freebsd-nq/sys/powerpc/mpc85xx/platform_mpc85xx.c
Brandon Bergren ab3f2a3861 Add support for building Book-E kernels with clang/lld.
This involved several changes:

* Since lld does not like text relocations, replace SMP boot page text relocs
in booke/locore.S with position-independent math, and track the virtual base
in the SMP boot page header.

* As some SPRs are interpreted differently on clang due to the way it handles
platform-specific SPRs, switch m*dear and m*esr mnemonics out for regular
m*spr. Add both forms of SPR_DEAR to spr.h so the correct encoding is selected.

* Change some hardcoded 32 bit things in the boot page to be pointer-sized, and
fix alignment.

* Fix 64-bit build of booke/pmap.c when enabling pmap debugging.

Additionally, I took the opportunity to document how the SMP boot page works.

Approved by: jhibbits (mentor)
Differential Revision: https://reviews.freebsd.org/D21999
2019-11-02 21:15:56 +00:00

713 lines
17 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2008-2012 Semihalf.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "opt_platform.h"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/smp.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/hid.h>
#include <machine/_inttypes.h>
#include <machine/machdep.h>
#include <machine/md_var.h>
#include <machine/platform.h>
#include <machine/platformvar.h>
#include <machine/smp.h>
#include <machine/spr.h>
#include <machine/vmparam.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/ofw/openfirm.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_extern.h>
#include <powerpc/mpc85xx/mpc85xx.h>
#include "platform_if.h"
#ifdef SMP
extern void *ap_pcpu;
extern vm_paddr_t kernload; /* Kernel physical load address */
extern uint8_t __boot_page[]; /* Boot page body */
extern vm_paddr_t bp_kernload; /* Boot page copy of kernload */
extern vm_offset_t bp_virtaddr; /* Virtual address of boot page */
extern vm_offset_t __startkernel;
struct cpu_release {
uint32_t entry_h;
uint32_t entry_l;
uint32_t r3_h;
uint32_t r3_l;
uint32_t reserved;
uint32_t pir;
};
#endif
extern uint32_t *bootinfo;
vm_paddr_t ccsrbar_pa;
vm_offset_t ccsrbar_va;
vm_size_t ccsrbar_size;
static int cpu, maxcpu;
static device_t rcpm_dev;
static void dummy_freeze(device_t, bool);
static void (*freeze_timebase)(device_t, bool) = dummy_freeze;
static int mpc85xx_probe(platform_t);
static void mpc85xx_mem_regions(platform_t, struct mem_region *phys,
int *physsz, struct mem_region *avail, int *availsz);
static u_long mpc85xx_timebase_freq(platform_t, struct cpuref *cpuref);
static int mpc85xx_smp_first_cpu(platform_t, struct cpuref *cpuref);
static int mpc85xx_smp_next_cpu(platform_t, struct cpuref *cpuref);
static int mpc85xx_smp_get_bsp(platform_t, struct cpuref *cpuref);
static int mpc85xx_smp_start_cpu(platform_t, struct pcpu *cpu);
static void mpc85xx_smp_timebase_sync(platform_t, u_long tb, int ap);
static void mpc85xx_reset(platform_t);
static platform_method_t mpc85xx_methods[] = {
PLATFORMMETHOD(platform_probe, mpc85xx_probe),
PLATFORMMETHOD(platform_attach, mpc85xx_attach),
PLATFORMMETHOD(platform_mem_regions, mpc85xx_mem_regions),
PLATFORMMETHOD(platform_timebase_freq, mpc85xx_timebase_freq),
PLATFORMMETHOD(platform_smp_first_cpu, mpc85xx_smp_first_cpu),
PLATFORMMETHOD(platform_smp_next_cpu, mpc85xx_smp_next_cpu),
PLATFORMMETHOD(platform_smp_get_bsp, mpc85xx_smp_get_bsp),
PLATFORMMETHOD(platform_smp_start_cpu, mpc85xx_smp_start_cpu),
PLATFORMMETHOD(platform_smp_timebase_sync, mpc85xx_smp_timebase_sync),
PLATFORMMETHOD(platform_reset, mpc85xx_reset),
PLATFORMMETHOD_END
};
DEFINE_CLASS_0(mpc85xx, mpc85xx_platform, mpc85xx_methods, 0);
PLATFORM_DEF(mpc85xx_platform);
static int
mpc85xx_probe(platform_t plat)
{
u_int pvr = (mfpvr() >> 16) & 0xFFFF;
switch (pvr) {
case FSL_E500v1:
case FSL_E500v2:
case FSL_E500mc:
case FSL_E5500:
case FSL_E6500:
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
int
mpc85xx_attach(platform_t plat)
{
phandle_t cpus, child, ccsr;
const char *soc_name_guesses[] = {"/soc", "soc", NULL};
const char **name;
pcell_t ranges[6], acells, pacells, scells;
uint64_t ccsrbar, ccsrsize;
int i;
if ((cpus = OF_finddevice("/cpus")) != -1) {
for (maxcpu = 0, child = OF_child(cpus); child != 0;
child = OF_peer(child), maxcpu++)
;
} else
maxcpu = 1;
/*
* Locate CCSR region. Irritatingly, there is no way to find it
* unless you already know where it is. Try to infer its location
* from the device tree.
