freebsd-nq/sys/dev/ciss/ciss.c
Paul Saab 3c6b835326 There's no need to call ciss_report_request in the passthru ioctl
routine since the error will be reported back to the user buffer.
This will quiet down the bootverbose case when using an ACU which
does brute force discovery of the physical and logical devices.
2004-04-19 17:16:06 +00:00

3893 lines
109 KiB
C

/*-
* Copyright (c) 2001 Michael Smith
* Copyright (c) 2004 Paul Saab
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Common Interface for SCSI-3 Support driver.
*
* CISS claims to provide a common interface between a generic SCSI
* transport and an intelligent host adapter.
*
* This driver supports CISS as defined in the document "CISS Command
* Interface for SCSI-3 Support Open Specification", Version 1.04,
* Valence Number 1, dated 20001127, produced by Compaq Computer
* Corporation. This document appears to be a hastily and somewhat
* arbitrarlily cut-down version of a larger (and probably even more
* chaotic and inconsistent) Compaq internal document. Various
* details were also gleaned from Compaq's "cciss" driver for Linux.
*
* We provide a shim layer between the CISS interface and CAM,
* offloading most of the queueing and being-a-disk chores onto CAM.
* Entry to the driver is via the PCI bus attachment (ciss_probe,
* ciss_attach, etc) and via the CAM interface (ciss_cam_action,
* ciss_cam_poll). The Compaq CISS adapters are, however, poor SCSI
* citizens and we have to fake up some responses to get reasonable
* behaviour out of them. In addition, the CISS command set is by no
* means adequate to support the functionality of a RAID controller,
* and thus the supported Compaq adapters utilise portions of the
* control protocol from earlier Compaq adapter families.
*
* Note that we only support the "simple" transport layer over PCI.
* This interface (ab)uses the I2O register set (specifically the post
* queues) to exchange commands with the adapter. Other interfaces
* are available, but we aren't supposed to know about them, and it is
* dubious whether they would provide major performance improvements
* except under extreme load.
*
* Currently the only supported CISS adapters are the Compaq Smart
* Array 5* series (5300, 5i, 532). Even with only three adapters,
* Compaq still manage to have interface variations.
*
*
* Thanks must go to Fred Harris and Darryl DeVinney at Compaq, as
* well as Paul Saab at Yahoo! for their assistance in making this
* driver happen.
*
* More thanks must go to John Cagle at HP for the countless hours
* spent making this driver "work" with the MSA* series storage
* enclosures. Without his help (and nagging), this driver could not
* be used with these enclosures.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/stat.h>
#include <sys/kthread.h>
#include <sys/queue.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_periph.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <machine/clock.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>
#include <machine/endian.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/ciss/cissreg.h>
#include <dev/ciss/cissvar.h>
#include <dev/ciss/cissio.h>
MALLOC_DEFINE(CISS_MALLOC_CLASS, "ciss_data", "ciss internal data buffers");
/* pci interface */
static int ciss_lookup(device_t dev);
static int ciss_probe(device_t dev);
static int ciss_attach(device_t dev);
static int ciss_detach(device_t dev);
static int ciss_shutdown(device_t dev);
/* (de)initialisation functions, control wrappers */
static int ciss_init_pci(struct ciss_softc *sc);
static int ciss_wait_adapter(struct ciss_softc *sc);
static int ciss_flush_adapter(struct ciss_softc *sc);
static int ciss_init_requests(struct ciss_softc *sc);
static void ciss_command_map_helper(void *arg, bus_dma_segment_t *segs,
int nseg, int error);
static int ciss_identify_adapter(struct ciss_softc *sc);
static int ciss_init_logical(struct ciss_softc *sc);
static int ciss_init_physical(struct ciss_softc *sc);
static int ciss_identify_logical(struct ciss_softc *sc, struct ciss_ldrive *ld);
static int ciss_get_ldrive_status(struct ciss_softc *sc, struct ciss_ldrive *ld);
static int ciss_update_config(struct ciss_softc *sc);
static int ciss_accept_media(struct ciss_softc *sc, struct ciss_ldrive *ld,
int async);
static void ciss_accept_media_complete(struct ciss_request *cr);
static void ciss_free(struct ciss_softc *sc);
static void ciss_spawn_notify_thread(struct ciss_softc *sc);
static void ciss_kill_notify_thread(struct ciss_softc *sc);
/* request submission/completion */
static int ciss_start(struct ciss_request *cr);
static void ciss_done(struct ciss_softc *sc);
static void ciss_intr(void *arg);
static void ciss_complete(struct ciss_softc *sc);
static int ciss_report_request(struct ciss_request *cr, int *command_status,
int *scsi_status);
static int ciss_synch_request(struct ciss_request *cr, int timeout);
static int ciss_poll_request(struct ciss_request *cr, int timeout);
static int ciss_wait_request(struct ciss_request *cr, int timeout);
#if 0
static int ciss_abort_request(struct ciss_request *cr);
#endif
/* request queueing */
static int ciss_get_request(struct ciss_softc *sc, struct ciss_request **crp);
static void ciss_preen_command(struct ciss_request *cr);
static void ciss_release_request(struct ciss_request *cr);
/* request helpers */
static int ciss_get_bmic_request(struct ciss_softc *sc, struct ciss_request **crp,
int opcode, void **bufp, size_t bufsize);
static int ciss_user_command(struct ciss_softc *sc, IOCTL_Command_struct *ioc);
/* DMA map/unmap */
static int ciss_map_request(struct ciss_request *cr);
static void ciss_request_map_helper(void *arg, bus_dma_segment_t *segs,
int nseg, int error);
static void ciss_unmap_request(struct ciss_request *cr);
/* CAM interface */
static int ciss_cam_init(struct ciss_softc *sc);
static void ciss_cam_rescan_target(struct ciss_softc *sc,
int bus, int target);
static void ciss_cam_rescan_all(struct ciss_softc *sc);
static void ciss_cam_rescan_callback(struct cam_periph *periph, union ccb *ccb);
static void ciss_cam_action(struct cam_sim *sim, union ccb *ccb);
static int ciss_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio);
static int ciss_cam_emulate(struct ciss_softc *sc, struct ccb_scsiio *csio);
static void ciss_cam_poll(struct cam_sim *sim);
static void ciss_cam_complete(struct ciss_request *cr);
static void ciss_cam_complete_fixup(struct ciss_softc *sc, struct ccb_scsiio *csio);
static struct cam_periph *ciss_find_periph(struct ciss_softc *sc,
int bus, int target);
static int ciss_name_device(struct ciss_softc *sc, int bus, int target);
/* periodic status monitoring */
static void ciss_periodic(void *arg);
static void ciss_notify_event(struct ciss_softc *sc);
static void ciss_notify_complete(struct ciss_request *cr);
static int ciss_notify_abort(struct ciss_softc *sc);
static int ciss_notify_abort_bmic(struct ciss_softc *sc);
static void ciss_notify_logical(struct ciss_softc *sc, struct ciss_notify *cn);
static void ciss_notify_physical(struct ciss_softc *sc, struct ciss_notify *cn);
/* debugging output */
static void ciss_print_request(struct ciss_request *cr);
static void ciss_print_ldrive(struct ciss_softc *sc, struct ciss_ldrive *ld);
static const char *ciss_name_ldrive_status(int status);
static int ciss_decode_ldrive_status(int status);
static const char *ciss_name_ldrive_org(int org);
static const char *ciss_name_command_status(int status);
/*
* PCI bus interface.
*/
static device_method_t ciss_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ciss_probe),
DEVMETHOD(device_attach, ciss_attach),
DEVMETHOD(device_detach, ciss_detach),
DEVMETHOD(device_shutdown, ciss_shutdown),
{ 0, 0 }
};
static driver_t ciss_pci_driver = {
"ciss",
ciss_methods,
sizeof(struct ciss_softc)
};
static devclass_t ciss_devclass;
DRIVER_MODULE(ciss, pci, ciss_pci_driver, ciss_devclass, 0, 0);
/*
* Control device interface.
*/
static d_open_t ciss_open;
static d_close_t ciss_close;
static d_ioctl_t ciss_ioctl;
static struct cdevsw ciss_cdevsw = {
.d_version = D_VERSION,
.d_flags = D_NEEDGIANT,
.d_open = ciss_open,
.d_close = ciss_close,
.d_ioctl = ciss_ioctl,
.d_name = "ciss",
};
/************************************************************************
* CISS adapters amazingly don't have a defined programming interface
* value. (One could say some very despairing things about PCI and
* people just not getting the general idea.) So we are forced to
* stick with matching against subvendor/subdevice, and thus have to
* be updated for every new CISS adapter that appears.
*/
#define CISS_BOARD_SA5 (1<<0)
#define CISS_BOARD_SA5B (1<<1)
static struct
{
u_int16_t subvendor;
u_int16_t subdevice;
int flags;
char *desc;
} ciss_vendor_data[] = {
{ 0x0e11, 0x4070, CISS_BOARD_SA5, "Compaq Smart Array 5300" },
{ 0x0e11, 0x4080, CISS_BOARD_SA5B, "Compaq Smart Array 5i" },
{ 0x0e11, 0x4082, CISS_BOARD_SA5B, "Compaq Smart Array 532" },
{ 0x0e11, 0x4083, CISS_BOARD_SA5B, "HP Smart Array 5312" },
{ 0x0e11, 0x4091, CISS_BOARD_SA5, "HP Smart Array 6i" },
{ 0x0e11, 0x409A, CISS_BOARD_SA5, "HP Smart Array 641" },
{ 0x0e11, 0x409B, CISS_BOARD_SA5, "HP Smart Array 642" },
{ 0x0e11, 0x409C, CISS_BOARD_SA5, "HP Smart Array 6400" },
{ 0x0e11, 0x409D, CISS_BOARD_SA5, "HP Smart Array 6400 EM" },
{ 0, 0, 0, NULL }
};
/************************************************************************
* Find a match for the device in our list of known adapters.
*/
static int
ciss_lookup(device_t dev)
{
int i;
for (i = 0; ciss_vendor_data[i].desc != NULL; i++)
if ((pci_get_subvendor(dev) == ciss_vendor_data[i].subvendor) &&
(pci_get_subdevice(dev) == ciss_vendor_data[i].subdevice)) {
return(i);
}
return(-1);
}
/************************************************************************
* Match a known CISS adapter.
