freebsd-nq/sys/dev/usb/if_aue.c
2000-10-11 01:12:55 +00:00

1557 lines
36 KiB
C

/*
* Copyright (c) 1997, 1998, 1999, 2000
* Bill Paul <wpaul@ee.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* ADMtek AN986 Pegasus USB to ethernet driver. Datasheet is available
* from http://www.admtek.com.tw.
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The Pegasus chip uses four USB "endpoints" to provide 10/100 ethernet
* support: the control endpoint for reading/writing registers, burst
* read endpoint for packet reception, burst write for packet transmission
* and one for "interrupts." The chip uses the same RX filter scheme
* as the other ADMtek ethernet parts: one perfect filter entry for the
* the station address and a 64-bit multicast hash table. The chip supports
* both MII and HomePNA attachments.
*
* Since the maximum data transfer speed of USB is supposed to be 12Mbps,
* you're never really going to get 100Mbps speeds from this device. I
* think the idea is to allow the device to connect to 10 or 100Mbps
* networks, not necessarily to provide 100Mbps performance. Also, since
* the controller uses an external PHY chip, it's possible that board
* designers might simply choose a 10Mbps PHY.
*
* Registers are accessed using usbd_do_request(). Packet transfers are
* done using usbd_transfer() and friends.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <machine/clock.h> /* for DELAY */
#include <sys/bus.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/usb_ethersubr.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/usb/if_auereg.h>
MODULE_DEPEND(aue, miibus, 1, 1, 1);
/* "controller miibus0" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#ifndef lint
static const char rcsid[] =
"$FreeBSD$";
#endif
/*
* Various supported device vendors/products.
*/
Static struct aue_type aue_devs[] = {
{ USB_VENDOR_ADMTEK, USB_PRODUCT_ADMTEK_PEGASUS },
{ USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USB100 },
{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUATX },
{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650 },
{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX },
{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650TX_PNA },
{ USB_VENDOR_SMC, USB_PRODUCT_SMC_2202USB },
{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB100TX },
{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10TA },
{ USB_VENDOR_COREGA, USB_PRODUCT_COREGA_FETHER_USB_TX },
{ USB_VENDOR_KINGSTON, USB_PRODUCT_KINGSTON_KNU101TX, },
{ 0, 0 }
};
Static struct usb_qdat aue_qdat;
Static int aue_match __P((device_t));
Static int aue_attach __P((device_t));
Static int aue_detach __P((device_t));
Static int aue_tx_list_init __P((struct aue_softc *));
Static int aue_rx_list_init __P((struct aue_softc *));
Static int aue_newbuf __P((struct aue_softc *, struct aue_chain *,
struct mbuf *));
Static int aue_encap __P((struct aue_softc *, struct mbuf *, int));
#ifdef AUE_INTR_PIPE
Static void aue_intr __P((usbd_xfer_handle,
usbd_private_handle, usbd_status));
#endif
Static void aue_rxeof __P((usbd_xfer_handle,
usbd_private_handle, usbd_status));
Static void aue_txeof __P((usbd_xfer_handle,
usbd_private_handle, usbd_status));
Static void aue_tick __P((void *));
Static void aue_rxstart __P((struct ifnet *));
Static void aue_start __P((struct ifnet *));
Static int aue_ioctl __P((struct ifnet *, u_long, caddr_t));
Static void aue_init __P((void *));
Static void aue_stop __P((struct aue_softc *));
Static void aue_watchdog __P((struct ifnet *));
Static void aue_shutdown __P((device_t));
Static int aue_ifmedia_upd __P((struct ifnet *));
Static void aue_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
Static void aue_eeprom_getword __P((struct aue_softc *, int, u_int16_t *));
Static void aue_read_eeprom __P((struct aue_softc *, caddr_t, int,
int, int));
Static int aue_miibus_readreg __P((device_t, int, int));
Static int aue_miibus_writereg __P((device_t, int, int, int));
Static void aue_miibus_statchg __P((device_t));
Static void aue_setmulti __P((struct aue_softc *));
