group[index].sig[0],
sc->attn_group[index].sig[1], sc->attn_group[index].sig[2],
sc->attn_group[index].sig[3]);
}
reg_offset = port ? HC_REG_ATTN_MSG1_ADDR_L : HC_REG_ATTN_MSG0_ADDR_L;
REG_WR(sc, reg_offset, U64_LO(section));
REG_WR(sc, reg_offset + 4, U64_HI(section));
reg_offset = port ? HC_REG_ATTN_NUM_P1 : HC_REG_ATTN_NUM_P0;
val = REG_RD(sc, reg_offset);
val |= sb_id;
REG_WR(sc, reg_offset, val);
/* USTORM */
section = ((uint64_t)mapping) + offsetof(struct host_def_status_block,
u_def_status_block);
def_sb->u_def_status_block.status_block_id = sb_id;
sc->def_u_idx = 0;
REG_WR(sc, BAR_CSTORM_INTMEM +
CSTORM_DEF_SB_HOST_SB_ADDR_U_OFFSET(func), U64_LO(section));
REG_WR(sc, BAR_CSTORM_INTMEM +
((CSTORM_DEF_SB_HOST_SB_ADDR_U_OFFSET(func)) + 4), U64_HI(section));
REG_WR8(sc, BAR_CSTORM_INTMEM + DEF_USB_FUNC_OFF +
CSTORM_DEF_SB_HOST_STATUS_BLOCK_U_OFFSET(func), func);
for (index = 0; index < HC_USTORM_DEF_SB_NUM_INDICES; index++)
REG_WR16(sc, BAR_CSTORM_INTMEM +
CSTORM_DEF_SB_HC_DISABLE_U_OFFSET(func, index), 1);
/* CSTORM */
section = ((uint64_t)mapping) + offsetof(struct host_def_status_block,
c_def_status_block);
def_sb->c_def_status_block.status_block_id = sb_id;
sc->def_c_idx = 0;
REG_WR(sc, BAR_CSTORM_INTMEM +
CSTORM_DEF_SB_HOST_SB_ADDR_C_OFFSET(func), U64_LO(section));
REG_WR(sc, BAR_CSTORM_INTMEM +
((CSTORM_DEF_SB_HOST_SB_ADDR_C_OFFSET(func)) + 4), U64_HI(section));
REG_WR8(sc, BAR_CSTORM_INTMEM + DEF_CSB_FUNC_OFF +
CSTORM_DEF_SB_HOST_STATUS_BLOCK_C_OFFSET(func), func);
for (index = 0; index < HC_CSTORM_DEF_SB_NUM_INDICES; index++)
REG_WR16(sc, BAR_CSTORM_INTMEM +
CSTORM_DEF_SB_HC_DISABLE_C_OFFSET(func, index), 1);
/* TSTORM */
section = ((uint64_t)mapping) + offsetof(struct host_def_status_block,
t_def_status_block);
def_sb->t_def_status_block.status_block_id = sb_id;
sc->def_t_idx = 0;
REG_WR(sc, BAR_TSTORM_INTMEM +
TSTORM_DEF_SB_HOST_SB_ADDR_OFFSET(func), U64_LO(section));
REG_WR(sc, BAR_TSTORM_INTMEM +
((TSTORM_DEF_SB_HOST_SB_ADDR_OFFSET(func)) + 4), U64_HI(section));
REG_WR8(sc, BAR_TSTORM_INTMEM + DEF_TSB_FUNC_OFF +
TSTORM_DEF_SB_HOST_STATUS_BLOCK_OFFSET(func), func);
for (index = 0; index < HC_TSTORM_DEF_SB_NUM_INDICES; index++)
REG_WR16(sc, BAR_TSTORM_INTMEM +
TSTORM_DEF_SB_HC_DISABLE_OFFSET(func, index), 1);
/* XSTORM */
section = ((uint64_t)mapping) + offsetof(struct host_def_status_block,
x_def_status_block);
def_sb->x_def_status_block.status_block_id = sb_id;
sc->def_x_idx = 0;
REG_WR(sc, BAR_XSTORM_INTMEM +
XSTORM_DEF_SB_HOST_SB_ADDR_OFFSET(func), U64_LO(section));
REG_WR(sc, BAR_XSTORM_INTMEM +
((XSTORM_DEF_SB_HOST_SB_ADDR_OFFSET(func)) + 4), U64_HI(section));
REG_WR8(sc, BAR_XSTORM_INTMEM + DEF_XSB_FUNC_OFF +
XSTORM_DEF_SB_HOST_STATUS_BLOCK_OFFSET(func), func);
for (index = 0; index < HC_XSTORM_DEF_SB_NUM_INDICES; index++)
REG_WR16(sc, BAR_XSTORM_INTMEM +
XSTORM_DEF_SB_HC_DISABLE_OFFSET(func, index), 1);
sc->stats_pending = 0;
sc->set_mac_pending = 0;
bxe_ack_sb(sc, sb_id, CSTORM_ID, 0, IGU_INT_ENABLE, 0);
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_INTR);
}
/*
* Update interrupt coalescing parameters.
*
* Returns:
* None
*/
static void
bxe_update_coalesce(struct bxe_softc *sc)
{
int i, port, sb_id;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
port = BP_PORT(sc);
/* Cycle through each fastpath queue and set the coalescing values. */
for (i = 0; i < sc->num_queues; i++) {
sb_id = sc->fp[i].sb_id;
/* Receive interrupt coalescing is done on USTORM. */
REG_WR8(sc, BAR_CSTORM_INTMEM +
CSTORM_SB_HC_TIMEOUT_U_OFFSET(port, sb_id,
U_SB_ETH_RX_CQ_INDEX), sc->rx_ticks / (BXE_BTR * 4));
REG_WR16(sc, BAR_CSTORM_INTMEM +
CSTORM_SB_HC_DISABLE_U_OFFSET(port, sb_id,
U_SB_ETH_RX_CQ_INDEX),
(sc->rx_ticks / (BXE_BTR * 4)) ? 0 : 1);
/* Transmit interrupt coalescing is done on CSTORM. */
REG_WR8(sc, BAR_CSTORM_INTMEM +
CSTORM_SB_HC_TIMEOUT_C_OFFSET(port, sb_id,
C_SB_ETH_TX_CQ_INDEX), sc->tx_ticks / (BXE_BTR * 4));
REG_WR16(sc, BAR_CSTORM_INTMEM +
CSTORM_SB_HC_DISABLE_C_OFFSET(port, sb_id,
C_SB_ETH_TX_CQ_INDEX),
(sc->tx_ticks / (BXE_BTR * 4)) ? 0 : 1);
}
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
}
/*
* Allocate an mbuf and assign it to the TPA pool.
*
* Returns:
* 0 = Success, !0 = Failure
*
* Modifies:
* fp->tpa_mbuf_ptr[queue]
* fp->tpa_mbuf_map[queue]
* fp->tpa_mbuf_segs[queue]
*/
static int
bxe_alloc_tpa_mbuf(struct bxe_fastpath *fp, int queue)
{
struct bxe_softc *sc;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
struct mbuf *m;
int nsegs, rc;
sc = fp->sc;
DBENTER(BXE_INSANE_TPA);
rc = 0;
DBRUNIF((fp->disable_tpa == TRUE),
BXE_PRINTF("%s(): fp[%02d] TPA disabled!\n",
__FUNCTION__, fp->index));
#ifdef BXE_DEBUG
/* Simulate an mbuf allocation failure. */
if (DB_RANDOMTRUE(bxe_debug_mbuf_allocation_failure)) {
sc->debug_sim_mbuf_alloc_failed++;
fp->mbuf_tpa_alloc_failed++;
rc = ENOMEM;
goto bxe_alloc_tpa_mbuf_exit;
}
#endif
/* Allocate the new TPA mbuf. */
m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, sc->mbuf_alloc_size);
if (__predict_false(m == NULL)) {
fp->mbuf_tpa_alloc_failed++;
rc = ENOBUFS;
goto bxe_alloc_tpa_mbuf_exit;
}
DBRUN(fp->tpa_mbuf_alloc++);
/* Initialize the mbuf buffer length. */
m->m_pkthdr.len = m->m_len = sc->mbuf_alloc_size;
#ifdef BXE_DEBUG
/* Simulate an mbuf mapping failure. */
if (DB_RANDOMTRUE(bxe_debug_dma_map_addr_failure)) {
sc->debug_sim_mbuf_map_failed++;
fp->mbuf_tpa_mapping_failed++;
m_freem(m);
DBRUN(fp->tpa_mbuf_alloc--);
rc = ENOMEM;
goto bxe_alloc_tpa_mbuf_exit;
}
#endif
/* Map the TPA mbuf into non-paged pool. */
rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
fp->tpa_mbuf_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT);
if (__predict_false(rc != 0)) {
fp->mbuf_tpa_mapping_failed++;
m_free(m);
DBRUN(fp->tpa_mbuf_alloc--);
goto bxe_alloc_tpa_mbuf_exit;
}
/* All mubfs must map to a single segment. */
KASSERT(nsegs == 1, ("%s(): Too many segments (%d) returned!",
__FUNCTION__, nsegs));
/* Release any existing TPA mbuf mapping. */
if (fp->tpa_mbuf_map[queue] != NULL) {
bus_dmamap_sync(fp->rx_mbuf_tag,
fp->tpa_mbuf_map[queue], BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_mbuf_tag,
fp->tpa_mbuf_map[queue]);
}
/* Save the mbuf and mapping info for the TPA mbuf. */
map = fp->tpa_mbuf_map[queue];
fp->tpa_mbuf_map[queue] = fp->tpa_mbuf_spare_map;
fp->tpa_mbuf_spare_map = map;
bus_dmamap_sync(fp->rx_mbuf_tag,
fp->tpa_mbuf_map[queue], BUS_DMASYNC_PREREAD);
fp->tpa_mbuf_ptr[queue] = m;
fp->tpa_mbuf_segs[queue] = segs[0];
bxe_alloc_tpa_mbuf_exit:
DBEXIT(BXE_INSANE_TPA);
return (rc);
}
/*
* Allocate mbufs for a fastpath TPA pool.
*
* Returns:
* 0 = Success, !0 = Failure.
*
* Modifies:
* fp->tpa_state[]
* fp->disable_tpa
*/
static int
bxe_fill_tpa_pool(struct bxe_fastpath *fp)
{
struct bxe_softc *sc;
int max_agg_queues, queue, rc;
sc = fp->sc;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
rc = 0;
if (!TPA_ENABLED(sc)) {
fp->disable_tpa = TRUE;
goto bxe_fill_tpa_pool_exit;
}
max_agg_queues = CHIP_IS_E1(sc) ? ETH_MAX_AGGREGATION_QUEUES_E1 :
ETH_MAX_AGGREGATION_QUEUES_E1H;
/* Assume the fill operation worked. */
fp->disable_tpa = FALSE;
/* Fill the TPA pool. */
for (queue = 0; queue < max_agg_queues; queue++) {
rc = bxe_alloc_tpa_mbuf(fp, queue);
if (rc != 0) {
BXE_PRINTF(
"%s(%d): fp[%02d] TPA disabled!\n",
__FILE__, __LINE__, fp->index);
fp->disable_tpa = TRUE;
break;
}
fp->tpa_state[queue] = BXE_TPA_STATE_STOP;
}
bxe_fill_tpa_pool_exit:
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
return (rc);
}
/*
* Free all mbufs from a fastpath TPA pool.
*
* Returns:
* None
*
* Modifies:
* fp->tpa_mbuf_ptr[]
* fp->tpa_mbuf_map[]
* fp->tpa_mbuf_alloc
*/
static void
bxe_free_tpa_pool(struct bxe_fastpath *fp)
{
struct bxe_softc *sc;
int i, max_agg_queues;
sc = fp->sc;
DBENTER(BXE_INSANE_LOAD | BXE_INSANE_UNLOAD | BXE_INSANE_TPA);
if (fp->rx_mbuf_tag == NULL)
goto bxe_free_tpa_pool_exit;
max_agg_queues = CHIP_IS_E1H(sc) ?
ETH_MAX_AGGREGATION_QUEUES_E1H :
ETH_MAX_AGGREGATION_QUEUES_E1;
/* Release all mbufs and and all DMA maps in the TPA pool. */
for (i = 0; i < max_agg_queues; i++) {
if (fp->tpa_mbuf_map[i] != NULL) {
bus_dmamap_sync(fp->rx_mbuf_tag, fp->tpa_mbuf_map[i],
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_mbuf_tag, fp->tpa_mbuf_map[i]);
}
if (fp->tpa_mbuf_ptr[i] != NULL) {
m_freem(fp->tpa_mbuf_ptr[i]);
DBRUN(fp->tpa_mbuf_alloc--);
fp->tpa_mbuf_ptr[i] = NULL;
}
}
bxe_free_tpa_pool_exit:
DBEXIT(BXE_INSANE_LOAD | BXE_INSANE_UNLOAD | BXE_INSANE_TPA);
}
/*
* Allocate an mbuf and assign it to the receive scatter gather chain.
* The caller must take care to save a copy of the existing mbuf in the
* SG mbuf chain.
*
* Returns:
* 0 = Success, !0= Failure.
*
* Modifies:
* fp->sg_chain[index]
* fp->rx_sge_buf_ptr[index]
* fp->rx_sge_buf_map[index]
* fp->rx_sge_spare_map
*/
static int
bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, uint16_t index)
{
struct bxe_softc *sc;
struct eth_rx_sge *sge;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
struct mbuf *m;
int nsegs, rc;
sc = fp->sc;
DBENTER(BXE_INSANE_TPA);
rc = 0;
#ifdef BXE_DEBUG
/* Simulate an mbuf allocation failure. */
if (DB_RANDOMTRUE(bxe_debug_mbuf_allocation_failure)) {
sc->debug_sim_mbuf_alloc_failed++;
fp->mbuf_sge_alloc_failed++;
rc = ENOMEM;
goto bxe_alloc_rx_sge_mbuf_exit;
}
#endif
/* Allocate a new SGE mbuf. */
m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
if (__predict_false(m == NULL)) {
fp->mbuf_sge_alloc_failed++;
rc = ENOMEM;
goto bxe_alloc_rx_sge_mbuf_exit;
}
DBRUN(fp->sge_mbuf_alloc++);
/* Initialize the mbuf buffer length. */
m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
#ifdef BXE_DEBUG
/* Simulate an mbuf mapping failure. */
if (DB_RANDOMTRUE(bxe_debug_dma_map_addr_failure)) {
sc->debug_sim_mbuf_map_failed++;
fp->mbuf_sge_mapping_failed++;
m_freem(m);
DBRUN(fp->sge_mbuf_alloc--);
rc = ENOMEM;
goto bxe_alloc_rx_sge_mbuf_exit;
}
#endif
/* Map the SGE mbuf into non-paged pool. */
rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_buf_tag,
fp->rx_sge_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT);
if (__predict_false(rc != 0)) {
fp->mbuf_sge_mapping_failed++;
m_freem(m);
DBRUN(fp->sge_mbuf_alloc--);
goto bxe_alloc_rx_sge_mbuf_exit;
}
/* All mubfs must map to a single segment. */
KASSERT(nsegs == 1, ("%s(): Too many segments (%d) returned!",
__FUNCTION__, nsegs));
/* Unload any existing SGE mbuf mapping. */
if (fp->rx_sge_buf_map[index] != NULL) {
bus_dmamap_sync(fp->rx_sge_buf_tag,
fp->rx_sge_buf_map[index], BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_sge_buf_tag,
fp->rx_sge_buf_map[index]);
}
/* Add the new SGE mbuf to the SGE ring. */
map = fp->rx_sge_buf_map[index];
fp->rx_sge_buf_map[index] = fp->rx_sge_spare_map;
fp->rx_sge_spare_map = map;
bus_dmamap_sync(fp->rx_sge_buf_tag,
fp->rx_sge_buf_map[index], BUS_DMASYNC_PREREAD);
fp->rx_sge_buf_ptr[index] = m;
sge = &fp->sg_chain[index];
sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
bxe_alloc_rx_sge_mbuf_exit:
DBEXIT(BXE_INSANE_TPA);
return (rc);
}
/*
* Allocate mbufs for a SGE chain.
*
* Returns:
* 0 = Success, !0 = Failure.
*
* Modifies:
* fp->disable_tpa
* fp->rx_sge_prod
*/
static int
bxe_fill_sg_chain(struct bxe_fastpath *fp)
{
struct bxe_softc *sc;
uint16_t index;
int i, rc;
sc = fp->sc;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
rc = 0;
if (!TPA_ENABLED(sc)) {
fp->disable_tpa = TRUE;
goto bxe_fill_sg_chain_exit;
}
/* Assume the fill operation works. */
fp->disable_tpa = FALSE;
/* Fill the RX SGE chain. */
index = 0;
for (i = 0; i < USABLE_RX_SGE; i++) {
rc = bxe_alloc_rx_sge_mbuf(fp, index);
if (rc != 0) {
BXE_PRINTF(
"%s(%d): fp[%02d] SGE memory allocation failure!\n",
__FILE__, __LINE__, fp->index);
index = 0;
fp->disable_tpa = TRUE;
break;
}
index = NEXT_SGE_IDX(index);
}
/* Update the driver's copy of the RX SGE producer index. */
fp->rx_sge_prod = index;
bxe_fill_sg_chain_exit:
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
return (rc);
}
/*
* Free all elements from the receive scatter gather chain.
*
* Returns:
* None
*
* Modifies:
* fp->rx_sge_buf_ptr[]
* fp->rx_sge_buf_map[]
* fp->sge_mbuf_alloc
*/
static void
bxe_free_sg_chain(struct bxe_fastpath *fp)
{
struct bxe_softc *sc;
int i;
sc = fp->sc;
DBENTER(BXE_INSANE_TPA);
if (fp->rx_sge_buf_tag == NULL)
goto bxe_free_sg_chain_exit;
/* Free all mbufs and unload all maps. */
for (i = 0; i < TOTAL_RX_SGE; i++) {
/* Free the map and the mbuf if they're allocated. */
if (fp->rx_sge_buf_map[i] != NULL) {
bus_dmamap_sync(fp->rx_sge_buf_tag,
fp->rx_sge_buf_map[i], BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_sge_buf_tag,
fp->rx_sge_buf_map[i]);
}
if (fp->rx_sge_buf_ptr[i] != NULL) {
m_freem(fp->rx_sge_buf_ptr[i]);
DBRUN(fp->sge_mbuf_alloc--);
fp->rx_sge_buf_ptr[i] = NULL;
}
}
bxe_free_sg_chain_exit:
DBEXIT(BXE_INSANE_TPA);
}
/*
* Allocate an mbuf, if necessary, and add it to the receive chain.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, uint16_t index)
{
struct bxe_softc *sc;
struct eth_rx_bd *rx_bd;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
struct mbuf *m;
int nsegs, rc;
sc = fp->sc;
DBENTER(BXE_INSANE_LOAD | BXE_INSANE_RESET | BXE_INSANE_RECV);
rc = 0;
#ifdef BXE_DEBUG
/* Simulate an mbuf allocation failure. */
if (DB_RANDOMTRUE(bxe_debug_mbuf_allocation_failure)) {
sc->debug_sim_mbuf_alloc_failed++;
fp->mbuf_rx_bd_alloc_failed++;
rc = ENOMEM;
goto bxe_alloc_rx_bd_mbuf_exit;
}
#endif
/* Allocate the new RX BD mbuf. */
m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, sc->mbuf_alloc_size);
if (__predict_false(m == NULL)) {
fp->mbuf_rx_bd_alloc_failed++;
rc = ENOBUFS;
goto bxe_alloc_rx_bd_mbuf_exit;
}
DBRUN(fp->rx_mbuf_alloc++);
/* Initialize the mbuf buffer length. */
m->m_pkthdr.len = m->m_len = sc->mbuf_alloc_size;
#ifdef BXE_DEBUG
/* Simulate an mbuf mapping failure. */
if (DB_RANDOMTRUE(bxe_debug_dma_map_addr_failure)) {
sc->debug_sim_mbuf_map_failed++;
fp->mbuf_rx_bd_mapping_failed++;
m_freem(m);
DBRUN(fp->rx_mbuf_alloc--);
rc = ENOMEM;
goto bxe_alloc_rx_bd_mbuf_exit;
}
#endif
/* Map the TPA mbuf into non-paged pool. */
rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
fp->rx_mbuf_spare_map, m, segs, &nsegs, BUS_DMA_NOWAIT);
if (__predict_false(rc != 0)) {
fp->mbuf_rx_bd_mapping_failed++;
m_freem(m);
DBRUN(fp->rx_mbuf_alloc--);
goto bxe_alloc_rx_bd_mbuf_exit;
}
/* All mubfs must map to a single segment. */
KASSERT(nsegs == 1, ("%s(): Too many segments (%d) returned!",
__FUNCTION__, nsegs));
/* Release any existing RX BD mbuf mapping. */
if (fp->rx_mbuf_map[index] != NULL) {
bus_dmamap_sync(fp->rx_mbuf_tag,
fp->rx_mbuf_map[index], BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_mbuf_tag,
fp->rx_mbuf_map[index]);
}
/* Save the mbuf and mapping info. */
map = fp->rx_mbuf_map[index];
fp->rx_mbuf_map[index] = fp->rx_mbuf_spare_map;
fp->rx_mbuf_spare_map = map;
bus_dmamap_sync(fp->rx_mbuf_tag,
fp->rx_mbuf_map[index], BUS_DMASYNC_PREREAD);
fp->rx_mbuf_ptr[index] = m;
rx_bd = &fp->rx_chain[index];
rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
bxe_alloc_rx_bd_mbuf_exit:
DBEXIT(BXE_INSANE_LOAD | BXE_INSANE_RESET | BXE_INSANE_RECV);
return (rc);
}
/*
* Allocate mbufs for a receive chain.
*
* Returns:
* 0 = Success, !0 = Failure.
*
* Modifies:
* fp->rx_bd_prod
*/
static int
bxe_fill_rx_bd_chain(struct bxe_fastpath *fp)
{
struct bxe_softc *sc;
uint16_t index;
int i, rc;
sc = fp->sc;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
rc = index = 0;
/* Allocate buffers for all the RX BDs in RX BD Chain. */
for (i = 0; i < USABLE_RX_BD; i++) {
rc = bxe_alloc_rx_bd_mbuf(fp, index);
if (rc != 0) {
BXE_PRINTF(
"%s(%d): Memory allocation failure! Cannot fill fp[%02d] RX chain.\n",
__FILE__, __LINE__, fp->index);
index = 0;
break;
}
index = NEXT_RX_BD(index);
}
fp->rx_bd_prod = index;
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
return (rc);
}
/*
* Free all buffers from the receive chain.
*
* Returns:
* None
*
* Modifies:
* fp->rx_mbuf_ptr[]
* fp->rx_mbuf_map[]
* fp->rx_mbuf_alloc
*/
static void
bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
{
struct bxe_softc *sc;
int i;
sc = fp->sc;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
if (fp->rx_mbuf_tag == NULL)
goto bxe_free_rx_bd_chain_exit;
/* Free all mbufs and unload all maps. */
for (i = 0; i < TOTAL_RX_BD; i++) {
if (fp->rx_mbuf_map[i] != NULL) {
bus_dmamap_sync(fp->rx_mbuf_tag, fp->rx_mbuf_map[i],
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_map[i]);
}
if (fp->rx_mbuf_ptr[i] != NULL) {
m_freem(fp->rx_mbuf_ptr[i]);
DBRUN(fp->rx_mbuf_alloc--);
fp->rx_mbuf_ptr[i] = NULL;
}
}
bxe_free_rx_bd_chain_exit:
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
}
/*
* Setup mutexes used by the driver.
*
* Returns:
* None.
*/
static void
bxe_mutexes_alloc(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int i;
DBENTER(BXE_VERBOSE_LOAD);
BXE_CORE_LOCK_INIT(sc, device_get_nameunit(sc->dev));
BXE_SP_LOCK_INIT(sc, "bxe_sp_lock");
BXE_DMAE_LOCK_INIT(sc, "bxe_dmae_lock");
BXE_PHY_LOCK_INIT(sc, "bxe_phy_lock");
BXE_FWMB_LOCK_INIT(sc, "bxe_fwmb_lock");
BXE_PRINT_LOCK_INIT(sc, "bxe_print_lock");
/* Allocate one mutex for each fastpath structure. */
for (i = 0; i < sc->num_queues; i++ ) {
fp = &sc->fp[i];
/* Allocate per fastpath mutexes. */
snprintf(fp->mtx_name, sizeof(fp->mtx_name), "%s:fp[%02d]",
device_get_nameunit(sc->dev), fp->index);
mtx_init(&fp->mtx, fp->mtx_name, NULL, MTX_DEF);
}
DBEXIT(BXE_VERBOSE_LOAD);
}
/*
* Free mutexes used by the driver.
*
* Returns:
* None.
*/
static void
bxe_mutexes_free(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int i;
DBENTER(BXE_VERBOSE_UNLOAD);
for (i = 0; i < sc->num_queues; i++ ) {
fp = &sc->fp[i];
/* Release per fastpath mutexes. */
if (mtx_initialized(&fp->mtx))
mtx_destroy(&fp->mtx);
}
BXE_PRINT_LOCK_DESTROY(sc);
BXE_FWMB_LOCK_DESTROY(sc);
BXE_PHY_LOCK_DESTROY(sc);
BXE_DMAE_LOCK_DESTROY(sc);
BXE_SP_LOCK_DESTROY(sc);
BXE_CORE_LOCK_DESTROY(sc);
DBEXIT(BXE_VERBOSE_UNLOAD);
}
/*
* Free memory and clear the RX data structures.
*
* Returns:
* Nothing.
*/
static void
bxe_clear_rx_chains(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int i;
DBENTER(BXE_VERBOSE_RESET);
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
/* Free all RX buffers. */
bxe_free_rx_bd_chain(fp);
bxe_free_tpa_pool(fp);
bxe_free_sg_chain(fp);
/* Check if any mbufs lost in the process. */
DBRUNIF((fp->tpa_mbuf_alloc), DBPRINT(sc, BXE_FATAL,
"%s(): Memory leak! Lost %d mbufs from fp[%02d] TPA pool!\n",
__FUNCTION__, fp->tpa_mbuf_alloc, fp->index));
DBRUNIF((fp->sge_mbuf_alloc), DBPRINT(sc, BXE_FATAL,
"%s(): Memory leak! Lost %d mbufs from fp[%02d] SGE chain!\n",
__FUNCTION__, fp->sge_mbuf_alloc, fp->index));
DBRUNIF((fp->rx_mbuf_alloc), DBPRINT(sc, BXE_FATAL,
"%s(): Memory leak! Lost %d mbufs from fp[%02d] RX chain!\n",
__FUNCTION__, fp->rx_mbuf_alloc, fp->index));
}
DBEXIT(BXE_VERBOSE_RESET);
}
/*
* Initialize the receive rings.
*
* Returns:
* None.
*/
static int
bxe_init_rx_chains(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int func, i, rc;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
rc = 0;
func = BP_FUNC(sc);
/* Allocate memory for RX and CQ chains. */
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET),
"%s(): Initializing fp[%02d] RX chain.\n", __FUNCTION__, i);
fp->rx_bd_cons = fp->rx_bd_prod = 0;
fp->rx_cq_cons = fp->rx_cq_prod = 0;
/* Pointer to status block's CQ consumer index. */
fp->rx_cq_cons_sb = &fp->status_block->
u_status_block.index_values[HC_INDEX_U_ETH_RX_CQ_CONS];
/* Pointer to status block's receive consumer index. */
fp->rx_bd_cons_sb = &fp->status_block->
u_status_block.index_values[HC_INDEX_U_ETH_RX_BD_CONS];
fp->rx_cq_prod = TOTAL_RCQ_ENTRIES;
fp->rx_pkts = fp->rx_tpa_pkts = fp->rx_soft_errors = 0;
/* Allocate memory for the receive chain. */
rc = bxe_fill_rx_bd_chain(fp);
if (rc != 0)
goto bxe_init_rx_chains_exit;
/* Allocate memory for TPA pool. */
rc = bxe_fill_tpa_pool(fp);
if (rc != 0)
goto bxe_init_rx_chains_exit;
/* Allocate memory for scatter-gather chain. */
rc = bxe_fill_sg_chain(fp);
if (rc != 0)
goto bxe_init_rx_chains_exit;
/* Prepare the receive BD and CQ buffers for DMA access. */
bus_dmamap_sync(fp->rx_dma.tag, fp->rx_dma.map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(fp->rcq_dma.tag, fp->rcq_dma.map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/*
* Tell the controller that we have rx_bd's and CQE's
* available. Warning! this will generate an interrupt
* (to the TSTORM). This must only be done when the
* controller is initialized.
*/
bxe_update_rx_prod(sc, fp, fp->rx_bd_prod,
fp->rx_cq_prod, fp->rx_sge_prod);
/* ToDo - Move to dma_alloc(). */
/*
* Tell controller where the receive CQ
* chains start in physical memory.