*/
static int
ciss_probe(device_t dev)
{
int i;
i = ciss_lookup(dev);
if (i != -1) {
device_set_desc(dev, ciss_vendor_data[i].desc);
return(-10);
}
return(ENOENT);
}
/************************************************************************
* Attach the driver to this adapter.
*/
static int
ciss_attach(device_t dev)
{
struct ciss_softc *sc;
int i, error;
debug_called(1);
#ifdef CISS_DEBUG
/* print structure/union sizes */
debug_struct(ciss_command);
debug_struct(ciss_header);
debug_union(ciss_device_address);
debug_struct(ciss_cdb);
debug_struct(ciss_report_cdb);
debug_struct(ciss_notify_cdb);
debug_struct(ciss_notify);
debug_struct(ciss_message_cdb);
debug_struct(ciss_error_info_pointer);
debug_struct(ciss_error_info);
debug_struct(ciss_sg_entry);
debug_struct(ciss_config_table);
debug_struct(ciss_bmic_cdb);
debug_struct(ciss_bmic_id_ldrive);
debug_struct(ciss_bmic_id_lstatus);
debug_struct(ciss_bmic_id_table);
debug_struct(ciss_bmic_id_pdrive);
debug_struct(ciss_bmic_blink_pdrive);
debug_struct(ciss_bmic_flush_cache);
debug_const(CISS_MAX_REQUESTS);
debug_const(CISS_MAX_LOGICAL);
debug_const(CISS_INTERRUPT_COALESCE_DELAY);
debug_const(CISS_INTERRUPT_COALESCE_COUNT);
debug_const(CISS_COMMAND_ALLOC_SIZE);
debug_const(CISS_COMMAND_SG_LENGTH);
debug_type(cciss_pci_info_struct);
debug_type(cciss_coalint_struct);
debug_type(cciss_coalint_struct);
debug_type(NodeName_type);
debug_type(NodeName_type);
debug_type(Heartbeat_type);
debug_type(BusTypes_type);
debug_type(FirmwareVer_type);
debug_type(DriverVer_type);
debug_type(IOCTL_Command_struct);
#endif
sc = device_get_softc(dev);
sc->ciss_dev = dev;
/*
* Work out adapter type.
*/
i = ciss_lookup(dev);
if (ciss_vendor_data[i].flags & CISS_BOARD_SA5) {
sc->ciss_interrupt_mask = CISS_TL_SIMPLE_INTR_OPQ_SA5;
} else if (ciss_vendor_data[i].flags & CISS_BOARD_SA5B) {
sc->ciss_interrupt_mask = CISS_TL_SIMPLE_INTR_OPQ_SA5B;
} else {
/* really an error on our part */
ciss_printf(sc, "unable to determine hardware type\n");
error = ENXIO;
goto out;
}
/*
* Do PCI-specific init.
*/
if ((error = ciss_init_pci(sc)) != 0)
goto out;
/*
* Initialise driver queues.
*/
ciss_initq_free(sc);
ciss_initq_busy(sc);
ciss_initq_complete(sc);
ciss_initq_notify(sc);
/*
* Initialise command/request pool.
*/
if ((error = ciss_init_requests(sc)) != 0)
goto out;
/*
* Get adapter information.
*/
if ((error = ciss_identify_adapter(sc)) != 0)
goto out;
/*
* Find all the physical devices.
*/
if ((error = ciss_init_physical(sc)) != 0)
goto out;
/*
* Build our private table of logical devices.
*/
if ((error = ciss_init_logical(sc)) != 0)
goto out;
/*
* Enable interrupts so that the CAM scan can complete.
*/
CISS_TL_SIMPLE_ENABLE_INTERRUPTS(sc);
/*
* Initialise the CAM interface.
*/
if ((error = ciss_cam_init(sc)) != 0)
goto out;
/*
* Start the heartbeat routine and event chain.
*/
ciss_periodic(sc);
/*
* Create the control device.
*/
sc->ciss_dev_t = make_dev(&ciss_cdevsw, device_get_unit(sc->ciss_dev),
UID_ROOT, GID_OPERATOR, S_IRUSR | S_IWUSR,
"ciss%d", device_get_unit(sc->ciss_dev));
sc->ciss_dev_t->si_drv1 = sc;
/*
* The adapter is running; synchronous commands can now sleep
* waiting for an interrupt to signal completion.
*/
sc->ciss_flags |= CISS_FLAG_RUNNING;
ciss_spawn_notify_thread(sc);
error = 0;
out:
if (error != 0)
ciss_free(sc);
return(error);
}
/************************************************************************
* Detach the driver from this adapter.
*/
static int
ciss_detach(device_t dev)
{
struct ciss_softc *sc = device_get_softc(dev);
debug_called(1);
if (sc->ciss_flags & CISS_FLAG_CONTROL_OPEN)
return (EBUSY);
/* flush adapter cache */
ciss_flush_adapter(sc);
/* release all resources */
ciss_free(sc);
return(0);
}
/************************************************************************
* Prepare adapter for system shutdown.
*/
static int
ciss_shutdown(device_t dev)
{
struct ciss_softc *sc = device_get_softc(dev);
debug_called(1);
/* flush adapter cache */
ciss_flush_adapter(sc);
return(0);
}
/************************************************************************
* Perform PCI-specific attachment actions.
*/
static int
ciss_init_pci(struct ciss_softc *sc)
{
uintptr_t cbase, csize, cofs;
int error;
debug_called(1);
/*
* Allocate register window first (we need this to find the config
* struct).
*/
error = ENXIO;
sc->ciss_regs_rid = CISS_TL_SIMPLE_BAR_REGS;
if ((sc->ciss_regs_resource =
bus_alloc_resource_any(sc->ciss_dev, SYS_RES_MEMORY,
&sc->ciss_regs_rid, RF_ACTIVE)) == NULL) {
ciss_printf(sc, "can't allocate register window\n");
return(ENXIO);
}
sc->ciss_regs_bhandle = rman_get_bushandle(sc->ciss_regs_resource);
sc->ciss_regs_btag = rman_get_bustag(sc->ciss_regs_resource);
/*
* Find the BAR holding the config structure. If it's not the one
* we already mapped for registers, map it too.
*/
sc->ciss_cfg_rid = CISS_TL_SIMPLE_READ(sc, CISS_TL_SIMPLE_CFG_BAR) & 0xffff;
if (sc->ciss_cfg_rid != sc->ciss_regs_rid) {
if ((sc->ciss_cfg_resource =
bus_alloc_resource_any(sc->ciss_dev, SYS_RES_MEMORY,
&sc->ciss_cfg_rid, RF_ACTIVE)) == NULL) {
ciss_printf(sc, "can't allocate config window\n");
return(ENXIO);
}
cbase = (uintptr_t)rman_get_virtual(sc->ciss_cfg_resource);
csize = rman_get_end(sc->ciss_cfg_resource) -
rman_get_start(sc->ciss_cfg_resource) + 1;
} else {
cbase = (uintptr_t)rman_get_virtual(sc->ciss_regs_resource);
csize = rman_get_end(sc->ciss_regs_resource) -
rman_get_start(sc->ciss_regs_resource) + 1;
}
cofs = CISS_TL_SIMPLE_READ(sc, CISS_TL_SIMPLE_CFG_OFF);
/*
* Use the base/size/offset values we just calculated to
* sanity-check the config structure. If it's OK, point to it.
*/
if ((cofs + sizeof(struct ciss_config_table)) > csize) {
ciss_printf(sc, "config table outside window\n");
return(ENXIO);
}
sc->ciss_cfg = (struct ciss_config_table *)(cbase + cofs);
debug(1, "config struct at %p", sc->ciss_cfg);
/*
* Validate the config structure. If we supported other transport
* methods, we could select amongst them at this point in time.
*/
if (strncmp(sc->ciss_cfg->signature, "CISS", 4)) {
ciss_printf(sc, "config signature mismatch (got '%c%c%c%c')\n",
sc->ciss_cfg->signature[0], sc->ciss_cfg->signature[1],
sc->ciss_cfg->signature[2], sc->ciss_cfg->signature[3]);
return(ENXIO);
}
if ((sc->ciss_cfg->valence < CISS_MIN_VALENCE) ||
(sc->ciss_cfg->valence > CISS_MAX_VALENCE)) {
ciss_printf(sc, "adapter interface specification (%d) unsupported\n",
sc->ciss_cfg->valence);
return(ENXIO);
}
/*
* Put the board into simple mode, and tell it we're using the low
* 4GB of RAM. Set the default interrupt coalescing options.
*/
if (!(sc->ciss_cfg->supported_methods & CISS_TRANSPORT_METHOD_SIMPLE)) {
ciss_printf(sc, "adapter does not support 'simple' transport layer\n");
return(ENXIO);
}
sc->ciss_cfg->requested_method = CISS_TRANSPORT_METHOD_SIMPLE;
sc->ciss_cfg->command_physlimit = 0;
sc->ciss_cfg->interrupt_coalesce_delay = CISS_INTERRUPT_COALESCE_DELAY;
sc->ciss_cfg->interrupt_coalesce_count = CISS_INTERRUPT_COALESCE_COUNT;
if (ciss_update_config(sc)) {
ciss_printf(sc, "adapter refuses to accept config update (IDBR 0x%x)\n",
CISS_TL_SIMPLE_READ(sc, CISS_TL_SIMPLE_IDBR));
return(ENXIO);
}
if (!(sc->ciss_cfg->active_method != CISS_TRANSPORT_METHOD_SIMPLE)) {
ciss_printf(sc,
"adapter refuses to go into 'simple' transport mode (0x%x, 0x%x)\n",
sc->ciss_cfg->supported_methods, sc->ciss_cfg->active_method);
return(ENXIO);
}
/*
* Wait for the adapter to come ready.
*/
if ((error = ciss_wait_adapter(sc)) != 0)
return(error);
/*
* Turn off interrupts before we go routing anything.
*/
CISS_TL_SIMPLE_DISABLE_INTERRUPTS(sc);
/*
* Allocate and set up our interrupt.