Static u_int32_t aue_crc __P((caddr_t));
Static void aue_reset __P((struct aue_softc *));
Static int csr_read_1 __P((struct aue_softc *, int));
Static int csr_write_1 __P((struct aue_softc *, int, int));
Static int csr_read_2 __P((struct aue_softc *, int));
Static int csr_write_2 __P((struct aue_softc *, int, int));
Static device_method_t aue_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, aue_match),
DEVMETHOD(device_attach, aue_attach),
DEVMETHOD(device_detach, aue_detach),
DEVMETHOD(device_shutdown, aue_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, aue_miibus_readreg),
DEVMETHOD(miibus_writereg, aue_miibus_writereg),
DEVMETHOD(miibus_statchg, aue_miibus_statchg),
{ 0, 0 }
};
Static driver_t aue_driver = {
"aue",
aue_methods,
sizeof(struct aue_softc)
};
Static devclass_t aue_devclass;
DRIVER_MODULE(if_aue, uhub, aue_driver, aue_devclass, usbd_driver_load, 0);
DRIVER_MODULE(miibus, aue, miibus_driver, miibus_devclass, 0, 0);
#define AUE_SETBIT(sc, reg, x) \
csr_write_1(sc, reg, csr_read_1(sc, reg) | (x))
#define AUE_CLRBIT(sc, reg, x) \
csr_write_1(sc, reg, csr_read_1(sc, reg) & ~(x))
Static int csr_read_1(sc, reg)
struct aue_softc *sc;
int reg;
{
usb_device_request_t req;
usbd_status err;
u_int8_t val = 0;
int s;
if (sc->aue_gone)
return(0);
s = splusb();
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = AUE_UR_READREG;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, 1);
err = usbd_do_request_flags(sc->aue_udev, &req,
&val, USBD_NO_TSLEEP, NULL);
splx(s);
if (err)
return(0);
return(val);
}
Static int csr_read_2(sc, reg)
struct aue_softc *sc;
int reg;
{
usb_device_request_t req;
usbd_status err;
u_int16_t val = 0;
int s;
if (sc->aue_gone)
return(0);
s = splusb();
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = AUE_UR_READREG;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, 2);
err = usbd_do_request_flags(sc->aue_udev, &req,
&val, USBD_NO_TSLEEP, NULL);
splx(s);
if (err)
return(0);
return(val);
}
Static int csr_write_1(sc, reg, val)
struct aue_softc *sc;
int reg, val;
{
usb_device_request_t req;
usbd_status err;
int s;
if (sc->aue_gone)
return(0);
s = splusb();
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = AUE_UR_WRITEREG;
USETW(req.wValue, val);
USETW(req.wIndex, reg);
USETW(req.wLength, 1);
err = usbd_do_request_flags(sc->aue_udev, &req,
&val, USBD_NO_TSLEEP, NULL);
splx(s);
if (err)
return(-1);
return(0);
}
Static int csr_write_2(sc, reg, val)
struct aue_softc *sc;
int reg, val;
{
usb_device_request_t req;
usbd_status err;
int s;
if (sc->aue_gone)
return(0);
s = splusb();
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = AUE_UR_WRITEREG;
USETW(req.wValue, val);
USETW(req.wIndex, reg);
USETW(req.wLength, 2);
err = usbd_do_request_flags(sc->aue_udev, &req,
&val, USBD_NO_TSLEEP, NULL);
splx(s);
if (err)
return(-1);
return(0);
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
Static void aue_eeprom_getword(sc, addr, dest)
struct aue_softc *sc;
int addr;
u_int16_t *dest;
{
register int i;
u_int16_t word = 0;
csr_write_1(sc, AUE_EE_REG, addr);
csr_write_1(sc, AUE_EE_CTL, AUE_EECTL_READ);
for (i = 0; i < AUE_TIMEOUT; i++) {
if (csr_read_1(sc, AUE_EE_CTL) &
AUE_EECTL_DONE)
break;
}
if (i == AUE_TIMEOUT) {
printf("aue%d: EEPROM read timed out\n",
sc->aue_unit);
}
word = csr_read_2(sc, AUE_EE_DATA);
*dest = word;
return;
}
/*
* Read a sequence of words from the EEPROM.
*/
Static void aue_read_eeprom(sc, dest, off, cnt, swap)
struct aue_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
aue_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return;
}
Static int aue_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct aue_softc *sc;
int i;
u_int16_t val = 0;
sc = device_get_softc(dev);
/*
* The Am79C901 HomePNA PHY actually contains
* two transceivers: a 1Mbps HomePNA PHY and a
* 10Mbps full/half duplex ethernet PHY with
* NWAY autoneg. However in the ADMtek adapter,
* only the 1Mbps PHY is actually connected to
* anything, so we ignore the 10Mbps one. It
* happens to be configured for MII address 3,
* so we filter that out.
