freebsd-nq/sys/geom/geom_ccd.c
Marcel Moolenaar 41063f9380 Change gctl_set_param() to return an error instead of setting an
error on the request.  Add a wrapper, gctl_set_param_err(), that
sets the error on the request from the error returned by
gctl_set_param() and update current callers of gctl_set_param()
to call gctl_set_param_err() instead.
This makes gctl_set_param() much more usable in situations where
the caller knows better what to do with certain (apparent) error
conditions and setting an error on the request is not one of the
things that need to be done.
2006-04-07 16:19:48 +00:00

870 lines
22 KiB
C

/*-
* Copyright (c) 2003 Poul-Henning Kamp.
* Copyright (c) 1995 Jason R. Thorpe.
* Copyright (c) 1990, 1993
* The Regents of the University of California. All rights reserved.
* All rights reserved.
* Copyright (c) 1988 University of Utah.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project
* by Jason R. Thorpe.
* 4. The names of the authors may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Dynamic configuration and disklabel support by:
* Jason R. Thorpe <thorpej@nas.nasa.gov>
* Numerical Aerodynamic Simulation Facility
* Mail Stop 258-6
* NASA Ames Research Center
* Moffett Field, CA 94035
*
* from: Utah $Hdr: cd.c 1.6 90/11/28$
* @(#)cd.c 8.2 (Berkeley) 11/16/93
* $NetBSD: ccd.c,v 1.22 1995/12/08 19:13:26 thorpej Exp $
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/bio.h>
#include <sys/malloc.h>
#include <geom/geom.h>
/*
* Number of blocks to untouched in front of a component partition.
* This is to avoid violating its disklabel area when it starts at the
* beginning of the slice.
*/
#if !defined(CCD_OFFSET)
#define CCD_OFFSET 16
#endif
/* sc_flags */
#define CCDF_UNIFORM 0x02 /* use LCCD of sizes for uniform interleave */
#define CCDF_MIRROR 0x04 /* use mirroring */
/* Mask of user-settable ccd flags. */
#define CCDF_USERMASK (CCDF_UNIFORM|CCDF_MIRROR)
/*
* Interleave description table.
* Computed at boot time to speed irregular-interleave lookups.
* The idea is that we interleave in "groups". First we interleave
* evenly over all component disks up to the size of the smallest
* component (the first group), then we interleave evenly over all
* remaining disks up to the size of the next-smallest (second group),
* and so on.
*
* Each table entry describes the interleave characteristics of one
* of these groups. For example if a concatenated disk consisted of
* three components of 5, 3, and 7 DEV_BSIZE blocks interleaved at
* DEV_BSIZE (1), the table would have three entries:
*
* ndisk startblk startoff dev
* 3 0 0 0, 1, 2
* 2 9 3 0, 2
* 1 13 5 2
* 0 - - -
*
* which says that the first nine blocks (0-8) are interleaved over
* 3 disks (0, 1, 2) starting at block offset 0 on any component disk,
* the next 4 blocks (9-12) are interleaved over 2 disks (0, 2) starting
* at component block 3, and the remaining blocks (13-14) are on disk
* 2 starting at offset 5.
*/
struct ccdiinfo {
int ii_ndisk; /* # of disks range is interleaved over */
daddr_t ii_startblk; /* starting scaled block # for range */
daddr_t ii_startoff; /* starting component offset (block #) */
int *ii_index; /* ordered list of components in range */
};
/*
* Component info table.
* Describes a single component of a concatenated disk.
*/
struct ccdcinfo {
daddr_t ci_size; /* size */
struct g_provider *ci_provider; /* provider */
struct g_consumer *ci_consumer; /* consumer */
};
/*
* A concatenated disk is described by this structure.
*/
struct ccd_s {
LIST_ENTRY(ccd_s) list;
int sc_unit; /* logical unit number */
int sc_flags; /* flags */
daddr_t sc_size; /* size of ccd */
int sc_ileave; /* interleave */
u_int sc_ndisks; /* number of components */
struct ccdcinfo *sc_cinfo; /* component info */
struct ccdiinfo *sc_itable; /* interleave table */
u_int32_t sc_secsize; /* # bytes per sector */
int sc_pick; /* side of mirror picked */
daddr_t sc_blk[2]; /* mirror localization */
};
static g_start_t g_ccd_start;
static void ccdiodone(struct bio *bp);
static void ccdinterleave(struct ccd_s *);
static int ccdinit(struct gctl_req *req, struct ccd_s *);
static int ccdbuffer(struct bio **ret, struct ccd_s *,
struct bio *, daddr_t, caddr_t, long);
static void
g_ccd_orphan(struct g_consumer *cp)
{
/*
* XXX: We don't do anything here. It is not obvious
* XXX: what DTRT would be, so we do what the previous
* XXX: code did: ignore it and let the user cope.