*/
ccsr = -1;
for (name = soc_name_guesses; *name != NULL && ccsr == -1; name++)
ccsr = OF_finddevice(*name);
if (ccsr == -1) {
char type[64];
/* That didn't work. Search for devices of type "soc" */
child = OF_child(OF_peer(0));
for (OF_child(child); child != 0; child = OF_peer(child)) {
if (OF_getprop(child, "device_type", type, sizeof(type))
<= 0)
continue;
if (strcmp(type, "soc") == 0) {
ccsr = child;
break;
}
}
}
if (ccsr == -1)
panic("Could not locate CCSR window!");
OF_getprop(ccsr, "#size-cells", &scells, sizeof(scells));
OF_getprop(ccsr, "#address-cells", &acells, sizeof(acells));
OF_searchprop(OF_parent(ccsr), "#address-cells", &pacells,
sizeof(pacells));
OF_getprop(ccsr, "ranges", ranges, sizeof(ranges));
ccsrbar = ccsrsize = 0;
for (i = acells; i < acells + pacells; i++) {
ccsrbar <<= 32;
ccsrbar |= ranges[i];
}
for (i = acells + pacells; i < acells + pacells + scells; i++) {
ccsrsize <<= 32;
ccsrsize |= ranges[i];
}
ccsrbar_va = pmap_early_io_map(ccsrbar, ccsrsize);
ccsrbar_pa = ccsrbar;
ccsrbar_size = ccsrsize;
mpc85xx_enable_l3_cache();
return (0);
}
void
mpc85xx_mem_regions(platform_t plat, struct mem_region *phys, int *physsz,
struct mem_region *avail, int *availsz)
{
ofw_mem_regions(phys, physsz, avail, availsz);
}
static u_long
mpc85xx_timebase_freq(platform_t plat, struct cpuref *cpuref)
{
u_long ticks;
phandle_t cpus, child;
pcell_t freq;
if (bootinfo != NULL) {
if (bootinfo[0] == 1) {
/* Backward compatibility. See 8-STABLE. */
ticks = bootinfo[3] >> 3;
} else {
/* Compatibility with Juniper's loader. */
ticks = bootinfo[5] >> 3;
}
} else
ticks = 0;
if ((cpus = OF_finddevice("/cpus")) == -1)
goto out;
if ((child = OF_child(cpus)) == 0)
goto out;
switch (OF_getproplen(child, "timebase-frequency")) {
case 4:
{
uint32_t tbase;
OF_getprop(child, "timebase-frequency", &tbase, sizeof(tbase));
ticks = tbase;
return (ticks);
}
case 8:
{
uint64_t tbase;
OF_getprop(child, "timebase-frequency", &tbase, sizeof(tbase));
ticks = tbase;
return (ticks);
}
default:
break;
}
freq = 0;
if (OF_getprop(child, "bus-frequency", (void *)&freq,
sizeof(freq)) <= 0)
goto out;
if (freq == 0)
goto out;
/*
* Time Base and Decrementer are updated every 8 CCB bus clocks.