*/
if (sc->aue_info->aue_vid == USB_VENDOR_ADMTEK &&
sc->aue_info->aue_did == USB_PRODUCT_ADMTEK_PEGASUS) {
if (phy == 3)
return(0);
#ifdef notdef
if (phy != 1)
return(0);
#endif
}
csr_write_1(sc, AUE_PHY_ADDR, phy);
csr_write_1(sc, AUE_PHY_CTL, reg|AUE_PHYCTL_READ);
for (i = 0; i < AUE_TIMEOUT; i++) {
if (csr_read_1(sc, AUE_PHY_CTL) &
AUE_PHYCTL_DONE)
break;
}
if (i == AUE_TIMEOUT) {
printf("aue%d: MII read timed out\n",
sc->aue_unit);
}
val = csr_read_2(sc, AUE_PHY_DATA);
return(val);
}
Static int aue_miibus_writereg(dev, phy, reg, data)
device_t dev;
int phy, reg, data;
{
struct aue_softc *sc;
int i;
if (phy == 3)
return(0);
sc = device_get_softc(dev);
csr_write_2(sc, AUE_PHY_DATA, data);
csr_write_1(sc, AUE_PHY_ADDR, phy);
csr_write_1(sc, AUE_PHY_CTL, reg|AUE_PHYCTL_WRITE);
for (i = 0; i < AUE_TIMEOUT; i++) {
if (csr_read_1(sc, AUE_PHY_CTL) &
AUE_PHYCTL_DONE)
break;
}
if (i == AUE_TIMEOUT) {
printf("aue%d: MII read timed out\n",
sc->aue_unit);
}
return(0);
}
Static void aue_miibus_statchg(dev)
device_t dev;
{
struct aue_softc *sc;
struct mii_data *mii;
sc = device_get_softc(dev);
mii = device_get_softc(sc->aue_miibus);
AUE_CLRBIT(sc, AUE_CTL0, AUE_CTL0_RX_ENB|AUE_CTL0_TX_ENB);
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
AUE_SETBIT(sc, AUE_CTL1, AUE_CTL1_SPEEDSEL);
} else {
AUE_CLRBIT(sc, AUE_CTL1, AUE_CTL1_SPEEDSEL);
}
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
AUE_SETBIT(sc, AUE_CTL1, AUE_CTL1_DUPLEX);
} else {
AUE_CLRBIT(sc, AUE_CTL1, AUE_CTL1_DUPLEX);
}
AUE_SETBIT(sc, AUE_CTL0, AUE_CTL0_RX_ENB|AUE_CTL0_TX_ENB);
/*
* Set the LED modes on the LinkSys adapter.
* This turns on the 'dual link LED' bin in the auxmode
* register of the Broadcom PHY.
*/
if ((sc->aue_info->aue_vid == USB_VENDOR_LINKSYS &&
sc->aue_info->aue_did == USB_PRODUCT_LINKSYS_USB100TX) ||
(sc->aue_info->aue_vid == USB_VENDOR_LINKSYS &&
sc->aue_info->aue_did == USB_PRODUCT_LINKSYS_USB10TA) ||
(sc->aue_info->aue_vid == USB_VENDOR_DLINK &&
sc->aue_info->aue_did == USB_PRODUCT_DLINK_DSB650TX) ||
(sc->aue_info->aue_vid == USB_VENDOR_DLINK &&
sc->aue_info->aue_did == USB_PRODUCT_DLINK_DSB650)) {
u_int16_t auxmode;
auxmode = aue_miibus_readreg(dev, 0, 0x1b);
aue_miibus_writereg(dev, 0, 0x1b, auxmode | 0x04);
}
return;
}
#define AUE_POLY 0xEDB88320
#define AUE_BITS 6
Static u_int32_t aue_crc(addr)
caddr_t addr;
{
u_int32_t idx, bit, data, crc;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (idx = 0; idx < 6; idx++) {
for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
crc = (crc >> 1) ^ (((crc ^ data) & 1) ? AUE_POLY : 0);
}
return (crc & ((1 << AUE_BITS) - 1));
}
Static void aue_setmulti(sc)
struct aue_softc *sc;
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
u_int32_t h = 0, i;
ifp = &sc->arpcom.ac_if;
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
AUE_SETBIT(sc, AUE_CTL0, AUE_CTL0_ALLMULTI);
return;
}
AUE_CLRBIT(sc, AUE_CTL0, AUE_CTL0_ALLMULTI);
/* first, zot all the existing hash bits */
for (i = 0; i < 8; i++)
csr_write_1(sc, AUE_MAR0 + i, 0);
/* now program new ones */
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = aue_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
AUE_SETBIT(sc, AUE_MAR + (h >> 3), 1 << (h & 0xF));
}
return;
}
Static void aue_reset(sc)
struct aue_softc *sc;
{
register int i;
AUE_SETBIT(sc, AUE_CTL1, AUE_CTL1_RESETMAC);
for (i = 0; i < AUE_TIMEOUT; i++) {
if (!(csr_read_1(sc, AUE_CTL1) & AUE_CTL1_RESETMAC))
break;
}
if (i == AUE_TIMEOUT)
printf("aue%d: reset failed\n", sc->aue_unit);
/*
* The PHY(s) attached to the Pegasus chip may be held
* in reset until we flip on the GPIO outputs. Make sure
* to set the GPIO pins high so that the PHY(s) will
* be enabled.
*
* Note: We force all of the GPIO pins low first, *then*
* enable the ones we want.