*/
}
static int
g_ccd_access(struct g_provider *pp, int dr, int dw, int de)
{
struct g_geom *gp;
struct g_consumer *cp1, *cp2;
int error;
de += dr;
de += dw;
gp = pp->geom;
error = ENXIO;
LIST_FOREACH(cp1, &gp->consumer, consumer) {
error = g_access(cp1, dr, dw, de);
if (error) {
LIST_FOREACH(cp2, &gp->consumer, consumer) {
if (cp1 == cp2)
break;
g_access(cp2, -dr, -dw, -de);
}
break;
}
}
return (error);
}
/*
* Free the softc and its substructures.
*/
static void
g_ccd_freesc(struct ccd_s *sc)
{
struct ccdiinfo *ii;
g_free(sc->sc_cinfo);
if (sc->sc_itable != NULL) {
for (ii = sc->sc_itable; ii->ii_ndisk > 0; ii++)
if (ii->ii_index != NULL)
g_free(ii->ii_index);
g_free(sc->sc_itable);
}
g_free(sc);
}
static int
ccdinit(struct gctl_req *req, struct ccd_s *cs)
{
struct ccdcinfo *ci;
daddr_t size;
int ix;
daddr_t minsize;
int maxsecsize;
off_t mediasize;
u_int sectorsize;
cs->sc_size = 0;
maxsecsize = 0;
minsize = 0;
for (ix = 0; ix < cs->sc_ndisks; ix++) {
ci = &cs->sc_cinfo[ix];
mediasize = ci->ci_provider->mediasize;
sectorsize = ci->ci_provider->sectorsize;
if (sectorsize > maxsecsize)
maxsecsize = sectorsize;
size = mediasize / DEV_BSIZE - CCD_OFFSET;
/* Truncate to interleave boundary */
if (cs->sc_ileave > 1)
size -= size % cs->sc_ileave;
if (size == 0) {
gctl_error(req, "Component %s has effective size zero",
ci->ci_provider->name);
return(ENODEV);
}
if (minsize == 0 || size < minsize)
minsize = size;
ci->ci_size = size;
cs->sc_size += size;
}
/*
* Don't allow the interleave to be smaller than
* the biggest component sector.
*/
if ((cs->sc_ileave > 0) &&
(cs->sc_ileave < (maxsecsize / DEV_BSIZE))) {
gctl_error(req, "Interleave to small for sector size");
return(EINVAL);
}
/*
* If uniform interleave is desired set all sizes to that of
* the smallest component. This will guarentee that a single
* interleave table is generated.
*
* Lost space must be taken into account when calculating the
* overall size. Half the space is lost when CCDF_MIRROR is
* specified.
*/
if (cs->sc_flags & CCDF_UNIFORM) {
for (ix = 0; ix < cs->sc_ndisks; ix++) {
ci = &cs->sc_cinfo[ix];
ci->ci_size = minsize;
}
cs->sc_size = cs->sc_ndisks * minsize;
}
if (cs->sc_flags & CCDF_MIRROR) {
/*
* Check to see if an even number of components
* have been specified. The interleave must also
* be non-zero in order for us to be able to
* guarentee the topology.
*/
if (cs->sc_ndisks % 2) {
gctl_error(req,
"Mirroring requires an even number of disks");
return(EINVAL);
}
if (cs->sc_ileave == 0) {
gctl_error(req,
"An interleave must be specified when mirroring");
return(EINVAL);
}
cs->sc_size = (cs->sc_ndisks/2) * minsize;
}
/*
* Construct the interleave table.
*/
ccdinterleave(cs);
/*
* Create pseudo-geometry based on 1MB cylinders. It's
* pretty close.