*/
if (i == 0) {
REG_WR(sc, BAR_USTORM_INTMEM +
USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
U64_LO(fp->rcq_dma.paddr));
REG_WR(sc, BAR_USTORM_INTMEM +
USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
U64_HI(fp->rcq_dma.paddr));
}
}
bxe_init_rx_chains_exit:
/* Release memory if an error occurred. */
if (rc != 0)
bxe_clear_rx_chains(sc);
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
return (rc);
}
/*
* Free memory and clear the TX data structures.
*
* Returns:
* Nothing.
*/
static void
bxe_clear_tx_chains(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int i, j;
DBENTER(BXE_VERBOSE_RESET);
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
/* Free all mbufs and unload all maps. */
if (fp->tx_mbuf_tag) {
for (j = 0; j < TOTAL_TX_BD; j++) {
if (fp->tx_mbuf_ptr[j] != NULL) {
bus_dmamap_sync(fp->tx_mbuf_tag,
fp->tx_mbuf_map[j],
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(fp->tx_mbuf_tag,
fp->tx_mbuf_map[j]);
m_freem(fp->tx_mbuf_ptr[j]);
fp->tx_mbuf_alloc--;
fp->tx_mbuf_ptr[j] = NULL;
}
}
}
/* Check if we lost any mbufs in the process. */
DBRUNIF((fp->tx_mbuf_alloc), DBPRINT(sc, BXE_FATAL,
"%s(): Memory leak! Lost %d mbufs from fp[%02d] TX chain!\n",
__FUNCTION__, fp->tx_mbuf_alloc, fp->index));
}
DBEXIT(BXE_VERBOSE_RESET);
}
/*
* Initialize the transmit chain.
*
* Returns:
* None.
*/
static void
bxe_init_tx_chains(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int i, j;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
/* Initialize transmit doorbell. */
fp->tx_db.data.header.header = DOORBELL_HDR_DB_TYPE;
fp->tx_db.data.zero_fill1 = 0;
fp->tx_db.data.prod = 0;
/* Initialize tranmsit producer/consumer indices. */
fp->tx_pkt_prod = fp->tx_pkt_cons = 0;
fp->tx_bd_prod = fp->tx_bd_cons = 0;
fp->tx_bd_used = 0;
/* Pointer to TX packet consumer in status block. */
fp->tx_pkt_cons_sb =
&fp->status_block->c_status_block.index_values[C_SB_ETH_TX_CQ_INDEX];
/* Soft TX counters. */
fp->tx_pkts = 0;
fp->tx_soft_errors = 0;
fp->tx_offload_frames_csum_ip = 0;
fp->tx_offload_frames_csum_tcp = 0;
fp->tx_offload_frames_csum_udp = 0;
fp->tx_offload_frames_tso = 0;
fp->tx_header_splits = 0;
fp->tx_encap_failures = 0;
fp->tx_hw_queue_full = 0;
fp->tx_hw_max_queue_depth = 0;
fp->tx_dma_mapping_failure = 0;
fp->tx_max_drbr_queue_depth = 0;
fp->tx_window_violation_std = 0;
fp->tx_window_violation_tso = 0;
fp->tx_unsupported_tso_request_ipv6 = 0;
fp->tx_unsupported_tso_request_not_tcp = 0;
fp->tx_chain_lost_mbuf = 0;
fp->tx_frame_deferred = 0;
fp->tx_queue_xoff = 0;
/* Clear all TX mbuf pointers. */
for (j = 0; j < TOTAL_TX_BD; j++) {
fp->tx_mbuf_ptr[j] = NULL;
}
}
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
}
/*
* Initialize the slowpath ring.
*
* Returns:
* None.
*/
static void
bxe_init_sp_ring(struct bxe_softc *sc)
{
int func;
func = BP_FUNC(sc);
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
bzero((char *)sc->slowpath, BXE_SLOWPATH_SZ);
/* When the producer equals the consumer the chain is empty. */
sc->spq_left = MAX_SPQ_PENDING;
sc->spq_prod_idx = 0;
sc->dsb_sp_prod = BXE_SP_DSB_INDEX;
sc->spq_prod_bd = sc->spq;
sc->spq_last_bd = sc->spq_prod_bd + MAX_SP_DESC_CNT;
/* Tell the controller the address of the slowpath ring. */
REG_WR(sc, XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PAGE_BASE_OFFSET(func),
U64_LO(sc->spq_dma.paddr));
REG_WR(sc, XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PAGE_BASE_OFFSET(func) + 4,
U64_HI(sc->spq_dma.paddr));
REG_WR(sc, XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(func),
sc->spq_prod_idx);
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
}
/*
* Initialize STORM processor context.
*
* Returns:
* None.
*/
static void
bxe_init_context(struct bxe_softc *sc)
{
struct eth_context *context;
struct bxe_fastpath *fp;
uint8_t sb_id;
uint8_t cl_id;
int i;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
for (i = 0; i < sc->num_queues; i++) {
context = BXE_SP(sc, context[i].eth);
fp = &sc->fp[i];
sb_id = fp->sb_id;
cl_id = fp->cl_id;
/* Update the USTORM context. */
context->ustorm_st_context.common.sb_index_numbers =
BXE_RX_SB_INDEX_NUM;
context->ustorm_st_context.common.clientId = cl_id;
context->ustorm_st_context.common.status_block_id = sb_id;
/* Enable packet alignment/pad and statistics. */
context->ustorm_st_context.common.flags =
USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_MC_ALIGNMENT;
if (sc->stats_enable == TRUE)
context->ustorm_st_context.common.flags |=
USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_STATISTICS;
context->ustorm_st_context.common.statistics_counter_id=cl_id;
/*
* Set packet alignment boundary.
* (Must be >= 4 (i.e. 16 bytes).)
*/
context->ustorm_st_context.common.mc_alignment_log_size = 8;
/* Set the size of the receive buffers. */
context->ustorm_st_context.common.bd_buff_size =
sc->mbuf_alloc_size;
/* Set the address of the receive chain base page. */
context->ustorm_st_context.common.bd_page_base_hi =
U64_HI(fp->rx_dma.paddr);
context->ustorm_st_context.common.bd_page_base_lo =
U64_LO(fp->rx_dma.paddr);
if (TPA_ENABLED(sc) && (fp->disable_tpa == FALSE)) {
/* Enable TPA and SGE chain support. */
context->ustorm_st_context.common.flags |=
USTORM_ETH_ST_CONTEXT_CONFIG_ENABLE_TPA;
/* Set the size of the SGE buffer. */
context->ustorm_st_context.common.sge_buff_size =
(uint16_t) (SGE_PAGE_SIZE * PAGES_PER_SGE);
/* Set the address of the SGE chain base page. */
context->ustorm_st_context.common.sge_page_base_hi =
U64_HI(fp->sg_dma.paddr);
context->ustorm_st_context.common.sge_page_base_lo =
U64_LO(fp->sg_dma.paddr);
DBPRINT(sc, BXE_VERBOSE_TPA, "%s(): MTU = %d\n",
__FUNCTION__, (int) sc->bxe_ifp->if_mtu);
/* Describe MTU to SGE alignment. */
context->ustorm_st_context.common.max_sges_for_packet =
SGE_PAGE_ALIGN(sc->bxe_ifp->if_mtu) >>
SGE_PAGE_SHIFT;
context->ustorm_st_context.common.max_sges_for_packet =
((context->ustorm_st_context.common.
max_sges_for_packet + PAGES_PER_SGE - 1) &
(~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
DBPRINT(sc, BXE_VERBOSE_TPA,
"%s(): max_sges_for_packet = %d\n", __FUNCTION__,
context->ustorm_st_context.common.max_sges_for_packet);
}
/* Update USTORM context. */
context->ustorm_ag_context.cdu_usage =
CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, i),
CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
/* Update XSTORM context. */
context->xstorm_ag_context.cdu_reserved =
CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, i),
CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
/* Set the address of the transmit chain base page. */
context->xstorm_st_context.tx_bd_page_base_hi =
U64_HI(fp->tx_dma.paddr);
context->xstorm_st_context.tx_bd_page_base_lo =
U64_LO(fp->tx_dma.paddr);
/* Enable XSTORM statistics. */
context->xstorm_st_context.statistics_data = (cl_id |
XSTORM_ETH_ST_CONTEXT_STATISTICS_ENABLE);
/* Update CSTORM status block configuration. */
context->cstorm_st_context.sb_index_number =
C_SB_ETH_TX_CQ_INDEX;
context->cstorm_st_context.status_block_id = sb_id;
}
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
}
/*
* Initialize indirection table.
*
* Returns:
* None.
*/
static void
bxe_init_ind_table(struct bxe_softc *sc)
{
int func, i;
func = BP_FUNC(sc);
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
if (sc->multi_mode == ETH_RSS_MODE_DISABLED)
return;
/* Initialize the indirection table. */
for (i = 0; i < TSTORM_INDIRECTION_TABLE_SIZE; i++)
REG_WR8(sc, BAR_TSTORM_INTMEM +
TSTORM_INDIRECTION_TABLE_OFFSET(func) + i,
sc->fp->cl_id + (i % sc->num_queues));
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
}
/*
* Set client configuration.
*
* Returns:
* None.
*/
static void
bxe_set_client_config(struct bxe_softc *sc)
{
struct tstorm_eth_client_config tstorm_client = {0};
int i, port;
port = BP_PORT(sc);
DBENTER(BXE_VERBOSE_MISC);
tstorm_client.mtu = sc->bxe_ifp->if_mtu; /* ETHERMTU */
tstorm_client.config_flags =
(TSTORM_ETH_CLIENT_CONFIG_STATSITICS_ENABLE |
TSTORM_ETH_CLIENT_CONFIG_E1HOV_REM_ENABLE);
/* Unconditionally enable VLAN tag stripping. */
if (sc->rx_mode) {
tstorm_client.config_flags |=
TSTORM_ETH_CLIENT_CONFIG_VLAN_REM_ENABLE;
DBPRINT(sc, BXE_VERBOSE, "%s(): VLAN tag stripping enabled.\n",
__FUNCTION__);
}
/* Initialize the receive mode for each receive queue. */
for (i = 0; i < sc->num_queues; i++) {
tstorm_client.statistics_counter_id = sc->fp[i].cl_id;
REG_WR(sc, BAR_TSTORM_INTMEM +
TSTORM_CLIENT_CONFIG_OFFSET(port, sc->fp[i].cl_id),
((uint32_t *) &tstorm_client)[0]);
REG_WR(sc, BAR_TSTORM_INTMEM +
TSTORM_CLIENT_CONFIG_OFFSET(port, sc->fp[i].cl_id) + 4,
((uint32_t *) &tstorm_client)[1]);
}
DBEXIT(BXE_VERBOSE_MISC);
}
/*
* Set receive mode.
*
* Programs the MAC according to the type of unicast/broadcast/multicast
* packets it should receive.
*
* Returns:
* None.
*/
static void
bxe_set_storm_rx_mode(struct bxe_softc *sc)
{
struct tstorm_eth_mac_filter_config tstorm_mac_filter = {0};
uint32_t llh_mask;
int mode, mask;
int func, i , port;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
mode = sc->rx_mode;
mask = 1 << BP_L_ID(sc);
func = BP_FUNC(sc);
port = BP_PORT(sc);
/* All but management unicast packets should pass to the host as well */
llh_mask = NIG_LLH0_BRB1_DRV_MASK_REG_LLH0_BRB1_DRV_MASK_BRCST |
NIG_LLH0_BRB1_DRV_MASK_REG_LLH0_BRB1_DRV_MASK_MLCST |
NIG_LLH0_BRB1_DRV_MASK_REG_LLH0_BRB1_DRV_MASK_VLAN |
NIG_LLH0_BRB1_DRV_MASK_REG_LLH0_BRB1_DRV_MASK_NO_VLAN;
/* Set the individual accept/drop flags based on the receive mode. */
switch (mode) {
case BXE_RX_MODE_NONE:
/* Drop everything. */
DBPRINT(sc, BXE_VERBOSE,
"%s(): Setting RX_MODE_NONE for function %d.\n",
__FUNCTION__, func);
tstorm_mac_filter.ucast_drop_all = mask;
tstorm_mac_filter.mcast_drop_all = mask;
tstorm_mac_filter.bcast_drop_all = mask;
break;
case BXE_RX_MODE_NORMAL:
/* Accept all broadcast frames. */
DBPRINT(sc, BXE_VERBOSE,
"%s(): Setting RX_MODE_NORMAL for function %d.\n",
__FUNCTION__, func);
tstorm_mac_filter.bcast_accept_all = mask;
break;
case BXE_RX_MODE_ALLMULTI:
/* Accept all broadcast and multicast frames. */
DBPRINT(sc, BXE_VERBOSE,
"%s(): Setting RX_MODE_ALLMULTI for function %d.\n",
__FUNCTION__, func);
tstorm_mac_filter.mcast_accept_all = mask;
tstorm_mac_filter.bcast_accept_all = mask;
break;
case BXE_RX_MODE_PROMISC:
/* Accept all frames (promiscuous mode). */
DBPRINT(sc, BXE_VERBOSE,
"%s(): Setting RX_MODE_PROMISC for function %d.\n",
__FUNCTION__, func);
tstorm_mac_filter.ucast_accept_all = mask;
tstorm_mac_filter.mcast_accept_all = mask;
tstorm_mac_filter.bcast_accept_all = mask;
llh_mask |= NIG_LLH0_BRB1_DRV_MASK_REG_LLH0_BRB1_DRV_MASK_UNCST;
break;
default:
BXE_PRINTF(
"%s(%d): Tried to set unknown receive mode (0x%08X)!\n",
__FILE__, __LINE__, mode);
}
REG_WR(sc, port ? NIG_REG_LLH1_BRB1_DRV_MASK :
NIG_REG_LLH0_BRB1_DRV_MASK, llh_mask);
/* Write the RX mode filter to the TSTORM. */
for (i = 0; i < sizeof(struct tstorm_eth_mac_filter_config) / 4; i++)
REG_WR(sc, BAR_TSTORM_INTMEM +
TSTORM_MAC_FILTER_CONFIG_OFFSET(func) + (i * 4),
((uint32_t *) &tstorm_mac_filter)[i]);
if (mode != BXE_RX_MODE_NONE)
bxe_set_client_config(sc);
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
}
/*
* Initialize common internal resources. (Applies to both ports and
* functions.)
*
* Returns:
* Nothing.
*/
static void
bxe_init_internal_common(struct bxe_softc *sc)
{
int i;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
/*
* Zero this manually as its initialization is currently not
* handled through block initialization.
*/
for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
REG_WR(sc, BAR_USTORM_INTMEM + USTORM_AGG_DATA_OFFSET + i * 4,
0);
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
}
/*
* Initialize port specific internal resources.
*
* Returns:
* Nothing.
*/
static void
bxe_init_internal_port(struct bxe_softc *sc)
{
int port = BP_PORT(sc);
port = BP_PORT(sc);
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET),
"%s(): Port %d internal initialization.\n", __FUNCTION__, port);
/*
* Each SDM timer tick is 4us. Configure host coalescing
* basic timer resolution (BTR) to 12us (3 * 4us).
*/
REG_WR(sc, BAR_CSTORM_INTMEM + CSTORM_HC_BTR_U_OFFSET(port), BXE_BTR);
REG_WR(sc, BAR_CSTORM_INTMEM + CSTORM_HC_BTR_C_OFFSET(port), BXE_BTR);
REG_WR(sc, BAR_TSTORM_INTMEM + TSTORM_HC_BTR_OFFSET(port), BXE_BTR);
REG_WR(sc, BAR_XSTORM_INTMEM + XSTORM_HC_BTR_OFFSET(port), BXE_BTR);
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
}
/*
* Initialize function specific internal resources.
*
* Returns:
* Nothing.
*/
static void
bxe_init_internal_func(struct bxe_softc *sc)
{
struct tstorm_eth_function_common_config tstorm_config = {0};
struct stats_indication_flags stats_flags = {0};
struct ustorm_eth_rx_pause_data_e1h rx_pause = {0};
struct bxe_fastpath *fp;
struct eth_rx_cqe_next_page *nextpg;
uint32_t offset, size;
uint16_t max_agg_size;
uint8_t cl_id;
int func, i, j, port;
port = BP_PORT(sc);
func = BP_FUNC(sc);
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET),
"%s(): Port %d, function %d internal initialization.\n",
__FUNCTION__, port, func);
/*
* Configure which fields the controller looks at when
* distributing incoming frames for RSS/multi-queue operation.
*/
if (sc->num_queues > 1) {
tstorm_config.config_flags = MULTI_FLAGS(sc);
tstorm_config.rss_result_mask = MULTI_MASK;
}
/* Enable TPA if needed */
if (TPA_ENABLED(sc))
tstorm_config.config_flags |=
TSTORM_ETH_FUNCTION_COMMON_CONFIG_ENABLE_TPA;
if (IS_E1HMF(sc))
tstorm_config.config_flags |=
TSTORM_ETH_FUNCTION_COMMON_CONFIG_E1HOV_IN_CAM;
tstorm_config.leading_client_id = BP_L_ID(sc);
REG_WR(sc, BAR_TSTORM_INTMEM +
TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(func),
(*(uint32_t *)&tstorm_config));
/* Don't receive anything until the link is up. */
sc->rx_mode = BXE_RX_MODE_NONE;
sc->rx_mode_cl_mask = (1 << BP_L_ID(sc));
bxe_set_storm_rx_mode(sc);
for (i = 0; i < sc->num_queues; i++) {
cl_id = sc->fp[i].cl_id;
/* Reset XSTORM per client statistics. */
size = sizeof(struct xstorm_per_client_stats) / 4;
offset = BAR_XSTORM_INTMEM +
XSTORM_PER_COUNTER_ID_STATS_OFFSET(port, cl_id);
for (j = 0; j < size; j++)
REG_WR(sc, offset +(j * 4), 0);
/* Reset TSTORM per client statistics. */
size = sizeof(struct tstorm_per_client_stats) / 4;
offset = BAR_TSTORM_INTMEM +
TSTORM_PER_COUNTER_ID_STATS_OFFSET(port, cl_id);
for (j = 0; j < size; j++)
REG_WR(sc, offset + (j * 4), 0);
/* Reset USTORM per client statistics. */
size = sizeof(struct ustorm_per_client_stats) / 4;
offset = BAR_USTORM_INTMEM +
USTORM_PER_COUNTER_ID_STATS_OFFSET(port, cl_id);
for (j = 0; j < size; j++)
REG_WR(sc, offset + (j * 4), 0);
}
/* Initialize statistics related context. */
stats_flags.collect_eth = 1;
REG_WR(sc, BAR_XSTORM_INTMEM + XSTORM_STATS_FLAGS_OFFSET(func),
((uint32_t *)&stats_flags)[0]);
REG_WR(sc, BAR_XSTORM_INTMEM + XSTORM_STATS_FLAGS_OFFSET(func) + 4,
((uint32_t *)&stats_flags)[1]);
REG_WR(sc, BAR_TSTORM_INTMEM + TSTORM_STATS_FLAGS_OFFSET(func),
((uint32_t *)&stats_flags)[0]);
REG_WR(sc, BAR_TSTORM_INTMEM + TSTORM_STATS_FLAGS_OFFSET(func) + 4,
((uint32_t *)&stats_flags)[1]);
REG_WR(sc, BAR_USTORM_INTMEM + USTORM_STATS_FLAGS_OFFSET(func),
((uint32_t *)&stats_flags)[0]);
REG_WR(sc, BAR_USTORM_INTMEM + USTORM_STATS_FLAGS_OFFSET(func) + 4,
((uint32_t *)&stats_flags)[1]);
REG_WR(sc, BAR_CSTORM_INTMEM + CSTORM_STATS_FLAGS_OFFSET(func),
((uint32_t *)&stats_flags)[0]);
REG_WR(sc, BAR_CSTORM_INTMEM + CSTORM_STATS_FLAGS_OFFSET(func) + 4,
((uint32_t *)&stats_flags)[1]);
REG_WR(sc, BAR_XSTORM_INTMEM + XSTORM_ETH_STATS_QUERY_ADDR_OFFSET(func),
U64_LO(BXE_SP_MAPPING(sc, fw_stats)));
REG_WR(sc, BAR_XSTORM_INTMEM +
XSTORM_ETH_STATS_QUERY_ADDR_OFFSET(func) + 4,
U64_HI(BXE_SP_MAPPING(sc, fw_stats)));
REG_WR(sc, BAR_TSTORM_INTMEM + TSTORM_ETH_STATS_QUERY_ADDR_OFFSET(func),
U64_LO(BXE_SP_MAPPING(sc, fw_stats)));
REG_WR(sc, BAR_TSTORM_INTMEM +
TSTORM_ETH_STATS_QUERY_ADDR_OFFSET(func) + 4,
U64_HI(BXE_SP_MAPPING(sc, fw_stats)));
REG_WR(sc, BAR_USTORM_INTMEM + USTORM_ETH_STATS_QUERY_ADDR_OFFSET(func),
U64_LO(BXE_SP_MAPPING(sc, fw_stats)));
REG_WR(sc, BAR_USTORM_INTMEM +
USTORM_ETH_STATS_QUERY_ADDR_OFFSET(func) + 4,
U64_HI(BXE_SP_MAPPING(sc, fw_stats)));
/* Additional initialization for 57711/57711E. */
if (CHIP_IS_E1H(sc)) {
REG_WR8(sc, BAR_XSTORM_INTMEM + XSTORM_FUNCTION_MODE_OFFSET,
IS_E1HMF(sc));
REG_WR8(sc, BAR_TSTORM_INTMEM + TSTORM_FUNCTION_MODE_OFFSET,
IS_E1HMF(sc));
REG_WR8(sc, BAR_CSTORM_INTMEM + CSTORM_FUNCTION_MODE_OFFSET,
IS_E1HMF(sc));
REG_WR8(sc, BAR_USTORM_INTMEM + USTORM_FUNCTION_MODE_OFFSET,
IS_E1HMF(sc));
/* Set the outer VLAN tag. */
REG_WR16(sc, BAR_XSTORM_INTMEM + XSTORM_E1HOV_OFFSET(func),
sc->e1hov);
}
/* Init completion queue mapping and TPA aggregation size. */
max_agg_size = min((uint32_t)(sc->mbuf_alloc_size +
(8 * BCM_PAGE_SIZE * PAGES_PER_SGE)), (uint32_t)0xffff);
DBPRINT(sc, BXE_VERBOSE_TPA, "%s(): max_agg_size = 0x%08X\n",
__FUNCTION__, max_agg_size);
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
nextpg = (struct eth_rx_cqe_next_page *)
&fp->rcq_chain[USABLE_RCQ_ENTRIES_PER_PAGE];
/* Program the completion queue address. */
REG_WR(sc, BAR_USTORM_INTMEM +
USTORM_CQE_PAGE_BASE_OFFSET(port, fp->cl_id),
U64_LO(fp->rcq_dma.paddr));
REG_WR(sc, BAR_USTORM_INTMEM +
USTORM_CQE_PAGE_BASE_OFFSET(port, fp->cl_id) + 4,
U64_HI(fp->rcq_dma.paddr));
/* Program the first CQ next page address. */
REG_WR(sc, BAR_USTORM_INTMEM +
USTORM_CQE_PAGE_NEXT_OFFSET(port, fp->cl_id),
nextpg->addr_lo);
REG_WR(sc, BAR_USTORM_INTMEM +
USTORM_CQE_PAGE_NEXT_OFFSET(port, fp->cl_id) + 4,
nextpg->addr_hi);
/* Set the maximum TPA aggregation size. */
REG_WR16(sc, BAR_USTORM_INTMEM +
USTORM_MAX_AGG_SIZE_OFFSET(port, fp->cl_id),
max_agg_size);
}
/* Configure lossless flow control. */
if (CHIP_IS_E1H(sc)) {
rx_pause.bd_thr_low = 250;
rx_pause.cqe_thr_low = 250;
rx_pause.cos = 1;
rx_pause.sge_thr_low = 0;
rx_pause.bd_thr_high = 350;
rx_pause.cqe_thr_high = 350;
rx_pause.sge_thr_high = 0;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
if (fp->disable_tpa == FALSE) {
rx_pause.sge_thr_low = 150;
rx_pause.sge_thr_high = 250;
}
offset = BAR_USTORM_INTMEM +
USTORM_ETH_RING_PAUSE_DATA_OFFSET(port, fp->cl_id);
for (j = 0; j <
sizeof(struct ustorm_eth_rx_pause_data_e1h) / 4;
j++)
REG_WR(sc, offset + (j * 4),
((uint32_t *)&rx_pause)[j]);
}
}
memset(&(sc->cmng), 0, sizeof(struct cmng_struct_per_port));
if (IS_E1HMF(sc)) {
/*
* During init there is no active link.
* Until link is up, assume link rate @ 10Gbps
*/
bxe_read_mf_cfg(sc);
if (!sc->vn_wsum)
DBPRINT(sc, BXE_VERBOSE_MISC,
"%s(): All MIN values are zeroes, "
"fairness will be disabled.\n", __FUNCTION__);
}
/* Store it to internal memory */
if (sc->port.pmf) {
for (i = 0; i < sizeof(struct cmng_struct_per_port) / 4; i++)
REG_WR(sc, BAR_XSTORM_INTMEM +
XSTORM_CMNG_PER_PORT_VARS_OFFSET(port) + i * 4,
((uint32_t *)(&sc->cmng))[i]);
}
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
}
/*
* Initialize internal resources.
*
* Returns:
* Nothing.
*/
static void
bxe_init_internal(struct bxe_softc *sc, uint32_t load_code)
{
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
switch (load_code) {
case FW_MSG_CODE_DRV_LOAD_COMMON:
bxe_init_internal_common(sc);
/* FALLTHROUGH */
case FW_MSG_CODE_DRV_LOAD_PORT:
bxe_init_internal_port(sc);
/* FALLTHROUGH */
case FW_MSG_CODE_DRV_LOAD_FUNCTION:
bxe_init_internal_func(sc);
break;
default:
BXE_PRINTF(
"%s(%d): Unknown load_code (0x%08X) from MCP!\n",
__FILE__, __LINE__, load_code);
break;
}
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
}
/*
* Perform driver instance specific initialization.
*
* Returns:
* None
*/
static int
bxe_init_nic(struct bxe_softc *sc, uint32_t load_code)
{
struct bxe_fastpath *fp;
int i, rc;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
/* Intialize fastpath structures and the status block. */
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
fp->disable_tpa = TRUE;
bzero((char *)fp->status_block, BXE_STATUS_BLK_SZ);
fp->fp_u_idx = 0;
fp->fp_c_idx = 0;
/* Set a pointer back to the driver instance. */
fp->sc = sc;
/* Set the fastpath starting state as closed. */
fp->state = BXE_FP_STATE_CLOSED;
/* Self-reference to this fastpath's instance. */
fp->index = i;
/* Set the client ID beginning with the leading id. */
fp->cl_id = BP_L_ID(sc) + i;
/* Set the status block ID for this fastpath instance. */
fp->sb_id = fp->cl_id;
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET),
"%s(): fp[%02d]: cl_id = %d, sb_id = %d\n",
__FUNCTION__, fp->index, fp->cl_id, fp->sb_id);
/* Initialize the fastpath status block. */
bxe_init_sb(sc, fp->status_block, fp->sb_dma.paddr,
fp->sb_id);
bxe_update_fpsb_idx(fp);
}
rmb();
bzero((char *)sc->def_sb, BXE_DEF_STATUS_BLK_SZ);
/* Initialize the Default Status Block. */
bxe_init_def_sb(sc, sc->def_sb, sc->def_sb_dma.paddr, DEF_SB_ID);
bxe_update_dsb_idx(sc);
/* Initialize the coalescence parameters. */
bxe_update_coalesce(sc);
/* Initialize receive chains. */
rc = bxe_init_rx_chains(sc);
if (rc != 0) {
goto bxe_init_nic_exit;
}
/* Initialize the Transmit BD Chain. */
bxe_init_tx_chains(sc);
/* Initialize the Slow Path Chain. */
bxe_init_sp_ring(sc);
/* Initialize STORM processor context/configuration. */
bxe_init_context(sc);
/* Initialize the Context. */
bxe_init_internal(sc, load_code);
/* Enable indirection table for multi-queue operation. */
bxe_init_ind_table(sc);
mb();
/* Disable the interrupts from device until init is complete.*/
bxe_int_disable(sc);
bxe_init_nic_exit:
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
return (rc);
}
/*
* Send a loopback packet through the Network Interface Glue (NIG) block.
*
* Returns:
* None.