* HID0[SEL_TBCLK] = 0
*/
if (mpc85xx_is_qoriq())
ticks = freq / 32;
else
ticks = freq / 8;
out:
if (ticks <= 0)
panic("Unable to determine timebase frequency!");
return (ticks);
}
static int
mpc85xx_smp_first_cpu(platform_t plat, struct cpuref *cpuref)
{
cpu = 0;
cpuref->cr_cpuid = cpu;
cpuref->cr_hwref = cpuref->cr_cpuid;
if (bootverbose)
printf("powerpc_smp_first_cpu: cpuid %d\n", cpuref->cr_cpuid);
cpu++;
return (0);
}
static int
mpc85xx_smp_next_cpu(platform_t plat, struct cpuref *cpuref)
{
if (cpu >= maxcpu)
return (ENOENT);
cpuref->cr_cpuid = cpu++;
cpuref->cr_hwref = cpuref->cr_cpuid;
if (bootverbose)
printf("powerpc_smp_next_cpu: cpuid %d\n", cpuref->cr_cpuid);
return (0);
}
static int
mpc85xx_smp_get_bsp(platform_t plat, struct cpuref *cpuref)
{
cpuref->cr_cpuid = mfspr(SPR_PIR);
cpuref->cr_hwref = cpuref->cr_cpuid;
return (0);
}
#ifdef SMP
static int
mpc85xx_smp_start_cpu_epapr(platform_t plat, struct pcpu *pc)
{
vm_paddr_t rel_pa, bptr;
volatile struct cpu_release *rel;
vm_offset_t rel_va, rel_page;
phandle_t node;
int i;
/* If we're calling this, the node already exists. */
node = OF_finddevice("/cpus");
for (i = 0, node = OF_child(node); i < pc->pc_cpuid;
i++, node = OF_peer(node))
;
if (OF_getencprop(node, "cpu-release-addr", (pcell_t *)&rel_pa,
sizeof(rel_pa)) == -1) {
return (ENOENT);
}
rel_page = kva_alloc(PAGE_SIZE);
if (rel_page == 0)
return (ENOMEM);
critical_enter();
rel_va = rel_page + (rel_pa & PAGE_MASK);
pmap_kenter(rel_page, rel_pa & ~PAGE_MASK);
rel = (struct cpu_release *)rel_va;
bptr = pmap_kextract((uintptr_t)__boot_page);
cpu_flush_dcache(__DEVOLATILE(struct cpu_release *,rel), sizeof(*rel));
rel->pir = pc->pc_cpuid; __asm __volatile("sync" ::: "memory");
rel->entry_h = (bptr >> 32); __asm __volatile("sync" ::: "memory");
cpu_flush_dcache(__DEVOLATILE(struct cpu_release *,rel), sizeof(*rel));
rel->entry_l = bptr & 0xffffffff; __asm __volatile("sync" ::: "memory");
cpu_flush_dcache(__DEVOLATILE(struct cpu_release *,rel), sizeof(*rel));
if (bootverbose)
printf("Waking up CPU %d via CPU release page %p\n",
pc->pc_cpuid, rel);
critical_exit();
pmap_kremove(rel_page);
kva_free(rel_page, PAGE_SIZE);
return (0);
}
#endif
static int
mpc85xx_smp_start_cpu(platform_t plat, struct pcpu *pc)
{
#ifdef SMP
vm_paddr_t bptr;
uint32_t reg;
int timeout;
uintptr_t brr;
int cpuid;
int epapr_boot = 0;
uint32_t tgt;
if (mpc85xx_is_qoriq()) {
reg = ccsr_read4(OCP85XX_COREDISR);
cpuid = pc->pc_cpuid;
if ((reg & (1 << cpuid)) != 0) {
printf("%s: CPU %d is disabled!\n", __func__, pc->pc_cpuid);
return (-1);
}
brr = OCP85XX_BRR;
} else {
brr = OCP85XX_EEBPCR;
cpuid = pc->pc_cpuid + 24;
}
bp_kernload = kernload;
bp_virtaddr = (vm_offset_t)&__boot_page;
/*
* bp_kernload and bp_virtaddr are in the boot page. Sync the cache
* because ePAPR booting has the other core(s) already running.
*/
cpu_flush_dcache(&bp_kernload, sizeof(bp_kernload));
cpu_flush_dcache(&bp_virtaddr, sizeof(bp_virtaddr));
ap_pcpu = pc;
__asm __volatile("msync; isync");
/* First try the ePAPR way. */
if (mpc85xx_smp_start_cpu_epapr(plat, pc) == 0) {
epapr_boot = 1;
goto spin_wait;
}
reg = ccsr_read4(brr);
if ((reg & (1 << cpuid)) != 0) {
printf("SMP: CPU %d already out of hold-off state!\n",
pc->pc_cpuid);
return (ENXIO);
}
/* Flush caches to have our changes hit DRAM. */
cpu_flush_dcache(__boot_page, 4096);
bptr = pmap_kextract((uintptr_t)__boot_page);
KASSERT((bptr & 0xfff) == 0,
("%s: boot page is not aligned (%#jx)", __func__, (uintmax_t)bptr));
if (mpc85xx_is_qoriq()) {
/*
* Read DDR controller configuration to select proper BPTR target ID.