*/
csr_write_1(sc, AUE_GPIO0, AUE_GPIO_OUT0|AUE_GPIO_SEL0);
csr_write_1(sc, AUE_GPIO0, AUE_GPIO_OUT0|AUE_GPIO_SEL0|AUE_GPIO_SEL1);
/* Grrr. LinkSys has to be different from everyone else. */
if ((sc->aue_info->aue_vid == USB_VENDOR_LINKSYS &&
sc->aue_info->aue_did == USB_PRODUCT_LINKSYS_USB100TX) ||
(sc->aue_info->aue_vid == USB_VENDOR_LINKSYS &&
sc->aue_info->aue_did == USB_PRODUCT_LINKSYS_USB10TA) ||
(sc->aue_info->aue_vid == USB_VENDOR_DLINK &&
sc->aue_info->aue_did == USB_PRODUCT_DLINK_DSB650TX) ||
(sc->aue_info->aue_vid == USB_VENDOR_DLINK &&
sc->aue_info->aue_did == USB_PRODUCT_DLINK_DSB650)) {
csr_write_1(sc, AUE_GPIO0, AUE_GPIO_SEL0|AUE_GPIO_SEL1);
csr_write_1(sc, AUE_GPIO0, AUE_GPIO_SEL0|AUE_GPIO_SEL1|
AUE_GPIO_OUT0);
}
/* Wait a little while for the chip to get its brains in order. */
DELAY(10000);
return;
}
/*
* Probe for a Pegasus chip.
*/
USB_MATCH(aue)
{
USB_MATCH_START(aue, uaa);
struct aue_type *t;
if (!uaa->iface)
return(UMATCH_NONE);
t = aue_devs;
while(t->aue_vid) {
if (uaa->vendor == t->aue_vid &&
uaa->product == t->aue_did) {
return(UMATCH_VENDOR_PRODUCT);
}
t++;
}
return(UMATCH_NONE);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
USB_ATTACH(aue)
{
USB_ATTACH_START(aue, sc, uaa);
char devinfo[1024];
int s;
u_char eaddr[ETHER_ADDR_LEN];
struct ifnet *ifp;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
int i;
struct aue_type *t;
s = splimp();
bzero(sc, sizeof(struct aue_softc));
sc->aue_iface = uaa->iface;
sc->aue_udev = uaa->device;
sc->aue_unit = device_get_unit(self);
if (usbd_set_config_no(sc->aue_udev, AUE_CONFIG_NO, 0)) {
printf("aue%d: getting interface handle failed\n",
sc->aue_unit);
splx(s);
USB_ATTACH_ERROR_RETURN;
}
t = aue_devs;
while(t->aue_vid) {
if (uaa->vendor == t->aue_vid &&
uaa->product == t->aue_did) {
sc->aue_info = t;
break;
}
t++;
}
id = usbd_get_interface_descriptor(uaa->iface);
usbd_devinfo(uaa->device, 0, devinfo);
device_set_desc_copy(self, devinfo);
printf("%s: %s\n", USBDEVNAME(self), devinfo);
/* Find endpoints. */
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(uaa->iface, i);
if (!ed) {
printf("aue%d: couldn't get ep %d\n",
sc->aue_unit, i);
splx(s);
USB_ATTACH_ERROR_RETURN;
}
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
(ed->bmAttributes & UE_XFERTYPE) == UE_BULK) {
sc->aue_ed[AUE_ENDPT_RX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
(ed->bmAttributes & UE_XFERTYPE) == UE_BULK) {
sc->aue_ed[AUE_ENDPT_TX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
(ed->bmAttributes & UE_XFERTYPE) == UE_INTERRUPT) {
sc->aue_ed[AUE_ENDPT_INTR] = ed->bEndpointAddress;
}
}
/* Reset the adapter. */
aue_reset(sc);
/*
* Get station address from the EEPROM.
*/
aue_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 0);
/*
* A Pegasus chip was detected. Inform the world.
*/
printf("aue%d: Ethernet address: %6D\n", sc->aue_unit, eaddr, ":");
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = sc->aue_unit;
ifp->if_name = "aue";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = aue_ioctl;
ifp->if_output = ether_output;
ifp->if_start = aue_start;
ifp->if_watchdog = aue_watchdog;
ifp->if_init = aue_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
/*
* Do MII setup.
* NOTE: Doing this causes child devices to be attached to us,
* which we would normally disconnect at in the detach routine
* using device_delete_child(). However the USB code is set up
* such that when this driver is removed, all children devices
* are removed as well. In effect, the USB code ends up detaching
* all of our children for us, so we don't have to do is ourselves
* in aue_detach(). It's important to point this out since if
* we *do* try to detach the child devices ourselves, we will
* end up getting the children deleted twice, which will crash
* the system.