*/
cs->sc_secsize = maxsecsize;
return (0);
}
static void
ccdinterleave(struct ccd_s *cs)
{
struct ccdcinfo *ci, *smallci;
struct ccdiinfo *ii;
daddr_t bn, lbn;
int ix;
daddr_t size;
/*
* Allocate an interleave table. The worst case occurs when each
* of N disks is of a different size, resulting in N interleave
* tables.
*
* Chances are this is too big, but we don't care.
*/
size = (cs->sc_ndisks + 1) * sizeof(struct ccdiinfo);
cs->sc_itable = g_malloc(size, M_WAITOK | M_ZERO);
/*
* Trivial case: no interleave (actually interleave of disk size).
* Each table entry represents a single component in its entirety.
*
* An interleave of 0 may not be used with a mirror setup.
*/
if (cs->sc_ileave == 0) {
bn = 0;
ii = cs->sc_itable;
for (ix = 0; ix < cs->sc_ndisks; ix++) {
/* Allocate space for ii_index. */
ii->ii_index = g_malloc(sizeof(int), M_WAITOK);
ii->ii_ndisk = 1;
ii->ii_startblk = bn;
ii->ii_startoff = 0;
ii->ii_index[0] = ix;
bn += cs->sc_cinfo[ix].ci_size;
ii++;
}
ii->ii_ndisk = 0;
return;
}
/*
* The following isn't fast or pretty; it doesn't have to be.
*/
size = 0;
bn = lbn = 0;
for (ii = cs->sc_itable; ; ii++) {
/*
* Allocate space for ii_index. We might allocate more then
* we use.
*/
ii->ii_index = g_malloc((sizeof(int) * cs->sc_ndisks),
M_WAITOK);
/*
* Locate the smallest of the remaining components
*/
smallci = NULL;
for (ci = cs->sc_cinfo; ci < &cs->sc_cinfo[cs->sc_ndisks];
ci++) {
if (ci->ci_size > size &&
(smallci == NULL ||
ci->ci_size < smallci->ci_size)) {
smallci = ci;
}
}
/*
* Nobody left, all done
*/
if (smallci == NULL) {
ii->ii_ndisk = 0;
g_free(ii->ii_index);
ii->ii_index = NULL;
break;
}
/*
* Record starting logical block using an sc_ileave blocksize.
*/
ii->ii_startblk = bn / cs->sc_ileave;
/*
* Record starting component block using an sc_ileave
* blocksize. This value is relative to the beginning of
* a component disk.
*/
ii->ii_startoff = lbn;
/*
* Determine how many disks take part in this interleave
* and record their indices.
*/
ix = 0;
for (ci = cs->sc_cinfo;
ci < &cs->sc_cinfo[cs->sc_ndisks]; ci++) {
if (ci->ci_size >= smallci->ci_size) {
ii->ii_index[ix++] = ci - cs->sc_cinfo;
}
}
ii->ii_ndisk = ix;
bn += ix * (smallci->ci_size - size);
lbn = smallci->ci_size / cs->sc_ileave;
size = smallci->ci_size;
}
}
static void
g_ccd_start(struct bio *bp)
{
long bcount, rcount;
struct bio *cbp[2];
caddr_t addr;
daddr_t bn;
int err;
struct ccd_s *cs;
cs = bp->bio_to->geom->softc;
/*
* Block all GETATTR requests, we wouldn't know which of our
* subdevices we should ship it off to.
* XXX: this may not be the right policy.
*/
if(bp->bio_cmd == BIO_GETATTR) {
g_io_deliver(bp, EINVAL);
return;
}
/*
* Translate the partition-relative block number to an absolute.
*/
bn = bp->bio_offset / cs->sc_secsize;
/*
* Allocate component buffers and fire off the requests
*/
addr = bp->bio_data;
for (bcount = bp->bio_length; bcount > 0; bcount -= rcount) {
err = ccdbuffer(cbp, cs, bp, bn, addr, bcount);
if (err) {
bp->bio_completed += bcount;
if (bp->bio_error == 0)
bp->bio_error = err;
if (bp->bio_completed == bp->bio_length)
g_io_deliver(bp, bp->bio_error);
return;
}
rcount = cbp[0]->bio_length;
if (cs->sc_flags & CCDF_MIRROR) {
/*
* Mirroring. Writes go to both disks, reads are
* taken from whichever disk seems most appropriate.
*
* We attempt to localize reads to the disk whos arm
* is nearest the read request. We ignore seeks due
* to writes when making this determination and we
* also try to avoid hogging.