*
* On P5020 bit 29 of DDR1_CS0_CONFIG enables DDR controllers
* interleaving. If this bit is set, we have to use
* OCP85XX_TGTIF_RAM_INTL as BPTR target ID. On other QorIQ DPAA SoCs,
* this bit is reserved and always 0.
*/
reg = ccsr_read4(OCP85XX_DDR1_CS0_CONFIG);
if (reg & (1 << 29))
tgt = OCP85XX_TGTIF_RAM_INTL;
else
tgt = OCP85XX_TGTIF_RAM1;
/*
* Set BSTR to the physical address of the boot page
*/
ccsr_write4(OCP85XX_BSTRH, bptr >> 32);
ccsr_write4(OCP85XX_BSTRL, bptr);
ccsr_write4(OCP85XX_BSTAR, OCP85XX_ENA_MASK |
(tgt << OCP85XX_TRGT_SHIFT_QORIQ) | (ffsl(PAGE_SIZE) - 2));
/* Read back OCP85XX_BSTAR to synchronize write */
ccsr_read4(OCP85XX_BSTAR);
/*
* Enable and configure time base on new CPU.
*/
/* Set TB clock source to platform clock / 32 */
reg = ccsr_read4(CCSR_CTBCKSELR);
ccsr_write4(CCSR_CTBCKSELR, reg & ~(1 << pc->pc_cpuid));
/* Enable TB */
reg = ccsr_read4(CCSR_CTBENR);
ccsr_write4(CCSR_CTBENR, reg | (1 << pc->pc_cpuid));
} else {
/*
* Set BPTR to the physical address of the boot page
*/
bptr = (bptr >> 12) | 0x80000000u;
ccsr_write4(OCP85XX_BPTR, bptr);
__asm __volatile("isync; msync");
}
/*
* Release AP from hold-off state
*/
reg = ccsr_read4(brr);
ccsr_write4(brr, reg | (1 << cpuid));
__asm __volatile("isync; msync");
spin_wait:
timeout = 500;
while (!pc->pc_awake && timeout--)
DELAY(1000); /* wait 1ms */
/*
* Disable boot page translation so that the 4K page at the default
* address (= 0xfffff000) isn't permanently remapped and thus not
* usable otherwise.
*/
if (!epapr_boot) {
if (mpc85xx_is_qoriq())
ccsr_write4(OCP85XX_BSTAR, 0);
else
ccsr_write4(OCP85XX_BPTR, 0);
__asm __volatile("isync; msync");
}
if (!pc->pc_awake)
panic("SMP: CPU %d didn't wake up.\n", pc->pc_cpuid);
return ((pc->pc_awake) ? 0 : EBUSY);
#else
/* No SMP support */
return (ENXIO);
#endif
}
static void
mpc85xx_reset(platform_t plat)
{
/*
* Try the dedicated reset register first.
* If the SoC doesn't have one, we'll fall
* back to using the debug control register.
*/
ccsr_write4(OCP85XX_RSTCR, 2);
mtmsr(mfmsr() & ~PSL_DE);
/* Enable debug interrupts and issue reset. */
mtspr(SPR_DBCR0, DBCR0_IDM | DBCR0_RST_SYSTEM);
__asm __volatile("isync");
/* Enable Debug Interrupts in MSR. */
mtmsr(mfmsr() | PSL_DE);
printf("Reset failed...\n");
while (1)
;
}
static void
mpc85xx_smp_timebase_sync(platform_t plat, u_long tb, int ap)
{
static volatile bool tb_ready;
static volatile int cpu_done;
if (ap) {
/* APs. Hold off until we get a stable timebase. */
while (!tb_ready)
atomic_thread_fence_seq_cst();
mttb(tb);
atomic_add_int(&cpu_done, 1);
while (cpu_done < mp_ncpus)
atomic_thread_fence_seq_cst();
} else {
/* BSP */
freeze_timebase(rcpm_dev, true);
tb_ready = true;
mttb(tb);
atomic_add_int(&cpu_done, 1);
while (cpu_done < mp_ncpus)
atomic_thread_fence_seq_cst();
freeze_timebase(rcpm_dev, false);
}
}
/* Fallback freeze. In case no real handler is found in the device tree. */
static void
dummy_freeze(device_t dev, bool freeze)
{
/* Nothing to do here, move along. */
}