*/
if (mii_phy_probe(self, &sc->aue_miibus,
aue_ifmedia_upd, aue_ifmedia_sts)) {
printf("aue%d: MII without any PHY!\n", sc->aue_unit);
splx(s);
USB_ATTACH_ERROR_RETURN;
}
aue_qdat.ifp = ifp;
aue_qdat.if_rxstart = aue_rxstart;
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
callout_handle_init(&sc->aue_stat_ch);
usb_register_netisr();
sc->aue_gone = 0;
splx(s);
USB_ATTACH_SUCCESS_RETURN;
}
Static int aue_detach(dev)
device_t dev;
{
struct aue_softc *sc;
struct ifnet *ifp;
int s;
s = splusb();
sc = device_get_softc(dev);
ifp = &sc->arpcom.ac_if;
sc->aue_gone = 1;
untimeout(aue_tick, sc, sc->aue_stat_ch);
ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
if (sc->aue_ep[AUE_ENDPT_TX] != NULL)
usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_TX]);
if (sc->aue_ep[AUE_ENDPT_RX] != NULL)
usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_RX]);
#ifdef AUE_INTR_PIPE
if (sc->aue_ep[AUE_ENDPT_INTR] != NULL)
usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_INTR]);
#endif
splx(s);
return(0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
Static int aue_newbuf(sc, c, m)
struct aue_softc *sc;
struct aue_chain *c;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("aue%d: no memory for rx list "
"-- packet dropped!\n", sc->aue_unit);
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("aue%d: no memory for rx list "
"-- packet dropped!\n", sc->aue_unit);
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, ETHER_ALIGN);
c->aue_mbuf = m_new;
return(0);
}
Static int aue_rx_list_init(sc)
struct aue_softc *sc;
{
struct aue_cdata *cd;
struct aue_chain *c;
int i;
cd = &sc->aue_cdata;
for (i = 0; i < AUE_RX_LIST_CNT; i++) {
c = &cd->aue_rx_chain[i];
c->aue_sc = sc;
c->aue_idx = i;
if (aue_newbuf(sc, c, NULL) == ENOBUFS)
return(ENOBUFS);
if (c->aue_xfer == NULL) {
c->aue_xfer = usbd_alloc_xfer(sc->aue_udev);
if (c->aue_xfer == NULL)
return(ENOBUFS);
}
}
return(0);
}
Static int aue_tx_list_init(sc)
struct aue_softc *sc;
{
struct aue_cdata *cd;
struct aue_chain *c;
int i;
cd = &sc->aue_cdata;
for (i = 0; i < AUE_TX_LIST_CNT; i++) {
c = &cd->aue_tx_chain[i];
c->aue_sc = sc;
c->aue_idx = i;
c->aue_mbuf = NULL;
if (c->aue_xfer == NULL) {
c->aue_xfer = usbd_alloc_xfer(sc->aue_udev);
if (c->aue_xfer == NULL)
return(ENOBUFS);
}
c->aue_buf = malloc(AUE_BUFSZ, M_USBDEV, M_NOWAIT);
if (c->aue_buf == NULL)
return(ENOBUFS);
}
return(0);
}
#ifdef AUE_INTR_PIPE
Static void aue_intr(xfer, priv, status)
usbd_xfer_handle xfer;
usbd_private_handle priv;
usbd_status status;
{
struct aue_softc *sc;
struct ifnet *ifp;
struct aue_intrpkt *p;
int s;
s = splimp();
sc = priv;
ifp = &sc->arpcom.ac_if;
if (!(ifp->if_flags & IFF_RUNNING)) {
splx(s);
return;
}
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
splx(s);
return;
}
printf("aue%d: usb error on intr: %s\n", sc->aue_unit,
usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall(sc->aue_ep[AUE_ENDPT_RX]);
splx(s);
return;
}
usbd_get_xfer_status(xfer, NULL, (void **)&p, NULL, NULL);
if (p->aue_txstat0)
ifp->if_oerrors++;
if (p->aue_txstat0 & (AUE_TXSTAT0_LATECOLL & AUE_TXSTAT0_EXCESSCOLL))
ifp->if_collisions++;
splx(s);
return;
}
#endif
Static void aue_rxstart(ifp)
struct ifnet *ifp;
{
struct aue_softc *sc;
struct aue_chain *c;
sc = ifp->if_softc;
c = &sc->aue_cdata.aue_rx_chain[sc->aue_cdata.aue_rx_prod];
if (aue_newbuf(sc, c, NULL) == ENOBUFS) {
ifp->if_ierrors++;
return;
}
/* Setup new transfer. */
usbd_setup_xfer(c->aue_xfer, sc->aue_ep[AUE_ENDPT_RX],