*/
static void
bxe_lb_pckt(struct bxe_softc *sc)
{
#ifdef BXE_USE_DMAE
uint32_t wb_write[3];
#endif
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
/* Ethernet source and destination addresses. */
#ifdef BXE_USE_DMAE
wb_write[0] = 0x55555555;
wb_write[1] = 0x55555555;
wb_write[2] = 0x20; /* SOP */
REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
#else
REG_WR_IND(sc, NIG_REG_DEBUG_PACKET_LB, 0x55555555);
REG_WR_IND(sc, NIG_REG_DEBUG_PACKET_LB + 4, 0x55555555);
REG_WR_IND(sc, NIG_REG_DEBUG_PACKET_LB + 8, 0x20);
#endif
/* NON-IP protocol. */
#ifdef BXE_USE_DMAE
wb_write[0] = 0x09000000;
wb_write[1] = 0x55555555;
wb_write[2] = 0x10; /* EOP */
REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
#else
REG_WR_IND(sc, NIG_REG_DEBUG_PACKET_LB, 0x09000000);
REG_WR_IND(sc, NIG_REG_DEBUG_PACKET_LB + 4, 0x55555555);
REG_WR_IND(sc, NIG_REG_DEBUG_PACKET_LB + 8, 0x10);
#endif
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
}
/*
* Perform an internal memory test.
*
* Some internal memories are not accessible through the PCIe interface so
* we send some debug packets for the test.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_int_mem_test(struct bxe_softc *sc)
{
uint32_t val;
int count, i, rc;
rc = 0;
val = 0;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
/* Perform a single debug packet test. */
/* Disable inputs of parser neighbor blocks. */
REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
REG_WR(sc, CFC_REG_DEBUG0, 0x1);
REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
/* Write 0 to parser credits for CFC search request. */
REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
/* Send an Ethernet packet. */
bxe_lb_pckt(sc);
/* Wait until NIG register shows 1 packet of size 0x10. */
count = 1000;
while (count) {
bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
val = *BXE_SP(sc, wb_data[0]);
if (val == 0x10)
break;
DELAY(10000);
count--;
}
if (val != 0x10) {
DBPRINT(sc, BXE_FATAL,
"%s(): NIG loopback test 1 timeout (val = 0x%08X)!\n",
__FUNCTION__, val);
rc = 1;
goto bxe_int_mem_test_exit;
}
/* Wait until PRS register shows 1 packet */
count = 1000;
while (count) {
val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
if (val == 1)
break;
DELAY(10000);
count--;
}
if (val != 0x1) {
DBPRINT(sc, BXE_FATAL,
"%s(): PRS loopback test 1 timeout (val = 0x%08X)!\n",
__FUNCTION__, val);
rc = 2;
goto bxe_int_mem_test_exit;
}
/* Reset and init BRB, PRS. */
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x3);
DELAY(50000);
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x3);
DELAY(50000);
bxe_init_block(sc, BRB1_BLOCK, COMMON_STAGE);
bxe_init_block(sc, PRS_BLOCK, COMMON_STAGE);
/* Perform the test again, this time with 10 packets. */
/* Disable inputs of parser neighbor blocks. */
REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
REG_WR(sc, CFC_REG_DEBUG0, 0x1);
REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
/* Write 0 to parser credits for CFC search request. */
REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
/* Send 10 Ethernet packets. */
for (i = 0; i < 10; i++)
bxe_lb_pckt(sc);
/* Wait until NIG shows 10 + 1 packets of size 11 * 0x10 = 0xb0. */
count = 1000;
while (count) {
bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
val = *BXE_SP(sc, wb_data[0]);
if (val == 0xb0)
break;
DELAY(10000);
count--;
}
if (val != 0xb0) {
DBPRINT(sc, BXE_FATAL,
"%s(): NIG loopback test 2 timeout (val = 0x%08X)!\n",
__FUNCTION__, val);
rc = 3;
goto bxe_int_mem_test_exit;
}
/* Wait until PRS register shows 2 packets. */
val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
if (val != 2) {
DBPRINT(sc, BXE_FATAL,
"%s(): PRS loopback test 2 timeout (val = 0x%x)!\n",
__FUNCTION__, val);
rc = 4;
goto bxe_int_mem_test_exit;
}
/* Write 1 to parser credits for CFC search request. */
REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
/* Wait until PRS register shows 3 packets. */
DELAY(10000);
/* Wait until NIG register shows 1 packet of size 0x10. */
val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
if (val != 3) {
DBPRINT(sc, BXE_FATAL,
"%s(): PRS loopback test 3 timeout (val = 0x%08X)!\n",
__FUNCTION__, val);
rc = 5;
goto bxe_int_mem_test_exit;
}
/* Clear NIG end-of-packet FIFO. */
for (i = 0; i < 11; i++)
REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
if (val != 1) {
DBPRINT(sc, BXE_INFO, "%s(): Unable to clear NIG!\n",
__FUNCTION__);
rc = 6;
goto bxe_int_mem_test_exit;
}
/* Reset and init BRB, PRS, NIG. */
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
DELAY(50000);
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
DELAY(50000);
bxe_init_block(sc, BRB1_BLOCK, COMMON_STAGE);
bxe_init_block(sc, PRS_BLOCK, COMMON_STAGE);
/* Set NIC mode. */
REG_WR(sc, PRS_REG_NIC_MODE, 1);
/* Enable inputs of parser neighbor blocks. */
REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
REG_WR(sc, CFC_REG_DEBUG0, 0x0);
REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
bxe_int_mem_test_exit:
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
return (rc);
}
/*
* Enable attentions from various blocks.
*
* Returns:
* None.
*/
static void
bxe_enable_blocks_attention(struct bxe_softc *sc)
{
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
REG_WR(sc, QM_REG_QM_INT_MASK, 0);
REG_WR(sc, TM_REG_TM_INT_MASK, 0);
REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
REG_WR(sc, PBF_REG_PBF_INT_MASK, 0X18);
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
}
/*
* PXP Arbiter
*/
/*
* This code configures the PCI read/write arbiter
* which implements a weighted round robin
* between the virtual queues in the chip.
*
* The values were derived for each PCI max payload and max request size.
* since max payload and max request size are only known at run time,
* this is done as a separate init stage.
*/
#define NUM_WR_Q 13
#define NUM_RD_Q 29
#define MAX_RD_ORD 3
#define MAX_WR_ORD 2
/* Configuration for one arbiter queue. */
struct arb_line {
int l;
int add;
int ubound;
};
/* Derived configuration for each read queue for each max request size. */
static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
/* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
{ {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
{ {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
{ {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
/* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
/* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
};
/* Derived configuration for each write queue for each max request size. */
static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
/* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
{ {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
{ {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
{ {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
{ {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
{ {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
{ {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
{ {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
/* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
{ {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
};
/* Register addresses for read queues. */
static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
/* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
PXP2_REG_RQ_BW_RD_UBOUND0},
{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
PXP2_REG_PSWRQ_BW_UB1},
{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
PXP2_REG_PSWRQ_BW_UB2},
{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
PXP2_REG_PSWRQ_BW_UB3},
{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
PXP2_REG_RQ_BW_RD_UBOUND4},
{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
PXP2_REG_RQ_BW_RD_UBOUND5},
{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
PXP2_REG_PSWRQ_BW_UB6},
{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
PXP2_REG_PSWRQ_BW_UB7},
{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
PXP2_REG_PSWRQ_BW_UB8},
/* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
PXP2_REG_PSWRQ_BW_UB9},
{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
PXP2_REG_PSWRQ_BW_UB10},
{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
PXP2_REG_PSWRQ_BW_UB11},
{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
PXP2_REG_RQ_BW_RD_UBOUND12},
{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
PXP2_REG_RQ_BW_RD_UBOUND13},
{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
PXP2_REG_RQ_BW_RD_UBOUND14},
{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
PXP2_REG_RQ_BW_RD_UBOUND15},
{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
PXP2_REG_RQ_BW_RD_UBOUND16},
{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
PXP2_REG_RQ_BW_RD_UBOUND17},
{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
PXP2_REG_RQ_BW_RD_UBOUND18},
/* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
PXP2_REG_RQ_BW_RD_UBOUND19},
{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
PXP2_REG_RQ_BW_RD_UBOUND20},
{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
PXP2_REG_RQ_BW_RD_UBOUND22},
{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
PXP2_REG_RQ_BW_RD_UBOUND23},
{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
PXP2_REG_RQ_BW_RD_UBOUND24},
{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
PXP2_REG_RQ_BW_RD_UBOUND25},
{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
PXP2_REG_RQ_BW_RD_UBOUND26},
{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
PXP2_REG_RQ_BW_RD_UBOUND27},
{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
PXP2_REG_PSWRQ_BW_UB28}
};
/* Register addresses for write queues. */
static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
/* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
PXP2_REG_PSWRQ_BW_UB1},
{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
PXP2_REG_PSWRQ_BW_UB2},
{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
PXP2_REG_PSWRQ_BW_UB3},
{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
PXP2_REG_PSWRQ_BW_UB6},
{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
PXP2_REG_PSWRQ_BW_UB7},
{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
PXP2_REG_PSWRQ_BW_UB8},
{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
PXP2_REG_PSWRQ_BW_UB9},
{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
PXP2_REG_PSWRQ_BW_UB10},
{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
PXP2_REG_PSWRQ_BW_UB11},
/* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
PXP2_REG_PSWRQ_BW_UB28},
{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
PXP2_REG_RQ_BW_WR_UBOUND29},
{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
PXP2_REG_RQ_BW_WR_UBOUND30}
};
static void
bxe_init_pxp_arb(struct bxe_softc *sc, int r_order, int w_order)
{
uint32_t val, i;
if (r_order > MAX_RD_ORD) {
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET),
"%s(): Read order of %d order adjusted to %d\n",
__FUNCTION__, r_order, MAX_RD_ORD);
r_order = MAX_RD_ORD;
}
if (w_order > MAX_WR_ORD) {
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET),
"%s(): Write order of %d order adjusted to %d\n",
__FUNCTION__, w_order, MAX_WR_ORD);
w_order = MAX_WR_ORD;
}
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET),
"%s(): Read order %d, write order %d\n",
__FUNCTION__, r_order, w_order);
for (i = 0; i < NUM_RD_Q - 1; i++) {
REG_WR(sc, read_arb_addr[i].l,
read_arb_data[i][r_order].l);
REG_WR(sc, read_arb_addr[i].add,
read_arb_data[i][r_order].add);
REG_WR(sc, read_arb_addr[i].ubound,
read_arb_data[i][r_order].ubound);
}
for (i = 0; i < NUM_WR_Q - 1; i++) {
if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
(write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
REG_WR(sc, write_arb_addr[i].l,
write_arb_data[i][w_order].l);
REG_WR(sc, write_arb_addr[i].add,
write_arb_data[i][w_order].add);
REG_WR(sc, write_arb_addr[i].ubound,
write_arb_data[i][w_order].ubound);
} else {
val = REG_RD(sc, write_arb_addr[i].l);
REG_WR(sc, write_arb_addr[i].l, val |
(write_arb_data[i][w_order].l << 10));
val = REG_RD(sc, write_arb_addr[i].add);
REG_WR(sc, write_arb_addr[i].add, val |
(write_arb_data[i][w_order].add << 10));
val = REG_RD(sc, write_arb_addr[i].ubound);
REG_WR(sc, write_arb_addr[i].ubound, val |
(write_arb_data[i][w_order].ubound << 7));
}
}
val = write_arb_data[NUM_WR_Q - 1][w_order].add;
val += write_arb_data[NUM_WR_Q - 1][w_order].ubound << 10;
val += write_arb_data[NUM_WR_Q - 1][w_order].l << 17;
REG_WR(sc, PXP2_REG_PSWRQ_BW_RD, val);
val = read_arb_data[NUM_RD_Q - 1][r_order].add;
val += read_arb_data[NUM_RD_Q - 1][r_order].ubound << 10;
val += read_arb_data[NUM_RD_Q - 1][r_order].l << 17;
REG_WR(sc, PXP2_REG_PSWRQ_BW_WR, val);
REG_WR(sc, PXP2_REG_RQ_WR_MBS0, w_order);
REG_WR(sc, PXP2_REG_RQ_WR_MBS1, w_order);
REG_WR(sc, PXP2_REG_RQ_RD_MBS0, r_order);
REG_WR(sc, PXP2_REG_RQ_RD_MBS1, r_order);
if (r_order == MAX_RD_ORD)
REG_WR(sc, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
if (CHIP_IS_E1H(sc)) {
/* MPS w_order optimal TH presently TH
* 128 0 0 2
* 256 1 1 3
* >=512 2 2 3
*/
val = ((w_order == 0) ? 2 : 3);
REG_WR(sc, PXP2_REG_WR_HC_MPS, val);
REG_WR(sc, PXP2_REG_WR_USDM_MPS, val);
REG_WR(sc, PXP2_REG_WR_CSDM_MPS, val);
REG_WR(sc, PXP2_REG_WR_TSDM_MPS, val);
REG_WR(sc, PXP2_REG_WR_XSDM_MPS, val);
REG_WR(sc, PXP2_REG_WR_QM_MPS, val);
REG_WR(sc, PXP2_REG_WR_TM_MPS, val);
REG_WR(sc, PXP2_REG_WR_SRC_MPS, val);
REG_WR(sc, PXP2_REG_WR_DBG_MPS, val);
REG_WR(sc, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */
REG_WR(sc, PXP2_REG_WR_CDU_MPS, val);
}
}
static void
bxe_init_pxp(struct bxe_softc *sc)
{
uint16_t devctl;
int r_order, w_order;
devctl = pci_read_config(sc->dev,
sc->pcie_cap + PCI_EXP_DEVCTL, 2);
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET),
"%s(): Read 0x%x from devctl\n", __FUNCTION__, devctl);
w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
if (sc->mrrs == -1)
r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
else {
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET),
"%s(): Force MRRS read order to %d\n",
__FUNCTION__, sc->mrrs);
r_order = sc->mrrs;
}
bxe_init_pxp_arb(sc, r_order, w_order);
}
static void
bxe_setup_fan_failure_detection(struct bxe_softc *sc)
{
uint32_t phy_type, val;
int is_required, port;
is_required = 0;
if (NOMCP(sc))
return;
val = SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
SHARED_HW_CFG_FAN_FAILURE_MASK;
if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
is_required = 1;
/*
* The fan failure mechanism is usually related to the PHY type since
* the power consumption of the board is affected by the PHY. Currently,
* fan is required for most designs with SFX7101, BCM8727 and BCM8481.
*/
else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
for (port = PORT_0; port < PORT_MAX; port++) {
phy_type = SHMEM_RD(sc,
dev_info.port_hw_config[port].external_phy_config) &
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
is_required |=
((phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SFX7101) ||
(phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727) ||
(phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8481));
}
if (is_required == 0)
return;
/* Fan failure is indicated by SPIO 5. */
bxe_set_spio(sc, MISC_REGISTERS_SPIO_5, MISC_REGISTERS_SPIO_INPUT_HI_Z);
/* Set to active low mode. */
val = REG_RD(sc, MISC_REG_SPIO_INT);
val |= ((1 << MISC_REGISTERS_SPIO_5) <<
MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
REG_WR(sc, MISC_REG_SPIO_INT, val);
/* Enable interrupt to signal the IGU. */
val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
val |= (1 << MISC_REGISTERS_SPIO_5);
REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
}
/*
* Common initialization.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_init_common(struct bxe_softc *sc)
{
uint32_t val;
int i, rc;
rc = 0;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
/* Reset all blocks within the chip except the BMAC. */
bxe_reset_common(sc);
DELAY(30000);
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 0xfffc);
DELAY(30000);
bxe_init_block(sc, MISC_BLOCK, COMMON_STAGE);
if (CHIP_IS_E1H(sc))
REG_WR(sc, MISC_REG_E1HMF_MODE, IS_E1HMF(sc));
REG_WR(sc, MISC_REG_LCPLL_CTRL_REG_2, 0x100);
DELAY(30000);
REG_WR(sc, MISC_REG_LCPLL_CTRL_REG_2, 0x0);
bxe_init_block(sc, PXP_BLOCK, COMMON_STAGE);
if (CHIP_IS_E1(sc)) {
/*
* Enable HW interrupt from PXP on USDM overflow
* bit 16 on INT_MASK_0.
*/
REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
}
bxe_init_block(sc, PXP2_BLOCK, COMMON_STAGE);
bxe_init_pxp(sc);
#ifdef __BIG_ENDIAN
REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
/* Make sure this value is 0. */
REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
#endif
REG_WR(sc, PXP2_REG_RQ_CDU_P_SIZE, 2);
/* Let the HW do it's magic ... */
DELAY(100000);
/* Finish the PXP initialization. */
val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
if (val != 1) {
BXE_PRINTF("%s(%d): PXP2 CFG failed!\n", __FILE__, __LINE__);
rc = EBUSY;
goto bxe_init_common_exit;
}
val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
if (val != 1) {
BXE_PRINTF("%s(%d): PXP2 RD_INIT failed!\n", __FILE__,
__LINE__);
rc = EBUSY;
goto bxe_init_common_exit;
}
REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
bxe_init_block(sc, DMAE_BLOCK, COMMON_STAGE);
sc->dmae_ready = 1;
bxe_init_fill(sc, TSEM_REG_PRAM, 0, 8);
bxe_init_block(sc, TCM_BLOCK, COMMON_STAGE);
bxe_init_block(sc, UCM_BLOCK, COMMON_STAGE);
bxe_init_block(sc, CCM_BLOCK, COMMON_STAGE);
bxe_init_block(sc, XCM_BLOCK, COMMON_STAGE);
bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
bxe_init_block(sc, QM_BLOCK, COMMON_STAGE);
/* Soft reset pulse. */
REG_WR(sc, QM_REG_SOFT_RESET, 1);
REG_WR(sc, QM_REG_SOFT_RESET, 0);
bxe_init_block(sc, DQ_BLOCK, COMMON_STAGE);
REG_WR(sc, DORQ_REG_DPM_CID_OFST, BCM_PAGE_SHIFT);
REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
bxe_init_block(sc, BRB1_BLOCK, COMMON_STAGE);
bxe_init_block(sc, PRS_BLOCK, COMMON_STAGE);
REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
if (CHIP_IS_E1H(sc))
REG_WR(sc, PRS_REG_E1HOV_MODE, IS_E1HMF(sc));
bxe_init_block(sc, TSDM_BLOCK, COMMON_STAGE);
bxe_init_block(sc, CSDM_BLOCK, COMMON_STAGE);
bxe_init_block(sc, USDM_BLOCK, COMMON_STAGE);
bxe_init_block(sc, XSDM_BLOCK, COMMON_STAGE);
/* Clear STORM processor memory. */
bxe_init_fill(sc, TSEM_REG_FAST_MEMORY, 0, STORM_INTMEM_SIZE(sc));
bxe_init_fill(sc, USEM_REG_FAST_MEMORY, 0, STORM_INTMEM_SIZE(sc));
bxe_init_fill(sc, CSEM_REG_FAST_MEMORY, 0, STORM_INTMEM_SIZE(sc));
bxe_init_fill(sc, XSEM_REG_FAST_MEMORY, 0, STORM_INTMEM_SIZE(sc));
bxe_init_block(sc, TSEM_BLOCK, COMMON_STAGE);
bxe_init_block(sc, USEM_BLOCK, COMMON_STAGE);
bxe_init_block(sc, CSEM_BLOCK, COMMON_STAGE);
bxe_init_block(sc, XSEM_BLOCK, COMMON_STAGE);
/* Sync semi rtc. */
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x80000000);
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x80000000);
bxe_init_block(sc, UPB_BLOCK, COMMON_STAGE);
bxe_init_block(sc, XPB_BLOCK, COMMON_STAGE);
bxe_init_block(sc, PBF_BLOCK, COMMON_STAGE);
REG_WR(sc, SRC_REG_SOFT_RST, 1);
/* Setup RSS/multi-queue hasking keys. */
for (i = SRC_REG_KEYRSS0_0; i <= SRC_REG_KEYRSS1_9; i += 4)
REG_WR(sc, i, 0xc0cac01a);
bxe_init_block(sc, SRCH_BLOCK, COMMON_STAGE);
REG_WR(sc, SRC_REG_SOFT_RST, 0);
/* Make sure the cdu_context structure has the right size. */
if (sizeof(union cdu_context) != 1024) {
BXE_PRINTF("%s(%d): Invalid size for context (%ld != 1024)!\n",
__FILE__, __LINE__, (long)sizeof(union cdu_context));
rc = EBUSY;
goto bxe_init_common_exit;
}
bxe_init_block(sc, CDU_BLOCK, COMMON_STAGE);
/*
* val = (num_context_in_page << 24) +
* (context_waste_size << 12) +
* context_line_size.
*/
val = (4 << 24) + (0 << 12) + 1024;
REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
bxe_init_block(sc, CFC_BLOCK, COMMON_STAGE);
REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
/* Enable context validation interrupt from CFC. */
REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
/* Set the thresholds to prevent CFC/CDU race. */
REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
bxe_init_block(sc, HC_BLOCK, COMMON_STAGE);
bxe_init_block(sc, MISC_AEU_BLOCK, COMMON_STAGE);
bxe_init_block(sc, PXPCS_BLOCK, COMMON_STAGE);
/* Clear PCIe block debug status bits. */
REG_WR(sc, 0x2814, 0xffffffff);
REG_WR(sc, 0x3820, 0xffffffff);
bxe_init_block(sc, EMAC0_BLOCK, COMMON_STAGE);
bxe_init_block(sc, EMAC1_BLOCK, COMMON_STAGE);
bxe_init_block(sc, DBU_BLOCK, COMMON_STAGE);
bxe_init_block(sc, DBG_BLOCK, COMMON_STAGE);
bxe_init_block(sc, NIG_BLOCK, COMMON_STAGE);
if (CHIP_IS_E1H(sc)) {
REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_E1HMF(sc));
REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_E1HOV(sc));
}
/* Finish CFC initialization. */
val = bxe_reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
if (val != 1) {
BXE_PRINTF("%s(%d): CFC LL_INIT failed!\n",
__FILE__, __LINE__);
rc = EBUSY;
goto bxe_init_common_exit;
}
val = bxe_reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
if (val != 1) {
BXE_PRINTF("%s(%d): CFC AC_INIT failed!\n",
__FILE__, __LINE__);
rc = EBUSY;
goto bxe_init_common_exit;
}
val = bxe_reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
if (val != 1) {
BXE_PRINTF("%s(%d): CFC CAM_INIT failed!\n",
__FILE__, __LINE__);
rc = EBUSY;
goto bxe_init_common_exit;
}
REG_WR(sc, CFC_REG_DEBUG0, 0);
/* Read NIG statistic and check for first load since powerup. */
bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
val = *BXE_SP(sc, wb_data[0]);
/* Do internal memory self test only after a full power cycle. */
if ((CHIP_IS_E1(sc)) && (val == 0) && bxe_int_mem_test(sc)) {
BXE_PRINTF("%s(%d): Internal memory self-test failed!\n",
__FILE__, __LINE__);
rc = EBUSY;
goto bxe_init_common_exit;
}
/* Handle any board specific initialization. */
switch (XGXS_EXT_PHY_TYPE(sc->link_params.ext_phy_config)) {
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8072:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8073:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727:
break;
default:
break;
}
bxe_setup_fan_failure_detection(sc);
/* Clear PXP2 attentions. */
REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
bxe_enable_blocks_attention(sc);
if (!NOMCP(sc)) {
bxe_acquire_phy_lock(sc);
bxe_common_init_phy(sc, sc->common.shmem_base);
bxe_release_phy_lock(sc);
} else
BXE_PRINTF(
"%s(%d): Bootcode is missing - cannot initialize PHY!\n",
__FILE__, __LINE__);
bxe_init_common_exit:
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
return (rc);
}
/*
* Port initialization.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_init_port(struct bxe_softc *sc)
{
uint32_t val, low, high;
uint32_t swap_val, swap_override, aeu_gpio_mask, offset;
uint32_t reg_addr;
int init_stage, port;
port = BP_PORT(sc);
init_stage = port ? PORT1_STAGE : PORT0_STAGE;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET),
"%s(): Initializing port %d.\n", __FUNCTION__, port);
REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
bxe_init_block(sc, PXP_BLOCK, init_stage);
bxe_init_block(sc, PXP2_BLOCK, init_stage);
bxe_init_block(sc, TCM_BLOCK, init_stage);
bxe_init_block(sc, UCM_BLOCK, init_stage);
bxe_init_block(sc, CCM_BLOCK, init_stage);
bxe_init_block(sc, XCM_BLOCK, init_stage);
bxe_init_block(sc, DQ_BLOCK, init_stage);
bxe_init_block(sc, BRB1_BLOCK, init_stage);
/* Determine the pause threshold for the BRB */
if (IS_E1HMF(sc))
low = (sc->bxe_flags & BXE_ONE_PORT_FLAG) ? 160 : 246;
else if (sc->bxe_ifp->if_mtu > 4096) {
if (sc->bxe_flags & BXE_ONE_PORT_FLAG)
low = 160;
else {
val = sc->bxe_ifp->if_mtu;
/* (24*1024 + val*4)/256 */
low = 96 + (val/64) + ((val % 64) ? 1 : 0);
}
} else
low = (sc->bxe_flags & BXE_ONE_PORT_FLAG) ? 80 : 160;
high = low + 56; /* 14 * 1024 / 256 */
REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port * 4, low);
REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port * 4, high);
/* Port PRS comes here. */
bxe_init_block(sc, PRS_BLOCK, init_stage);
bxe_init_block(sc, TSDM_BLOCK, init_stage);
bxe_init_block(sc, CSDM_BLOCK, init_stage);
bxe_init_block(sc, USDM_BLOCK, init_stage);
bxe_init_block(sc, XSDM_BLOCK, init_stage);
bxe_init_block(sc, TSEM_BLOCK, init_stage);
bxe_init_block(sc, USEM_BLOCK, init_stage);
bxe_init_block(sc, CSEM_BLOCK, init_stage);
bxe_init_block(sc, XSEM_BLOCK, init_stage);
bxe_init_block(sc, UPB_BLOCK, init_stage);
bxe_init_block(sc, XPB_BLOCK, init_stage);
bxe_init_block(sc, PBF_BLOCK, init_stage);
/* Configure PBF to work without pause for MTU = 9000. */
REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port * 4, 0);
/* Update threshold. */
REG_WR(sc, PBF_REG_P0_ARB_THRSH + port * 4, (9040/16));
/* Update initial credit. */
REG_WR(sc, PBF_REG_P0_INIT_CRD + port * 4, (9040/16) + 553 - 22);
/* Probe changes. */
REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 1);
DELAY(5000);
REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 0);
bxe_init_block(sc, CDU_BLOCK, init_stage);
bxe_init_block(sc, CFC_BLOCK, init_stage);
if (CHIP_IS_E1(sc)) {
REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
}
bxe_init_block(sc, HC_BLOCK, init_stage);
bxe_init_block(sc, MISC_AEU_BLOCK, init_stage);
/*
* init aeu_mask_attn_func_0/1:
* - SF mode: bits 3-7 are masked. only bits 0-2 are in use
* - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
* bits 4-7 are used for "per vn group attention"
*/
REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4,
(IS_E1HMF(sc) ? 0xF7 : 0x7));
bxe_init_block(sc, PXPCS_BLOCK, init_stage);
bxe_init_block(sc, EMAC0_BLOCK, init_stage);
bxe_init_block(sc, EMAC1_BLOCK, init_stage);
bxe_init_block(sc, DBU_BLOCK, init_stage);
bxe_init_block(sc, DBG_BLOCK, init_stage);
bxe_init_block(sc, NIG_BLOCK, init_stage);
REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port * 4, 1);
if (CHIP_IS_E1H(sc)) {
/* Enable outer VLAN support if required. */
REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port * 4,
(IS_E1HOV(sc) ? 0x1 : 0x2));
}
REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port * 4, 0);
REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port * 4, 0);
REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port * 4, 1);
bxe_init_block(sc, MCP_BLOCK, init_stage);
bxe_init_block(sc, DMAE_BLOCK, init_stage);
switch (XGXS_EXT_PHY_TYPE(sc->link_params.ext_phy_config)) {
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8726:
bxe_set_gpio(sc, MISC_REGISTERS_GPIO_3,
MISC_REGISTERS_GPIO_INPUT_HI_Z, port);
/*
* The GPIO should be swapped if the swap register is
* set and active.
*/
swap_val = REG_RD(sc, NIG_REG_PORT_SWAP);
swap_override = REG_RD(sc, NIG_REG_STRAP_OVERRIDE);
/* Select function upon port-swap configuration. */
if (port == 0) {
offset = MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
aeu_gpio_mask = (swap_val && swap_override) ?
AEU_INPUTS_ATTN_BITS_GPIO3_FUNCTION_1 :
AEU_INPUTS_ATTN_BITS_GPIO3_FUNCTION_0;
} else {
offset = MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0;
aeu_gpio_mask = (swap_val && swap_override) ?