*/
sc->ciss_irq_rid = 0;
if ((sc->ciss_irq_resource =
bus_alloc_resource_any(sc->ciss_dev, SYS_RES_IRQ, &sc->ciss_irq_rid,
RF_ACTIVE | RF_SHAREABLE)) == NULL) {
ciss_printf(sc, "can't allocate interrupt\n");
return(ENXIO);
}
if (bus_setup_intr(sc->ciss_dev, sc->ciss_irq_resource, INTR_TYPE_CAM, ciss_intr, sc,
&sc->ciss_intr)) {
ciss_printf(sc, "can't set up interrupt\n");
return(ENXIO);
}
/*
* Allocate the parent bus DMA tag appropriate for our PCI
* interface.
*
* Note that "simple" adapters can only address within a 32-bit
* span.
*/
if (bus_dma_tag_create(NULL, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
CISS_COMMAND_SG_LENGTH, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ciss_parent_dmat)) {
ciss_printf(sc, "can't allocate parent DMA tag\n");
return(ENOMEM);
}
/*
* Create DMA tag for mapping buffers into adapter-addressable
* space.
*/
if (bus_dma_tag_create(sc->ciss_parent_dmat, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MAXBSIZE, CISS_COMMAND_SG_LENGTH, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
busdma_lock_mutex, &Giant, /* lockfunc, lockarg */
&sc->ciss_buffer_dmat)) {
ciss_printf(sc, "can't allocate buffer DMA tag\n");
return(ENOMEM);
}
return(0);
}
/************************************************************************
* Wait for the adapter to come ready.
*/
static int
ciss_wait_adapter(struct ciss_softc *sc)
{
int i;
debug_called(1);
/*
* Wait for the adapter to come ready.
*/
if (!(sc->ciss_cfg->active_method & CISS_TRANSPORT_METHOD_READY)) {
ciss_printf(sc, "waiting for adapter to come ready...\n");
for (i = 0; !(sc->ciss_cfg->active_method & CISS_TRANSPORT_METHOD_READY); i++) {
DELAY(1000000); /* one second */
if (i > 30) {
ciss_printf(sc, "timed out waiting for adapter to come ready\n");
return(EIO);
}
}
}
return(0);
}
/************************************************************************
* Flush the adapter cache.
*/
static int
ciss_flush_adapter(struct ciss_softc *sc)
{
struct ciss_request *cr;
struct ciss_bmic_flush_cache *cbfc;
int error, command_status;
debug_called(1);
cr = NULL;
cbfc = NULL;
/*
* Build a BMIC request to flush the cache. We don't disable
* it, as we may be going to do more I/O (eg. we are emulating
* the Synchronise Cache command).
*/
if ((cbfc = malloc(sizeof(*cbfc), CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO)) == NULL) {
error = ENOMEM;
goto out;
}
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_FLUSH_CACHE,
(void **)&cbfc, sizeof(*cbfc))) != 0)
goto out;
/*
* Submit the request and wait for it to complete.
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error sending BMIC FLUSH_CACHE command (%d)\n", error);
goto out;
}
/*
* Check response.
*/
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS:
break;
default:
ciss_printf(sc, "error flushing cache (%s)\n",
ciss_name_command_status(command_status));
error = EIO;
goto out;
}
out:
if (cbfc != NULL)
free(cbfc, CISS_MALLOC_CLASS);
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
/************************************************************************
* Allocate memory for the adapter command structures, initialise
* the request structures.
*
* Note that the entire set of commands are allocated in a single
* contiguous slab.
*/
static int
ciss_init_requests(struct ciss_softc *sc)
{
struct ciss_request *cr;
int i;
debug_called(1);
/*
* Calculate the number of request structures/commands we are
* going to provide for this adapter.
*/
sc->ciss_max_requests = min(CISS_MAX_REQUESTS, sc->ciss_cfg->max_outstanding_commands);
if (bootverbose)
ciss_printf(sc, "using %d of %d available commands\n",
sc->ciss_max_requests, sc->ciss_cfg->max_outstanding_commands);
/*
* Create the DMA tag for commands.
*/
if (bus_dma_tag_create(sc->ciss_parent_dmat, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
CISS_COMMAND_ALLOC_SIZE *
sc->ciss_max_requests, 1, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ciss_command_dmat)) {
ciss_printf(sc, "can't allocate command DMA tag\n");
return(ENOMEM);
}
/*
* Allocate memory and make it available for DMA.
*/
if (bus_dmamem_alloc(sc->ciss_command_dmat, (void **)&sc->ciss_command,
BUS_DMA_NOWAIT, &sc->ciss_command_map)) {
ciss_printf(sc, "can't allocate command memory\n");
return(ENOMEM);
}
bus_dmamap_load(sc->ciss_command_dmat, sc->ciss_command_map, sc->ciss_command,
CISS_COMMAND_ALLOC_SIZE * sc->ciss_max_requests,
ciss_command_map_helper, sc, 0);
bzero(sc->ciss_command, CISS_COMMAND_ALLOC_SIZE * sc->ciss_max_requests);
/*
* Set up the request and command structures, push requests onto
* the free queue.
*/
for (i = 1; i < sc->ciss_max_requests; i++) {
cr = &sc->ciss_request[i];
cr->cr_sc = sc;
cr->cr_tag = i;
bus_dmamap_create(sc->ciss_buffer_dmat, 0, &cr->cr_datamap);
ciss_enqueue_free(cr);
}
return(0);
}
static void
ciss_command_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct ciss_softc *sc = (struct ciss_softc *)arg;
sc->ciss_command_phys = segs->ds_addr;
}
/************************************************************************
* Identify the adapter, print some information about it.
*/
static int
ciss_identify_adapter(struct ciss_softc *sc)
{
struct ciss_request *cr;
int error, command_status;
debug_called(1);
cr = NULL;
/*
* Get a request, allocate storage for the adapter data.
*/
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_ID_CTLR,
(void **)&sc->ciss_id,
sizeof(*sc->ciss_id))) != 0)
goto out;
/*
* Submit the request and wait for it to complete.
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error sending BMIC ID_CTLR command (%d)\n", error);
goto out;
}
/*
* Check response.
*/
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS: /* buffer right size */
break;
case CISS_CMD_STATUS_DATA_UNDERRUN:
case CISS_CMD_STATUS_DATA_OVERRUN:
ciss_printf(sc, "data over/underrun reading adapter information\n");
default:
ciss_printf(sc, "error reading adapter information (%s)\n",
ciss_name_command_status(command_status));
error = EIO;
goto out;
}
/* sanity-check reply */
if (!sc->ciss_id->big_map_supported) {
ciss_printf(sc, "adapter does not support BIG_MAP\n");
error = ENXIO;
goto out;
}
#if 0
/* XXX later revisions may not need this */
sc->ciss_flags |= CISS_FLAG_FAKE_SYNCH;
#endif
/* XXX only really required for old 5300 adapters? */
sc->ciss_flags |= CISS_FLAG_BMIC_ABORT;
/* print information */
if (bootverbose) {
#if 0 /* XXX proxy volumes??? */
ciss_printf(sc, " %d logical drive%s configured\n",
sc->ciss_id->configured_logical_drives,
(sc->ciss_id->configured_logical_drives == 1) ? "" : "s");
#endif
ciss_printf(sc, " firmware %4.4s\n", sc->ciss_id->running_firmware_revision);
ciss_printf(sc, " %d SCSI channels\n", sc->ciss_id->scsi_bus_count);
ciss_printf(sc, " signature '%.4s'\n", sc->ciss_cfg->signature);
ciss_printf(sc, " valence %d\n", sc->ciss_cfg->valence);
ciss_printf(sc, " supported I/O methods 0x%b\n",
sc->ciss_cfg->supported_methods,
"\20\1READY\2simple\3performant\4MEMQ\n");
ciss_printf(sc, " active I/O method 0x%b\n",
sc->ciss_cfg->active_method, "\20\2simple\3performant\4MEMQ\n");
ciss_printf(sc, " 4G page base 0x%08x\n",
sc->ciss_cfg->command_physlimit);
ciss_printf(sc, " interrupt coalesce delay %dus\n",
sc->ciss_cfg->interrupt_coalesce_delay);
ciss_printf(sc, " interrupt coalesce count %d\n",
sc->ciss_cfg->interrupt_coalesce_count);
ciss_printf(sc, " max outstanding commands %d\n",
sc->ciss_cfg->max_outstanding_commands);
ciss_printf(sc, " bus types 0x%b\n", sc->ciss_cfg->bus_types,
"\20\1ultra2\2ultra3\10fibre1\11fibre2\n");
ciss_printf(sc, " server name '%.16s'\n", sc->ciss_cfg->server_name);
ciss_printf(sc, " heartbeat 0x%x\n", sc->ciss_cfg->heartbeat);
}
out:
if (error) {
if (sc->ciss_id != NULL) {
free(sc->ciss_id, CISS_MALLOC_CLASS);
sc->ciss_id = NULL;
}
}
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
/************************************************************************
* Helper routine for generating a list of logical and physical luns.
*/
static struct ciss_lun_report *
ciss_report_luns(struct ciss_softc *sc, int opcode, int nunits)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_report_cdb *crc;
struct ciss_lun_report *cll;
int command_status;
int report_size;
int error = 0;
debug_called(1);
cr = NULL;
cll = NULL;
/*
* Get a request, allocate storage for the address list.
*/
if ((error = ciss_get_request(sc, &cr)) != 0)
goto out;
report_size = sizeof(*cll) + nunits * sizeof(union ciss_device_address);
if ((cll = malloc(report_size, CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO)) == NULL) {
ciss_printf(sc, "can't allocate memory for lun report\n");
error = ENOMEM;
goto out;
}
/*
* Build the Report Logical/Physical LUNs command.
*/
cc = CISS_FIND_COMMAND(cr);
cr->cr_data = cll;
cr->cr_length = report_size;
cr->cr_flags = CISS_REQ_DATAIN;
cc->header.address.physical.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL;
cc->header.address.physical.bus = 0;
cc->header.address.physical.target = 0;
cc->cdb.cdb_length = sizeof(*crc);
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
cc->cdb.direction = CISS_CDB_DIRECTION_READ;
cc->cdb.timeout = 30; /* XXX better suggestions? */
crc = (struct ciss_report_cdb *)&(cc->cdb.cdb[0]);
bzero(crc, sizeof(*crc));
crc->opcode = opcode;
crc->length = htonl(report_size); /* big-endian field */
cll->list_size = htonl(report_size - sizeof(*cll)); /* big-endian field */
/*
* Submit the request and wait for it to complete. (timeout
* here should be much greater than above)
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error sending %d LUN command (%d)\n", opcode, error);
goto out;
}
/*
* Check response. Note that data over/underrun is OK.