*/
if (cbp[0]->bio_cmd != BIO_READ) {
g_io_request(cbp[0], cbp[0]->bio_from);
g_io_request(cbp[1], cbp[1]->bio_from);
} else {
int pick = cs->sc_pick;
daddr_t range = cs->sc_size / 16;
if (bn < cs->sc_blk[pick] - range ||
bn > cs->sc_blk[pick] + range
) {
cs->sc_pick = pick = 1 - pick;
}
cs->sc_blk[pick] = bn + btodb(rcount);
g_io_request(cbp[pick], cbp[pick]->bio_from);
}
} else {
/*
* Not mirroring
*/
g_io_request(cbp[0], cbp[0]->bio_from);
}
bn += btodb(rcount);
addr += rcount;
}
}
/*
* Build a component buffer header.
*/
static int
ccdbuffer(struct bio **cb, struct ccd_s *cs, struct bio *bp, daddr_t bn, caddr_t addr, long bcount)
{
struct ccdcinfo *ci, *ci2 = NULL;
struct bio *cbp;
daddr_t cbn, cboff;
off_t cbc;
/*
* Determine which component bn falls in.
*/
cbn = bn;
cboff = 0;
if (cs->sc_ileave == 0) {
/*
* Serially concatenated and neither a mirror nor a parity
* config. This is a special case.
*/
daddr_t sblk;
sblk = 0;
for (ci = cs->sc_cinfo; cbn >= sblk + ci->ci_size; ci++)
sblk += ci->ci_size;
cbn -= sblk;
} else {
struct ccdiinfo *ii;
int ccdisk, off;
/*
* Calculate cbn, the logical superblock (sc_ileave chunks),
* and cboff, a normal block offset (DEV_BSIZE chunks) relative
* to cbn.
*/
cboff = cbn % cs->sc_ileave; /* DEV_BSIZE gran */
cbn = cbn / cs->sc_ileave; /* DEV_BSIZE * ileave gran */
/*
* Figure out which interleave table to use.
*/
for (ii = cs->sc_itable; ii->ii_ndisk; ii++) {
if (ii->ii_startblk > cbn)
break;
}
ii--;
/*
* off is the logical superblock relative to the beginning
* of this interleave block.
*/
off = cbn - ii->ii_startblk;
/*
* We must calculate which disk component to use (ccdisk),
* and recalculate cbn to be the superblock relative to
* the beginning of the component. This is typically done by
* adding 'off' and ii->ii_startoff together. However, 'off'
* must typically be divided by the number of components in
* this interleave array to be properly convert it from a
* CCD-relative logical superblock number to a
* component-relative superblock number.
*/
if (ii->ii_ndisk == 1) {
/*
* When we have just one disk, it can't be a mirror
* or a parity config.
*/
ccdisk = ii->ii_index[0];
cbn = ii->ii_startoff + off;
} else {
if (cs->sc_flags & CCDF_MIRROR) {
/*
* We have forced a uniform mapping, resulting
* in a single interleave array. We double
* up on the first half of the available
* components and our mirror is in the second
* half. This only works with a single
* interleave array because doubling up
* doubles the number of sectors, so there
* cannot be another interleave array because
* the next interleave array's calculations
* would be off.
*/
int ndisk2 = ii->ii_ndisk / 2;
ccdisk = ii->ii_index[off % ndisk2];
cbn = ii->ii_startoff + off / ndisk2;
ci2 = &cs->sc_cinfo[ccdisk + ndisk2];
} else {
ccdisk = ii->ii_index[off % ii->ii_ndisk];
cbn = ii->ii_startoff + off / ii->ii_ndisk;
}
}
ci = &cs->sc_cinfo[ccdisk];
/*
* Convert cbn from a superblock to a normal block so it
* can be used to calculate (along with cboff) the normal
* block index into this particular disk.
*/
cbn *= cs->sc_ileave;
}
/*
* Fill in the component buf structure.