AEU_INPUTS_ATTN_BITS_GPIO3_FUNCTION_0 :
AEU_INPUTS_ATTN_BITS_GPIO3_FUNCTION_1;
}
val = REG_RD(sc, offset);
/* Add GPIO3 to group. */
val |= aeu_gpio_mask;
REG_WR(sc, offset, val);
break;
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SFX7101:
case PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM8727:
/* Add SPIO 5 to group 0. */
reg_addr = port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
val = REG_RD(sc, reg_addr);
val |= AEU_INPUTS_ATTN_BITS_SPIO5;
REG_WR(sc, reg_addr, val);
break;
default:
break;
}
bxe__link_reset(sc);
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
return (0);
}
#define ILT_PER_FUNC (768/2)
#define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
/*
* The phys address is shifted right 12 bits and has an added 1=valid
* bit added to the 53rd bit (bit 52) then since this is a wide
* register(TM) we split it into two 32 bit writes.
*/
#define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
#define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
#define PXP_ONE_ILT(x) (((x) << 10) | x)
#define PXP_ILT_RANGE(f, l) (((l) << 10) | f)
#define CNIC_ILT_LINES 0
/*
* ILT write.
*
* Returns:
* None.
*/
static void
bxe_ilt_wr(struct bxe_softc *sc, uint32_t index, bus_addr_t addr)
{
int reg;
DBENTER(BXE_INSANE_LOAD | BXE_INSANE_RESET);
if (CHIP_IS_E1H(sc))
reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index * 8;
else
reg = PXP2_REG_RQ_ONCHIP_AT + index * 8;
bxe_wb_wr(sc, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
DBEXIT(BXE_INSANE_LOAD | BXE_INSANE_RESET);
}
/*
* Initialize a function.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_init_func(struct bxe_softc *sc)
{
uint32_t addr, val;
int func, i, port;
port = BP_PORT(sc);
func = BP_FUNC(sc);
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
DBPRINT(sc, (BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET),
"%s(): Initializing port %d, function %d.\n", __FUNCTION__, port,
func);
/* Set MSI reconfigure capability. */
addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
val = REG_RD(sc, addr);
val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
REG_WR(sc, addr, val);
i = FUNC_ILT_BASE(func);
bxe_ilt_wr(sc, i, BXE_SP_MAPPING(sc, context));
if (CHIP_IS_E1H(sc)) {
REG_WR(sc, PXP2_REG_RQ_CDU_FIRST_ILT, i);
REG_WR(sc, PXP2_REG_RQ_CDU_LAST_ILT, i + CNIC_ILT_LINES);
} else /* E1 */
REG_WR(sc, PXP2_REG_PSWRQ_CDU0_L2P + func * 4,
PXP_ILT_RANGE(i, i + CNIC_ILT_LINES));
if (CHIP_IS_E1H(sc)) {
bxe_init_block(sc, MISC_BLOCK, FUNC0_STAGE + func);
bxe_init_block(sc, TCM_BLOCK, FUNC0_STAGE + func);
bxe_init_block(sc, UCM_BLOCK, FUNC0_STAGE + func);
bxe_init_block(sc, CCM_BLOCK, FUNC0_STAGE + func);
bxe_init_block(sc, XCM_BLOCK, FUNC0_STAGE + func);
bxe_init_block(sc, TSEM_BLOCK, FUNC0_STAGE + func);
bxe_init_block(sc, USEM_BLOCK, FUNC0_STAGE + func);
bxe_init_block(sc, CSEM_BLOCK, FUNC0_STAGE + func);
bxe_init_block(sc, XSEM_BLOCK, FUNC0_STAGE + func);
REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, sc->e1hov);
}
/* Host Coalescing initialization per function. */
if (CHIP_IS_E1H(sc)) {
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
}
bxe_init_block(sc, HC_BLOCK, FUNC0_STAGE + func);
/* Reset PCIe block debug values. */
REG_WR(sc, 0x2114, 0xffffffff);
REG_WR(sc, 0x2120, 0xffffffff);
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
return (0);
}
/*
*
* Returns:
* 0 = Failure, !0 = Failure.
*/
static int
bxe_init_hw(struct bxe_softc *sc, uint32_t load_code)
{
int func, i, rc;
rc = 0;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
sc->dmae_ready = 0;
switch (load_code) {
case FW_MSG_CODE_DRV_LOAD_COMMON:
rc = bxe_init_common(sc);
if (rc)
goto bxe_init_hw_exit;
/* FALLTHROUGH */
case FW_MSG_CODE_DRV_LOAD_PORT:
sc->dmae_ready = 1;
rc = bxe_init_port(sc);
if (rc)
goto bxe_init_hw_exit;
/* FALLTHROUGH */
case FW_MSG_CODE_DRV_LOAD_FUNCTION:
sc->dmae_ready = 1;
rc = bxe_init_func(sc);
if (rc)
goto bxe_init_hw_exit;
break;
default:
DBPRINT(sc, BXE_WARN,
"%s(): Unknown load_code (0x%08X) from MCP!\n",
__FUNCTION__, load_code);
break;
}
/* Fetch additional config data if the bootcode is running. */
if (!NOMCP(sc)) {
func = BP_FUNC(sc);
/* Fetch the pulse sequence number. */
sc->fw_drv_pulse_wr_seq = (SHMEM_RD(sc,
func_mb[func].drv_pulse_mb) & DRV_PULSE_SEQ_MASK);
}
/* Clear the default status block. */
bxe_zero_def_sb(sc);
for (i = 0; i < sc->num_queues; i++)
bxe_zero_sb(sc, BP_L_ID(sc) + i);
bxe_init_hw_exit:
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
return (rc);
}
/*
* Send a firmware command and wait for the response.
*
* Post a command to shared memory for the bootcode running on the MCP and
* stall until the bootcode responds or a timeout occurs.
*
* Returns:
* 0 = Failure, otherwise firmware response code (FW_MSG_CODE_*).
*/
static int
bxe_fw_command(struct bxe_softc *sc, uint32_t command)
{
uint32_t cnt, rc, seq;
int func;
func = BP_FUNC(sc);
seq = ++sc->fw_seq;
rc = 0;
cnt = 1;
DBRUNMSG(BXE_VERBOSE, bxe_decode_mb_msgs(sc, (command | seq), 0));
BXE_FWMB_LOCK(sc);
/* Write the command to the shared memory mailbox. */
SHMEM_WR(sc, func_mb[func].drv_mb_header, (command | seq));
/* Wait up to 2 seconds for a response. */
do {
/* Wait 10ms for a response. */
DELAY(10000);
/* Pickup the response. */
rc = SHMEM_RD(sc, func_mb[func].fw_mb_header);
} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 400));
DBRUNMSG(BXE_VERBOSE, bxe_decode_mb_msgs(sc, 0, rc));
/* Make sure we read the right response. */
if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK ))
rc &= FW_MSG_CODE_MASK;
else {
BXE_PRINTF("%s(%d): Bootcode failed to respond!\n",
__FILE__, __LINE__);
DBRUN(bxe_dump_fw(sc));
rc = 0;
}
BXE_FWMB_UNLOCK(sc);
return (rc);
}
/*
* Allocate a block of memory and map it for DMA. No partial
* completions allowed, release any resources acquired if we
* can't acquire all resources.
*
* Returns:
* 0 = Success, !0 = Failure
*
* Modifies:
* dma->paddr
* dma->vaddr
* dma->tag
* dma->map
* dma->size
*
*/
static int
bxe_dma_malloc(struct bxe_softc *sc, bus_size_t size,
struct bxe_dma *dma, int mapflags, const char *msg)
{
int rc;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
DBRUNIF(dma->size > 0,
BXE_PRINTF("%s(): Called for %s with size > 0 (%05d)!\n",
__FUNCTION__, msg, (int) dma->size));
rc = bus_dma_tag_create(
sc->parent_tag, /* parent */
BCM_PAGE_SIZE, /* alignment for segs */
BXE_DMA_BOUNDARY, /* cannot cross */
BUS_SPACE_MAXADDR, /* restricted low */
BUS_SPACE_MAXADDR, /* restricted hi */
NULL, NULL, /* filter f(), arg */
size, /* max size for this tag */
1, /* # of discontinuities */
size, /* max seg size */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* lock f(), arg */
&dma->tag);
if (rc != 0) {
BXE_PRINTF("%s(%d): bus_dma_tag_create() "
"failed (rc = %d) for %s!\n",
__FILE__, __LINE__, rc, msg);
goto bxe_dma_malloc_fail_create;
}
rc = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
BUS_DMA_NOWAIT, &dma->map);
if (rc != 0) {
BXE_PRINTF("%s(%d): bus_dmamem_alloc() "
"failed (rc = %d) for %s!\n",
__FILE__, __LINE__, rc, msg);
goto bxe_dma_malloc_fail_alloc;
}
rc = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
bxe_dma_map_addr, &dma->paddr, mapflags | BUS_DMA_NOWAIT);
if (rc != 0) {
BXE_PRINTF("%s(%d): bus_dmamap_load() "
"failed (rc = %d) for %s!\n",
__FILE__, __LINE__, rc, msg);
goto bxe_dma_malloc_fail_load;
}
dma->size = size;
DBPRINT(sc, BXE_VERBOSE, "%s(): size=%06d, vaddr=0x%p, "
"paddr=0x%jX - %s\n", __FUNCTION__, (int) dma->size,
dma->vaddr, (uintmax_t) dma->paddr, msg);
goto bxe_dma_malloc_exit;
bxe_dma_malloc_fail_load:
bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
bxe_dma_malloc_fail_alloc:
bus_dma_tag_destroy(dma->tag);
dma->vaddr = NULL;
bxe_dma_malloc_fail_create:
dma->map = NULL;
dma->tag = NULL;
dma->size = 0;
bxe_dma_malloc_exit:
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
return (rc);
}
/*
* Release a block of DMA memory associated tag/map.
*
* Returns:
* None
*/
static void
bxe_dma_free(struct bxe_softc *sc, struct bxe_dma *dma)
{
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_UNLOAD);
if (dma->size > 0) {
bus_dmamap_sync(dma->tag, dma->map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dma->tag, dma->map);
bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
bus_dma_tag_destroy(dma->tag);
dma->size = 0;
}
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_UNLOAD);
}
/*
* Free any DMA memory owned by the driver.
*
* Scans through each data structre that requires DMA memory and frees
* the memory if allocated.
*
* Returns:
* Nothing.
*/
static void
bxe_host_structures_free(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int i, j, max_agg_queues;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_UNLOAD);
max_agg_queues = CHIP_IS_E1H(sc) ?
ETH_MAX_AGGREGATION_QUEUES_E1H :
ETH_MAX_AGGREGATION_QUEUES_E1;
if (sc->parent_tag == NULL)
goto bxe_host_structures_free_exit;
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
/* Trust no one! */
if (fp == NULL)
break;
/* Status block. */
bxe_dma_free(sc, &fp->sb_dma);
/* TX chain. */
bxe_dma_free(sc, &fp->tx_dma);
fp->tx_chain = NULL;
/* RX chain */
bxe_dma_free(sc, &fp->rx_dma);
fp->rx_chain = NULL;
/* RCQ chain */
bxe_dma_free(sc, &fp->rcq_dma);
fp->rcq_chain = NULL;
/* SG chain */
bxe_dma_free(sc, &fp->sg_dma);
fp->sg_chain = NULL;
/* Unload and destroy the TX mbuf maps. */
if (fp->tx_mbuf_tag != NULL) {
for (j = 0; j < TOTAL_TX_BD; j++) {
if (fp->tx_mbuf_map[j] != NULL) {
bus_dmamap_unload(
fp->tx_mbuf_tag,
fp->tx_mbuf_map[j]);
bus_dmamap_destroy(
fp->tx_mbuf_tag,
fp->tx_mbuf_map[j]);
}
}
bus_dma_tag_destroy(fp->tx_mbuf_tag);
}
/* Unload and destroy the TPA pool mbuf maps. */
if (fp->rx_mbuf_tag != NULL) {
if (fp->tpa_mbuf_spare_map != NULL) {
bus_dmamap_unload(
fp->rx_mbuf_tag,
fp->tpa_mbuf_spare_map);
bus_dmamap_destroy(
fp->rx_mbuf_tag,
fp->tpa_mbuf_spare_map);
}
for (j = 0; j < max_agg_queues; j++) {
if (fp->tpa_mbuf_map[j] != NULL) {
bus_dmamap_unload(
fp->rx_mbuf_tag,
fp->tpa_mbuf_map[j]);
bus_dmamap_destroy(
fp->rx_mbuf_tag,
fp->tpa_mbuf_map[j]);
}
}
}
/* Unload and destroy the SGE Buf maps. */
if (fp->rx_sge_buf_tag != NULL) {
if (fp->rx_sge_spare_map != NULL) {
bus_dmamap_unload(
fp->rx_sge_buf_tag,
fp->rx_sge_spare_map);
bus_dmamap_destroy(
fp->rx_sge_buf_tag,
fp->rx_sge_spare_map);
}
for (j = 0; j < TOTAL_RX_SGE; j++) {
if (fp->rx_sge_buf_map[j] != NULL) {
bus_dmamap_unload(
fp->rx_sge_buf_tag,
fp->rx_sge_buf_map[j]);
bus_dmamap_destroy(
fp->rx_sge_buf_tag,
fp->rx_sge_buf_map[j]);
}
}
bus_dma_tag_destroy(fp->rx_sge_buf_tag);
}
/* Unload and destroy the RX mbuf maps. */
if (fp->rx_mbuf_tag != NULL) {
if (fp->rx_mbuf_spare_map != NULL) {
bus_dmamap_unload(fp->rx_mbuf_tag,
fp->rx_mbuf_spare_map);
bus_dmamap_destroy(fp->rx_mbuf_tag,
fp->rx_mbuf_spare_map);
}
for (j = 0; j < TOTAL_RX_BD; j++) {
if (fp->rx_mbuf_map[j] != NULL) {
bus_dmamap_unload(
fp->rx_mbuf_tag,
fp->rx_mbuf_map[j]);
bus_dmamap_destroy(
fp->rx_mbuf_tag,
fp->rx_mbuf_map[j]);
}
}
bus_dma_tag_destroy(fp->rx_mbuf_tag);
}
}
/* Destroy the default status block */
bxe_dma_free(sc, &sc->def_sb_dma);
sc->def_sb = NULL;
/* Destroy the statistics block */
bxe_dma_free(sc, &sc->stats_dma);
sc->stats = NULL;
/* Destroy the slowpath block. */
bxe_dma_free(sc, &sc->slowpath_dma);
sc->slowpath = NULL;
/* Destroy the slowpath queue. */
bxe_dma_free(sc, &sc->spq_dma);
sc->spq = NULL;
/* Destroy the slowpath queue. */
bxe_dma_free(sc, &sc->gz_dma);
sc->gz = NULL;
free(sc->strm, M_DEVBUF);
sc->strm = NULL;
bxe_host_structures_free_exit:
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_UNLOAD);
}
/*
* Get DMA memory from the OS.
*
* Validates that the OS has provided DMA buffers in response to a
* bus_dmamap_load call and saves the physical address of those buffers.
* When the callback is used the OS will return 0 for the mapping function
* (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
* failures back to the caller.
*
* Returns:
* Nothing.
*/
static void
bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *busaddr;
busaddr = arg;
/* Check for an error and signal the caller that an error occurred. */
if (error) {
printf(
"bxe %s(%d): DMA mapping error (error = %d, nseg = %d)!\n",
__FILE__, __LINE__, error, nseg);
*busaddr = 0;
return;
}
*busaddr = segs->ds_addr;
}
/*
* Allocate any non-paged DMA memory needed by the driver.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_host_structures_alloc(device_t dev)
{
struct bxe_softc *sc;
struct bxe_fastpath *fp;
int rc;
bus_addr_t busaddr;
bus_size_t max_size, max_seg_size;
int i, j, max_segments;
sc = device_get_softc(dev);
DBENTER(BXE_VERBOSE_RESET);
rc = 0;
int max_agg_queues = CHIP_IS_E1H(sc) ?
ETH_MAX_AGGREGATION_QUEUES_E1H :
ETH_MAX_AGGREGATION_QUEUES_E1;
/*
* Allocate the parent bus DMA tag appropriate for PCI.
*/
rc = bus_dma_tag_create(NULL, /* parent tag */
1, /* alignment for segs */
BXE_DMA_BOUNDARY, /* cannot cross */
BUS_SPACE_MAXADDR, /* restricted low */
BUS_SPACE_MAXADDR, /* restricted hi */
NULL, /* filter f() */
NULL, /* filter f() arg */
MAXBSIZE, /* max map for this tag */
BUS_SPACE_UNRESTRICTED, /* # of discontinuities */
BUS_SPACE_MAXSIZE_32BIT, /* max seg size */
0, /* flags */
NULL, /* lock f() */
NULL, /* lock f() arg */
&sc->parent_tag); /* dma tag */
if (rc != 0) {
BXE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
__FILE__, __LINE__);
rc = ENOMEM;
goto bxe_host_structures_alloc_exit;
}
/* Allocate DMA memory for each fastpath structure. */
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
/*
* Allocate status block*
*/
rc = bxe_dma_malloc(sc, BXE_STATUS_BLK_SZ,
&fp->sb_dma, BUS_DMA_NOWAIT, "fp status block");
/* ToDo: Only using 32 bytes out of 4KB allocation! */
if (rc != 0)
goto bxe_host_structures_alloc_exit;
fp->status_block =
(struct host_status_block *) fp->sb_dma.vaddr;
/*
* Allocate TX chain.
*/
rc = bxe_dma_malloc(sc, BXE_TX_CHAIN_PAGE_SZ *
NUM_TX_PAGES, &fp->tx_dma, BUS_DMA_NOWAIT,
"tx chain pages");
if (rc != 0)
goto bxe_host_structures_alloc_exit;
fp->tx_chain = (union eth_tx_bd_types *) fp->tx_dma.vaddr;
/* Link the TX chain pages. */
for (j = 1; j <= NUM_TX_PAGES; j++) {
struct eth_tx_next_bd *tx_n_bd =
&fp->tx_chain[TOTAL_TX_BD_PER_PAGE * j - 1].next_bd;
busaddr = fp->tx_dma.paddr +
BCM_PAGE_SIZE * (j % NUM_TX_PAGES);
tx_n_bd->addr_hi = htole32(U64_HI(busaddr));
tx_n_bd->addr_lo = htole32(U64_LO(busaddr));
}
/*
* Allocate RX chain.
*/
rc = bxe_dma_malloc(sc, BXE_RX_CHAIN_PAGE_SZ *
NUM_RX_PAGES, &fp->rx_dma, BUS_DMA_NOWAIT,
"rx chain pages");
if (rc != 0)
goto bxe_host_structures_alloc_exit;
fp->rx_chain = (struct eth_rx_bd *) fp->rx_dma.vaddr;
/* Link the RX chain pages. */
for (j = 1; j <= NUM_RX_PAGES; j++) {
struct eth_rx_bd *rx_bd =
&fp->rx_chain[TOTAL_RX_BD_PER_PAGE * j - 2];
busaddr = fp->rx_dma.paddr +
BCM_PAGE_SIZE * (j % NUM_RX_PAGES);
rx_bd->addr_hi = htole32(U64_HI(busaddr));
rx_bd->addr_lo = htole32(U64_LO(busaddr));
}
/*
* Allocate CQ chain.
*/
rc = bxe_dma_malloc(sc, BXE_RX_CHAIN_PAGE_SZ *
NUM_RCQ_PAGES, &fp->rcq_dma, BUS_DMA_NOWAIT,
"rcq chain pages");
if (rc != 0)
goto bxe_host_structures_alloc_exit;
fp->rcq_chain = (union eth_rx_cqe *) fp->rcq_dma.vaddr;
/* Link the CQ chain pages. */
for (j = 1; j <= NUM_RCQ_PAGES; j++) {
struct eth_rx_cqe_next_page *nextpg =
(struct eth_rx_cqe_next_page *)
&fp->rcq_chain[TOTAL_RCQ_ENTRIES_PER_PAGE * j - 1];
busaddr = fp->rcq_dma.paddr +
BCM_PAGE_SIZE * (j % NUM_RCQ_PAGES);
nextpg->addr_hi = htole32(U64_HI(busaddr));
nextpg->addr_lo = htole32(U64_LO(busaddr));
}
/*
* Allocate SG chain.
*/
rc = bxe_dma_malloc(sc, BXE_RX_CHAIN_PAGE_SZ *
NUM_RX_SGE_PAGES, &fp->sg_dma, BUS_DMA_NOWAIT,
"sg chain pages");
if (rc != 0)
goto bxe_host_structures_alloc_exit;
fp->sg_chain = (struct eth_rx_sge *) fp->sg_dma.vaddr;
/* Link the SG chain pages. */
for (j = 1; j <= NUM_RX_SGE_PAGES; j++) {
struct eth_rx_sge *nextpg =
&fp->sg_chain[TOTAL_RX_SGE_PER_PAGE * j - 2];
busaddr = fp->sg_dma.paddr +
BCM_PAGE_SIZE * (j % NUM_RX_SGE_PAGES);
nextpg->addr_hi = htole32(U64_HI(busaddr));
nextpg->addr_lo = htole32(U64_LO(busaddr));
}
/*
* Check required size before mapping to conserve resources.
*/
if (sc->tso_enable == TRUE) {
max_size = BXE_TSO_MAX_SIZE;
max_segments = BXE_TSO_MAX_SEGMENTS;
max_seg_size = BXE_TSO_MAX_SEG_SIZE;
} else {
max_size = MCLBYTES * BXE_MAX_SEGMENTS;
max_segments = BXE_MAX_SEGMENTS;
max_seg_size = MCLBYTES;
}
/* Create a DMA tag for TX mbufs. */
if (bus_dma_tag_create(sc->parent_tag,
1, /* alignment for segs */
BXE_DMA_BOUNDARY, /* cannot cross */
BUS_SPACE_MAXADDR, /* restricted low */
BUS_SPACE_MAXADDR, /* restricted hi */
NULL, /* filter f() */
NULL, /* filter f() arg */
max_size, /* max map for this tag */
max_segments, /* # of discontinuities */
max_seg_size, /* max seg size */
0, /* flags */
NULL, /* lock f() */
NULL, /* lock f() arg */
&fp->tx_mbuf_tag)) {
BXE_PRINTF(
"%s(%d): Could not allocate fp[%d] "
"TX mbuf DMA tag!\n",
__FILE__, __LINE__, i);
rc = ENOMEM;
goto bxe_host_structures_alloc_exit;
}
/* Create DMA maps for each the TX mbuf cluster(ext buf). */
for (j = 0; j < TOTAL_TX_BD; j++) {
if (bus_dmamap_create(fp->tx_mbuf_tag,
BUS_DMA_NOWAIT,
&fp->tx_mbuf_map[j])) {
BXE_PRINTF(
"%s(%d): Unable to create fp[%02d]."
"tx_mbuf_map[%d] DMA map!\n",
__FILE__, __LINE__, i, j);
rc = ENOMEM;
goto bxe_host_structures_alloc_exit;
}
}
/*
* Create a DMA tag for RX mbufs.
*/
if (bus_dma_tag_create(sc->parent_tag,
1, /* alignment for segs */
BXE_DMA_BOUNDARY, /* cannot cross */
BUS_SPACE_MAXADDR, /* restricted low */
BUS_SPACE_MAXADDR, /* restricted hi */
NULL, /* filter f() */
NULL, /* filter f() arg */
MJUM9BYTES, /* max map for this tag */
1, /* # of discontinuities */
MJUM9BYTES, /* max seg size */
0, /* flags */
NULL, /* lock f() */
NULL, /* lock f() arg */
&fp->rx_mbuf_tag)) {
BXE_PRINTF(
"%s(%d): Could not allocate fp[%02d] "
"RX mbuf DMA tag!\n",
__FILE__, __LINE__, i);
rc = ENOMEM;
goto bxe_host_structures_alloc_exit;
}
/* Create DMA maps for the RX mbuf clusters. */
if (bus_dmamap_create(fp->rx_mbuf_tag,
BUS_DMA_NOWAIT, &fp->rx_mbuf_spare_map)) {
BXE_PRINTF(
"%s(%d): Unable to create fp[%02d]."
"rx_mbuf_spare_map DMA map!\n",
__FILE__, __LINE__, i);
rc = ENOMEM;
goto bxe_host_structures_alloc_exit;
}
for (j = 0; j < TOTAL_RX_BD; j++) {
if (bus_dmamap_create(fp->rx_mbuf_tag,
BUS_DMA_NOWAIT, &fp->rx_mbuf_map[j])) {
BXE_PRINTF(
"%s(%d): Unable to create fp[%02d]."
"rx_mbuf_map[%d] DMA map!\n",
__FILE__, __LINE__, i, j);
rc = ENOMEM;
goto bxe_host_structures_alloc_exit;
}
}
/*
* Create a DMA tag for RX SGE bufs.
*/
if (bus_dma_tag_create(sc->parent_tag, 1,
BXE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE, 1,
PAGE_SIZE, 0, NULL, NULL, &fp->rx_sge_buf_tag)) {
BXE_PRINTF(
"%s(%d): Could not allocate fp[%02d] "
"RX SGE mbuf DMA tag!\n",
__FILE__, __LINE__, i);
rc = ENOMEM;
goto bxe_host_structures_alloc_exit;
}
/* Create DMA maps for the SGE mbuf clusters. */
if (bus_dmamap_create(fp->rx_sge_buf_tag,
BUS_DMA_NOWAIT, &fp->rx_sge_spare_map)) {
BXE_PRINTF(
"%s(%d): Unable to create fp[%02d]."
"rx_sge_spare_map DMA map!\n",
__FILE__, __LINE__, i);
rc = ENOMEM;
goto bxe_host_structures_alloc_exit;
}
for (j = 0; j < TOTAL_RX_SGE; j++) {
if (bus_dmamap_create(fp->rx_sge_buf_tag,
BUS_DMA_NOWAIT, &fp->rx_sge_buf_map[j])) {
BXE_PRINTF(
"%s(%d): Unable to create fp[%02d]."
"rx_sge_buf_map[%d] DMA map!\n",
__FILE__, __LINE__, i, j);
rc = ENOMEM;
goto bxe_host_structures_alloc_exit;
}
}
/* Create DMA maps for the TPA pool mbufs. */
if (bus_dmamap_create(fp->rx_mbuf_tag,
BUS_DMA_NOWAIT, &fp->tpa_mbuf_spare_map)) {
BXE_PRINTF(
"%s(%d): Unable to create fp[%02d]."
"tpa_mbuf_spare_map DMA map!\n",
__FILE__, __LINE__, i);
rc = ENOMEM;
goto bxe_host_structures_alloc_exit;
}
for (j = 0; j < max_agg_queues; j++) {
if (bus_dmamap_create(fp->rx_mbuf_tag,
BUS_DMA_NOWAIT, &fp->tpa_mbuf_map[j])) {
BXE_PRINTF(
"%s(%d): Unable to create fp[%02d]."
"tpa_mbuf_map[%d] DMA map!\n",
__FILE__, __LINE__, i, j);
rc = ENOMEM;
goto bxe_host_structures_alloc_exit;
}
}
bxe_init_sge_ring_bit_mask(fp);
}
/*
* Allocate default status block.
*/
rc = bxe_dma_malloc(sc, BXE_DEF_STATUS_BLK_SZ, &sc->def_sb_dma,
BUS_DMA_NOWAIT, "default status block");
if (rc != 0)
goto bxe_host_structures_alloc_exit;
sc->def_sb = (struct host_def_status_block *) sc->def_sb_dma.vaddr;
/*
* Allocate statistics block.
*/
rc = bxe_dma_malloc(sc, BXE_STATS_BLK_SZ, &sc->stats_dma,
BUS_DMA_NOWAIT, "statistics block");
if (rc != 0)
goto bxe_host_structures_alloc_exit;
sc->stats = (struct statistics_block *) sc->stats_dma.vaddr;
/*
* Allocate slowpath block.
*/
rc = bxe_dma_malloc(sc, BXE_SLOWPATH_SZ, &sc->slowpath_dma,
BUS_DMA_NOWAIT, "slowpath block");
if (rc != 0)
goto bxe_host_structures_alloc_exit;
sc->slowpath = (struct bxe_slowpath *) sc->slowpath_dma.vaddr;
/*
* Allocate slowpath queue.
*/
rc = bxe_dma_malloc(sc, BXE_SPQ_SZ, &sc->spq_dma,
BUS_DMA_NOWAIT, "slowpath queue");
if (rc != 0)
goto bxe_host_structures_alloc_exit;
sc->spq = (struct eth_spe *) sc->spq_dma.vaddr;
/*
* Allocate firmware decompression buffer.