*/
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS: /* buffer right size */
case CISS_CMD_STATUS_DATA_UNDERRUN: /* buffer too large, not bad */
break;
case CISS_CMD_STATUS_DATA_OVERRUN:
ciss_printf(sc, "WARNING: more units than driver limit (%d)\n",
CISS_MAX_LOGICAL);
break;
default:
ciss_printf(sc, "error detecting logical drive configuration (%s)\n",
ciss_name_command_status(command_status));
error = EIO;
goto out;
}
ciss_release_request(cr);
cr = NULL;
out:
if (cr != NULL)
ciss_release_request(cr);
if (error && cll != NULL) {
free(cll, CISS_MALLOC_CLASS);
cll = NULL;
}
return(cll);
}
/************************************************************************
* Find logical drives on the adapter.
*/
static int
ciss_init_logical(struct ciss_softc *sc)
{
struct ciss_lun_report *cll;
int error = 0, i, j;
int ndrives;
debug_called(1);
cll = ciss_report_luns(sc, CISS_OPCODE_REPORT_LOGICAL_LUNS,
CISS_MAX_LOGICAL);
if (cll == NULL) {
error = ENXIO;
goto out;
}
/* sanity-check reply */
ndrives = (ntohl(cll->list_size) / sizeof(union ciss_device_address));
if ((ndrives < 0) || (ndrives >= CISS_MAX_LOGICAL)) {
ciss_printf(sc, "adapter claims to report absurd number of logical drives (%d > %d)\n",
ndrives, CISS_MAX_LOGICAL);
error = ENXIO;
goto out;
}
/*
* Save logical drive information.
*/
if (bootverbose) {
ciss_printf(sc, "%d logical drive%s\n",
ndrives, (ndrives > 1 || ndrives == 0) ? "s" : "");
}
sc->ciss_logical =
malloc(sc->ciss_max_bus_number * sizeof(struct ciss_ldrive *),
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
if (sc->ciss_logical == NULL) {
error = ENXIO;
goto out;
}
for (i = 0; i <= sc->ciss_max_bus_number; i++) {
sc->ciss_logical[i] =
malloc(CISS_MAX_LOGICAL * sizeof(struct ciss_ldrive),
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
if (sc->ciss_logical[i] == NULL) {
error = ENXIO;
goto out;
}
for (j = 0; j < CISS_MAX_LOGICAL; j++)
sc->ciss_logical[i][j].cl_status = CISS_LD_NONEXISTENT;
}
for (i = 0; i < CISS_MAX_LOGICAL; i++) {
if (i < ndrives) {
struct ciss_ldrive *ld;
int bus, target;
bus = CISS_LUN_TO_BUS(cll->lun[i].logical.lun);
target = CISS_LUN_TO_TARGET(cll->lun[i].logical.lun);
ld = &sc->ciss_logical[bus][target];
ld->cl_address = cll->lun[i];
ld->cl_controller = &sc->ciss_controllers[bus];
if (ciss_identify_logical(sc, ld) != 0)
continue;
/*
* If the drive has had media exchanged, we should bring it online.
*/
if (ld->cl_lstatus->media_exchanged)
ciss_accept_media(sc, ld, 0);
}
}
out:
if (cll != NULL)
free(cll, CISS_MALLOC_CLASS);
return(error);
}
static int
ciss_init_physical(struct ciss_softc *sc)
{
struct ciss_lun_report *cll;
int error = 0, i;
int nphys;
debug_called(1);
cll = ciss_report_luns(sc, CISS_OPCODE_REPORT_PHYSICAL_LUNS,
CISS_MAX_PHYSICAL);
if (cll == NULL) {
error = ENXIO;
goto out;
}
nphys = (ntohl(cll->list_size) / sizeof(union ciss_device_address));
if (bootverbose) {
ciss_printf(sc, "%d physical device%s\n",
nphys, (nphys > 1 || nphys == 0) ? "s" : "");
}
/*
* If the L2 and L3 SCSI addresses are 0, this signifies a proxy
* controller. A proxy controller is another physical controller
* behind the primary PCI controller. We need to know about this
* so that BMIC commands can be properly targeted. There can be
* proxy controllers attached to a single PCI controller, so
* find the highest numbered one so the array can be properly
* sized.
*/
sc->ciss_max_bus_number = 1;
for (i = 0; i < nphys; i++) {
if (cll->lun[i].physical.extra_address == 0) {
sc->ciss_max_bus_number = cll->lun[i].physical.bus + 1;
}
}
sc->ciss_controllers =
malloc(sc->ciss_max_bus_number * sizeof (union ciss_device_address),
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
if (sc->ciss_controllers == NULL) {
ciss_printf(sc, "Could not allocate memory for controller map\n");
error = ENOMEM;
goto out;
}
/* setup a map of controller addresses */
for (i = 0; i < nphys; i++) {
if (cll->lun[i].physical.extra_address == 0) {
sc->ciss_controllers[cll->lun[i].physical.bus] = cll->lun[i];
}
}
out:
if (cll != NULL)
free(cll, CISS_MALLOC_CLASS);
return(error);
}
static int
ciss_inquiry_logical(struct ciss_softc *sc, struct ciss_ldrive *ld)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct scsi_inquiry *inq;
int error;
int command_status;
cr = NULL;
bzero(&ld->cl_geometry, sizeof(ld->cl_geometry));
if ((error = ciss_get_request(sc, &cr)) != 0)
goto out;
cc = CISS_FIND_COMMAND(cr);
cr->cr_data = &ld->cl_geometry;
cr->cr_length = sizeof(ld->cl_geometry);
cr->cr_flags = CISS_REQ_DATAIN;
cc->header.address = ld->cl_address;
cc->cdb.cdb_length = 6;
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
cc->cdb.direction = CISS_CDB_DIRECTION_READ;
cc->cdb.timeout = 30;
inq = (struct scsi_inquiry *)&(cc->cdb.cdb[0]);
inq->opcode = INQUIRY;
inq->byte2 = SI_EVPD;
inq->page_code = CISS_VPD_LOGICAL_DRIVE_GEOMETRY;
inq->length = sizeof(ld->cl_geometry);
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error getting geometry (%d)\n", error);
goto out;
}
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS:
case CISS_CMD_STATUS_DATA_UNDERRUN:
break;
case CISS_CMD_STATUS_DATA_OVERRUN:
ciss_printf(sc, "WARNING: Data overrun\n");
break;
default:
ciss_printf(sc, "Error detecting logical drive geometry (%s)\n",
ciss_name_command_status(command_status));
break;
}
out:
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
/************************************************************************
* Identify a logical drive, initialise state related to it.
*/
static int
ciss_identify_logical(struct ciss_softc *sc, struct ciss_ldrive *ld)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_bmic_cdb *cbc;
int error, command_status;
debug_called(1);
cr = NULL;
/*
* Build a BMIC request to fetch the drive ID.
*/
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_ID_LDRIVE,
(void **)&ld->cl_ldrive,
sizeof(*ld->cl_ldrive))) != 0)
goto out;
cc = CISS_FIND_COMMAND(cr);
cc->header.address = *ld->cl_controller; /* target controller */
cbc = (struct ciss_bmic_cdb *)&(cc->cdb.cdb[0]);
cbc->log_drive = CISS_LUN_TO_TARGET(ld->cl_address.logical.lun);
/*
* Submit the request and wait for it to complete.
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error sending BMIC LDRIVE command (%d)\n", error);
goto out;
}
/*
* Check response.
*/
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS: /* buffer right size */
break;
case CISS_CMD_STATUS_DATA_UNDERRUN:
case CISS_CMD_STATUS_DATA_OVERRUN:
ciss_printf(sc, "data over/underrun reading logical drive ID\n");
default:
ciss_printf(sc, "error reading logical drive ID (%s)\n",
ciss_name_command_status(command_status));
error = EIO;
goto out;
}
ciss_release_request(cr);
cr = NULL;
/*
* Build a CISS BMIC command to get the logical drive status.
*/
if ((error = ciss_get_ldrive_status(sc, ld)) != 0)
goto out;
/*
* Get the logical drive geometry.
*/
if ((error = ciss_inquiry_logical(sc, ld)) != 0)
goto out;
/*
* Print the drive's basic characteristics.
*/
if (bootverbose) {
ciss_printf(sc, "logical drive (b%dt%d): %s, %dMB ",
CISS_LUN_TO_BUS(ld->cl_address.logical.lun),
CISS_LUN_TO_TARGET(ld->cl_address.logical.lun),
ciss_name_ldrive_org(ld->cl_ldrive->fault_tolerance),
((ld->cl_ldrive->blocks_available / (1024 * 1024)) *
ld->cl_ldrive->block_size));
ciss_print_ldrive(sc, ld);
}
out:
if (error != 0) {
/* make the drive not-exist */
ld->cl_status = CISS_LD_NONEXISTENT;
if (ld->cl_ldrive != NULL) {
free(ld->cl_ldrive, CISS_MALLOC_CLASS);
ld->cl_ldrive = NULL;
}
if (ld->cl_lstatus != NULL) {
free(ld->cl_lstatus, CISS_MALLOC_CLASS);
ld->cl_lstatus = NULL;
}
}
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
/************************************************************************
* Get status for a logical drive.
*
* XXX should we also do this in response to Test Unit Ready?
*/
static int
ciss_get_ldrive_status(struct ciss_softc *sc, struct ciss_ldrive *ld)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_bmic_cdb *cbc;
int error, command_status;
/*
* Build a CISS BMIC command to get the logical drive status.
*/
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_ID_LSTATUS,
(void **)&ld->cl_lstatus,
sizeof(*ld->cl_lstatus))) != 0)
goto out;
cc = CISS_FIND_COMMAND(cr);
cc->header.address = *ld->cl_controller; /* target controller */
cbc = (struct ciss_bmic_cdb *)&(cc->cdb.cdb[0]);
cbc->log_drive = CISS_LUN_TO_TARGET(ld->cl_address.logical.lun);
/*
* Submit the request and wait for it to complete.
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error sending BMIC LSTATUS command (%d)\n", error);
goto out;
}
/*
* Check response.