*/
cbp = g_clone_bio(bp);
if (cbp == NULL)
return (ENOMEM);
cbp->bio_done = g_std_done;
cbp->bio_offset = dbtob(cbn + cboff + CCD_OFFSET);
cbp->bio_data = addr;
if (cs->sc_ileave == 0)
cbc = dbtob((off_t)(ci->ci_size - cbn));
else
cbc = dbtob((off_t)(cs->sc_ileave - cboff));
cbp->bio_length = (cbc < bcount) ? cbc : bcount;
cbp->bio_from = ci->ci_consumer;
cb[0] = cbp;
if (cs->sc_flags & CCDF_MIRROR) {
cbp = g_clone_bio(bp);
if (cbp == NULL)
return (ENOMEM);
cbp->bio_done = cb[0]->bio_done = ccdiodone;
cbp->bio_offset = cb[0]->bio_offset;
cbp->bio_data = cb[0]->bio_data;
cbp->bio_length = cb[0]->bio_length;
cbp->bio_from = ci2->ci_consumer;
cbp->bio_caller1 = cb[0];
cb[0]->bio_caller1 = cbp;
cb[1] = cbp;
}
return (0);
}
/*
* Called only for mirrored operations.
*/
static void
ccdiodone(struct bio *cbp)
{
struct bio *mbp, *pbp;
mbp = cbp->bio_caller1;
pbp = cbp->bio_parent;
if (pbp->bio_cmd == BIO_READ) {
if (cbp->bio_error == 0) {
/* We will not be needing the partner bio */
if (mbp != NULL) {
pbp->bio_inbed++;
g_destroy_bio(mbp);
}
g_std_done(cbp);
return;
}
if (mbp != NULL) {
/* Try partner the bio instead */
mbp->bio_caller1 = NULL;
pbp->bio_inbed++;
g_destroy_bio(cbp);
g_io_request(mbp, mbp->bio_from);
/*
* XXX: If this comes back OK, we should actually
* try to write the good data on the failed mirror
*/
return;
}
g_std_done(cbp);
return;
}
if (mbp != NULL) {
mbp->bio_caller1 = NULL;
pbp->bio_inbed++;
if (cbp->bio_error != 0 && pbp->bio_error == 0)
pbp->bio_error = cbp->bio_error;
g_destroy_bio(cbp);
return;
}
g_std_done(cbp);
}
static void
g_ccd_create(struct gctl_req *req, struct g_class *mp)
{
int *unit, *ileave, *nprovider;
struct g_geom *gp;
struct g_consumer *cp;
struct g_provider *pp;
struct ccd_s *sc;
struct sbuf *sb;
char buf[20];
int i, error;
g_topology_assert();
unit = gctl_get_paraml(req, "unit", sizeof (*unit));
ileave = gctl_get_paraml(req, "ileave", sizeof (*ileave));
nprovider = gctl_get_paraml(req, "nprovider", sizeof (*nprovider));
/* Check for duplicate unit */
LIST_FOREACH(gp, &mp->geom, geom) {
sc = gp->softc;
if (sc != NULL && sc->sc_unit == *unit) {
gctl_error(req, "Unit %d already configured", *unit);
return;
}
}
if (*nprovider <= 0) {
gctl_error(req, "Bogus nprovider argument (= %d)", *nprovider);
return;
}
/* Check all providers are valid */
for (i = 0; i < *nprovider; i++) {
sprintf(buf, "provider%d", i);
pp = gctl_get_provider(req, buf);
if (pp == NULL)
return;
}
gp = g_new_geomf(mp, "ccd%d", *unit);
sc = g_malloc(sizeof *sc, M_WAITOK | M_ZERO);
gp->softc = sc;
sc->sc_ndisks = *nprovider;
/* Allocate space for the component info. */
sc->sc_cinfo = g_malloc(sc->sc_ndisks * sizeof(struct ccdcinfo),
M_WAITOK | M_ZERO);
/* Create consumers and attach to all providers */
for (i = 0; i < *nprovider; i++) {
sprintf(buf, "provider%d", i);
pp = gctl_get_provider(req, buf);
cp = g_new_consumer(gp);
error = g_attach(cp, pp);
KASSERT(error == 0, ("attach to %s failed", pp->name));
sc->sc_cinfo[i].ci_consumer = cp;
sc->sc_cinfo[i].ci_provider = pp;
}
sc->sc_unit = *unit;
sc->sc_ileave = *ileave;