*/
rc = bxe_dma_malloc(sc, BXE_FW_BUF_SIZE, &sc->gz_dma,
BUS_DMA_NOWAIT, "gunzip buffer");
if (rc != 0)
goto bxe_host_structures_alloc_exit;
sc->gz = sc->gz_dma.vaddr;
if (sc->strm == NULL) {
goto bxe_host_structures_alloc_exit;
}
sc->strm = malloc(sizeof(*sc->strm), M_DEVBUF, M_NOWAIT);
bxe_host_structures_alloc_exit:
DBEXIT(BXE_VERBOSE_RESET);
return (rc);
}
/*
* Program the MAC address for 57710 controllers.
*
* Returns:
* Nothing.
*/
static void
bxe_set_mac_addr_e1(struct bxe_softc *sc, int set)
{
struct mac_configuration_cmd *config;
struct mac_configuration_entry *config_table;
uint8_t *eaddr;
int port;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_UNLOAD);
config = BXE_SP(sc, mac_config);
port = BP_PORT(sc);
/*
* CAM allocation:
* Port 0 Unicast Addresses: 32 Perfect Match Filters (31-0)
* Port 1 Unicast Addresses: 32 Perfect Match Filters (63-32)
* Port 0 Multicast Addresses: 128 Hashes (127-64)
* Port 1 Multicast Addresses: 128 Hashes (191-128)
*/
config->hdr.length = 2;
config->hdr.offset = port ? 32 : 0;
config->hdr.client_id = BP_CL_ID(sc);
config->hdr.reserved1 = 0;
/* Program the primary MAC address. */
config_table = &config->config_table[0];
eaddr = sc->link_params.mac_addr;
config_table->cam_entry.msb_mac_addr = eaddr[0] << 8 | eaddr[1];
config_table->cam_entry.middle_mac_addr = eaddr[2] << 8 | eaddr[3];
config_table->cam_entry.lsb_mac_addr = eaddr[4] << 8 | eaddr[5];
config_table->cam_entry.flags = htole16(port);
if (set)
config_table->target_table_entry.flags = 0;
else
CAM_INVALIDATE(config_table);
config_table->target_table_entry.vlan_id = 0;
DBPRINT(sc, BXE_VERBOSE, "%s(): %s MAC (%04x:%04x:%04x)\n",
__FUNCTION__, (set ? "Setting" : "Clearing"),
config_table->cam_entry.msb_mac_addr,
config_table->cam_entry.middle_mac_addr,
config_table->cam_entry.lsb_mac_addr);
/* Program the broadcast MAC address. */
config_table = &config->config_table[1];
config_table->cam_entry.msb_mac_addr = 0xffff;
config_table->cam_entry.middle_mac_addr = 0xffff;
config_table->cam_entry.lsb_mac_addr = 0xffff;
config_table->cam_entry.flags = htole16(port);
if (set)
config_table->target_table_entry.flags =
TSTORM_CAM_TARGET_TABLE_ENTRY_BROADCAST;
else
CAM_INVALIDATE(config_table);
config_table->target_table_entry.vlan_id = 0;
/* Post the command to slow path queue. */
bxe_sp_post(sc, RAMROD_CMD_ID_ETH_SET_MAC, 0,
U64_HI(BXE_SP_MAPPING(sc, mac_config)),
U64_LO(BXE_SP_MAPPING(sc, mac_config)), 0);
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_UNLOAD);
}
/*
* Program the MAC address for 57711/57711E controllers.
*
* Returns:
* Nothing.
*/
static void
bxe_set_mac_addr_e1h(struct bxe_softc *sc, int set)
{
struct mac_configuration_cmd_e1h *config;
struct mac_configuration_entry_e1h *config_table;
uint8_t *eaddr;
int func, port;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_UNLOAD);
config = (struct mac_configuration_cmd_e1h *)BXE_SP(sc, mac_config);
port = BP_PORT(sc);
func = BP_FUNC(sc);
if (set && (sc->state != BXE_STATE_OPEN)) {
DBPRINT(sc, BXE_VERBOSE,
"%s(): Can't set E1H MAC in state 0x%08X!\n", __FUNCTION__,
sc->state);
goto bxe_set_mac_addr_e1h_exit;
}
/*
* CAM allocation:
* Function 0-7 Unicast Addresses: 8 Perfect Match Filters
* Multicast Addresses: 20 + FUNC * 20, 20 each (???)
*/
config->hdr.length = 1;
config->hdr.offset = func;
config->hdr.client_id = 0xff;
config->hdr.reserved1 = 0;
/* Program the primary MAC address. */
config_table = &config->config_table[0];
eaddr = sc->link_params.mac_addr;
config_table->msb_mac_addr = eaddr[0] << 8 | eaddr[1];
config_table->middle_mac_addr = eaddr[2] << 8 | eaddr[3];
config_table->lsb_mac_addr = eaddr[4] << 8 | eaddr[5];
config_table->clients_bit_vector = htole32(1 << sc->fp->cl_id);
config_table->vlan_id = 0;
config_table->e1hov_id = htole16(sc->e1hov);
if (set)
config_table->flags = port;
else
config_table->flags =
MAC_CONFIGURATION_ENTRY_E1H_ACTION_TYPE;
DBPRINT(sc, BXE_VERBOSE,
"%s(): %s MAC (%04x:%04x:%04x), E1HOV = %d, CLID = %d\n",
__FUNCTION__, (set ? "Setting" : "Clearing"),
config_table->msb_mac_addr, config_table->middle_mac_addr,
config_table->lsb_mac_addr, sc->e1hov, BP_L_ID(sc));
bxe_sp_post(sc, RAMROD_CMD_ID_ETH_SET_MAC, 0,
U64_HI(BXE_SP_MAPPING(sc, mac_config)),
U64_LO(BXE_SP_MAPPING(sc, mac_config)), 0);
bxe_set_mac_addr_e1h_exit:
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_UNLOAD);
}
/*
* Programs the various packet receive modes (broadcast and multicast).
*
* Returns:
* Nothing.
*/
static void
bxe_set_rx_mode(struct bxe_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
struct mac_configuration_cmd *config;
struct mac_configuration_entry *config_table;
uint32_t mc_filter[MC_HASH_SIZE];
uint8_t *maddr;
uint32_t crc, bit, regidx, rx_mode;
int i, old, offset, port;
BXE_CORE_LOCK_ASSERT(sc);
rx_mode = BXE_RX_MODE_NORMAL;
port = BP_PORT(sc);
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
if (sc->state != BXE_STATE_OPEN) {
DBPRINT(sc, BXE_WARN, "%s(): State (0x%08X) is not open!\n",
__FUNCTION__, sc->state);
goto bxe_set_rx_mode_exit;
}
ifp = sc->bxe_ifp;
/*
* Check for promiscuous, all multicast, or selected
* multicast address filtering.
*/
if (ifp->if_flags & IFF_PROMISC) {
/* Enable promiscuous mode. */
rx_mode = BXE_RX_MODE_PROMISC;
} else if (ifp->if_flags & IFF_ALLMULTI ||
ifp->if_amcount > BXE_MAX_MULTICAST) {
/* Enable all multicast addresses. */
rx_mode = BXE_RX_MODE_ALLMULTI;
} else {
/* Enable selective multicast mode. */
if (CHIP_IS_E1(sc)) {
i = 0;
config = BXE_SP(sc, mcast_config);
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
maddr = (uint8_t *)LLADDR(
(struct sockaddr_dl *)ifma->ifma_addr);
config_table = &config->config_table[i];
config_table->cam_entry.msb_mac_addr =
maddr[0] << 8 | maddr[1];
config_table->cam_entry.middle_mac_addr =
maddr[2] << 8 | maddr[3];
config_table->cam_entry.lsb_mac_addr =
maddr[4] << 8 | maddr[5];
config_table->cam_entry.flags = htole16(port);
config_table->target_table_entry.flags = 0;
config_table->target_table_entry.
clients_bit_vector =
htole32(1 << BP_L_ID(sc));
config_table->target_table_entry.vlan_id = 0;
i++;
DBPRINT(sc, BXE_INFO,
"%s(): Setting MCAST[%d] (%04X:%04X:%04X)\n",
__FUNCTION__, i,
config_table->cam_entry.msb_mac_addr,
config_table->cam_entry.middle_mac_addr,
config_table->cam_entry.lsb_mac_addr);
}
IF_ADDR_UNLOCK(ifp);
old = config->hdr.length;
/* Invalidate any extra MC entries in the CAM. */
if (old > i) {
for (; i < old; i++) {
config_table = &config->config_table[i];
if (CAM_IS_INVALID(config_table))
break;
/* Invalidate */
CAM_INVALIDATE(config_table);
}
}
offset = BXE_MAX_MULTICAST * (1 + port);
config->hdr.length = i;
config->hdr.offset = offset;
config->hdr.client_id = sc->fp->cl_id;
config->hdr.reserved1 = 0;
wmb();
bxe_sp_post(sc, RAMROD_CMD_ID_ETH_SET_MAC, 0,
U64_HI(BXE_SP_MAPPING(sc, mcast_config)),
U64_LO(BXE_SP_MAPPING(sc, mcast_config)), 0);
} else { /* E1H */
/* Accept one or more multicasts */
memset(mc_filter, 0, 4 * MC_HASH_SIZE);
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
crc = ether_crc32_le(ifma->ifma_addr->sa_data,
ETHER_ADDR_LEN);
bit = (crc >> 24) & 0xff;
regidx = bit >> 5;
bit &= 0x1f;
mc_filter[regidx] |= (1 << bit);
}
IF_ADDR_UNLOCK(ifp);
for (i = 0; i < MC_HASH_SIZE; i++)
REG_WR(sc, MC_HASH_OFFSET(sc, i), mc_filter[i]);
}
}
DBPRINT(sc, BXE_VERBOSE, "%s(): Enabling new receive mode: 0x%08X\n",
__FUNCTION__, rx_mode);
sc->rx_mode = rx_mode;
bxe_set_storm_rx_mode(sc);
bxe_set_rx_mode_exit:
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET);
}
/*
* Function specific controller reset.
*
* Returns:
* Nothing.
*/
static void
bxe_reset_func(struct bxe_softc *sc)
{
int base, func, i, port;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_UNLOAD);
port = BP_PORT(sc);
func = BP_FUNC(sc);
/* Configure IGU. */
REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
REG_WR(sc, HC_REG_CONFIG_0 + (port * 4), 0x1000);
/* Clear ILT. */
base = FUNC_ILT_BASE(func);
for (i = base; i < base + ILT_PER_FUNC; i++)
bxe_ilt_wr(sc, i, 0);
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_UNLOAD);
}
/*
* Port specific controller reset.
*
* Returns:
* Nothing.
*/
static void
bxe_reset_port(struct bxe_softc *sc)
{
uint32_t val;
int port;
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_UNLOAD);
port = BP_PORT(sc);
REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
/* Do not receive packets to BRB. */
REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port * 4, 0x0);
/* Do not direct receive packets that are not for MCP to the BRB. */
REG_WR(sc, port ? NIG_REG_LLH1_BRB1_NOT_MCP :
NIG_REG_LLH0_BRB1_NOT_MCP, 0x0);
/* Configure AEU. */
REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, 0);
DELAY(100000);
/* Check for BRB port occupancy. */
val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port * 4);
if (val)
DBPRINT(sc, BXE_VERBOSE,
"%s(): BRB1 is not empty (%d blocks are occupied)!\n",
__FUNCTION__, val);
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_UNLOAD);
}
/*
* Common controller reset.
*
* Returns:
* Nothing.
*/
static void
bxe_reset_common(struct bxe_softc *sc)
{
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_UNLOAD);
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
0xd3ffff7f);
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
0x1403);
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_UNLOAD);
}
/*
* Reset the controller.
*
* Returns:
* Nothing.
*/
static void
bxe_reset_chip(struct bxe_softc *sc, uint32_t reset_code)
{
DBENTER(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_UNLOAD);
switch (reset_code) {
case FW_MSG_CODE_DRV_UNLOAD_COMMON:
bxe_reset_port(sc);
bxe_reset_func(sc);
bxe_reset_common(sc);
break;
case FW_MSG_CODE_DRV_UNLOAD_PORT:
bxe_reset_port(sc);
bxe_reset_func(sc);
break;
case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
bxe_reset_func(sc);
break;
default:
BXE_PRINTF("%s(%d): Unknown reset code (0x%08X) from MCP!\n",
__FILE__, __LINE__, reset_code);
break;
}
DBEXIT(BXE_VERBOSE_LOAD | BXE_VERBOSE_RESET | BXE_VERBOSE_UNLOAD);
}
/*
* Called by the OS to set media options (link, speed, etc.)
* when the user specifies "ifconfig bxe media XXX" or
* "ifconfig bxe mediaopt XXX".
*
* Returns:
* 0 = Success, !0 = Failure
*/
static int
bxe_ifmedia_upd(struct ifnet *ifp)
{
struct bxe_softc *sc;
struct ifmedia *ifm;
int rc;
sc = ifp->if_softc;
DBENTER(BXE_VERBOSE_PHY);
ifm = &sc->bxe_ifmedia;
rc = 0;
/* We only support Ethernet media type. */
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
rc = EINVAL;
goto bxe_ifmedia_upd_exit;
}
switch (IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
/* ToDo: What to do here? */
/* Doing nothing translates to success here. */
break;
case IFM_10G_CX4:
/* Fall-through */
case IFM_10G_SR:
/* Fall-through */
case IFM_10G_T:
/* Fall-through */
case IFM_10G_TWINAX:
/* Fall-through */
default:
/* We don't support channging the media type. */
DBPRINT(sc, BXE_WARN, "%s(): Invalid media type!\n",
__FUNCTION__);
rc = EINVAL;
}
bxe_ifmedia_upd_exit:
DBENTER(BXE_VERBOSE_PHY);
return (rc);
}
/*
* Called by the OS to report current media status
* (link, speed, etc.).
*
* Returns:
* Nothing.
*/
static void
bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct bxe_softc *sc;
sc = ifp->if_softc;
DBENTER(BXE_EXTREME_LOAD | BXE_EXTREME_RESET);
/* Report link down if the driver isn't running. */
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
ifmr->ifm_active |= IFM_NONE;
goto bxe_ifmedia_status_exit;
}
/* Setup the default interface info. */
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (sc->link_vars.link_up)
ifmr->ifm_status |= IFM_ACTIVE;
else {
ifmr->ifm_active |= IFM_NONE;
goto bxe_ifmedia_status_exit;
}
ifmr->ifm_active |= sc->media;
if (sc->link_vars.duplex == MEDIUM_FULL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
bxe_ifmedia_status_exit:
DBEXIT(BXE_EXTREME_LOAD | BXE_EXTREME_RESET);
}
/*
* Update last maximum scatter gather entry.
*
* Returns:
* None.
*/
static __inline void
bxe_update_last_max_sge(struct bxe_fastpath *fp, uint16_t index)
{
uint16_t last_max;
last_max = fp->last_max_sge;
if (SUB_S16(index, last_max) > 0)
fp->last_max_sge = index;
}
/*
* Clear scatter gather mask next elements.
*
* Returns:
* None
*/
static void
bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
{
int i, index, j;
for (i = 0; i < NUM_RX_SGE_PAGES; i++) {
index = i * TOTAL_RX_SGE_PER_PAGE + USABLE_RX_SGE_PER_PAGE;
for (j = 0; j < 2; j++) {
SGE_MASK_CLEAR_BIT(fp, index);
index++;
}
}
}
/*
* Update SGE producer.
*
* Returns:
* None.
*/
static void
bxe_update_sge_prod(struct bxe_fastpath *fp,
struct eth_fast_path_rx_cqe *fp_cqe)
{
struct bxe_softc *sc;
uint16_t delta, first_elem, last_max, last_elem, sge_len;
int i;
sc = fp->sc;
DBENTER(BXE_EXTREME_RECV);
delta = 0;
sge_len = SGE_PAGE_ALIGN(le16toh(fp_cqe->pkt_len) -
le16toh(fp_cqe->len_on_bd)) >> SGE_PAGE_SHIFT;
if (!sge_len)
goto bxe_update_sge_prod_exit;
/* First mark all used pages. */
for (i = 0; i < sge_len; i++)
SGE_MASK_CLEAR_BIT(fp, RX_SGE(le16toh(fp_cqe->sgl[i])));
/* Assume that the last SGE index is the biggest. */
bxe_update_last_max_sge(fp, le16toh(fp_cqe->sgl[sge_len - 1]));
last_max = RX_SGE(fp->last_max_sge);
last_elem = last_max >> RX_SGE_MASK_ELEM_SHIFT;
first_elem = RX_SGE(fp->rx_sge_prod) >> RX_SGE_MASK_ELEM_SHIFT;
/* If ring is not full. */
if (last_elem + 1 != first_elem)
last_elem++;
/* Now update the producer index. */
for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
if (fp->rx_sge_mask[i])
break;
fp->rx_sge_mask[i] = RX_SGE_MASK_ELEM_ONE_MASK;
delta += RX_SGE_MASK_ELEM_SZ;
}
if (delta > 0) {
fp->rx_sge_prod += delta;
/* clear page-end entries */
bxe_clear_sge_mask_next_elems(fp);
}
bxe_update_sge_prod_exit:
DBEXIT(BXE_EXTREME_RECV);
}
/*
* Initialize scatter gather ring bitmask.
*
* Each entry in the SGE is associated with an aggregation in process.
* Since there is no guarantee that all Ethernet frames associated with
* a partciular TCP flow will arrive at the adapter and be placed into
* the SGE chain contiguously, we maintain a bitmask for each SGE element
* that identifies which aggregation an Ethernet frame belongs to.
*
* Returns:
* None
*/
static __inline void
bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
{
/* Set the mask to all 1s, it's faster to compare to 0 than to 0xf. */
memset(fp->rx_sge_mask, 0xff,
(TOTAL_RX_SGE >> RX_SGE_MASK_ELEM_SHIFT) * sizeof(uint64_t));
/*
* The SGE chain is formatted just like the RX chain.
* The last two elements are reserved as a "next page pointer"
* to the next page of SGE elements. Clear the last two
* elements in each SGE chain page since they will never be
* used to track an aggregation.
*/
bxe_clear_sge_mask_next_elems(fp);
}
/*
* The current mbuf is part of an aggregation. Swap the mbuf into the TPA
* aggregation queue, swap an empty mbuf back onto the receive chain, and
* mark the current aggregation queue as in-progress.
*
* Returns:
* None.
*/
static void
bxe_tpa_start(struct bxe_fastpath *fp, uint16_t queue, uint16_t cons,
uint16_t prod)
{
struct bxe_softc *sc;
struct mbuf *m_temp;
struct eth_rx_bd *rx_bd;
bus_dmamap_t map_temp;
int max_agg_queues;
sc = fp->sc;
DBENTER(BXE_INSANE_RECV | BXE_INSANE_TPA);
DBPRINT(sc, BXE_EXTREME_TPA,
"%s(): fp[%02d].tpa[%02d], cons=0x%04X, prod=0x%04X\n",
__FUNCTION__, fp->index, queue, cons, prod);
max_agg_queues = CHIP_IS_E1(sc) ? ETH_MAX_AGGREGATION_QUEUES_E1 :
ETH_MAX_AGGREGATION_QUEUES_E1H;
DBRUNIF((queue > max_agg_queues),
BXE_PRINTF("%s(): fp[%02d] illegal aggregation (%d > %d)!\n",
__FUNCTION__, fp->index, queue, max_agg_queues));
DBRUNIF((fp->tpa_state[queue] != BXE_TPA_STATE_STOP),
BXE_PRINTF("%s(): Starting aggregation on "
"fp[%02d].tpa[%02d] even though queue is not in the "
"TPA_STOP state!\n", __FUNCTION__, fp->index, queue));
/* Remove the existing mbuf and mapping from the TPA pool. */
m_temp = fp->tpa_mbuf_ptr[queue];
map_temp = fp->tpa_mbuf_map[queue];
/* Only the paranoid survive! */
if(m_temp == NULL) {
BXE_PRINTF("%s(%d): fp[%02d].tpa[%02d] not allocated!\n",
__FILE__, __LINE__, fp->index, queue);
/* ToDo: Additional error handling! */
goto bxe_tpa_start_exit;
}
/* Move received mbuf and mapping to TPA pool. */
fp->tpa_mbuf_ptr[queue] = fp->rx_mbuf_ptr[cons];
fp->tpa_mbuf_map[queue] = fp->rx_mbuf_map[cons];
/* Place the TPA bin into the START state. */
fp->tpa_state[queue] = BXE_TPA_STATE_START;
DBRUN(fp->tpa_queue_used |= (1 << queue));
/* Get the rx_bd for the next open entry on the receive chain. */
rx_bd = &fp->rx_chain[prod];
/* Update the rx_bd with the empty mbuf from the TPA pool. */
rx_bd->addr_hi = htole32(U64_HI(fp->tpa_mbuf_segs[queue].ds_addr));
rx_bd->addr_lo = htole32(U64_LO(fp->tpa_mbuf_segs[queue].ds_addr));
fp->rx_mbuf_ptr[prod] = m_temp;
fp->rx_mbuf_map[prod] = map_temp;
bxe_tpa_start_exit:
DBEXIT(BXE_INSANE_RECV | BXE_INSANE_TPA);
}
/*
* When a TPA aggregation is completed, loop through the individual mbufs
* of the aggregation, combining them into a single mbuf which will be sent
* up the stack. Refill all freed SGEs with mbufs as we go along.
*
* Returns:
* 0 = Success, !0 = Failure.
*/
static int
bxe_fill_frag_mbuf(struct bxe_softc *sc, struct bxe_fastpath *fp,
struct mbuf *m, struct eth_fast_path_rx_cqe *fp_cqe, uint16_t cqe_idx)
{
struct mbuf *m_frag;
uint32_t frag_len, frag_size, pages, i;
uint16_t sge_idx, len_on_bd;
int j, rc;
DBENTER(BXE_EXTREME_RECV | BXE_EXTREME_TPA);
rc = 0;
len_on_bd = le16toh(fp_cqe->len_on_bd);
frag_size = le16toh(fp_cqe->pkt_len) - len_on_bd;
pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
DBPRINT(sc, BXE_VERBOSE_TPA,
"%s(): len_on_bd=%d, frag_size=%d, pages=%d\n",
__FUNCTION__, len_on_bd, frag_size, pages);
/* Make sure the aggregated frame is not too big to handle. */
if (pages > 8 * PAGES_PER_SGE) {
DBPRINT(sc, BXE_FATAL,
"%s(): fp[%02d].rx_sge[0x%04X] has too many pages (%d)!\n",
__FUNCTION__, fp->index, cqe_idx, pages);
DBPRINT(sc, BXE_FATAL,
"%s(): fp_cqe->pkt_len = %d fp_cqe->len_on_bd = %d\n",
__FUNCTION__, le16toh(fp_cqe->pkt_len), len_on_bd);
bxe_panic_dump(sc);
rc = EINVAL;
goto bxe_fill_frag_mbuf_exit;
}
/*
* Scan through the scatter gather list, pulling individual
* mbufs into a single mbuf for the host stack.
*/
for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
sge_idx = RX_SGE(le16toh(fp_cqe->sgl[j]));
/*
* Firmware gives the indices of the SGE as if the ring is an
* array (meaning that the "next" element will consume 2
* indices).
*/
frag_len = min(frag_size, (uint32_t)(BCM_PAGE_SIZE *
PAGES_PER_SGE));
DBPRINT(sc, BXE_VERBOSE_TPA,
"%s(): i=%d, j=%d, frag_size=%d, frag_len=%d\n",
__FUNCTION__, i, j, frag_size, frag_len);
m_frag = fp->rx_sge_buf_ptr[sge_idx];
/* Allocate a new mbuf for the SGE. */
rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
if (rc) {
/*
* Leave all remaining SGEs in the ring.
*/
goto bxe_fill_frag_mbuf_exit;
}
/* Update the fragment its length. */
m_frag->m_len = frag_len;
/* Concatenate the fragment to the head mbuf. */
m_cat(m, m_frag);
DBRUN(fp->sge_mbuf_alloc--);
/* Update TPA mbuf size and remaining fragment size. */
m->m_pkthdr.len += frag_len;
frag_size -= frag_len;
}
bxe_fill_frag_mbuf_exit:
DBPRINT(sc, BXE_VERBOSE_TPA,
"%s(): frag_size=%d\n", __FUNCTION__, frag_size);
DBEXIT(BXE_EXTREME_RECV | BXE_EXTREME_TPA);
return (rc);
}
/*
* The aggregation on the current TPA queue has completed. Pull the
* individual mbuf fragments together into a single mbuf, perform all
* necessary checksum calculations, and send the resuting mbuf to the stack.
*
* Returns:
* None.
*/
static void
bxe_tpa_stop(struct bxe_softc *sc, struct bxe_fastpath *fp, uint16_t queue,
int pad, int len, union eth_rx_cqe *cqe, uint16_t cqe_idx)
{
struct mbuf *m;
struct ifnet *ifp;
int rc;
DBENTER(BXE_INSANE_RECV | BXE_INSANE_TPA);
DBPRINT(sc, (BXE_EXTREME_RECV | BXE_EXTREME_TPA),
"%s(): fp[%02d].tpa[%02d], len=%d, pad=%d\n",
__FUNCTION__, fp->index, queue, len, pad);
rc = 0;
ifp = sc->bxe_ifp;
m = fp->tpa_mbuf_ptr[queue];
/* Allocate a replacement before modifying existing mbuf. */
rc = bxe_alloc_tpa_mbuf(fp, queue);
if (rc) {
/* Drop the frame and log a soft error. */
fp->rx_soft_errors++;
goto bxe_tpa_stop_exit;
}
/* We have a replacement, fixup the current mbuf. */
m_adj(m, pad);
m->m_pkthdr.len = m->m_len = len;
/* Mark the checksums valid (taken care of by firmware). */
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID |
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
/* Aggregate all of the SGEs into a single mbuf. */
rc = bxe_fill_frag_mbuf(sc, fp, m, &cqe->fast_path_cqe, cqe_idx);
if (rc) {
/* Drop the packet and log an error. */
fp->rx_soft_errors++;
m_freem(m);
} else {
/* Find VLAN tag and send frame up to the stack. */
if ((le16toh(cqe->fast_path_cqe.pars_flags.flags) &
PARSING_FLAGS_VLAN)) {
m->m_pkthdr.ether_vtag =
cqe->fast_path_cqe.vlan_tag;
m->m_flags |= M_VLANTAG;
}
/* Assign packet to the appropriate interface. */
m->m_pkthdr.rcvif = ifp;
/* Update packet statistics. */
fp->rx_tpa_pkts++;
ifp->if_ipackets++;
/* ToDo: Any potential locking issues here? */
/* Pass the frame to the stack. */
(*ifp->if_input)(ifp, m);
}
/* We passed mbuf up the stack or dropped the frame. */
DBRUN(fp->tpa_mbuf_alloc--);
bxe_tpa_stop_exit:
fp->tpa_state[queue] = BXE_TPA_STATE_STOP;
DBRUN(fp->tpa_queue_used &= ~(1 << queue));
DBEXIT(BXE_INSANE_RECV | BXE_INSANE_TPA);
}
/*
* Notify the controller that the RX producer indices have been updated for
* a fastpath connection by writing them to the controller.
*
* Returns:
* None
*/
static __inline void
bxe_update_rx_prod(struct bxe_softc *sc, struct bxe_fastpath *fp,
uint16_t bd_prod, uint16_t cqe_prod, uint16_t sge_prod)
{
volatile struct ustorm_eth_rx_producers rx_prods = {0};
int i;
/* Update producers. */
rx_prods.bd_prod = bd_prod;
rx_prods.cqe_prod = cqe_prod;
rx_prods.sge_prod = sge_prod;
wmb();
for (i = 0; i < sizeof(struct ustorm_eth_rx_producers) / 4; i++){
REG_WR(sc, BAR_USTORM_INTMEM +
USTORM_RX_PRODS_OFFSET(BP_PORT(sc), fp->cl_id) + i * 4,
((volatile uint32_t *) &rx_prods)[i]);
}
DBPRINT(sc, BXE_EXTREME_RECV, "%s(%d): Wrote fp[%02d] bd_prod = 0x%04X, "
"cqe_prod = 0x%04X, sge_prod = 0x%04X\n", __FUNCTION__, curcpu,
fp->index, bd_prod, cqe_prod, sge_prod);
}
/*
* Processes received frames.
*
* Returns:
* Nothing.
*/
static void
bxe_rxeof(struct bxe_fastpath *fp)
{
struct bxe_softc *sc;
struct ifnet *ifp;
uint16_t rx_bd_cons, rx_bd_cons_idx;
uint16_t rx_bd_prod, rx_bd_prod_idx;
uint16_t rx_cq_cons, rx_cq_cons_idx;
uint16_t rx_cq_prod, rx_cq_cons_sb;
unsigned long rx_pkts = 0;
int rc;
sc = fp->sc;
ifp = sc->bxe_ifp;
DBENTER(BXE_EXTREME_RECV);
/* Get the status block's view of the RX completion consumer index. */
rx_cq_cons_sb = bxe_rx_cq_cons(fp);
/*
* Get working copies of the driver's view of the
* RX indices. These are 16 bit values that are
* expected to increment from 0 to 65535 and then
* wrap-around to 0 again.