/* QorIQ Run control/power management timebase management. */
#define RCPM_CTBENR 0x00000084
struct mpc85xx_rcpm_softc {
struct resource *sc_mem;
};
static void
mpc85xx_rcpm_freeze_timebase(device_t dev, bool freeze)
{
struct mpc85xx_rcpm_softc *sc;
sc = device_get_softc(dev);
if (freeze)
bus_write_4(sc->sc_mem, RCPM_CTBENR, 0);
else
bus_write_4(sc->sc_mem, RCPM_CTBENR, (1 << maxcpu) - 1);
}
static int
mpc85xx_rcpm_probe(device_t dev)
{
if (!ofw_bus_is_compatible(dev, "fsl,qoriq-rcpm-1.0"))
return (ENXIO);
device_set_desc(dev, "QorIQ Run control and power management");
return (BUS_PROBE_GENERIC);
}
static int
mpc85xx_rcpm_attach(device_t dev)
{
struct mpc85xx_rcpm_softc *sc;
int rid;
sc = device_get_softc(dev);
freeze_timebase = mpc85xx_rcpm_freeze_timebase;
rcpm_dev = dev;
rid = 0;
sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE | RF_SHAREABLE);
return (0);
}
static device_method_t mpc85xx_rcpm_methods[] = {
DEVMETHOD(device_probe, mpc85xx_rcpm_probe),
DEVMETHOD(device_attach, mpc85xx_rcpm_attach),
DEVMETHOD_END
};
static devclass_t mpc85xx_rcpm_devclass;
static driver_t mpc85xx_rcpm_driver = {
"rcpm",
mpc85xx_rcpm_methods,
sizeof(struct mpc85xx_rcpm_softc)
};
EARLY_DRIVER_MODULE(mpc85xx_rcpm, simplebus, mpc85xx_rcpm_driver,
mpc85xx_rcpm_devclass, 0, 0, BUS_PASS_BUS);
/* "Global utilities" power management/Timebase management. */
#define GUTS_DEVDISR 0x00000070
#define DEVDISR_TB0 0x00004000
#define DEVDISR_TB1 0x00001000
struct mpc85xx_guts_softc {
struct resource *sc_mem;
};
static void
mpc85xx_guts_freeze_timebase(device_t dev, bool freeze)
{
struct mpc85xx_guts_softc *sc;
uint32_t devdisr;
sc = device_get_softc(dev);
devdisr = bus_read_4(sc->sc_mem, GUTS_DEVDISR);
if (freeze)
bus_write_4(sc->sc_mem, GUTS_DEVDISR,
devdisr | (DEVDISR_TB0 | DEVDISR_TB1));
else
bus_write_4(sc->sc_mem, GUTS_DEVDISR,
devdisr & ~(DEVDISR_TB0 | DEVDISR_TB1));
}
static int
mpc85xx_guts_probe(device_t dev)
{
if (!ofw_bus_is_compatible(dev, "fsl,mpc8572-guts") &&
!ofw_bus_is_compatible(dev, "fsl,p1020-guts") &&
!ofw_bus_is_compatible(dev, "fsl,p1021-guts") &&
!ofw_bus_is_compatible(dev, "fsl,p1022-guts") &&
!ofw_bus_is_compatible(dev, "fsl,p1023-guts") &&
!ofw_bus_is_compatible(dev, "fsl,p2020-guts"))
return (ENXIO);
device_set_desc(dev, "MPC85xx Global Utilities");
return (BUS_PROBE_GENERIC);
}
static int
mpc85xx_guts_attach(device_t dev)
{
struct mpc85xx_rcpm_softc *sc;
int rid;
sc = device_get_softc(dev);
freeze_timebase = mpc85xx_guts_freeze_timebase;
rcpm_dev = dev;
rid = 0;
sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE | RF_SHAREABLE);
return (0);
}
static device_method_t mpc85xx_guts_methods[] = {
DEVMETHOD(device_probe, mpc85xx_guts_probe),
DEVMETHOD(device_attach, mpc85xx_guts_attach),
DEVMETHOD_END
};
static driver_t mpc85xx_guts_driver = {
"guts",
mpc85xx_guts_methods,
sizeof(struct mpc85xx_guts_softc)
};
static devclass_t mpc85xx_guts_devclass;
EARLY_DRIVER_MODULE(mpc85xx_guts, simplebus, mpc85xx_guts_driver,
mpc85xx_guts_devclass, 0, 0, BUS_PASS_BUS);