c, mtod(c->aue_mbuf, char *), AUE_BUFSZ, USBD_SHORT_XFER_OK,
USBD_NO_TIMEOUT, aue_rxeof);
usbd_transfer(c->aue_xfer);
return;
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
Static void aue_rxeof(xfer, priv, status)
usbd_xfer_handle xfer;
usbd_private_handle priv;
usbd_status status;
{
struct aue_softc *sc;
struct aue_chain *c;
struct mbuf *m;
struct ifnet *ifp;
int total_len = 0;
struct aue_rxpkt r;
c = priv;
sc = c->aue_sc;
ifp = &sc->arpcom.ac_if;
if (!(ifp->if_flags & IFF_RUNNING))
return;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
printf("aue%d: usb error on rx: %s\n", sc->aue_unit,
usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall(sc->aue_ep[AUE_ENDPT_RX]);
goto done;
}
usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL);
if (total_len <= 4 + ETHER_CRC_LEN) {
ifp->if_ierrors++;
goto done;
}
m = c->aue_mbuf;
bcopy(mtod(m, char *) + total_len - 4, (char *)&r, sizeof(r));
/* Turn off all the non-error bits in the rx status word. */
r.aue_rxstat &= AUE_RXSTAT_MASK;
if (r.aue_rxstat) {
ifp->if_ierrors++;
goto done;
}
/* No errors; receive the packet. */
total_len -= (4 + ETHER_CRC_LEN);
ifp->if_ipackets++;
m->m_pkthdr.rcvif = (struct ifnet *)&aue_qdat;
m->m_pkthdr.len = m->m_len = total_len;
/* Put the packet on the special USB input queue. */
usb_ether_input(m);
return;
done:
/* Setup new transfer. */
usbd_setup_xfer(xfer, sc->aue_ep[AUE_ENDPT_RX],
c, mtod(c->aue_mbuf, char *), AUE_BUFSZ, USBD_SHORT_XFER_OK,
USBD_NO_TIMEOUT, aue_rxeof);
usbd_transfer(xfer);
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
Static void aue_txeof(xfer, priv, status)
usbd_xfer_handle xfer;
usbd_private_handle priv;
usbd_status status;
{
struct aue_softc *sc;
struct aue_chain *c;
struct ifnet *ifp;
usbd_status err;
int s;
s = splimp();
c = priv;
sc = c->aue_sc;
ifp = &sc->arpcom.ac_if;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
splx(s);
return;
}
printf("aue%d: usb error on tx: %s\n", sc->aue_unit,
usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall(sc->aue_ep[AUE_ENDPT_TX]);
splx(s);
return;
}
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
usbd_get_xfer_status(c->aue_xfer, NULL, NULL, NULL, &err);
if (c->aue_mbuf != NULL) {
c->aue_mbuf->m_pkthdr.rcvif = ifp;
usb_tx_done(c->aue_mbuf);
c->aue_mbuf = NULL;
}
if (err)
ifp->if_oerrors++;
else
ifp->if_opackets++;
splx(s);
return;
}
Static void aue_tick(xsc)
void *xsc;
{
struct aue_softc *sc;
struct ifnet *ifp;
struct mii_data *mii;
int s;
s = splimp();
sc = xsc;
if (sc == NULL) {
splx(s);
return;
}
ifp = &sc->arpcom.ac_if;
mii = device_get_softc(sc->aue_miibus);
if (mii == NULL) {
splx(s);
return;
}
mii_tick(mii);
if (!sc->aue_link) {
mii_pollstat(mii);
if (mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
sc->aue_link++;
if (ifp->if_snd.ifq_head != NULL)
aue_start(ifp);
}
sc->aue_stat_ch = timeout(aue_tick, sc, hz);
splx(s);
return;
}
Static int aue_encap(sc, m, idx)
struct aue_softc *sc;
struct mbuf *m;
int idx;
{
int total_len;
struct aue_chain *c;
usbd_status err;
c = &sc->aue_cdata.aue_tx_chain[idx];
/*
* Copy the mbuf data into a contiguous buffer, leaving two
* bytes at the beginning to hold the frame length.
*/
m_copydata(m, 0, m->m_pkthdr.len, c->aue_buf + 2);
c->aue_mbuf = m;
total_len = m->m_pkthdr.len + 2;
/*
* The ADMtek documentation says that the packet length is
* supposed to be specified in the first two bytes of the
* transfer, however it actually seems to ignore this info
* and base the frame size on the bulk transfer length.