*/
rx_bd_cons = fp->rx_bd_cons;
rx_bd_prod = fp->rx_bd_prod;
rx_cq_cons = fp->rx_cq_cons;
rx_cq_prod = fp->rx_cq_prod;
DBPRINT(sc, (BXE_EXTREME_RECV),
"%s(%d): BEFORE: fp[%02d], rx_bd_cons = 0x%04X, rx_bd_prod = 0x%04X, "
"rx_cq_cons_sw = 0x%04X, rx_cq_prod_sw = 0x%04X\n", __FUNCTION__,
curcpu, fp->index, rx_bd_cons, rx_bd_prod, rx_cq_cons, rx_cq_prod);
/*
* Memory barrier to prevent speculative reads of the RX buffer
* from getting ahead of the index in the status block.
*/
rmb();
/*
* Scan through the receive chain as long
* as there is work to do.
*/
while (rx_cq_cons != rx_cq_cons_sb) {
struct mbuf *m;
union eth_rx_cqe *cqe;
uint8_t cqe_fp_flags;
uint16_t len, pad;
/*
* Convert the 16 bit indices used by hardware
* into array indices used by the driver.
*/
rx_cq_cons_idx = RCQ_ENTRY(rx_cq_cons);
rx_bd_prod_idx = RX_BD(rx_bd_prod);
rx_bd_cons_idx = RX_BD(rx_bd_cons);
wmb();
/* Fetch the completion queue entry (i.e. cookie). */
cqe = (union eth_rx_cqe *)
&fp->rcq_chain[rx_cq_cons_idx];
cqe_fp_flags = cqe->fast_path_cqe.type_error_flags;
/* Sanity check the cookie flags. */
if (__predict_false(cqe_fp_flags == 0)) {
fp->rx_null_cqe_flags++;
DBRUN(bxe_dump_cqe(fp, rx_cq_cons_idx, cqe));
/* ToDo: What error handling can be done here? */
}
/* Check the CQE type for slowpath or fastpath completion. */
if (__predict_false(CQE_TYPE(cqe_fp_flags) ==
RX_ETH_CQE_TYPE_ETH_RAMROD)) {
/* This is a slowpath completion. */
bxe_sp_event(fp, cqe);
goto bxe_rxeof_next_cqe;
} else {
/* This is a fastpath completion. */
/* Get the length and pad information from the CQE. */
len = le16toh(cqe->fast_path_cqe.pkt_len);
pad = cqe->fast_path_cqe.placement_offset;
/* Check if the completion is for TPA. */
if ((fp->disable_tpa == FALSE) &&
(TPA_TYPE(cqe_fp_flags) !=
(TPA_TYPE_START | TPA_TYPE_END))) {
uint16_t queue = cqe->fast_path_cqe.queue_index;
/*
* No need to worry about error flags in
* the frame as the firmware has already
* managed that for us when aggregating
* the frames.
*/
/* Check if TPA aggregation has started. */
if (TPA_TYPE(cqe_fp_flags) == TPA_TYPE_START) {
bxe_tpa_start(fp, queue, rx_bd_cons_idx,
rx_bd_prod_idx);
goto bxe_rxeof_next_rx;
}
/* Check if TPA aggregation has completed. */
if (TPA_TYPE(cqe_fp_flags) == TPA_TYPE_END) {
DBRUNIF(!BXE_RX_SUM_FIX(cqe),
DBPRINT(sc, BXE_FATAL,
"%s(): STOP on non-TCP data.\n",
__FUNCTION__));
/*
* This is the size of the linear
* data on this mbuf.
*/
len = le16toh(cqe->fast_path_cqe.len_on_bd);
/*
* Stop the aggregation and pass
* the frame up.
*/
bxe_tpa_stop(sc, fp, queue, pad, len,
cqe, rx_cq_cons_idx);
bxe_update_sge_prod(fp,
&cqe->fast_path_cqe);
goto bxe_rxeof_next_cqe;
}
}
m = fp->rx_mbuf_ptr[rx_bd_cons_idx];
/* Allocate a replacement before modifying existing mbuf. */
rc = bxe_alloc_rx_bd_mbuf(fp, rx_bd_prod_idx);
if (rc) {
/* Drop the frame and log a soft error. */
fp->rx_soft_errors++;
goto bxe_rxeof_next_rx;
}
/* Check if the received frame has any errors. */
if (__predict_false(cqe_fp_flags &
ETH_RX_ERROR_FLAGS)) {
DBPRINT(sc, BXE_WARN ,
"%s(): fp[%02d].cqe[0x%04X] has errors "
"(0x%08X)!\n", __FUNCTION__, fp->index,
rx_cq_cons, cqe_fp_flags);
fp->rx_soft_errors++;
goto bxe_rxeof_next_rx;
}
/* We have a replacement, fixup the current mbuf. */
m_adj(m, pad);
m->m_pkthdr.len = m->m_len = len;
/* Assign packet to the appropriate interface. */
m->m_pkthdr.rcvif = ifp;
/* Assume no hardware checksum complated. */
m->m_pkthdr.csum_flags = 0;
/* Validate checksum if offload enabled. */
if (ifp->if_capenable & IFCAP_RXCSUM) {
/* Check whether IP checksummed or not. */
if (sc->rx_csum &&
!(cqe->fast_path_cqe.status_flags &
ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
m->m_pkthdr.csum_flags |=
CSUM_IP_CHECKED;
if (__predict_false(cqe_fp_flags &
ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
DBPRINT(sc, BXE_WARN_SEND,
"%s(): Invalid IP checksum!\n",
__FUNCTION__);
} else
m->m_pkthdr.csum_flags |=
CSUM_IP_VALID;
}
/* Check for a valid TCP/UDP frame. */
if (sc->rx_csum &&
!(cqe->fast_path_cqe.status_flags &
ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
/* Check for a good TCP/UDP checksum. */
if (__predict_false(cqe_fp_flags &
ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
DBPRINT(sc, BXE_VERBOSE_RECV,
"%s(): Invalid TCP/UDP checksum!\n",
__FUNCTION__);
} else {
m->m_pkthdr.csum_data = 0xFFFF;
m->m_pkthdr.csum_flags |=
(CSUM_DATA_VALID |
CSUM_PSEUDO_HDR);
}
}
}
/*
* If we received a packet with a vlan tag,
* attach that information to the packet.
*/
if (cqe->fast_path_cqe.pars_flags.flags &
PARSING_FLAGS_VLAN) {
m->m_pkthdr.ether_vtag =
cqe->fast_path_cqe.vlan_tag;
m->m_flags |= M_VLANTAG;
}
#if __FreeBSD_version >= 800000
/* Tell OS what RSS queue was used for this flow. */
m->m_pkthdr.flowid = fp->index;
m->m_flags |= M_FLOWID;
#endif
/* Last chance to check for problems. */
DBRUN(bxe_validate_rx_packet(fp, rx_cq_cons, cqe, m));
/* Update packet statistics. */
ifp->if_ipackets++;
rx_pkts++;
/* ToDo: Any potential locking issues here? */
/* Pass the frame to the stack. */
(*ifp->if_input)(ifp, m);
DBRUN(fp->rx_mbuf_alloc--);
}
bxe_rxeof_next_rx:
rx_bd_prod = NEXT_RX_BD(rx_bd_prod);
rx_bd_cons = NEXT_RX_BD(rx_bd_cons);
bxe_rxeof_next_cqe:
rx_cq_prod = NEXT_RCQ_IDX(rx_cq_prod);
rx_cq_cons = NEXT_RCQ_IDX(rx_cq_cons);
/*
* Memory barrier to prevent speculative reads of the RX buffer
* from getting ahead of the index in the status block.
*/
rmb();
}
/* Update driver copy of the fastpath indices. */
fp->rx_bd_cons = rx_bd_cons;
fp->rx_bd_prod = rx_bd_prod;
fp->rx_cq_cons = rx_cq_cons;
fp->rx_cq_prod = rx_cq_prod;
DBPRINT(sc, (BXE_EXTREME_RECV),
"%s(%d): AFTER: fp[%02d], rx_bd_cons = 0x%04X, rx_bd_prod = 0x%04X, "
"rx_cq_cons_sw = 0x%04X, rx_cq_prod_sw = 0x%04X\n", __FUNCTION__,
curcpu, fp->index, rx_bd_cons, rx_bd_prod, rx_cq_cons, rx_cq_prod);
/* Update producers */
bxe_update_rx_prod(sc, fp, fp->rx_bd_prod,
fp->rx_cq_prod, fp->rx_sge_prod);
bus_space_barrier(sc->bxe_btag, sc->bxe_bhandle, 0, 0,
BUS_SPACE_BARRIER_READ);
fp->rx_pkts += rx_pkts;
DBEXIT(BXE_EXTREME_RECV);
}
/*
* Processes transmit completions.
*
* Returns:
* Nothing.
*/
static void
bxe_txeof(struct bxe_fastpath *fp)
{
struct bxe_softc *sc;
struct ifnet *ifp;
struct eth_tx_start_bd *txbd;
uint16_t hw_pkt_cons, sw_pkt_cons, sw_tx_bd_cons;
uint16_t bd_index, pkt_index, nbds;
int i;
sc = fp->sc;
ifp = sc->bxe_ifp;
DBENTER(BXE_EXTREME_SEND);
/* Get the hardware's view of the TX packet consumer index. */
hw_pkt_cons = le16toh(*fp->tx_pkt_cons_sb);
sw_pkt_cons = fp->tx_pkt_cons;
sw_tx_bd_cons = fp->tx_bd_cons;
/* Cycle through any completed TX chain page entries. */
while (sw_pkt_cons != hw_pkt_cons) {
bd_index = TX_BD(sw_tx_bd_cons);
pkt_index = TX_BD(sw_pkt_cons);
txbd = &fp->tx_chain[bd_index].start_bd;
nbds = txbd->nbd;
/* Free the completed frame's mbuf. */
if (__predict_true(fp->tx_mbuf_ptr[pkt_index] != NULL)) {
/* Unmap the mbuf from non-paged memory. */
bus_dmamap_unload(fp->tx_mbuf_tag,
fp->tx_mbuf_map[pkt_index]);
/* Return the mbuf to the system. */
m_freem(fp->tx_mbuf_ptr[pkt_index]);
fp->tx_mbuf_alloc--;
fp->tx_mbuf_ptr[pkt_index] = NULL;
fp->opackets++;
} else {
fp->tx_chain_lost_mbuf++;
}
/* Updated packet consumer value. */
sw_pkt_cons++;
/* Skip over the remaining used buffer descriptors. */
fp->tx_bd_used -= nbds;
for (i = 0; i < nbds; i++)
sw_tx_bd_cons = NEXT_TX_BD(sw_tx_bd_cons);
/* Check for new work since we started. */
hw_pkt_cons = le16toh(*fp->tx_pkt_cons_sb);
rmb();
}
/* Enable new transmits if we've made enough room. */
if (fp->tx_bd_used < BXE_TX_CLEANUP_THRESHOLD) {
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if (fp->tx_bd_used == 0) {
/*
* Clear the watchdog timer if we've emptied
* the TX chain.
*/
fp->watchdog_timer = 0;
} else {
/*
* Reset the watchdog timer if we still have
* transmits pending.
*/
fp->watchdog_timer = BXE_TX_TIMEOUT;
}
}
/* Save our indices. */
fp->tx_pkt_cons = sw_pkt_cons;
fp->tx_bd_cons = sw_tx_bd_cons;
DBEXIT(BXE_EXTREME_SEND);
}
/*
* Transmit timeout handler.
*
* Returns:
* 0 = No timeout, !0 = timeout occurred.
*/
static int
bxe_watchdog(struct bxe_fastpath *fp)
{
struct bxe_softc *sc;
int rc = 0;
sc = fp->sc;
DBENTER(BXE_INSANE_SEND);
BXE_FP_LOCK(fp);
if (fp->watchdog_timer == 0 || --fp->watchdog_timer) {
rc = EINVAL;
BXE_FP_UNLOCK(fp);
goto bxe_watchdog_exit;
}
BXE_FP_UNLOCK(fp);
BXE_PRINTF("TX watchdog timeout occurred on fp[%02d], "
"resetting!\n", fp->index);
/* DBRUNLV(BXE_FATAL, bxe_breakpoint(sc)); */
BXE_CORE_LOCK(sc);
/* Mark the interface as down. */
sc->bxe_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
bxe_stop_locked(sc, UNLOAD_NORMAL);
DELAY(10000);
bxe_init_locked(sc, LOAD_OPEN);
BXE_CORE_UNLOCK(sc);
bxe_watchdog_exit:
DBEXIT(BXE_INSANE_SEND);
return (rc);
}
/*
* The periodic timer tick routine.
*
* This code only runs when the interface is up.
*
* Returns:
* None
*/
static void
bxe_tick(void *xsc)
{
struct bxe_softc *sc;
struct bxe_fastpath *fp;
#if 0
/* Re-enable at a later time. */
uint32_t drv_pulse, mcp_pulse;
#endif
int i, func;
sc = xsc;
DBENTER(BXE_INSANE_MISC);
/* Check for TX timeouts on any fastpath. */
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
if (bxe_watchdog(fp) != 0)
break;
}
func = BP_FUNC(sc);
/* Schedule the next tick. */
callout_reset(&sc->bxe_tick_callout, hz, bxe_tick, sc);
#if 0
if (!NOMCP(sc)) {
func = BP_FUNC(sc);
++sc->fw_drv_pulse_wr_seq;
sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
/* Let the MCP know we're alive. */
drv_pulse = sc->fw_drv_pulse_wr_seq;
SHMEM_WR(sc, func_mb[func].drv_pulse_mb, drv_pulse);
/* Check if the MCP is still alive. */
mcp_pulse = (SHMEM_RD(sc, func_mb[func].mcp_pulse_mb) &
MCP_PULSE_SEQ_MASK);
/*
* The delta between driver pulse and MCP response should be 1
* (before MCP response) or 0 (after MCP response).
*/
if ((drv_pulse != mcp_pulse) && (drv_pulse != ((mcp_pulse + 1) &
MCP_PULSE_SEQ_MASK))) {
/* Someone's in cardiac arrest. */
DBPRINT(sc, BXE_WARN,
"%s(): drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
__FUNCTION__, drv_pulse, mcp_pulse);
}
}
#endif
if ((sc->state == BXE_STATE_OPEN) || (sc->state == BXE_STATE_DISABLED))
bxe_stats_handle(sc, STATS_EVENT_UPDATE);
}
#ifdef BXE_DEBUG
/*
* Allows the driver state to be dumped through the sysctl interface.
*
* Returns:
* 0 for success, positive value for failure.
*/
static int
bxe_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
{
struct bxe_softc *sc;
struct bxe_fastpath *fp;
int error, i, result;
sc = (struct bxe_softc *)arg1;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
bxe_dump_driver_state(sc);
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
bxe_dump_fp_state(fp);
}
bxe_dump_status_block(sc);
}
return (error);
}
/*
* Allows the hardware state to be dumped through the sysctl interface.
*
* Returns:
* 0 for success, positive value for failure.
*/
static int
bxe_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
{
struct bxe_softc *sc;
int error, result;
sc = (struct bxe_softc *)arg1;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1)
bxe_dump_hw_state(sc);
return (error);
}
/*
* Allows the MCP firmware to be dumped through the sysctl interface.
*
* Returns:
* 0 for success, positive value for failure.
*/
static int
bxe_sysctl_dump_fw(SYSCTL_HANDLER_ARGS)
{
struct bxe_softc *sc;
int error, result;
sc = (struct bxe_softc *)arg1;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1)
bxe_dump_fw(sc);
return (error);
}
/*
* Provides a sysctl interface to allow dumping the RX completion chain.
*
* Returns:
* 0 for success, positive value for failure.
*/
static int
bxe_sysctl_dump_rx_cq_chain(SYSCTL_HANDLER_ARGS)
{
struct bxe_softc *sc;
struct bxe_fastpath *fp;
int error, result;
sc = (struct bxe_softc *)arg1;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if ((result >= 0) && (result < sc->num_queues)) {
fp = &sc->fp[result];
bxe_dump_rx_cq_chain(fp, 0, TOTAL_RCQ_ENTRIES);
}
return (error);
}
/*
* Provides a sysctl interface to allow dumping the RX chain.
*
* Returns:
* 0 for success, positive value for failure.
*/
static int
bxe_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
{
struct bxe_softc *sc;
struct bxe_fastpath *fp;
int error, result;
sc = (struct bxe_softc *)arg1;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if ((result >= 0) && (result < sc->num_queues)) {
fp = &sc->fp[result];
bxe_dump_rx_bd_chain(fp, 0, TOTAL_RX_BD);
}
return (error);
}
/*
* Provides a sysctl interface to allow dumping the TX chain.
*
* Returns:
* 0 for success, positive value for failure.
*/
static int
bxe_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
{
struct bxe_softc *sc;
struct bxe_fastpath *fp;
int error, result;
sc = (struct bxe_softc *)arg1;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if ((result >= 0) && (result < sc->num_queues)) {
fp = &sc->fp[result];
bxe_dump_tx_chain(fp, 0, TOTAL_TX_BD);
}
return (error);
}
/*
* Provides a sysctl interface to allow reading arbitrary registers in the
* device. DO NOT ENABLE ON PRODUCTION SYSTEMS!
*
* Returns:
* 0 for success, positive value for failure.
*/
static int
bxe_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
{
struct bxe_softc *sc;
uint32_t result, val;
int error;
sc = (struct bxe_softc *)arg1;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || (req->newptr == NULL))
return (error);
val = REG_RD(sc, result);
BXE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
return (error);
}
/*
* Provides a sysctl interface to allow generating a grcdump.
*
* Returns:
* 0 for success, positive value for failure.
*/
static int
bxe_sysctl_grcdump(SYSCTL_HANDLER_ARGS)
{
struct bxe_softc *sc;
int error, result;
sc = (struct bxe_softc *)arg1;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
/* Generate a grcdump and log the contents.*/
bxe_grcdump(sc, 1);
} else {
/* Generate a grcdump and don't log the contents. */
bxe_grcdump(sc, 0);
}
return (error);
}
/*
* Provides a sysctl interface to forcing the driver to dump state and
* enter the debugger. DO NOT ENABLE ON PRODUCTION SYSTEMS!
*
* Returns:
* 0 for success, positive value for failure.
*/
static int
bxe_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
{
struct bxe_softc *sc;
int error, result;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
sc = (struct bxe_softc *)arg1;
bxe_breakpoint(sc);
}
return (error);
}
#endif
/*
* Adds any sysctl parameters for tuning or debugging purposes.
*
* Returns:
* None.
*/
static void
bxe_add_sysctls(struct bxe_softc *sc)
{
struct sysctl_ctx_list *ctx =
device_get_sysctl_ctx(sc->dev);
struct sysctl_oid_list *children =
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
struct bxe_port_stats *estats = &sc->eth_stats;
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"estats_total_bytes_received_hi",
CTLFLAG_RD, &estats->total_bytes_received_hi,
0, "Total bytes received (hi)");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"estats_total_bytes_received_lo",
CTLFLAG_RD, &estats->total_bytes_received_lo,
0, "Total bytes received (lo)");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"estats_valid_bytes_received_hi",
CTLFLAG_RD, &estats->valid_bytes_received_hi,
0, "Valid bytes received (hi)");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"estats_valid_bytes_received_lo",
CTLFLAG_RD, &estats->valid_bytes_received_lo,
0, "Valid bytes received (lo)");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"estats_total_unicast_packets_received_hi",
CTLFLAG_RD, &estats->total_unicast_packets_received_hi,
0, "Total unicast packets received (hi)");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"estats_total_unicast_packets_received_lo",
CTLFLAG_RD, &estats->total_unicast_packets_received_lo,
0, "Total unicast packets received (lo)");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"estats_total_bytes_transmitted_hi",
CTLFLAG_RD, &estats->total_bytes_transmitted_hi,
0, "Total bytes transmitted (hi)");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"estats_total_bytes_transmitted_lo",
CTLFLAG_RD, &estats->total_bytes_transmitted_lo,
0, "Total bytes transmitted (lo)");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"estats_total_unicast_packets_transmitted_hi",
CTLFLAG_RD, &estats->total_unicast_packets_transmitted_hi,
0, "Total unicast packets transmitted (hi)");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"estats_total_unicast_packets_transmitted_lo",
CTLFLAG_RD, &estats->total_unicast_packets_transmitted_lo,
0, "Total unicast packets transmitted (lo)");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"estats_total_broadcast_packets_received_lo",
CTLFLAG_RD, &estats->total_broadcast_packets_received_lo,
0, "Total broadcast packets received (lo)");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"estats_total_broadcast_packets_transmitted_lo",
CTLFLAG_RD, &estats->total_broadcast_packets_transmitted_lo,
0, "Total broadcast packets transmitted (lo)");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"estats_total_multicast_packets_received_lo",
CTLFLAG_RD, &estats->total_multicast_packets_received_lo,
0, "Total multicast packets received (lo)");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"estats_total_multicast_packets_transmitted_lo",
CTLFLAG_RD, &estats->total_multicast_packets_transmitted_lo,
0, "Total multicast packets transmitted (lo)");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"tx_stat_etherstatspkts64octets_hi",
CTLFLAG_RD, &estats->tx_stat_etherstatspkts64octets_hi,
0, "Total 64 byte packets transmitted (hi)");
/* ToDo: Fix for 64 bit access. */
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"tx_stat_etherstatspkts64octets_lo",
CTLFLAG_RD, &estats->tx_stat_etherstatspkts64octets_lo,
0, "Total 64 byte packets transmitted (lo)");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"driver_xoff",
CTLFLAG_RD, &estats->driver_xoff,
0, "Driver transmit queue full count");
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
"tx_start_called_with_link_down",
CTLFLAG_RD, &sc->tx_start_called_with_link_down,
"TX start routine called while link down count");
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
"tx_start_called_with_queue_full",
CTLFLAG_RD, &sc->tx_start_called_with_queue_full,
"TX start routine called with queue full count");
/* ToDo: Add more statistics here. */
#ifdef BXE_DEBUG
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "bxe_debug",
CTLFLAG_RW, &bxe_debug, 0,
"Debug message level flag");
#endif
do {
#define QUEUE_NAME_LEN 32
char namebuf[QUEUE_NAME_LEN];
struct sysctl_oid *queue_node;
struct sysctl_oid_list *queue_list;
for (int i = 0; i < sc->num_queues; i++) {
struct bxe_fastpath *fp = &sc->fp[i];
snprintf(namebuf, QUEUE_NAME_LEN, "fp[%02d]", i);
queue_node = SYSCTL_ADD_NODE(ctx, children, OID_AUTO,
namebuf, CTLFLAG_RD, NULL, "Queue Name");
queue_list = SYSCTL_CHILDREN(queue_node);
/*
* Receive related fastpath statistics.*
*/
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"rx_pkts",
CTLFLAG_RD, &fp->rx_pkts,
"Received packets");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"rx_tpa_pkts",
CTLFLAG_RD, &fp->rx_tpa_pkts,
"Received TPA packets");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"rx_null_cqe_flags",
CTLFLAG_RD, &fp->rx_null_cqe_flags,
"CQEs with NULL flags count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"rx_soft_errors",
CTLFLAG_RD, &fp->rx_soft_errors,
"Received frames dropped by driver count");
/*
* Transmit related fastpath statistics.*
*/
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"tx_pkts",
CTLFLAG_RD, &fp->tx_pkts,
"Transmitted packets");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"tx_soft_errors",
CTLFLAG_RD, &fp->tx_soft_errors,
"Transmit frames dropped by driver count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"tx_offload_frames_csum_ip",
CTLFLAG_RD, &fp->tx_offload_frames_csum_ip,
"IP checksum offload frame count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"tx_offload_frames_csum_tcp",
CTLFLAG_RD, &fp->tx_offload_frames_csum_tcp,
"TCP checksum offload frame count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"tx_offload_frames_csum_udp",
CTLFLAG_RD, &fp->tx_offload_frames_csum_udp,
"UDP checksum offload frame count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"tx_offload_frames_tso",
CTLFLAG_RD, &fp->tx_offload_frames_tso,
"TSO offload frame count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"tx_header_splits",
CTLFLAG_RD, &fp->tx_header_splits,
"TSO frame header/data split count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"tx_encap_failures",
CTLFLAG_RD, &fp->tx_encap_failures,
"TX encapsulation failure count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"tx_hw_queue_full",
CTLFLAG_RD, &fp->tx_hw_queue_full,
"TX H/W queue too full to add a frame count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"tx_hw_max_queue_depth",
CTLFLAG_RD, &fp->tx_hw_max_queue_depth,
"TX H/W maximum queue depth count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"tx_dma_mapping_failure",
CTLFLAG_RD, &fp->tx_dma_mapping_failure,
"TX DMA mapping failure");
SYSCTL_ADD_INT(ctx, queue_list, OID_AUTO,
"tx_max_drbr_queue_depth",
CTLFLAG_RD, &fp->tx_max_drbr_queue_depth,
0, "TX S/W queue maximum depth");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"tx_window_violation_std",
CTLFLAG_RD, &fp->tx_window_violation_std,
"Standard frame TX BD window violation count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"tx_window_violation_tso",
CTLFLAG_RD, &fp->tx_window_violation_tso,
"TSO frame TX BD window violation count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"tx_unsupported_tso_request_ipv6",
CTLFLAG_RD, &fp->tx_unsupported_tso_request_ipv6,
"TSO frames with unsupported IPv6 protocol count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"tx_unsupported_tso_request_not_tcp",
CTLFLAG_RD, &fp->tx_unsupported_tso_request_not_tcp,
"TSO frames with unsupported protocol count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"tx_chain_lost_mbuf",
CTLFLAG_RD, &fp->tx_chain_lost_mbuf,
"Mbufs lost on TX chain count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"tx_frame_deferred",
CTLFLAG_RD, &fp->tx_frame_deferred,
"TX frame deferred from H/W queue to S/W queue count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"tx_queue_xoff",
CTLFLAG_RD, &fp->tx_queue_xoff,
"TX queue full count");
/*
* Memory related fastpath statistics.*
*/
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"mbuf_rx_bd_alloc_failed",
CTLFLAG_RD, &fp->mbuf_rx_bd_alloc_failed,
"RX BD mbuf allocation failure count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"mbuf_rx_bd_mapping_failed",
CTLFLAG_RD, &fp->mbuf_rx_bd_mapping_failed,
"RX BD mbuf mapping failure count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"mbuf_tpa_alloc_failed",
CTLFLAG_RD, &fp->mbuf_tpa_alloc_failed,
"TPA mbuf allocation failure count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"mbuf_tpa_mapping_failed",
CTLFLAG_RD, &fp->mbuf_tpa_mapping_failed,
"TPA mbuf mapping failure count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"mbuf_sge_alloc_failed",
CTLFLAG_RD, &fp->mbuf_sge_alloc_failed,
"SGE mbuf allocation failure count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"mbuf_sge_mapping_failed",
CTLFLAG_RD, &fp->mbuf_sge_mapping_failed,
"SGE mbuf mapping failure count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"mbuf_defrag_attempts",
CTLFLAG_RD, &fp->mbuf_defrag_attempts,
"Mbuf defrag attempt count");
SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO,
"mbuf_defrag_failures",
CTLFLAG_RD, &fp->mbuf_defrag_failures,
"Mbuf defrag failure count");
}
} while (0);
#ifdef BXE_DEBUG
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "driver_state",
CTLTYPE_INT | CTLFLAG_RW, (void *)sc, 0,
bxe_sysctl_driver_state, "I", "Drive state information");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_state",
CTLTYPE_INT | CTLFLAG_RW, (void *)sc, 0,
bxe_sysctl_hw_state, "I", "Hardware state information");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dump_fw",
CTLTYPE_INT | CTLFLAG_RW, (void *)sc, 0,
bxe_sysctl_dump_fw, "I", "Dump MCP firmware");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dump_rx_bd_chain",
CTLTYPE_INT | CTLFLAG_RW, (void *)sc, 0,
bxe_sysctl_dump_rx_bd_chain, "I", "Dump rx_bd chain");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dump_rx_cq_chain",
CTLTYPE_INT | CTLFLAG_RW, (void *)sc, 0,
bxe_sysctl_dump_rx_cq_chain, "I", "Dump cqe chain");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dump_tx_chain",
CTLTYPE_INT | CTLFLAG_RW, (void *)sc, 0,
bxe_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
/*
* Generates a GRCdump (run sysctl dev.bxe.0.grcdump=0
* before accessing buffer below).