if (gctl_get_param(req, "uniform", NULL))
sc->sc_flags |= CCDF_UNIFORM;
if (gctl_get_param(req, "mirror", NULL))
sc->sc_flags |= CCDF_MIRROR;
if (sc->sc_ileave == 0 && (sc->sc_flags & CCDF_MIRROR)) {
printf("%s: disabling mirror, interleave is 0\n", gp->name);
sc->sc_flags &= ~(CCDF_MIRROR);
}
if ((sc->sc_flags & CCDF_MIRROR) && !(sc->sc_flags & CCDF_UNIFORM)) {
printf("%s: mirror/parity forces uniform flag\n", gp->name);
sc->sc_flags |= CCDF_UNIFORM;
}
error = ccdinit(req, sc);
if (error != 0) {
g_ccd_freesc(sc);
gp->softc = NULL;
g_wither_geom(gp, ENXIO);
return;
}
pp = g_new_providerf(gp, "%s", gp->name);
pp->mediasize = sc->sc_size * (off_t)sc->sc_secsize;
pp->sectorsize = sc->sc_secsize;
g_error_provider(pp, 0);
sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND);
sbuf_printf(sb, "ccd%d: %d components ", sc->sc_unit, *nprovider);
for (i = 0; i < *nprovider; i++) {
sbuf_printf(sb, "%s%s",
i == 0 ? "(" : ", ",
sc->sc_cinfo[i].ci_provider->name);
}
sbuf_printf(sb, "), %jd blocks ", (off_t)pp->mediasize / DEV_BSIZE);
if (sc->sc_ileave != 0)
sbuf_printf(sb, "interleaved at %d blocks\n",
sc->sc_ileave);
else
sbuf_printf(sb, "concatenated\n");
sbuf_finish(sb);
gctl_set_param_err(req, "output", sbuf_data(sb), sbuf_len(sb) + 1);
sbuf_delete(sb);
}
static int
g_ccd_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp)
{
struct g_provider *pp;
struct ccd_s *sc;
g_topology_assert();
sc = gp->softc;
pp = LIST_FIRST(&gp->provider);
if (sc == NULL || pp == NULL)
return (EBUSY);
if (pp->acr != 0 || pp->acw != 0 || pp->ace != 0) {
gctl_error(req, "%s is open(r%dw%de%d)", gp->name,
pp->acr, pp->acw, pp->ace);
return (EBUSY);
}
g_ccd_freesc(sc);
gp->softc = NULL;
g_wither_geom(gp, ENXIO);
return (0);
}
static void
g_ccd_list(struct gctl_req *req, struct g_class *mp)
{
struct sbuf *sb;
struct ccd_s *cs;
struct g_geom *gp;
int i, unit, *up;
up = gctl_get_paraml(req, "unit", sizeof (int));
unit = *up;
sb = sbuf_new(NULL, NULL, 0, SBUF_AUTOEXTEND);
LIST_FOREACH(gp, &mp->geom, geom) {
cs = gp->softc;
if (cs == NULL || (unit >= 0 && unit != cs->sc_unit))
continue;
sbuf_printf(sb, "ccd%d\t\t%d\t%d\t",
cs->sc_unit, cs->sc_ileave, cs->sc_flags & CCDF_USERMASK);
for (i = 0; i < cs->sc_ndisks; ++i) {
sbuf_printf(sb, "%s/dev/%s", i == 0 ? "" : " ",
cs->sc_cinfo[i].ci_provider->name);
}
sbuf_printf(sb, "\n");
}
sbuf_finish(sb);
gctl_set_param_err(req, "output", sbuf_data(sb), sbuf_len(sb) + 1);
sbuf_delete(sb);
}
static void
g_ccd_config(struct gctl_req *req, struct g_class *mp, char const *verb)
{
struct g_geom *gp;
g_topology_assert();
if (!strcmp(verb, "create geom")) {
g_ccd_create(req, mp);
} else if (!strcmp(verb, "destroy geom")) {
gp = gctl_get_geom(req, mp, "geom");
if (gp != NULL)
g_ccd_destroy_geom(req, mp, gp);
} else if (!strcmp(verb, "list")) {
g_ccd_list(req, mp);
} else {
gctl_error(req, "unknown verb");
}
}
static struct g_class g_ccd_class = {
.name = "CCD",
.version = G_VERSION,
.ctlreq = g_ccd_config,
.destroy_geom = g_ccd_destroy_geom,
.start = g_ccd_start,
.orphan = g_ccd_orphan,
.access = g_ccd_access,
};
DECLARE_GEOM_CLASS(g_ccd_class, g_ccd);