*/
c->aue_buf[0] = (u_int8_t)m->m_pkthdr.len;
c->aue_buf[1] = (u_int8_t)(m->m_pkthdr.len >> 8);
usbd_setup_xfer(c->aue_xfer, sc->aue_ep[AUE_ENDPT_TX],
c, c->aue_buf, total_len, USBD_FORCE_SHORT_XFER,
10000, aue_txeof);
/* Transmit */
err = usbd_transfer(c->aue_xfer);
if (err != USBD_IN_PROGRESS) {
aue_stop(sc);
return(EIO);
}
sc->aue_cdata.aue_tx_cnt++;
return(0);
}
Static void aue_start(ifp)
struct ifnet *ifp;
{
struct aue_softc *sc;
struct mbuf *m_head = NULL;
sc = ifp->if_softc;
if (!sc->aue_link)
return;
if (ifp->if_flags & IFF_OACTIVE)
return;
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
return;
if (aue_encap(sc, m_head, 0)) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
return;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, m_head);
ifp->if_flags |= IFF_OACTIVE;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
Static void aue_init(xsc)
void *xsc;
{
struct aue_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct mii_data *mii;
struct aue_chain *c;
usbd_status err;
int i, s;
if (ifp->if_flags & IFF_RUNNING)
return;
s = splimp();
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
aue_reset(sc);
mii = device_get_softc(sc->aue_miibus);
/* Set MAC address */
for (i = 0; i < ETHER_ADDR_LEN; i++)
csr_write_1(sc, AUE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
AUE_SETBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC);
} else {
AUE_CLRBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC);
}
/* Init TX ring. */
if (aue_tx_list_init(sc) == ENOBUFS) {
printf("aue%d: tx list init failed\n", sc->aue_unit);
splx(s);
return;
}
/* Init RX ring. */
if (aue_rx_list_init(sc) == ENOBUFS) {
printf("aue%d: rx list init failed\n", sc->aue_unit);
splx(s);
return;
}
#ifdef AUE_INTR_PIPE
sc->aue_cdata.aue_ibuf = malloc(AUE_INTR_PKTLEN, M_USBDEV, M_NOWAIT);
#endif
/* Load the multicast filter. */
aue_setmulti(sc);
/* Enable RX and TX */
csr_write_1(sc, AUE_CTL0, AUE_CTL0_RXSTAT_APPEND|AUE_CTL0_RX_ENB);
AUE_SETBIT(sc, AUE_CTL0, AUE_CTL0_TX_ENB);
AUE_SETBIT(sc, AUE_CTL2, AUE_CTL2_EP3_CLR);
mii_mediachg(mii);
/* Open RX and TX pipes. */
err = usbd_open_pipe(sc->aue_iface, sc->aue_ed[AUE_ENDPT_RX],
USBD_EXCLUSIVE_USE, &sc->aue_ep[AUE_ENDPT_RX]);
if (err) {
printf("aue%d: open rx pipe failed: %s\n",
sc->aue_unit, usbd_errstr(err));
splx(s);
return;
}
err = usbd_open_pipe(sc->aue_iface, sc->aue_ed[AUE_ENDPT_TX],
USBD_EXCLUSIVE_USE, &sc->aue_ep[AUE_ENDPT_TX]);
if (err) {
printf("aue%d: open tx pipe failed: %s\n",
sc->aue_unit, usbd_errstr(err));
splx(s);
return;
}
#ifdef AUE_INTR_PIPE
err = usbd_open_pipe_intr(sc->aue_iface, sc->aue_ed[AUE_ENDPT_INTR],
USBD_SHORT_XFER_OK, &sc->aue_ep[AUE_ENDPT_INTR], sc,
sc->aue_cdata.aue_ibuf, AUE_INTR_PKTLEN, aue_intr,
AUE_INTR_INTERVAL);
if (err) {
printf("aue%d: open intr pipe failed: %s\n",
sc->aue_unit, usbd_errstr(err));
splx(s);
return;
}
#endif
/* Start up the receive pipe. */
for (i = 0; i < AUE_RX_LIST_CNT; i++) {
c = &sc->aue_cdata.aue_rx_chain[i];
usbd_setup_xfer(c->aue_xfer, sc->aue_ep[AUE_ENDPT_RX],
c, mtod(c->aue_mbuf, char *), AUE_BUFSZ,
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, aue_rxeof);
usbd_transfer(c->aue_xfer);
}
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
(void)splx(s);
sc->aue_stat_ch = timeout(aue_tick, sc, hz);
return;
}
/*
* Set media options.
*/
Static int aue_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct aue_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->aue_miibus);
sc->aue_link = 0;
if (mii->mii_instance) {
struct mii_softc *miisc;
for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
miisc = LIST_NEXT(miisc, mii_list))
mii_phy_reset(miisc);
}
mii_mediachg(mii);
return(0);
}
/*
* Report current media status.