*/
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "grcdump",
CTLTYPE_INT | CTLFLAG_RW, (void *)sc, 0, bxe_sysctl_grcdump,
"I", "Initiate a grcdump operation");
/*
* Hidden sysctl.
* Use "sysctl -b dev.bxe.0.grcdump_buffer > buf.bin".
*/
SYSCTL_ADD_OPAQUE(ctx, children, OID_AUTO, "grcdump_buffer",
CTLFLAG_RD | CTLFLAG_SKIP, sc->grcdump_buffer,
BXE_GRCDUMP_BUF_SIZE, "IU", "Access grcdump buffer");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "breakpoint",
CTLTYPE_INT | CTLFLAG_RW, (void *)sc, 0,
bxe_sysctl_breakpoint, "I", "Driver breakpoint");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
CTLTYPE_INT | CTLFLAG_RW, (void *)sc, 0,
bxe_sysctl_reg_read, "I", "Register read");
#endif /* BXE_DEBUG */
}
/*
* BXE Debug Routines
*/
#ifdef BXE_DEBUG
/*
* Writes out the header for the debug dump buffer.
*
* Returns:
* None.
*
* Modifies:
* index
*/
static void
bxe_dump_debug_header(struct bxe_softc *sc, uint32_t *index)
{
struct hd_param hd_param_cu = {0};
uint32_t *buf;
buf = sc->grcdump_buffer;
if (CHIP_IS_E1H(sc))
hd_param_cu = hd_param_e1h;
else
hd_param_cu = hd_param_e1;
buf[(*index)++] = hd_param_cu.time_stamp;
buf[(*index)++] = hd_param_cu.diag_ver;
buf[(*index)++] = hd_param_cu.grc_dump_ver;
buf[(*index)++] = REG_RD_IND(sc, XSTORM_WAITP_ADDRESS);
buf[(*index)++] = REG_RD_IND(sc, TSTORM_WAITP_ADDRESS);
buf[(*index)++] = REG_RD_IND(sc, USTORM_WAITP_ADDRESS);
buf[(*index)++] = REG_RD_IND(sc, CSTORM_WAITP_ADDRESS);
/* The size of the header is stored at the first DWORD. */
buf[0] = (*index) - 1;
}
/*
* Writes to the controller to prepare it for a dump.
*
* Returns:
* None.
*
* Modifies:
* None.
*/
static void
bxe_dump_debug_writes(struct bxe_softc *sc)
{
uint32_t write_val;
write_val = 1;
/* Halt the STORMs to get a consistent device state. */
REG_WR_IND(sc, XSTORM_WAITP_ADDRESS, write_val);
REG_WR_IND(sc, TSTORM_WAITP_ADDRESS, write_val);
REG_WR_IND(sc, USTORM_WAITP_ADDRESS, write_val);
REG_WR_IND(sc, CSTORM_WAITP_ADDRESS, write_val);
if (CHIP_IS_E1H(sc))
REG_WR_IND(sc, TSTORM_CAM_MODE, write_val);
}
/*
* Cycles through the required register reads and dumps them
* to the debug buffer.
*
* Returns:
* None.
*
* Modifies:
* index
*/
static void
bxe_dump_debug_reg_read(struct bxe_softc *sc, uint32_t *index)
{
preg_addr preg_addrs;
uint32_t regs_count, *buf;
uint32_t i, reg_addrs_index;
buf = sc->grcdump_buffer;
preg_addrs = NULL;
/* Read different registers for different controllers. */
if (CHIP_IS_E1H(sc)) {
regs_count = regs_count_e1h;
preg_addrs = &reg_addrs_e1h[0];
} else {
regs_count = regs_count_e1;
preg_addrs = &reg_addrs_e1[0];
}
/* ToDo: Add a buffer size check. */
for (reg_addrs_index = 0; reg_addrs_index < regs_count;
reg_addrs_index++) {
for (i = 0; i < preg_addrs[reg_addrs_index].size; i++) {
buf[(*index)++] = REG_RD_IND(sc,
preg_addrs[reg_addrs_index].addr + (i * 4));
}
}
}
/*
* Cycles through the required wide register reads and dumps them
* to the debug buffer.
*
* Returns:
* None.
*/
static void
bxe_dump_debug_reg_wread(struct bxe_softc *sc, uint32_t *index)
{
pwreg_addr pwreg_addrs;
uint32_t reg_addrs_index, reg_add_read, reg_add_count;
uint32_t *buf, cam_index, wregs_count;
buf = sc->grcdump_buffer;
pwreg_addrs = NULL;
/* Read different registers for different controllers. */
if (CHIP_IS_E1H(sc)) {
wregs_count = wregs_count_e1h;
pwreg_addrs = &wreg_addrs_e1h[0];
} else {
wregs_count = wregs_count_e1;
pwreg_addrs = &wreg_addrs_e1[0];
}
for (reg_addrs_index = 0; reg_addrs_index < wregs_count;
reg_addrs_index++) {
reg_add_read = pwreg_addrs[reg_addrs_index].addr;
for (reg_add_count = 0; reg_add_count <
pwreg_addrs[reg_addrs_index].size; reg_add_count++) {
buf[(*index)++] = REG_RD_IND(sc, reg_add_read);
reg_add_read += sizeof(uint32_t);
for (cam_index = 0; cam_index <
pwreg_addrs[reg_addrs_index].const_regs_count;
cam_index++)
buf[(*index)++] = REG_RD_IND(sc,
pwreg_addrs[reg_addrs_index].const_regs[cam_index]);
}
}
}
/*
* Performs a debug dump for offline diagnostics.
*
* Note that when this routine is called the STORM
* processors will be stopped in order to create a
* cohesive dump. The controller will need to be
* reset before the device can begin passing traffic
* again.
*
* Returns:
* None.
*/
static void
bxe_grcdump(struct bxe_softc *sc, int log)
{
uint32_t *buf, i, index;
index = 1;
buf = sc->grcdump_buffer;
if (buf != NULL) {
/* Write the header and regsiters contents to the dump buffer. */
bxe_dump_debug_header(sc, &index);
bxe_dump_debug_writes(sc);
bxe_dump_debug_reg_read(sc,&index);
bxe_dump_debug_reg_wread(sc, &index);
/* Print the results to the system log is necessary. */
if (log) {
BXE_PRINTF(
"-----------------------------"
" grcdump "
"-----------------------------\n");
BXE_PRINTF("Buffer length = 0x%08X bytes\n", index * 4);
for (i = 0; i < index; i += 8) {
BXE_PRINTF(
"0x%08X - 0x%08X 0x%08X 0x%08X 0x%08X "
"0x%08X 0x%08X 0x%08X 0x%08X\n", i * 4,
buf[i + 0], buf[i + 1], buf[i + 2],
buf[i + 3], buf[i + 4], buf[i + 5],
buf[i + 6], buf[i + 7]);
}
BXE_PRINTF(
"-----------------------------"
"--------------"
"-----------------------------\n");
}
} else {
BXE_PRINTF("No grcdump buffer allocated!\n");
}
}
/*
* Check that an Etherent frame is valid and prints out debug info if it's
* not.
*
* Returns:
* Nothing.
*/
static __noinline
void bxe_validate_rx_packet(struct bxe_fastpath *fp, uint16_t comp_cons,
union eth_rx_cqe *cqe, struct mbuf *m)
{
struct bxe_softc *sc;
int error;
sc = fp->sc;
/* Check that the mbuf is sane. */
error = m_sanity(m, FALSE);
if (error != 1 || ((m->m_len < ETHER_HDR_LEN) |
(m->m_len > ETH_MAX_JUMBO_PACKET_SIZE + ETH_OVREHEAD))) {
m_print(m, 128);
bxe_dump_enet(sc, m);
bxe_dump_cqe(fp, comp_cons, cqe);
/* Make sure the packet has a valid length. */
}
}
/*
* Prints out Ethernet frame information from an mbuf.
*
* Partially decode an Ethernet frame to look at some important headers.
*
* Returns:
* Nothing.
*/
static __noinline
void bxe_dump_enet(struct bxe_softc *sc, struct mbuf *m)
{
struct ether_vlan_header *eh;
uint16_t etype;
int e_hlen;
struct ip *ip;
struct tcphdr *th;
struct udphdr *uh;
struct arphdr *ah;
BXE_PRINTF(
"-----------------------------"
" Frame Decode "
"-----------------------------\n");
eh = mtod(m, struct ether_vlan_header *);
/* Handle VLAN encapsulation if present. */
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
etype = ntohs(eh->evl_proto);
e_hlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
} else {
etype = ntohs(eh->evl_encap_proto);
e_hlen = ETHER_HDR_LEN;
}
BXE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, e_hlen = %d\n",
eh->evl_dhost, ":", eh->evl_shost, ":", etype, e_hlen);
switch (etype) {
case ETHERTYPE_IP:
ip = (struct ip *)(m->m_data + e_hlen);
BXE_PRINTF(
"--ip: dest = 0x%08X , src = 0x%08X, "
"ip_hlen = %d bytes, len = %d bytes, protocol = 0x%02X, "
"ip_id = 0x%04X, csum = 0x%04X\n",
ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
(ip->ip_hl << 2), ntohs(ip->ip_len), ip->ip_p,
ntohs(ip->ip_id), ntohs(ip->ip_sum));
switch (ip->ip_p) {
case IPPROTO_TCP:
th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
BXE_PRINTF(
"-tcp: dest = %d, src = %d, tcp_hlen = %d "
"bytes, flags = 0x%b, csum = 0x%04X\n",
ntohs(th->th_dport), ntohs(th->th_sport),
(th->th_off << 2), th->th_flags,
"\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST\02SYN\01FIN",
ntohs(th->th_sum));
break;
case IPPROTO_UDP:
uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
BXE_PRINTF(
"-udp: dest = %d, src = %d, udp_hlen = %d "
"bytes, len = %d bytes, csum = 0x%04X\n",
ntohs(uh->uh_dport), ntohs(uh->uh_sport),
(int)sizeof(struct udphdr), ntohs(uh->uh_ulen),
ntohs(uh->uh_sum));
break;
case IPPROTO_ICMP:
BXE_PRINTF("icmp:\n");
break;
default:
BXE_PRINTF("----: Other IP protocol.\n");
}
break;
case ETHERTYPE_IPV6:
/* ToDo: Add IPv6 support. */
BXE_PRINTF("IPv6 not supported!.\n");
break;
case ETHERTYPE_ARP:
BXE_PRINTF("-arp: ");
ah = (struct arphdr *) (m->m_data + e_hlen);
switch (ntohs(ah->ar_op)) {
case ARPOP_REVREQUEST:
printf("reverse ARP request\n");
break;
case ARPOP_REVREPLY:
printf("reverse ARP reply\n");
break;
case ARPOP_REQUEST:
printf("ARP request\n");
break;
case ARPOP_REPLY:
printf("ARP reply\n");
break;
default:
printf("other ARP operation\n");
}
break;
default:
BXE_PRINTF("----: Other protocol.\n");
}
BXE_PRINTF(
"-----------------------------"
"--------------"
"-----------------------------\n");
}
#if 0
static void
bxe_dump_mbuf_data(struct mbuf *m, int len)
{
uint8_t *ptr;
int i;
ptr = mtod(m, uint8_t *);
printf("\nmbuf->m_data:");
printf("\n0x");
for (i = 0; i < len; i++){
if (i != 0 && i % 40 == 0)
printf("\n0x");
else if (i != 0 && i % 6 == 0)
printf(" 0x");
printf("%02x", *ptr++);
}
printf("\n\n");
}
#endif
/*
* Prints out information about an mbuf.
*
* Returns:
* Nothing.
*/
static __noinline
void bxe_dump_mbuf(struct bxe_softc *sc, struct mbuf *m)
{
if (m == NULL) {
BXE_PRINTF("mbuf: null pointer\n");
return;
}
while (m) {
BXE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
"m_data = %p\n", m, m->m_len, m->m_flags,
"\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data);
if (m->m_flags & M_PKTHDR) {
BXE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
"csum_flags = %b\n", m->m_pkthdr.len,
m->m_flags, "\20\12M_BCAST\13M_MCAST\14M_FRAG"
"\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
"\22M_PROMISC\23M_NOFREE",
m->m_pkthdr.csum_flags,
"\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
"\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
"\12CSUM_IP_VALID\13CSUM_DATA_VALID"
"\14CSUM_PSEUDO_HDR");
}
if (m->m_flags & M_EXT) {
BXE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
m->m_ext.ext_buf, m->m_ext.ext_size);
switch (m->m_ext.ext_type) {
case EXT_CLUSTER:
printf("EXT_CLUSTER\n"); break;
case EXT_SFBUF:
printf("EXT_SFBUF\n"); break;
case EXT_JUMBO9:
printf("EXT_JUMBO9\n"); break;
case EXT_JUMBO16:
printf("EXT_JUMBO16\n"); break;
case EXT_PACKET:
printf("EXT_PACKET\n"); break;
case EXT_MBUF:
printf("EXT_MBUF\n"); break;
case EXT_NET_DRV:
printf("EXT_NET_DRV\n"); break;
case EXT_MOD_TYPE:
printf("EXT_MOD_TYPE\n"); break;
case EXT_DISPOSABLE:
printf("EXT_DISPOSABLE\n"); break;
case EXT_EXTREF:
printf("EXT_EXTREF\n"); break;
default:
printf("UNKNOWN\n");
}
}
m = m->m_next;
}
}
/*
* Prints out information about an rx_bd.
*
* Returns:
* Nothing.
*/
static __noinline
void bxe_dump_rxbd(struct bxe_fastpath *fp, int idx,
struct eth_rx_bd *rx_bd)
{
struct bxe_softc *sc;
sc = fp->sc;
/* Check if index out of range. */
if (idx > MAX_RX_BD) {
BXE_PRINTF("fp[%02d].rx_bd[0x%04X] XX: Invalid rx_bd index!\n",
fp->index, idx);
} else if ((idx & RX_BD_PER_PAGE_MASK) >= USABLE_RX_BD_PER_PAGE) {
/* RX Chain page pointer. */
BXE_PRINTF("fp[%02d].rx_bd[0x%04X] NP: haddr=0x%08X:%08X\n",
fp->index, idx, rx_bd->addr_hi, rx_bd->addr_lo);
} else {
BXE_PRINTF("fp[%02d].rx_bd[0x%04X] RX: haddr=0x%08X:%08X\n",
fp->index, idx, rx_bd->addr_hi, rx_bd->addr_lo);
}
}
/*
* Prints out a completion queue entry.
*
* Returns:
* Nothing.
*/
static __noinline
void bxe_dump_cqe(struct bxe_fastpath *fp, int idx,
union eth_rx_cqe *cqe)
{
struct bxe_softc *sc;
sc = fp->sc;
if (idx > MAX_RCQ_ENTRIES) {
/* Index out of range. */
BXE_PRINTF("fp[%02d].rx_cqe[0x%04X]: Invalid rx_cqe index!\n",
fp->index, idx);
} else if ((idx & USABLE_RCQ_ENTRIES_PER_PAGE) ==
USABLE_RCQ_ENTRIES_PER_PAGE) {
/* CQE next page pointer. */
BXE_PRINTF("fp[%02d].rx_cqe[0x%04X] NP: haddr=0x%08X:%08X\n",
fp->index, idx,
le32toh(cqe->next_page_cqe.addr_hi),
le32toh(cqe->next_page_cqe.addr_lo));
} else {
/* Normal CQE. */
BXE_PRINTF("fp[%02d].rx_cqe[0x%04X] CQ: error_flags=0x%b, "
"pkt_len=0x%04X, status_flags=0x%02X, vlan=0x%04X "
"rss_hash=0x%08X\n", fp->index, idx,
cqe->fast_path_cqe.type_error_flags,
BXE_ETH_FAST_PATH_RX_CQE_ERROR_FLAGS_PRINTFB,
le16toh(cqe->fast_path_cqe.pkt_len),
cqe->fast_path_cqe.status_flags,
le16toh(cqe->fast_path_cqe.vlan_tag),
le32toh(cqe->fast_path_cqe.rss_hash_result));
}
}
/*
* Prints out information about a TX parsing BD.
*
* Returns:
* Nothing.
*/
static __noinline
void bxe_dump_tx_parsing_bd(struct bxe_fastpath *fp, int idx,
struct eth_tx_parse_bd *p_bd)
{
struct bxe_softc *sc;
sc = fp->sc;
if (idx > MAX_TX_BD){
/* Index out of range. */
BXE_PRINTF("fp[%02d].tx_bd[0x%04X] XX: Invalid tx_bd index!\n",
fp->index, idx);
} else {
BXE_PRINTF("fp[%02d]:tx_bd[0x%04X] PB: global_data=0x%b, "
"tcp_flags=0x%b, ip_hlen=%04d, total_hlen=%04d, "
"tcp_pseudo_csum=0x%04X, lso_mss=0x%04X, ip_id=0x%04X, "
"tcp_send_seq=0x%08X\n", fp->index, idx,
p_bd->global_data, BXE_ETH_TX_PARSE_BD_GLOBAL_DATA_PRINTFB,
p_bd->tcp_flags, BXE_ETH_TX_PARSE_BD_TCP_FLAGS_PRINTFB,
p_bd->ip_hlen, p_bd->total_hlen, p_bd->tcp_pseudo_csum,
p_bd->lso_mss, p_bd->ip_id, p_bd->tcp_send_seq);
}
}
/*
* Prints out information about a tx_bd.
*
* Returns:
* Nothing.
*/
static __noinline
void bxe_dump_txbd(struct bxe_fastpath *fp, int idx,
union eth_tx_bd_types *tx_bd)
{
struct bxe_softc *sc;
sc = fp->sc;
if (idx > MAX_TX_BD){
/* Index out of range. */
BXE_PRINTF("fp[%02d]:tx_bd[0x%04X] XX: Invalid tx_bd index!\n",
fp->index, idx);
} else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) {
/* TX next page BD. */
BXE_PRINTF("fp[%02d]:tx_bd[0x%04X] NP: haddr=0x%08X:%08X\n",
fp->index, idx, tx_bd->next_bd.addr_hi,
tx_bd->next_bd.addr_lo);
} else if ((tx_bd->start_bd.bd_flags.as_bitfield &
ETH_TX_BD_FLAGS_START_BD) != 0) {
/* TX start BD. */
BXE_PRINTF("fp[%02d]:tx_bd[0x%04X] ST: haddr=0x%08X:%08X, "
"nbd=%02d, nbytes=%05d, vlan/idx=0x%04X, flags=0x%b, "
"gendata=0x%02X\n",
fp->index, idx, tx_bd->start_bd.addr_hi,
tx_bd->start_bd.addr_lo, tx_bd->start_bd.nbd,
tx_bd->start_bd.nbytes, tx_bd->start_bd.vlan,
tx_bd->start_bd.bd_flags.as_bitfield,
BXE_ETH_TX_BD_FLAGS_PRINTFB,
tx_bd->start_bd.general_data);
} else {
/* Regular TX BD. */
BXE_PRINTF("fp[%02d]:tx_bd[0x%04X] TX: haddr=0x%08X:%08X, "
"total_pkt_bytes=%05d, nbytes=%05d\n", fp->index, idx,
tx_bd->reg_bd.addr_hi, tx_bd->reg_bd.addr_lo,
tx_bd->reg_bd.total_pkt_bytes, tx_bd->reg_bd.nbytes);
}
}
/*
* Prints out the transmit chain.
*
* Returns:
* Nothing.
*/
static __noinline
void bxe_dump_tx_chain(struct bxe_fastpath * fp, int tx_bd_prod, int count)
{
struct bxe_softc *sc;
union eth_tx_bd_types *tx_bd;
uint32_t val_hi, val_lo;
int i, parsing_bd = 0;
sc = fp->sc;
/* First some info about the tx_bd chain structure. */
BXE_PRINTF(
"----------------------------"
" tx_bd chain "
"----------------------------\n");
val_hi = U64_HI(fp->tx_dma.paddr);
val_lo = U64_LO(fp->tx_dma.paddr);
BXE_PRINTF(
"0x%08X:%08X - (fp[%02d]->tx_dma.paddr) TX Chain physical address\n",
val_hi, val_lo, fp->index);
BXE_PRINTF(
"page size = 0x%08X, tx chain pages = 0x%08X\n",
(uint32_t)BCM_PAGE_SIZE, (uint32_t)NUM_TX_PAGES);
BXE_PRINTF(
"tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
(uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
BXE_PRINTF(
"total tx_bd = 0x%08X\n", (uint32_t)TOTAL_TX_BD);
BXE_PRINTF(
"-----------------------------"
" tx_bd data "
"-----------------------------\n");
/* Now print out the tx_bd's themselves. */
for (i = 0; i < count; i++) {
tx_bd = &fp->tx_chain[tx_bd_prod];
if (parsing_bd) {
struct eth_tx_parse_bd *p_bd;
p_bd = (struct eth_tx_parse_bd *)
&fp->tx_chain[tx_bd_prod].parse_bd;
bxe_dump_tx_parsing_bd(fp, tx_bd_prod, p_bd);
parsing_bd = 0;
} else {
bxe_dump_txbd(fp, tx_bd_prod, tx_bd);
if ((tx_bd->start_bd.bd_flags.as_bitfield &
ETH_TX_BD_FLAGS_START_BD) != 0)
/*
* There is always a parsing BD following the
* tx_bd with the start bit set.
*/
parsing_bd = 1;
}
/* Don't skip next page pointers. */
tx_bd_prod = ((tx_bd_prod + 1) & MAX_TX_BD);
}
BXE_PRINTF(
"-----------------------------"
"--------------"
"-----------------------------\n");
}
/*
* Prints out the receive completion queue chain.
*
* Returns:
* Nothing.
*/
static __noinline
void bxe_dump_rx_cq_chain(struct bxe_fastpath *fp, int rx_cq_prod, int count)
{
struct bxe_softc *sc;
union eth_rx_cqe *cqe;
int i;
sc = fp->sc;
/* First some info about the tx_bd chain structure. */
BXE_PRINTF(
"----------------------------"
" CQE Chain "
"----------------------------\n");
BXE_PRINTF("fp[%02d]->rcq_dma.paddr = 0x%jX\n",
fp->index, (uintmax_t) fp->rcq_dma.paddr);
BXE_PRINTF("page size = 0x%08X, cq chain pages "
" = 0x%08X\n",
(uint32_t)BCM_PAGE_SIZE, (uint32_t) NUM_RCQ_PAGES);
BXE_PRINTF("cqe_bd per page = 0x%08X, usable cqe_bd per "
"page = 0x%08X\n",
(uint32_t) TOTAL_RCQ_ENTRIES_PER_PAGE,
(uint32_t) USABLE_RCQ_ENTRIES_PER_PAGE);
BXE_PRINTF("total cqe_bd = 0x%08X\n",(uint32_t) TOTAL_RCQ_ENTRIES);
/* Now the CQE entries themselves. */
BXE_PRINTF(
"----------------------------"
" CQE Data "
"----------------------------\n");
for (i = 0; i < count; i++) {
cqe = (union eth_rx_cqe *)&fp->rcq_chain[rx_cq_prod];
bxe_dump_cqe(fp, rx_cq_prod, cqe);
/* Don't skip next page pointers. */
rx_cq_prod = ((rx_cq_prod + 1) & MAX_RCQ_ENTRIES);
}
BXE_PRINTF(
"----------------------------"
"--------------"
"----------------------------\n");
}
/*
* Prints out the receive chain.
*
* Returns:
* Nothing.
*/
static __noinline
void bxe_dump_rx_bd_chain(struct bxe_fastpath *fp, int prod, int count)
{
struct bxe_softc *sc;
struct eth_rx_bd *rx_bd;
struct mbuf *m;
int i;
sc = fp->sc;
/* First some info about the tx_bd chain structure. */
BXE_PRINTF(
"----------------------------"
" rx_bd chain "
"----------------------------\n");
BXE_PRINTF(
"----- RX_BD Chain -----\n");
BXE_PRINTF("fp[%02d]->rx_dma.paddr = 0x%jX\n",
fp->index, (uintmax_t) fp->rx_dma.paddr);
BXE_PRINTF(
"page size = 0x%08X, rx chain pages = 0x%08X\n",
(uint32_t)BCM_PAGE_SIZE, (uint32_t)NUM_RX_PAGES);
BXE_PRINTF(
"rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
(uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
BXE_PRINTF(
"total rx_bd = 0x%08X\n", (uint32_t)TOTAL_RX_BD);
/* Now the rx_bd entries themselves. */
BXE_PRINTF(
"----------------------------"
" rx_bd data "
"----------------------------\n");
/* Now print out the rx_bd's themselves. */
for (i = 0; i < count; i++) {
rx_bd = (struct eth_rx_bd *) (&fp->rx_chain[prod]);
m = sc->fp->rx_mbuf_ptr[prod];
bxe_dump_rxbd(fp, prod, rx_bd);
bxe_dump_mbuf(sc, m);
/* Don't skip next page pointers. */
prod = ((prod + 1) & MAX_RX_BD);
}
BXE_PRINTF(
"----------------------------"
"--------------"
"----------------------------\n");
}
/*
* Prints out a register dump.
*
* Returns:
* Nothing.
*/
static __noinline
void bxe_dump_hw_state(struct bxe_softc *sc)
{
int i;
BXE_PRINTF(
"----------------------------"
" Hardware State "
"----------------------------\n");
for (i = 0x2000; i < 0x10000; i += 0x10)
BXE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
REG_RD(sc, 0 + i), REG_RD(sc, 0 + i + 0x4),
REG_RD(sc, 0 + i + 0x8), REG_RD(sc, 0 + i + 0xC));
BXE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/*
* Prints out the RX mbuf chain.
*
* Returns:
* Nothing.
*/
static __noinline
void bxe_dump_rx_mbuf_chain(struct bxe_softc *sc, int chain_prod, int count)
{
struct mbuf *m;
int i;
BXE_PRINTF(
"----------------------------"
" rx mbuf data "
"----------------------------\n");
for (i = 0; i < count; i++) {
m = sc->fp->rx_mbuf_ptr[chain_prod];
BXE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
bxe_dump_mbuf(sc, m);
chain_prod = RX_BD(NEXT_RX_BD(chain_prod));
}
BXE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/*
* Prints out the mbufs in the TX mbuf chain.
*
* Returns:
* Nothing.
*/
static __noinline
void bxe_dump_tx_mbuf_chain(struct bxe_softc *sc, int chain_prod, int count)
{
struct mbuf *m;
int i;
BXE_PRINTF(
"----------------------------"
" tx mbuf data "
"----------------------------\n");
for (i = 0; i < count; i++) {
m = sc->fp->tx_mbuf_ptr[chain_prod];
BXE_PRINTF("txmbuf[%d]\n", chain_prod);
bxe_dump_mbuf(sc, m);
chain_prod = TX_BD(NEXT_TX_BD(chain_prod));
}
BXE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/*
* Prints out the status block from host memory.
*
* Returns:
* Nothing.