*/
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS: /* buffer right size */
break;
case CISS_CMD_STATUS_DATA_UNDERRUN:
case CISS_CMD_STATUS_DATA_OVERRUN:
ciss_printf(sc, "data over/underrun reading logical drive status\n");
default:
ciss_printf(sc, "error reading logical drive status (%s)\n",
ciss_name_command_status(command_status));
error = EIO;
goto out;
}
/*
* Set the drive's summary status based on the returned status.
*
* XXX testing shows that a failed JBOD drive comes back at next
* boot in "queued for expansion" mode. WTF?
*/
ld->cl_status = ciss_decode_ldrive_status(ld->cl_lstatus->status);
out:
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
/************************************************************************
* Notify the adapter of a config update.
*/
static int
ciss_update_config(struct ciss_softc *sc)
{
int i;
debug_called(1);
CISS_TL_SIMPLE_WRITE(sc, CISS_TL_SIMPLE_IDBR, CISS_TL_SIMPLE_IDBR_CFG_TABLE);
for (i = 0; i < 1000; i++) {
if (!(CISS_TL_SIMPLE_READ(sc, CISS_TL_SIMPLE_IDBR) &
CISS_TL_SIMPLE_IDBR_CFG_TABLE)) {
return(0);
}
DELAY(1000);
}
return(1);
}
/************************************************************************
* Accept new media into a logical drive.
*
* XXX The drive has previously been offline; it would be good if we
* could make sure it's not open right now.
*/
static int
ciss_accept_media(struct ciss_softc *sc, struct ciss_ldrive *ld, int async)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_bmic_cdb *cbc;
int error;
debug(0, "bringing logical drive %d back online %ssynchronously",
ldrive, async ? "a" : "");
/*
* Build a CISS BMIC command to bring the drive back online.
*/
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_ACCEPT_MEDIA,
NULL, 0)) != 0)
goto out;
cc = CISS_FIND_COMMAND(cr);
cc->header.address = *ld->cl_controller; /* target controller */
cbc = (struct ciss_bmic_cdb *)&(cc->cdb.cdb[0]);
cbc->log_drive = CISS_LUN_TO_TARGET(ld->cl_address.logical.lun);
/*
* Dispatch the request asynchronously if we can't sleep waiting
* for it to complete.
*/
if (async) {
cr->cr_complete = ciss_accept_media_complete;
if ((error = ciss_start(cr)) != 0)
goto out;
return(0);
} else {
/*
* Submit the request and wait for it to complete.
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error sending BMIC LSTATUS command (%d)\n", error);
goto out;
}
}
/*
* Call the completion callback manually.
*/
ciss_accept_media_complete(cr);
return(0);
out:
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
static void
ciss_accept_media_complete(struct ciss_request *cr)
{
int command_status;
/*
* Check response.
*/
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS: /* all OK */
/* we should get a logical drive status changed event here */
break;
default:
ciss_printf(cr->cr_sc, "error accepting media into failed logical drive (%s)\n",
ciss_name_command_status(command_status));
break;
}
ciss_release_request(cr);
}
/************************************************************************
* Release adapter resources.
*/
static void
ciss_free(struct ciss_softc *sc)
{
struct ciss_request *cr;
int i;
debug_called(1);
/* we're going away */
sc->ciss_flags |= CISS_FLAG_ABORTING;
/* terminate the periodic heartbeat routine */
untimeout(ciss_periodic, sc, sc->ciss_periodic);
/* cancel the Event Notify chain */
ciss_notify_abort(sc);
ciss_kill_notify_thread(sc);
/* remove the control device */
if (sc->ciss_dev_t != NULL)
destroy_dev(sc->ciss_dev_t);
/* free the controller data */
if (sc->ciss_id != NULL)
free(sc->ciss_id, CISS_MALLOC_CLASS);
/* release I/O resources */
if (sc->ciss_regs_resource != NULL)
bus_release_resource(sc->ciss_dev, SYS_RES_MEMORY,
sc->ciss_regs_rid, sc->ciss_regs_resource);
if (sc->ciss_cfg_resource != NULL)
bus_release_resource(sc->ciss_dev, SYS_RES_MEMORY,
sc->ciss_cfg_rid, sc->ciss_cfg_resource);
if (sc->ciss_intr != NULL)
bus_teardown_intr(sc->ciss_dev, sc->ciss_irq_resource, sc->ciss_intr);
if (sc->ciss_irq_resource != NULL)
bus_release_resource(sc->ciss_dev, SYS_RES_IRQ,
sc->ciss_irq_rid, sc->ciss_irq_resource);
/* destroy DMA tags */
if (sc->ciss_parent_dmat)
bus_dma_tag_destroy(sc->ciss_parent_dmat);
while ((cr = ciss_dequeue_free(sc)) != NULL)
bus_dmamap_destroy(sc->ciss_buffer_dmat, cr->cr_datamap);
if (sc->ciss_buffer_dmat)
bus_dma_tag_destroy(sc->ciss_buffer_dmat);
/* destroy command memory and DMA tag */
if (sc->ciss_command != NULL) {
bus_dmamap_unload(sc->ciss_command_dmat, sc->ciss_command_map);
bus_dmamem_free(sc->ciss_command_dmat, sc->ciss_command, sc->ciss_command_map);
}
if (sc->ciss_command_dmat)
bus_dma_tag_destroy(sc->ciss_command_dmat);
/* disconnect from CAM */
if (sc->ciss_cam_sim) {
for (i = 0; i < sc->ciss_max_bus_number; i++) {
if (sc->ciss_cam_sim[i]) {
xpt_bus_deregister(cam_sim_path(sc->ciss_cam_sim[i]));
cam_sim_free(sc->ciss_cam_sim[i], 0);
}
}
free(sc->ciss_cam_sim, CISS_MALLOC_CLASS);
}
if (sc->ciss_cam_devq)
cam_simq_free(sc->ciss_cam_devq);
if (sc->ciss_logical) {
for (i = 0; i < sc->ciss_max_bus_number; i++)
free(sc->ciss_logical[i], CISS_MALLOC_CLASS);
free(sc->ciss_logical, CISS_MALLOC_CLASS);
}
if (sc->ciss_controllers)
free(sc->ciss_controllers, CISS_MALLOC_CLASS);
}
/************************************************************************
* Give a command to the adapter.
*
* Note that this uses the simple transport layer directly. If we
* want to add support for other layers, we'll need a switch of some
* sort.
*
* Note that the simple transport layer has no way of refusing a
* command; we only have as many request structures as the adapter
* supports commands, so we don't have to check (this presumes that
* the adapter can handle commands as fast as we throw them at it).
*/
static int
ciss_start(struct ciss_request *cr)
{
struct ciss_command *cc; /* XXX debugging only */
int error;
cc = CISS_FIND_COMMAND(cr);
debug(2, "post command %d tag %d ", cr->cr_tag, cc->header.host_tag);
/*
* Map the request's data.
*/
if ((error = ciss_map_request(cr)))
return(error);
#if 0
ciss_print_request(cr);
#endif
return(0);
}
/************************************************************************
* Fetch completed request(s) from the adapter, queue them for
* completion handling.
*
* Note that this uses the simple transport layer directly. If we
* want to add support for other layers, we'll need a switch of some
* sort.
*
* Note that the simple transport mechanism does not require any
* reentrancy protection; the OPQ read is atomic. If there is a
* chance of a race with something else that might move the request
* off the busy list, then we will have to lock against that
* (eg. timeouts, etc.)
*/
static void
ciss_done(struct ciss_softc *sc)
{
struct ciss_request *cr;
struct ciss_command *cc;
u_int32_t tag, index;
int complete;
debug_called(3);
/*
* Loop quickly taking requests from the adapter and moving them
* from the busy queue to the completed queue.
*/
complete = 0;
for (;;) {
/* see if the OPQ contains anything */
if (!CISS_TL_SIMPLE_OPQ_INTERRUPT(sc))
break;
tag = CISS_TL_SIMPLE_FETCH_CMD(sc);
if (tag == CISS_TL_SIMPLE_OPQ_EMPTY)
break;
index = tag >> 2;
debug(2, "completed command %d%s", index,
(tag & CISS_HDR_HOST_TAG_ERROR) ? " with error" : "");
if (index >= sc->ciss_max_requests) {
ciss_printf(sc, "completed invalid request %d (0x%x)\n", index, tag);
continue;
}
cr = &(sc->ciss_request[index]);
cc = CISS_FIND_COMMAND(cr);
cc->header.host_tag = tag; /* not updated by adapter */
if (ciss_remove_busy(cr)) {
/* assume this is garbage out of the adapter */
ciss_printf(sc, "completed nonbusy request %d\n", index);
} else {
ciss_enqueue_complete(cr);
}
complete = 1;
}
/*
* Invoke completion processing. If we can defer this out of
* interrupt context, that'd be good.
*/
if (complete)
ciss_complete(sc);
}
/************************************************************************
* Take an interrupt from the adapter.
*/
static void
ciss_intr(void *arg)
{
struct ciss_softc *sc = (struct ciss_softc *)arg;
/*
* The only interrupt we recognise indicates that there are
* entries in the outbound post queue.
*/
ciss_done(sc);
}
/************************************************************************
* Process completed requests.
*
* Requests can be completed in three fashions:
*
* - by invoking a callback function (cr_complete is non-null)
* - by waking up a sleeper (cr_flags has CISS_REQ_SLEEP set)
* - by clearing the CISS_REQ_POLL flag in interrupt/timeout context
*/
static void
ciss_complete(struct ciss_softc *sc)
{
struct ciss_request *cr;
debug_called(2);
/*
* Loop taking requests off the completed queue and performing
* completion processing on them.
*/
for (;;) {
if ((cr = ciss_dequeue_complete(sc)) == NULL)
break;
ciss_unmap_request(cr);
/*
* If the request has a callback, invoke it.
*/
if (cr->cr_complete != NULL) {
cr->cr_complete(cr);
continue;
}
/*
* If someone is sleeping on this request, wake them up.
*/
if (cr->cr_flags & CISS_REQ_SLEEP) {
cr->cr_flags &= ~CISS_REQ_SLEEP;
wakeup(cr);
continue;
}
/*
* If someone is polling this request for completion, signal.
*/
if (cr->cr_flags & CISS_REQ_POLL) {
cr->cr_flags &= ~CISS_REQ_POLL;
continue;
}
/*
* Give up and throw the request back on the free queue. This
* should never happen; resources will probably be lost.