*/
Static void aue_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct aue_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->aue_miibus);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
return;
}
Static int aue_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct aue_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int s, error = 0;
s = splimp();
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->aue_if_flags & IFF_PROMISC)) {
AUE_SETBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->aue_if_flags & IFF_PROMISC) {
AUE_CLRBIT(sc, AUE_CTL2, AUE_CTL2_RX_PROMISC);
} else if (!(ifp->if_flags & IFF_RUNNING))
aue_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
aue_stop(sc);
}
sc->aue_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
aue_setmulti(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->aue_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
error = EINVAL;
break;
}
(void)splx(s);
return(error);
}
Static void aue_watchdog(ifp)
struct ifnet *ifp;
{
struct aue_softc *sc;
struct aue_chain *c;
usbd_status stat;
sc = ifp->if_softc;
ifp->if_oerrors++;
printf("aue%d: watchdog timeout\n", sc->aue_unit);
c = &sc->aue_cdata.aue_tx_chain[0];
usbd_get_xfer_status(c->aue_xfer, NULL, NULL, NULL, &stat);
aue_txeof(c->aue_xfer, c, stat);
if (ifp->if_snd.ifq_head != NULL)
aue_start(ifp);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
Static void aue_stop(sc)
struct aue_softc *sc;
{
usbd_status err;
struct ifnet *ifp;
int i;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
csr_write_1(sc, AUE_CTL0, 0);
csr_write_1(sc, AUE_CTL1, 0);
aue_reset(sc);
untimeout(aue_tick, sc, sc->aue_stat_ch);
/* Stop transfers. */
if (sc->aue_ep[AUE_ENDPT_RX] != NULL) {
err = usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_RX]);
if (err) {
printf("aue%d: abort rx pipe failed: %s\n",
sc->aue_unit, usbd_errstr(err));
}
err = usbd_close_pipe(sc->aue_ep[AUE_ENDPT_RX]);
if (err) {
printf("aue%d: close rx pipe failed: %s\n",
sc->aue_unit, usbd_errstr(err));
}
sc->aue_ep[AUE_ENDPT_RX] = NULL;
}
if (sc->aue_ep[AUE_ENDPT_TX] != NULL) {
err = usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_TX]);
if (err) {
printf("aue%d: abort tx pipe failed: %s\n",
sc->aue_unit, usbd_errstr(err));
}
err = usbd_close_pipe(sc->aue_ep[AUE_ENDPT_TX]);
if (err) {
printf("aue%d: close tx pipe failed: %s\n",
sc->aue_unit, usbd_errstr(err));
}
sc->aue_ep[AUE_ENDPT_TX] = NULL;
}
#ifdef AUE_INTR_PIPE
if (sc->aue_ep[AUE_ENDPT_INTR] != NULL) {
err = usbd_abort_pipe(sc->aue_ep[AUE_ENDPT_INTR]);
if (err) {
printf("aue%d: abort intr pipe failed: %s\n",
sc->aue_unit, usbd_errstr(err));
}
err = usbd_close_pipe(sc->aue_ep[AUE_ENDPT_INTR]);
if (err) {
printf("aue%d: close intr pipe failed: %s\n",
sc->aue_unit, usbd_errstr(err));
}
sc->aue_ep[AUE_ENDPT_INTR] = NULL;
}
#endif
/* Free RX resources. */
for (i = 0; i < AUE_RX_LIST_CNT; i++) {
if (sc->aue_cdata.aue_rx_chain[i].aue_buf != NULL) {
free(sc->aue_cdata.aue_rx_chain[i].aue_buf, M_USBDEV);
sc->aue_cdata.aue_rx_chain[i].aue_buf = NULL;
}
if (sc->aue_cdata.aue_rx_chain[i].aue_mbuf != NULL) {
m_freem(sc->aue_cdata.aue_rx_chain[i].aue_mbuf);
sc->aue_cdata.aue_rx_chain[i].aue_mbuf = NULL;
}
if (sc->aue_cdata.aue_rx_chain[i].aue_xfer != NULL) {
usbd_free_xfer(sc->aue_cdata.aue_rx_chain[i].aue_xfer);
sc->aue_cdata.aue_rx_chain[i].aue_xfer = NULL;
}
}
/* Free TX resources. */
for (i = 0; i < AUE_TX_LIST_CNT; i++) {
if (sc->aue_cdata.aue_tx_chain[i].aue_buf != NULL) {
free(sc->aue_cdata.aue_tx_chain[i].aue_buf, M_USBDEV);
sc->aue_cdata.aue_tx_chain[i].aue_buf = NULL;
}
if (sc->aue_cdata.aue_tx_chain[i].aue_mbuf != NULL) {
m_freem(sc->aue_cdata.aue_tx_chain[i].aue_mbuf);
sc->aue_cdata.aue_tx_chain[i].aue_mbuf = NULL;
}
if (sc->aue_cdata.aue_tx_chain[i].aue_xfer != NULL) {
usbd_free_xfer(sc->aue_cdata.aue_tx_chain[i].aue_xfer);
sc->aue_cdata.aue_tx_chain[i].aue_xfer = NULL;
}
}
#ifdef AUE_INTR_PIPE
free(sc->aue_cdata.aue_ibuf, M_USBDEV);
sc->aue_cdata.aue_ibuf = NULL;
#endif
sc->aue_link = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
Static void aue_shutdown(dev)
device_t dev;
{
struct aue_softc *sc;
sc = device_get_softc(dev);
aue_reset(sc);
aue_stop(sc);
return;
}