*/
static __noinline
void bxe_dump_status_block(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
struct host_def_status_block *def_sb;
struct host_status_block *fpsb;
int i;
def_sb = sc->def_sb;
BXE_PRINTF(
"----------------------------"
" Status Block "
"----------------------------\n");
for (i = 0; i < sc->num_queues; i++) {
fp = &sc->fp[i];
fpsb = fp->status_block;
BXE_PRINTF(
"----------------------------"
" fp[%02d] "
"----------------------------\n", fp->index);
/* Print the USTORM fields (HC_USTORM_SB_NUM_INDICES). */
BXE_PRINTF(
"0x%08X - USTORM Flags (F/W RESERVED)\n",
fpsb->u_status_block.__flags);
BXE_PRINTF(
" 0x%02X - USTORM PCIe Function\n",
fpsb->u_status_block.func);
BXE_PRINTF(
" 0x%02X - USTORM Status Block ID\n",
fpsb->u_status_block.status_block_id);
BXE_PRINTF(
" 0x%04X - USTORM Status Block Index (Tag)\n",
fpsb->u_status_block.status_block_index);
BXE_PRINTF(
" 0x%04X - USTORM [TOE_RX_CQ_CONS]\n",
fpsb->u_status_block.index_values[HC_INDEX_U_TOE_RX_CQ_CONS]);
BXE_PRINTF(
" 0x%04X - USTORM [ETH_RX_CQ_CONS]\n",
fpsb->u_status_block.index_values[HC_INDEX_U_ETH_RX_CQ_CONS]);
BXE_PRINTF(
" 0x%04X - USTORM [ETH_RX_BD_CONS]\n",
fpsb->u_status_block.index_values[HC_INDEX_U_ETH_RX_BD_CONS]);
BXE_PRINTF(
" 0x%04X - USTORM [RESERVED]\n",
fpsb->u_status_block.index_values[3]);
/* Print the CSTORM fields (HC_CSTORM_SB_NUM_INDICES). */
BXE_PRINTF(
"0x%08X - CSTORM Flags (F/W RESERVED)\n",
fpsb->c_status_block.__flags);
BXE_PRINTF(
" 0x%02X - CSTORM PCIe Function\n",
fpsb->c_status_block.func);
BXE_PRINTF(
" 0x%02X - CSTORM Status Block ID\n",
fpsb->c_status_block.status_block_id);
BXE_PRINTF(
" 0x%04X - CSTORM Status Block Index (Tag)\n",
fpsb->c_status_block.status_block_index);
BXE_PRINTF(
" 0x%04X - CSTORM [TOE_TX_CQ_CONS]\n",
fpsb->c_status_block.index_values[HC_INDEX_C_TOE_TX_CQ_CONS]);
BXE_PRINTF(
" 0x%04X - CSTORM [ETH_TX_CQ_CONS]\n",
fpsb->c_status_block.index_values[HC_INDEX_C_ETH_TX_CQ_CONS]);
BXE_PRINTF(
" 0x%04X - CSTORM [ISCSI_EQ_CONS]\n",
fpsb->c_status_block.index_values[HC_INDEX_C_ISCSI_EQ_CONS]);
BXE_PRINTF(
" 0x%04X - CSTORM [RESERVED]\n",
fpsb->c_status_block.index_values[3]);
}
BXE_PRINTF(
"--------------------------"
" Def Status Block "
"--------------------------\n");
/* Print attention information. */
BXE_PRINTF(
" 0x%02X - Status Block ID\n",
def_sb->atten_status_block.status_block_id);
BXE_PRINTF(
"0x%08X - Attn Bits\n",
def_sb->atten_status_block.attn_bits);
BXE_PRINTF(
"0x%08X - Attn Bits Ack\n",
def_sb->atten_status_block.attn_bits_ack);
BXE_PRINTF(
" 0x%04X - Attn Block Index\n",
le16toh(def_sb->atten_status_block.attn_bits_index));
/* Print the USTORM fields (HC_USTORM_DEF_SB_NUM_INDICES). */
BXE_PRINTF(
" 0x%02X - USTORM Status Block ID\n",
def_sb->u_def_status_block.status_block_id);
BXE_PRINTF(
" 0x%04X - USTORM Status Block Index\n",
le16toh(def_sb->u_def_status_block.status_block_index));
BXE_PRINTF(
" 0x%04X - USTORM [ETH_RDMA_RX_CQ_CONS]\n",
le16toh(def_sb->u_def_status_block.index_values[HC_INDEX_DEF_U_ETH_RDMA_RX_CQ_CONS]));
BXE_PRINTF(
" 0x%04X - USTORM [ETH_ISCSI_RX_CQ_CONS]\n",
le16toh(def_sb->u_def_status_block.index_values[HC_INDEX_DEF_U_ETH_ISCSI_RX_CQ_CONS]));
BXE_PRINTF(
" 0x%04X - USTORM [ETH_RDMA_RX_BD_CONS]\n",
le16toh(def_sb->u_def_status_block.index_values[HC_INDEX_DEF_U_ETH_RDMA_RX_BD_CONS]));
BXE_PRINTF(
" 0x%04X - USTORM [ETH_ISCSI_RX_BD_CONS]\n",
le16toh(def_sb->u_def_status_block.index_values[HC_INDEX_DEF_U_ETH_ISCSI_RX_BD_CONS]));
/* Print the CSTORM fields (HC_CSTORM_DEF_SB_NUM_INDICES). */
BXE_PRINTF(
" 0x%02X - CSTORM Status Block ID\n",
def_sb->c_def_status_block.status_block_id);
BXE_PRINTF(
" 0x%04X - CSTORM Status Block Index\n",
le16toh(def_sb->c_def_status_block.status_block_index));
BXE_PRINTF(
" 0x%04X - CSTORM [RDMA_EQ_CONS]\n",
le16toh(def_sb->c_def_status_block.index_values[HC_INDEX_DEF_C_RDMA_EQ_CONS]));
BXE_PRINTF(
" 0x%04X - CSTORM [RDMA_NAL_PROD]\n",
le16toh(def_sb->c_def_status_block.index_values[HC_INDEX_DEF_C_RDMA_NAL_PROD]));
BXE_PRINTF(
" 0x%04X - CSTORM [ETH_FW_TX_CQ_CONS]\n",
le16toh(def_sb->c_def_status_block.index_values[HC_INDEX_DEF_C_ETH_FW_TX_CQ_CONS]));
BXE_PRINTF(
" 0x%04X - CSTORM [ETH_SLOW_PATH]\n",
le16toh(def_sb->c_def_status_block.index_values[HC_INDEX_DEF_C_ETH_SLOW_PATH]));
BXE_PRINTF(
" 0x%04X - CSTORM [ETH_RDMA_CQ_CONS]\n",
le16toh(def_sb->c_def_status_block.index_values[HC_INDEX_DEF_C_ETH_RDMA_CQ_CONS]));
BXE_PRINTF(
" 0x%04X - CSTORM [ETH_ISCSI_CQ_CONS]\n",
le16toh(def_sb->c_def_status_block.index_values[HC_INDEX_DEF_C_ETH_ISCSI_CQ_CONS]));
BXE_PRINTF(
" 0x%04X - CSTORM [UNUSED]\n",
le16toh(def_sb->c_def_status_block.index_values[6]));
BXE_PRINTF(
" 0x%04X - CSTORM [UNUSED]\n",
le16toh(def_sb->c_def_status_block.index_values[7]));
/* Print the TSTORM fields (HC_TSTORM_DEF_SB_NUM_INDICES). */
BXE_PRINTF(
" 0x%02X - TSTORM Status Block ID\n",
def_sb->t_def_status_block.status_block_id);
BXE_PRINTF(
" 0x%04X - TSTORM Status Block Index\n",
le16toh(def_sb->t_def_status_block.status_block_index));
for (i = 0; i < HC_TSTORM_DEF_SB_NUM_INDICES; i++)
BXE_PRINTF(
" 0x%04X - TSTORM [UNUSED]\n",
le16toh(def_sb->t_def_status_block.index_values[i]));
/* Print the XSTORM fields (HC_XSTORM_DEF_SB_NUM_INDICES). */
BXE_PRINTF(
" 0x%02X - XSTORM Status Block ID\n",
def_sb->x_def_status_block.status_block_id);
BXE_PRINTF(
" 0x%04X - XSTORM Status Block Index\n",
le16toh(def_sb->x_def_status_block.status_block_index));
for (i = 0; i < HC_XSTORM_DEF_SB_NUM_INDICES; i++)
BXE_PRINTF(
" 0x%04X - XSTORM [UNUSED]\n",
le16toh(def_sb->x_def_status_block.index_values[i]));
BXE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/*
* Prints out the statistics block from host memory.
*
* Returns:
* Nothing.
*/
static __noinline
void bxe_dump_stats_block(struct bxe_softc *sc)
{
}
/*
* Prints out a summary of the fastpath state.
*
* Returns:
* Nothing.
*/
static __noinline
void bxe_dump_fp_state(struct bxe_fastpath *fp)
{
struct bxe_softc *sc;
uint32_t val_hi, val_lo;
int i;
sc = fp->sc;
BXE_PRINTF(
"----------------------------"
" Fastpath State "
"----------------------------\n");
val_hi = U64_HI(fp);
val_lo = U64_LO(fp);
BXE_PRINTF(
"0x%08X:%08X - (fp[%02d]) fastpath virtual address\n",
val_hi, val_lo, fp->index);
BXE_PRINTF(
" %3d - (fp[%02d]->sb_id)\n",
fp->sb_id, fp->index);
BXE_PRINTF(
" %3d - (fp[%02d]->cl_id)\n",
fp->cl_id, fp->index);
BXE_PRINTF(
" 0x%08X - (fp[%02d]->state)\n",
(uint32_t)fp->state, fp->index);
/* Receive state. */
BXE_PRINTF(
" 0x%04X - (fp[%02d]->rx_bd_prod)\n",
fp->rx_bd_prod, fp->index);
BXE_PRINTF(
" 0x%04X - (fp[%02d]->rx_bd_cons)\n",
fp->rx_bd_cons, fp->index);
BXE_PRINTF(
" 0x%04X - (fp[%02d]->rx_cq_prod)\n",
fp->rx_cq_prod, fp->index);
BXE_PRINTF(
" 0x%04X - (fp[%02d]->rx_cq_cons)\n",
fp->rx_cq_cons, fp->index);
BXE_PRINTF(
" %16lu - (fp[%02d]->rx_pkts)\n",
fp->rx_pkts, fp->index);
BXE_PRINTF(
" 0x%08X - (fp[%02d]->rx_mbuf_alloc)\n",
fp->rx_mbuf_alloc, fp->index);
BXE_PRINTF(
" %16lu - (fp[%02d]->ipackets)\n",
fp->ipackets, fp->index);
BXE_PRINTF(
" %16lu - (fp[%02d]->rx_soft_errors)\n",
fp->rx_soft_errors, fp->index);
/* Transmit state. */
BXE_PRINTF(
" 0x%04X - (fp[%02d]->tx_bd_used)\n",
fp->tx_bd_used, fp->index);
BXE_PRINTF(
" 0x%04X - (fp[%02d]->tx_bd_prod)\n",
fp->tx_bd_prod, fp->index);
BXE_PRINTF(
" 0x%04X - (fp[%02d]->tx_bd_cons)\n",
fp->tx_bd_cons, fp->index);
BXE_PRINTF(
" 0x%04X - (fp[%02d]->tx_pkt_prod)\n",
fp->tx_pkt_prod, fp->index);
BXE_PRINTF(
" 0x%04X - (fp[%02d]->tx_pkt_cons)\n",
fp->tx_pkt_cons, fp->index);
BXE_PRINTF(
" %16lu - (fp[%02d]->tx_pkts)\n",
fp->tx_pkts, fp->index);
BXE_PRINTF(
" 0x%08X - (fp[%02d]->tx_mbuf_alloc)\n",
fp->tx_mbuf_alloc, fp->index);
BXE_PRINTF(
" %16lu - (fp[%02d]->opackets)\n",
fp->opackets, fp->index);
BXE_PRINTF(
" %16lu - (fp[%02d]->tx_soft_errors)\n",
fp->tx_soft_errors, fp->index);
/* TPA state. */
if (TPA_ENABLED(sc)) {
BXE_PRINTF(
" %16lu - (fp[%02d]->rx_tpa_pkts)\n",
fp->rx_tpa_pkts, fp->index);
BXE_PRINTF(
" 0x%08X - (fp[%02d]->tpa_mbuf_alloc)\n",
fp->tpa_mbuf_alloc, fp->index);
BXE_PRINTF(
" 0x%08X - (fp[%02d]->sge_mbuf_alloc)\n",
fp->sge_mbuf_alloc, fp->index);
if (CHIP_IS_E1(sc)) {
for (i = 0; i < ETH_MAX_AGGREGATION_QUEUES_E1; i++)
BXE_PRINTF(
" 0x%08X - (fp[%02d]->tpa_state[%02d])\n",
(uint32_t)fp->tpa_state[i], fp->index, i);
} else {
for (i = 0; i < ETH_MAX_AGGREGATION_QUEUES_E1; i++)
BXE_PRINTF(
" 0x%08X - (fp[%02d]->tpa_state[%02d])\n",
(uint32_t)fp->tpa_state[i], fp->index, i);
}
}
BXE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/*
* Returns:
* Nothing.
*/
static __noinline
void bxe_dump_port_state_locked(struct bxe_softc *sc)
{
BXE_PRINTF(
"------------------------------"
" Port State "
"------------------------------\n");
BXE_PRINTF(
" %2d - (port) pmf\n", sc->port.pmf);
BXE_PRINTF(
"0x%08X - (port) link_config\n", sc->port.link_config);
BXE_PRINTF(
"0x%08X - (port) supported\n", sc->port.supported);
BXE_PRINTF(
"0x%08X - (port) advertising\n", sc->port.advertising);
BXE_PRINTF(
"0x%08X - (port) port_stx\n", sc->port.port_stx);
BXE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/*
* Returns:
* Nothing.
*/
static __noinline
void bxe_dump_link_vars_state_locked(struct bxe_softc *sc)
{
BXE_PRINTF(
"---------------------------"
" Link Vars State "
"----------------------------\n");
switch (sc->link_vars.mac_type) {
case MAC_TYPE_NONE:
BXE_PRINTF(" NONE");
break;
case MAC_TYPE_EMAC:
BXE_PRINTF(" EMAC");
break;
case MAC_TYPE_BMAC:
BXE_PRINTF(" BMAC");
break;
default:
BXE_PRINTF(" UNKN");
}
printf(" - (link_vars->mac_type)\n");
BXE_PRINTF(
" %2d - (link_vars->phy_link_up)\n",
sc->link_vars.phy_link_up);
BXE_PRINTF(
" %2d - (link_vars->link_up)\n",
sc->link_vars.link_up);
BXE_PRINTF(
" %2d - (link_vars->duplex)\n",
sc->link_vars.duplex);
BXE_PRINTF(
" 0x%04X - (link_vars->flow_ctrl)\n",
sc->link_vars.flow_ctrl);
BXE_PRINTF(
" 0x%04X - (link_vars->line_speed)\n",
sc->link_vars.line_speed);
BXE_PRINTF(
"0x%08X - (link_vars->ieee_fc)\n",
sc->link_vars.ieee_fc);
BXE_PRINTF(
"0x%08X - (link_vars->autoneg)\n",
sc->link_vars.autoneg);
BXE_PRINTF(
"0x%08X - (link_vars->phy_flags)\n",
sc->link_vars.phy_flags);
BXE_PRINTF(
"0x%08X - (link_vars->link_status)\n",
sc->link_vars.link_status);
BXE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/*
*
* Returns:
* Nothing.
*/
static __noinline
void bxe_dump_link_params_state_locked(struct bxe_softc *sc)
{
BXE_PRINTF(
"--------------------------"
" Link Params State "
"---------------------------\n");
BXE_PRINTF(
" %2d - (link_params->port)\n",
sc->link_params.port);
BXE_PRINTF(
" %2d - (link_params->loopback_mode)\n",
sc->link_params.loopback_mode);
BXE_PRINTF(
" %3d - (link_params->phy_addr)\n",
sc->link_params.phy_addr);
BXE_PRINTF(
" 0x%04X - (link_params->req_duplex)\n",
sc->link_params.req_duplex);
BXE_PRINTF(
" 0x%04X - (link_params->req_flow_ctrl)\n",
sc->link_params.req_flow_ctrl);
BXE_PRINTF(
" 0x%04X - (link_params->req_line_speed)\n",
sc->link_params.req_line_speed);
BXE_PRINTF(
" %5d - (link_params->ether_mtu)\n",
sc->port.ether_mtu);
BXE_PRINTF(
"0x%08X - (link_params->shmem_base) shared memory base address\n",
sc->link_params.shmem_base);
BXE_PRINTF(
"0x%08X - (link_params->speed_cap_mask)\n",
sc->link_params.speed_cap_mask);
BXE_PRINTF(
"0x%08X - (link_params->ext_phy_config)\n",
sc->link_params.ext_phy_config);
BXE_PRINTF(
"0x%08X - (link_params->switch_cfg)\n",
sc->link_params.switch_cfg);
BXE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/*
* Prints out a summary of the driver state.
*
* Returns:
* Nothing.
*/
static __noinline
void bxe_dump_driver_state(struct bxe_softc *sc)
{
uint32_t val_hi, val_lo;
BXE_PRINTF(
"-----------------------------"
" Driver State "
"-----------------------------\n");
val_hi = U64_HI(sc);
val_lo = U64_LO(sc);
BXE_PRINTF(
"0x%08X:%08X - (sc) driver softc structure virtual address\n",
val_hi, val_lo);
val_hi = U64_HI(sc->bxe_vhandle);
val_lo = U64_LO(sc->bxe_vhandle);
BXE_PRINTF(
"0x%08X:%08X - (sc->bxe_vhandle) PCI BAR0 virtual address\n",
val_hi, val_lo);
val_hi = U64_HI(sc->bxe_db_vhandle);
val_lo = U64_LO(sc->bxe_db_vhandle);
BXE_PRINTF(
"0x%08X:%08X - (sc->bxe_db_vhandle) PCI BAR2 virtual address\n",
val_hi, val_lo);
BXE_PRINTF(" 0x%08X - (sc->num_queues) Fastpath queues\n",
sc->num_queues);
BXE_PRINTF(" 0x%08X - (sc->rx_lane_swap) RX XAUI lane swap\n",
sc->rx_lane_swap);
BXE_PRINTF(" 0x%08X - (sc->tx_lane_swap) TX XAUI lane swap\n",
sc->tx_lane_swap);
BXE_PRINTF(" %16lu - (sc->debug_sim_mbuf_alloc_failed)\n",
sc->debug_sim_mbuf_alloc_failed);
BXE_PRINTF(" %16lu - (sc->debug_sim_mbuf_map_failed)\n",
sc->debug_sim_mbuf_map_failed);
BXE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
bxe_dump_port_state_locked(sc);
bxe_dump_link_params_state_locked(sc);
bxe_dump_link_vars_state_locked(sc);
}
/*
* Dump bootcode (MCP) debug buffer to the console.
*
* Returns:
* None
*/
static __noinline
void bxe_dump_fw(struct bxe_softc *sc)
{
uint32_t addr, mark, data[9], offset;
int word;
addr = sc->common.shmem_base - 0x0800 + 4;
mark = REG_RD(sc, addr);
mark = MCP_REG_MCPR_SCRATCH + ((mark + 0x3) & ~0x3) - 0x08000000;
BXE_PRINTF(
"---------------------------"
" MCP Debug Buffer "
"---------------------------\n");
/* Read from "mark" to the end of the buffer. */
for (offset = mark; offset <= sc->common.shmem_base;
offset += (0x8 * 4)) {
for (word = 0; word < 8; word++)
data[word] = htonl(REG_RD(sc, offset + 4 * word));
data[8] = 0x0;
printf("%s", (char *) data);
}
/* Read from the start of the buffer to "mark". */
for (offset = addr + 4; offset <= mark; offset += (0x8 * 4)) {
for (word = 0; word < 8; word++)
data[word] = htonl(REG_RD(sc, offset + 4 * word));
data[8] = 0x0;
printf("%s", (char *) data);
}
BXE_PRINTF(
"----------------------------"
"----------------"
"----------------------------\n");
}
/*
* Decode firmware messages.
*
* Returns:
* None
*/
static void
bxe_decode_mb_msgs(struct bxe_softc *sc, uint32_t drv_mb_header,
uint32_t fw_mb_header)
{
if (drv_mb_header) {
BXE_PRINTF("Driver message is ");
switch (drv_mb_header & DRV_MSG_CODE_MASK) {
case DRV_MSG_CODE_LOAD_REQ:
printf(
"LOAD_REQ (0x%08X)",
(uint32_t)DRV_MSG_CODE_LOAD_REQ);
break;
case DRV_MSG_CODE_LOAD_DONE:
printf(
"LOAD_DONE (0x%08X)",
(uint32_t)DRV_MSG_CODE_LOAD_DONE);
break;
case DRV_MSG_CODE_UNLOAD_REQ_WOL_EN:
printf(
"UNLOAD_REQ_WOL_EN (0x%08X)",
(uint32_t)DRV_MSG_CODE_UNLOAD_REQ_WOL_EN);
break;
case DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS:
printf(
"UNLOAD_REQ_WOL_DIS (0x%08X)",
(uint32_t)DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS);
break;
case DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP:
printf(
"UNLOADREQ_WOL_MCP (0x%08X)",
(uint32_t)DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP);
break;
case DRV_MSG_CODE_UNLOAD_DONE:
printf(
"UNLOAD_DONE (0x%08X)",
(uint32_t)DRV_MSG_CODE_UNLOAD_DONE);
break;
case DRV_MSG_CODE_DIAG_ENTER_REQ:
printf(
"DIAG_ENTER_REQ (0x%08X)",
(uint32_t)DRV_MSG_CODE_DIAG_ENTER_REQ);
break;
case DRV_MSG_CODE_DIAG_EXIT_REQ:
printf(
"DIAG_EXIT_REQ (0x%08X)",
(uint32_t)DRV_MSG_CODE_DIAG_EXIT_REQ);
break;
case DRV_MSG_CODE_VALIDATE_KEY:
printf(
"CODE_VALIDITY_KEY (0x%08X)",
(uint32_t)DRV_MSG_CODE_VALIDATE_KEY);
break;
case DRV_MSG_CODE_GET_CURR_KEY:
printf(
"GET_CURR_KEY (0x%08X)",
(uint32_t) DRV_MSG_CODE_GET_CURR_KEY);
break;
case DRV_MSG_CODE_GET_UPGRADE_KEY:
printf(
"GET_UPGRADE_KEY (0x%08X)",
(uint32_t)DRV_MSG_CODE_GET_UPGRADE_KEY);
break;
case DRV_MSG_CODE_GET_MANUF_KEY:
printf(
"GET_MANUF_KEY (0x%08X)",
(uint32_t)DRV_MSG_CODE_GET_MANUF_KEY);
break;
case DRV_MSG_CODE_LOAD_L2B_PRAM:
printf(
"LOAD_L2B_PRAM (0x%08X)",
(uint32_t)DRV_MSG_CODE_LOAD_L2B_PRAM);
break;
case BIOS_MSG_CODE_LIC_CHALLENGE:
printf(
"LIC_CHALLENGE (0x%08X)",
(uint32_t)BIOS_MSG_CODE_LIC_CHALLENGE);
break;
case BIOS_MSG_CODE_LIC_RESPONSE:
printf(
"LIC_RESPONSE (0x%08X)",
(uint32_t)BIOS_MSG_CODE_LIC_RESPONSE);
break;
case BIOS_MSG_CODE_VIRT_MAC_PRIM:
printf(
"VIRT_MAC_PRIM (0x%08X)",
(uint32_t)BIOS_MSG_CODE_VIRT_MAC_PRIM);
break;
case BIOS_MSG_CODE_VIRT_MAC_ISCSI:
printf(
"VIRT_MAC_ISCSI (0x%08X)",
(uint32_t)BIOS_MSG_CODE_VIRT_MAC_ISCSI);
break;
default:
printf(
"Unknown command (0x%08X)!",
(drv_mb_header & DRV_MSG_CODE_MASK));
}
printf(" (seq = 0x%04X)\n", (drv_mb_header &
DRV_MSG_SEQ_NUMBER_MASK));
}
if (fw_mb_header) {
BXE_PRINTF("Firmware response is ");
switch (fw_mb_header & FW_MSG_CODE_MASK) {
case FW_MSG_CODE_DRV_LOAD_COMMON:
printf(
"DRV_LOAD_COMMON (0x%08X)",
(uint32_t)FW_MSG_CODE_DRV_LOAD_COMMON);
break;
case FW_MSG_CODE_DRV_LOAD_PORT:
printf(
"DRV_LOAD_PORT (0x%08X)",
(uint32_t)FW_MSG_CODE_DRV_LOAD_PORT);
break;
case FW_MSG_CODE_DRV_LOAD_FUNCTION:
printf(
"DRV_LOAD_FUNCTION (0x%08X)",
(uint32_t)FW_MSG_CODE_DRV_LOAD_FUNCTION);
break;
case FW_MSG_CODE_DRV_LOAD_REFUSED:
printf(
"DRV_LOAD_REFUSED (0x%08X)",
(uint32_t)FW_MSG_CODE_DRV_LOAD_REFUSED);
break;
case FW_MSG_CODE_DRV_LOAD_DONE:
printf(
"DRV_LOAD_DONE (0x%08X)",
(uint32_t)FW_MSG_CODE_DRV_LOAD_DONE);
break;
case FW_MSG_CODE_DRV_UNLOAD_COMMON:
printf(
"DRV_UNLOAD_COMMON (0x%08X)",
(uint32_t)FW_MSG_CODE_DRV_UNLOAD_COMMON);
break;
case FW_MSG_CODE_DRV_UNLOAD_PORT:
printf(
"DRV_UNLOAD_PORT (0x%08X)",
(uint32_t)FW_MSG_CODE_DRV_UNLOAD_PORT);
break;
case FW_MSG_CODE_DRV_UNLOAD_FUNCTION:
printf(
"DRV_UNLOAD_FUNCTION (0x%08X)",
(uint32_t)FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
break;
case FW_MSG_CODE_DRV_UNLOAD_DONE:
printf(
"DRV_UNLOAD_DONE (0x%08X)",
(uint32_t)FW_MSG_CODE_DRV_UNLOAD_DONE);
break;
case FW_MSG_CODE_DIAG_ENTER_DONE:
printf(
"DIAG_ENTER_DONE (0x%08X)",
(uint32_t)FW_MSG_CODE_DIAG_ENTER_DONE);
break;
case FW_MSG_CODE_DIAG_REFUSE:
printf(
"DIAG_REFUSE (0x%08X)",
(uint32_t)FW_MSG_CODE_DIAG_REFUSE);
break;
case FW_MSG_CODE_DIAG_EXIT_DONE:
printf(
"DIAG_EXIT_DONE (0x%08X)",
(uint32_t)FW_MSG_CODE_DIAG_EXIT_DONE);
break;
case FW_MSG_CODE_VALIDATE_KEY_SUCCESS:
printf(
"VALIDATE_KEY_SUCCESS (0x%08X)",
(uint32_t)FW_MSG_CODE_VALIDATE_KEY_SUCCESS);
break;
case FW_MSG_CODE_VALIDATE_KEY_FAILURE:
printf(
"VALIDATE_KEY_FAILURE (0x%08X)",
(uint32_t)FW_MSG_CODE_VALIDATE_KEY_FAILURE);
break;
case FW_MSG_CODE_GET_KEY_DONE:
printf(
"GET_KEY_DONE (0x%08X)",
(uint32_t)FW_MSG_CODE_GET_KEY_DONE);
break;
case FW_MSG_CODE_NO_KEY:
printf(
"NO_KEY (0x%08X)",
(uint32_t)FW_MSG_CODE_NO_KEY);
break;
default:
printf(
"unknown value (0x%08X)!",
(fw_mb_header & FW_MSG_CODE_MASK));
}
printf(" (seq = 0x%04X)\n", (fw_mb_header &
FW_MSG_SEQ_NUMBER_MASK));
}
}
/*
* Prints a text string for the ramrod command.
*
* Returns:
* None
*/
static void
bxe_decode_ramrod_cmd(struct bxe_softc *sc, int command)
{
BXE_PRINTF("Ramrod command = ");
switch (command) {
case RAMROD_CMD_ID_ETH_PORT_SETUP:
printf("ETH_PORT_SETUP\n");
break;
case RAMROD_CMD_ID_ETH_CLIENT_SETUP:
printf("ETH_CLIENT_SETUP\n");
break;
case RAMROD_CMD_ID_ETH_STAT_QUERY:
printf("ETH_STAT_QUERY\n");
break;
case RAMROD_CMD_ID_ETH_UPDATE:
printf("ETH_UPDATE\n");
break;
case RAMROD_CMD_ID_ETH_HALT:
printf("ETH_HALT\n");
break;
case RAMROD_CMD_ID_ETH_SET_MAC:
printf("ETH_SET_MAC\n");
break;
case RAMROD_CMD_ID_ETH_CFC_DEL:
printf("ETH_CFC_DEL\n");
break;
case RAMROD_CMD_ID_ETH_PORT_DEL:
printf("ETH_PORT_DEL\n");
break;
case RAMROD_CMD_ID_ETH_FORWARD_SETUP:
printf("ETH_FORWARD_SETUP\n");
break;
default:
printf("Unknown ramrod command!\n");
}
}
/*
* Prints out driver information and forces a kernel breakpoint.
*
* Returns:
* Nothing.
*/
static void
bxe_breakpoint(struct bxe_softc *sc)
{
struct bxe_fastpath *fp;
int i;
fp = &sc->fp[0];
/* Unreachable code to silence the compiler about unused functions. */
if (0) {
bxe_reg_read16(sc, PCICFG_OFFSET);
bxe_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
bxe_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
bxe_dump_tx_chain(fp, 0, USABLE_TX_BD);
bxe_dump_rx_cq_chain(fp, 0, USABLE_RCQ_ENTRIES);
bxe_dump_rx_bd_chain(fp, 0, USABLE_RX_BD);
bxe_dump_status_block(sc);
bxe_dump_stats_block(sc);
bxe_dump_fp_state(fp);
bxe_dump_driver_state(sc);
bxe_dump_hw_state(sc);
bxe_dump_fw(sc);
}
/*
* Do some device sanity checking. Run it twice in case
* the hardware is still running so we can identify any
* transient conditions.
*/
bxe_idle_chk(sc); bxe_idle_chk(sc);
bxe_dump_driver_state(sc);
for (i = 0; i < sc->num_queues; i++)
bxe_dump_fp_state(&sc->fp[i]);
bxe_dump_status_block(sc);
bxe_dump_fw(sc);
/* Call the OS debugger. */
breakpoint();
}
#endif