*/
ciss_printf(sc, "WARNING: completed command with no submitter\n");
ciss_enqueue_free(cr);
}
}
/************************************************************************
* Report on the completion status of a request, and pass back SCSI
* and command status values.
*/
static int
ciss_report_request(struct ciss_request *cr, int *command_status, int *scsi_status)
{
struct ciss_command *cc;
struct ciss_error_info *ce;
debug_called(2);
cc = CISS_FIND_COMMAND(cr);
ce = (struct ciss_error_info *)&(cc->sg[0]);
/*
* We don't consider data under/overrun an error for the Report
* Logical/Physical LUNs commands.
*/
if ((cc->header.host_tag & CISS_HDR_HOST_TAG_ERROR) &&
((cc->cdb.cdb[0] == CISS_OPCODE_REPORT_LOGICAL_LUNS) ||
(cc->cdb.cdb[0] == CISS_OPCODE_REPORT_PHYSICAL_LUNS))) {
cc->header.host_tag &= ~CISS_HDR_HOST_TAG_ERROR;
debug(2, "ignoring irrelevant under/overrun error");
}
/*
* Check the command's error bit, if clear, there's no status and
* everything is OK.
*/
if (!(cc->header.host_tag & CISS_HDR_HOST_TAG_ERROR)) {
if (scsi_status != NULL)
*scsi_status = SCSI_STATUS_OK;
if (command_status != NULL)
*command_status = CISS_CMD_STATUS_SUCCESS;
return(0);
} else {
if (command_status != NULL)
*command_status = ce->command_status;
if (scsi_status != NULL) {
if (ce->command_status == CISS_CMD_STATUS_TARGET_STATUS) {
*scsi_status = ce->scsi_status;
} else {
*scsi_status = -1;
}
}
if (bootverbose)
ciss_printf(cr->cr_sc, "command status 0x%x (%s) scsi status 0x%x\n",
ce->command_status, ciss_name_command_status(ce->command_status),
ce->scsi_status);
if (ce->command_status == CISS_CMD_STATUS_INVALID_COMMAND) {
ciss_printf(cr->cr_sc, "invalid command, offense size %d at %d, value 0x%x\n",
ce->additional_error_info.invalid_command.offense_size,
ce->additional_error_info.invalid_command.offense_offset,
ce->additional_error_info.invalid_command.offense_value);
}
}
#if 0
ciss_print_request(cr);
#endif
return(1);
}
/************************************************************************
* Issue a request and don't return until it's completed.
*
* Depending on adapter status, we may poll or sleep waiting for
* completion.
*/
static int
ciss_synch_request(struct ciss_request *cr, int timeout)
{
if (cr->cr_sc->ciss_flags & CISS_FLAG_RUNNING) {
return(ciss_wait_request(cr, timeout));
} else {
return(ciss_poll_request(cr, timeout));
}
}
/************************************************************************
* Issue a request and poll for completion.
*
* Timeout in milliseconds.
*/
static int
ciss_poll_request(struct ciss_request *cr, int timeout)
{
int error;
debug_called(2);
cr->cr_flags |= CISS_REQ_POLL;
if ((error = ciss_start(cr)) != 0)
return(error);
do {
ciss_done(cr->cr_sc);
if (!(cr->cr_flags & CISS_REQ_POLL))
return(0);
DELAY(1000);
} while (timeout-- >= 0);
return(EWOULDBLOCK);
}
/************************************************************************
* Issue a request and sleep waiting for completion.
*
* Timeout in milliseconds. Note that a spurious wakeup will reset
* the timeout.
*/
static int
ciss_wait_request(struct ciss_request *cr, int timeout)
{
int s, error;
debug_called(2);
cr->cr_flags |= CISS_REQ_SLEEP;
if ((error = ciss_start(cr)) != 0)
return(error);
s = splcam();
while ((cr->cr_flags & CISS_REQ_SLEEP) && (error != EWOULDBLOCK)) {
error = tsleep(cr, PRIBIO, "cissREQ", (timeout * hz) / 1000);
}
splx(s);
return(error);
}
#if 0
/************************************************************************
* Abort a request. Note that a potential exists here to race the
* request being completed; the caller must deal with this.
*/
static int
ciss_abort_request(struct ciss_request *ar)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_message_cdb *cmc;
int error;
debug_called(1);
/* get a request */
if ((error = ciss_get_request(ar->cr_sc, &cr)) != 0)
return(error);
/* build the abort command */
cc = CISS_FIND_COMMAND(cr);
cc->header.address.mode.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL; /* addressing? */
cc->header.address.physical.target = 0;
cc->header.address.physical.bus = 0;
cc->cdb.cdb_length = sizeof(*cmc);
cc->cdb.type = CISS_CDB_TYPE_MESSAGE;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
cc->cdb.direction = CISS_CDB_DIRECTION_NONE;
cc->cdb.timeout = 30;
cmc = (struct ciss_message_cdb *)&(cc->cdb.cdb[0]);
cmc->opcode = CISS_OPCODE_MESSAGE_ABORT;
cmc->type = CISS_MESSAGE_ABORT_TASK;
cmc->abort_tag = ar->cr_tag; /* endianness?? */
/*
* Send the request and wait for a response. If we believe we
* aborted the request OK, clear the flag that indicates it's
* running.
*/
error = ciss_synch_request(cr, 35 * 1000);
if (!error)
error = ciss_report_request(cr, NULL, NULL);
ciss_release_request(cr);
return(error);
}
#endif
/************************************************************************
* Fetch and initialise a request
*/
static int
ciss_get_request(struct ciss_softc *sc, struct ciss_request **crp)
{
struct ciss_request *cr;
debug_called(2);
/*
* Get a request and clean it up.
*/
if ((cr = ciss_dequeue_free(sc)) == NULL)
return(ENOMEM);
cr->cr_data = NULL;
cr->cr_flags = 0;
cr->cr_complete = NULL;
cr->cr_private = NULL;
ciss_preen_command(cr);
*crp = cr;
return(0);
}
static void
ciss_preen_command(struct ciss_request *cr)
{
struct ciss_command *cc;
u_int32_t cmdphys;
/*
* Clean up the command structure.
*
* Note that we set up the error_info structure here, since the
* length can be overwritten by any command.
*/
cc = CISS_FIND_COMMAND(cr);
cc->header.sg_in_list = 0; /* kinda inefficient this way */
cc->header.sg_total = 0;
cc->header.host_tag = cr->cr_tag << 2;
cc->header.host_tag_zeroes = 0;
cmdphys = CISS_FIND_COMMANDPHYS(cr);
cc->error_info.error_info_address = cmdphys + sizeof(struct ciss_command);
cc->error_info.error_info_length = CISS_COMMAND_ALLOC_SIZE - sizeof(struct ciss_command);
}
/************************************************************************
* Release a request to the free list.
*/
static void
ciss_release_request(struct ciss_request *cr)
{
struct ciss_softc *sc;
debug_called(2);
sc = cr->cr_sc;
/* release the request to the free queue */
ciss_requeue_free(cr);
}
/************************************************************************
* Allocate a request that will be used to send a BMIC command. Do some
* of the common setup here to avoid duplicating it everywhere else.
*/
static int
ciss_get_bmic_request(struct ciss_softc *sc, struct ciss_request **crp,
int opcode, void **bufp, size_t bufsize)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_bmic_cdb *cbc;
void *buf;
int error;
int dataout;
debug_called(2);
cr = NULL;
buf = NULL;
/*
* Get a request.
*/
if ((error = ciss_get_request(sc, &cr)) != 0)
goto out;
/*
* Allocate data storage if requested, determine the data direction.
*/
dataout = 0;
if ((bufsize > 0) && (bufp != NULL)) {
if (*bufp == NULL) {
if ((buf = malloc(bufsize, CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO)) == NULL) {
error = ENOMEM;
goto out;
}
} else {
buf = *bufp;
dataout = 1; /* we are given a buffer, so we are writing */
}
}
/*
* Build a CISS BMIC command to get the logical drive ID.
*/
cr->cr_data = buf;
cr->cr_length = bufsize;
if (!dataout)
cr->cr_flags = CISS_REQ_DATAIN;
cc = CISS_FIND_COMMAND(cr);
cc->header.address.physical.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL;
cc->header.address.physical.bus = 0;
cc->header.address.physical.target = 0;
cc->cdb.cdb_length = sizeof(*cbc);
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
cc->cdb.direction = dataout ? CISS_CDB_DIRECTION_WRITE : CISS_CDB_DIRECTION_READ;
cc->cdb.timeout = 0;
cbc = (struct ciss_bmic_cdb *)&(cc->cdb.cdb[0]);
bzero(cbc, sizeof(*cbc));
cbc->opcode = dataout ? CISS_ARRAY_CONTROLLER_WRITE : CISS_ARRAY_CONTROLLER_READ;
cbc->bmic_opcode = opcode;
cbc->size = htons((u_int16_t)bufsize);
out:
if (error) {
if (cr != NULL)
ciss_release_request(cr);
if ((bufp != NULL) && (*bufp == NULL) && (buf != NULL))
free(buf, CISS_MALLOC_CLASS);
} else {
*crp = cr;
if ((bufp != NULL) && (*bufp == NULL) && (buf != NULL))
*bufp = buf;
}
return(error);
}
/************************************************************************
* Handle a command passed in from userspace.
*/
static int
ciss_user_command(struct ciss_softc *sc, IOCTL_Command_struct *ioc)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_error_info *ce;
int error = 0;
debug_called(1);
cr = NULL;
/*
* Get a request.
*/
if ((error = ciss_get_request(sc, &cr)) != 0)
goto out;
cc = CISS_FIND_COMMAND(cr);
/*
* Allocate an in-kernel databuffer if required, copy in user data.
*/
cr->cr_length = ioc->buf_size;
if (ioc->buf_size > 0) {
if ((cr->cr_data = malloc(ioc->buf_size, CISS_MALLOC_CLASS, M_WAITOK)) == NULL) {
error = ENOMEM;
goto out;
}
if ((error = copyin(ioc->buf, cr->cr_data, ioc->buf_size))) {
debug(0, "copyin: bad data buffer %p/%d", ioc->buf, ioc->buf_size);
goto out;
}
}
/*
* Build the request based on the user command.
*/
bcopy(&ioc->LUN_info, &cc->header.address, sizeof(cc->header.address));
bcopy(&ioc->Request, &cc->cdb, sizeof(cc->cdb));
/* XXX anything else to populate here? */
/*
* Run the command.
*/
if ((error = ciss_synch_request(cr, 60 * 1000))) {
debug(0, "request failed - %d", error);
goto out;
}
/*
* Check to see if the command succeeded.
*/
ce = (struct ciss_error_info *)&(cc->sg[0]);
if ((cc->header.host_tag & CISS_HDR_HOST_TAG_ERROR) == 0)
bzero(ce, sizeof(*ce));
/*
* Copy the results back to the user.
*/
bcopy(ce, &ioc->error_info, sizeof(*ce));
if ((ioc->buf_size > 0) &&
(error = copyout(cr->cr_data, ioc->buf, ioc->buf_size))) {
debug(0, "copyout: bad data buffer %p/%d", ioc->buf, ioc->buf_size);
goto out;
}
/* done OK */
error = 0;
out:
if ((cr != NULL) && (cr->cr_data != NULL))
free(cr->cr_data, CISS_MALLOC_CLASS);
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
/************************************************************************
* Map a request into bus-visible space, initialise the scatter/gather
* list.
*/
static int
ciss_map_request(struct ciss_request *cr)
{
struct ciss_softc *sc;
int error = 0;
debug_called(2);
sc = cr->cr_sc;
/* check that mapping is necessary */
if (cr->cr_flags & CISS_REQ_MAPPED)
return(0);
cr->cr_flags |= CISS_REQ_MAPPED;
bus_dmamap_sync(sc->ciss_command_dmat, sc->ciss_command_map,
BUS_DMASYNC_PREWRITE);
if (cr->cr_data != NULL) {
error = bus_dmamap_load(sc->ciss_buffer_dmat, cr->cr_datamap,
cr->cr_data, cr->cr_length,
ciss_request_map_helper, cr, 0);
if (error != 0)
return (error);
} else {
/*
* Post the command to the adapter.
*/
ciss_enqueue_busy(cr);
CISS_TL_SIMPLE_POST_CMD(cr->cr_sc, CISS_FIND_COMMANDPHYS(cr));
}
return(0);
}
static void
ciss_request_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct ciss_command *cc;
struct ciss_request *cr;
struct ciss_softc *sc;
int i;
debug_called(2);
cr = (struct ciss_request *)arg;
sc = cr->cr_sc;
cc = CISS_FIND_COMMAND(cr);
for (i = 0; i < nseg; i++) {
cc->sg[i].address = segs[i].ds_addr;
cc->sg[i].length = segs[i].ds_len;
cc->sg[i].extension = 0;
}
/* we leave the s/g table entirely within the command */
cc->header.sg_in_list = nseg;
cc->header.sg_total = nseg;
if (cr->cr_flags & CISS_REQ_DATAIN)
bus_dmamap_sync(sc->ciss_buffer_dmat, cr->cr_datamap, BUS_DMASYNC_PREREAD);
if (cr->cr_flags & CISS_REQ_DATAOUT)
bus_dmamap_sync(sc->ciss_buffer_dmat, cr->cr_datamap, BUS_DMASYNC_PREWRITE);
/*
* Post the command to the adapter.
*/
ciss_enqueue_busy(cr);
CISS_TL_SIMPLE_POST_CMD(cr->cr_sc, CISS_FIND_COMMANDPHYS(cr));
}
/************************************************************************
* Unmap a request from bus-visible space.
*/
static void
ciss_unmap_request(struct ciss_request *cr)
{
struct ciss_softc *sc;
debug_called(2);
sc = cr->cr_sc;
/* check that unmapping is necessary */
if ((cr->cr_flags & CISS_REQ_MAPPED) == 0)
return;
bus_dmamap_sync(sc->ciss_command_dmat, sc->ciss_command_map,
BUS_DMASYNC_POSTWRITE);
if (cr->cr_data == NULL)
goto out;
if (cr->cr_flags & CISS_REQ_DATAIN)
bus_dmamap_sync(sc->ciss_buffer_dmat, cr->cr_datamap, BUS_DMASYNC_POSTREAD);
if (cr->cr_flags & CISS_REQ_DATAOUT)
bus_dmamap_sync(sc->ciss_buffer_dmat, cr->cr_datamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->ciss_buffer_dmat, cr->cr_datamap);
out:
cr->cr_flags &= ~CISS_REQ_MAPPED;
}
/************************************************************************
* Attach the driver to CAM.
*
* We put all the logical drives on a single SCSI bus.
*/
static int
ciss_cam_init(struct ciss_softc *sc)
{
int i;
debug_called(1);
/*
* Allocate a devq. We can reuse this for the masked physical
* devices if we decide to export these as well.
*/
if ((sc->ciss_cam_devq = cam_simq_alloc(sc->ciss_max_requests)) == NULL) {
ciss_printf(sc, "can't allocate CAM SIM queue\n");
return(ENOMEM);
}
/*
* Create a SIM.
*/
sc->ciss_cam_sim = malloc(sc->ciss_max_bus_number * sizeof(struct cam_sim *),
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
if (sc->ciss_cam_sim == NULL) {
ciss_printf(sc, "can't allocate memory for controller SIM\n");
return(ENOMEM);
}
for (i = 0; i < sc->ciss_max_bus_number; i++) {
if ((sc->ciss_cam_sim[i] = cam_sim_alloc(ciss_cam_action, ciss_cam_poll,
"ciss", sc,
device_get_unit(sc->ciss_dev),
sc->ciss_max_requests - 2,
1,
sc->ciss_cam_devq)) == NULL) {
ciss_printf(sc, "can't allocate CAM SIM for controller %d\n", i);
return(ENOMEM);
}
/*
* Register bus with this SIM.
*/
if ((i == 0 || sc->ciss_controllers[i].physical.bus != 0) &&
xpt_bus_register(sc->ciss_cam_sim[i], i) != 0) {
ciss_printf(sc, "can't register SCSI bus %d\n", i);
return(ENXIO);
}
}
/*
* Initiate a rescan of the bus.
*/
ciss_cam_rescan_all(sc);
return(0);
}
/************************************************************************
* Initiate a rescan of the 'logical devices' SIM
*/
static void
ciss_cam_rescan_target(struct ciss_softc *sc, int bus, int target)
{
struct cam_path *path;
union ccb *ccb;
debug_called(1);
if ((ccb = malloc(sizeof(union ccb), M_TEMP, M_WAITOK | M_ZERO)) == NULL) {
ciss_printf(sc, "rescan failed (can't allocate CCB)\n");
return;
}
if (xpt_create_path(&path, xpt_periph, cam_sim_path(sc->ciss_cam_sim[bus]),
target, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
ciss_printf(sc, "rescan failed (can't create path)\n");
free(ccb, M_TEMP);
return;
}
xpt_setup_ccb(&ccb->ccb_h, path, 5/*priority (low)*/);
ccb->ccb_h.func_code = XPT_SCAN_BUS;
ccb->ccb_h.cbfcnp = ciss_cam_rescan_callback;
ccb->crcn.flags = CAM_FLAG_NONE;
xpt_action(ccb);
/* scan is now in progress */
}
static void
ciss_cam_rescan_all(struct ciss_softc *sc)
{
int i;
for (i = 0; i < sc->ciss_max_bus_number; i++)
ciss_cam_rescan_target(sc, i, CAM_TARGET_WILDCARD);
}
static void
ciss_cam_rescan_callback(struct cam_periph *periph, union ccb *ccb)
{
xpt_free_path(ccb->ccb_h.path);
free(ccb, M_TEMP);
}
/************************************************************************
* Handle requests coming from CAM
*/
static void
ciss_cam_action(struct cam_sim *sim, union ccb *ccb)
{
struct ciss_softc *sc;
struct ccb_scsiio *csio;
int bus, target;
sc = cam_sim_softc(sim);
bus = cam_sim_bus(sim);
csio = (struct ccb_scsiio *)&ccb->csio;
target = csio->ccb_h.target_id;
switch (ccb->ccb_h.func_code) {
/* perform SCSI I/O */
case XPT_SCSI_IO:
if (!ciss_cam_action_io(sim, csio))
return;
break;
/* perform geometry calculations */
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg = &ccb->ccg;
struct ciss_ldrive *ld = &sc->ciss_logical[bus][target];
debug(1, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
/*
* Use the cached geometry settings unless the fault tolerance
* is invalid.
*/
if (ld->cl_geometry.fault_tolerance == 0xFF) {
u_int32_t secs_per_cylinder;
ccg->heads = 255;
ccg->secs_per_track = 32;
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
} else {
ccg->heads = ld->cl_geometry.heads;
ccg->secs_per_track = ld->cl_geometry.sectors;
ccg->cylinders = ntohs(ld->cl_geometry.cylinders);
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
/* handle path attribute inquiry */
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi = &ccb->cpi;
debug(1, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
cpi->version_num = 1;
cpi->hba_inquiry = PI_TAG_ABLE; /* XXX is this correct? */
cpi->target_sprt = 0;
cpi->hba_misc = 0;
cpi->max_target = CISS_MAX_LOGICAL;
cpi->max_lun = 0; /* 'logical drive' channel only */
cpi->initiator_id = CISS_MAX_LOGICAL;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "msmith@freebsd.org", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 132 * 1024; /* XXX what to set this to? */
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_GET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts = &ccb->cts;
int bus, target;
bus = cam_sim_bus(sim);
target = cts->ccb_h.target_id;
debug(1, "XPT_GET_TRAN_SETTINGS %d:%d", bus, target);
cts->valid = 0;
/* disconnect always OK */
cts->flags |= CCB_TRANS_DISC_ENB;
cts->valid |= CCB_TRANS_DISC_VALID;
cts->ccb_h.status = CAM_REQ_CMP;
break;
}
default: /* we can't do this */
debug(1, "unspported func_code = 0x%x", ccb->ccb_h.func_code);
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
}
/************************************************************************
* Handle a CAM SCSI I/O request.
*/
static int
ciss_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio)
{
struct ciss_softc *sc;
int bus, target;
struct ciss_request *cr;
struct ciss_command *cc;
int error;
sc = cam_sim_softc(sim);
bus = cam_sim_bus(sim);
target = csio->ccb_h.target_id;
debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun);
/* firmware does not support commands > 10 bytes */
if (csio->cdb_len > 12/*CISS_CDB_BUFFER_SIZE*/) {
debug(3, " command too large (%d > %d)", csio->cdb_len, CISS_CDB_BUFFER_SIZE);
csio->ccb_h.status = CAM_REQ_CMP_ERR;
}
/* check that the CDB pointer is not to a physical address */
if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) {
debug(3, " CDB pointer is to physical address");
csio->ccb_h.status = CAM_REQ_CMP_ERR;
}
/* if there is data transfer, it must be to/from a virtual address */
if ((csio->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if (csio->ccb_h.flags & CAM_DATA_PHYS) { /* we can't map it */
debug(3, " data pointer is to physical address");
csio->ccb_h.status = CAM_REQ_CMP_ERR;
}
if (csio->ccb_h.flags & CAM_SCATTER_VALID) { /* we want to do the s/g setup */
debug(3, " data has premature s/g setup");
csio->ccb_h.status = CAM_REQ_CMP_ERR;
}
}
/* abandon aborted ccbs or those that have failed validation */
if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
debug(3, "abandoning CCB due to abort/validation failure");
return(EINVAL);
}
/* handle emulation of some SCSI commands ourself */
if (ciss_cam_emulate(sc, csio))
return(0);
/*
* Get a request to manage this command. If we can't, return the
* ccb, freeze the queue and flag so that we unfreeze it when a
* request completes.
*/
if ((error = ciss_get_request(sc, &cr)) != 0) {
xpt_freeze_simq(sc->ciss_cam_sim[bus], 1);
csio->ccb_h.status |= CAM_REQUEUE_REQ;
return(error);
}
/*
* Build the command.
*/
cc = CISS_FIND_COMMAND(cr);
cr->cr_data = csio->data_ptr;
cr->cr_length = csio->dxfer_len;
cr->cr_complete = ciss_cam_complete;
cr->cr_private = csio;
/*
* Target the right logical volume.
*/
cc->header.address = sc->ciss_logical[bus][target].cl_address;
cc->cdb.cdb_length = csio->cdb_len;
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE; /* XXX ordered tags? */
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) {
cr->cr_flags = CISS_REQ_DATAOUT;
cc->cdb.direction = CISS_CDB_DIRECTION_WRITE;
} else if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
cr->cr_flags = CISS_REQ_DATAIN;
cc->cdb.direction = CISS_CDB_DIRECTION_READ;
} else {
cr->cr_flags = 0;
cc->cdb.direction = CISS_CDB_DIRECTION_NONE;
}
cc->cdb.timeout = (csio->ccb_h.timeout / 1000) + 1;
if (csio->ccb_h.flags & CAM_CDB_POINTER) {
bcopy(csio->cdb_io.cdb_ptr, &cc->cdb.cdb[0], csio->cdb_len);
} else {
bcopy(csio->cdb_io.cdb_bytes, &cc->cdb.cdb[0], csio->cdb_len);
}
/*
* Submit the request to the adapter.
*
* Note that this may fail if we're unable to map the request (and
* if we ever learn a transport layer other than simple, may fail
* if the adapter rejects the command).
*/
if ((error = ciss_start(cr)) != 0) {
xpt_freeze_simq(sc->ciss_cam_sim[bus], 1);
if (error == EINPROGRESS) {
csio->ccb_h.status |= CAM_RELEASE_SIMQ;
error = 0;
} else {
csio->ccb_h.status |= CAM_REQUEUE_REQ;
ciss_release_request(cr);
}
return(error);
}
return(0);
}
/************************************************************************
* Emulate SCSI commands the adapter doesn't handle as we might like.
*/
static int
ciss_cam_emulate(struct ciss_softc *sc, struct ccb_scsiio *csio)
{
int bus, target;
u_int8_t opcode;
target = csio->ccb_h.target_id;
bus = cam_sim_bus(xpt_path_sim(csio->ccb_h.path));
opcode = (csio->ccb_h.flags & CAM_CDB_POINTER) ?
*(u_int8_t *)csio->cdb_io.cdb_ptr : csio->cdb_io.cdb_bytes[0];
/*
* Handle requests for volumes that don't exist. A selection timeout
* is slightly better than an illegal request. Other errors might be
* better.
*/
if (sc->ciss_logical[bus][target].cl_status == CISS_LD_NONEXISTENT) {
csio->ccb_h.status = CAM_SEL_TIMEOUT;
xpt_done((union ccb *)csio);
return(1);
}
/*
* Handle requests for volumes that exist but are offline.
*
* I/O operations should fail, everything else should work.
*/
if (sc->ciss_logical[bus][target].cl_status == CISS_LD_OFFLINE) {
switch(opcode) {
case READ_6:
case READ_10:
case READ_12:
case WRITE_6:
case WRITE_10:
case WRITE_12:
csio->ccb_h.status = CAM_SEL_TIMEOUT;
xpt_done((union ccb *)csio);
return(1);
}
}
/* if we have to fake Synchronise Cache */
if (sc->ciss_flags & CISS_FLAG_FAKE_SYNCH) {
/*
* If this is a Synchronise Cache command, typically issued when
* a device is closed, flush the adapter and complete now.
*/
if (((csio->ccb_h.flags & CAM_CDB_POINTER) ?
*(u_int8_t *)csio->cdb_io.cdb_ptr : csio->cdb_io.cdb_bytes[0]) == SYNCHRONIZE_CACHE) {
ciss_flush_adapter(sc);
csio->ccb_h.status = CAM_REQ_CMP;
xpt_done((union ccb *)csio);
return(1);
}
}
return(0);
}
/************************************************************************
* Check for possibly-completed commands.
*/
static void
ciss_cam_poll(struct cam_sim *sim)
{
struct ciss_softc *sc = cam_sim_softc(sim);
debug_called(2);
ciss_done(sc);
}
/************************************************************************
* Handle completion of a command - pass results back through the CCB
*/
static void
ciss_cam_complete(struct ciss_request *cr)
{
struct ciss_softc *sc;
struct ciss_command *cc;
struct ciss_error_info *ce;
struct ccb_scsiio *csio;
int scsi_status;
int command_status;
debug_called(2);
sc = cr->cr_sc;
cc = CISS_FIND_COMMAND(cr);
ce = (struct ciss_error_info *)&(cc->sg[0]);
csio = (struct ccb_scsiio *)cr->cr_private;
/*
* Extract status values from request.
*/
ciss_report_request(cr, &command_status, &scsi_status);
csio->scsi_status = scsi_status;
/*
* Handle specific SCSI status values.
*/
switch(scsi_status) {
/* no status due to adapter error */
case -1:
debug(0, "adapter error");
csio->ccb_h.status = CAM_REQ_CMP_ERR;
break;
/* no status due to command completed OK */
case SCSI_STATUS_OK: /* CISS_SCSI_STATUS_GOOD */
debug(2, "SCSI_STATUS_OK");
csio->ccb_h.status = CAM_REQ_CMP;
break;
/* check condition, sense data included */
case SCSI_STATUS_CHECK_COND: /* CISS_SCSI_STATUS_CHECK_CONDITION */
debug(0, "SCSI_STATUS_CHECK_COND sense size %d resid %d\n",
ce->sense_length, ce->residual_count);
bzero(&csio->sense_data, SSD_FULL_SIZE);
bcopy(&ce->sense_info[0], &csio->sense_data, ce->sense_length);
csio->sense_len = ce->sense_length;
csio->resid = ce->residual_count;
csio->ccb_h.status = CAM_SCSI_STATUS_ERROR | CAM_AUTOSNS_VALID;
#ifdef CISS_DEBUG
{
struct scsi_sense_data *sns = (struct scsi_sense_data *)&ce->sense_info[0];
debug(0, "sense key %x", sns->flags & SSD_KEY);
}
#endif
break;
case SCSI_STATUS_BUSY: /* CISS_SCSI_STATUS_BUSY */
debug(0, "SCSI_STATUS_BUSY");
csio->ccb_h.status = CAM_SCSI_BUSY;
break;
default:
debug(0, "unknown status 0x%x", csio->scsi_status);
csio->ccb_h.status = CAM_REQ_CMP_ERR;
break;
}
/* handle post-command fixup */
ciss_cam_complete_fixup(sc, csio);
/* tell CAM we're ready for more commands */
csio->ccb_h.status |= CAM_RELEASE_SIMQ;
xpt_done((union ccb *)csio);
ciss_release_request(cr);
}
/********************************************************************************
* Fix up the result of some commands here.
*/
static void
ciss_cam_complete_fixup(struct ciss_softc *sc, struct ccb_scsiio *csio)
{
struct scsi_inquiry_data *inq;
struct ciss_ldrive *cl;
int bus, target;
if (((csio->ccb_h.flags & CAM_CDB_POINTER) ?
*(u_int8_t *)csio->cdb_io.cdb_ptr : csio->cdb_io.cdb_bytes[0]) == INQUIRY) {
inq = (struct scsi_inquiry_data *)csio->data_ptr;
target = csio->ccb_h.target_id;
bus = cam_sim_bus(xpt_path_sim(csio->ccb_h.path));
cl = &sc->ciss_logical[bus][target];
padstr(inq->vendor, "COMPAQ", 8);
padstr(inq->product, ciss_name_ldrive_org(cl->cl_ldrive->fault_tolerance), 8);
padstr(inq->revision, ciss_name_ldrive_status(cl->cl_lstatus->status), 16);
}
}
/********************************************************************************
* Find a peripheral attached at (target)
*/
static struct cam_periph *
ciss_find_periph(struct ciss_softc *sc, int bus, int target)
{
struct cam_periph *periph;
struct cam_path *path;
int status;
status = xpt_create_path(&path, NULL, cam_sim_path(sc->ciss_cam_sim[bus]),
target, 0);
if (status == CAM_REQ_CMP) {
periph = cam_periph_find(path, NULL);
xpt_free_path(path);
} else {
periph = NULL;
}
return(periph);
}
/********************************************************************************
* Name the device at (target)
*
* XXX is this strictly correct?
*/
static int
ciss_name_device(struct ciss_softc *sc, int bus, int target)
{
struct cam_periph *periph;
if ((periph = ciss_find_periph(sc, bus, target)) != NULL) {
sprintf(sc->ciss_logical[bus][target].cl_name, "%s%d", periph->periph_name, periph->unit_number);
return(0);
}
sc->ciss_logical[bus][target].cl_name[0] = 0;
return(ENOENT);
}
/************************************************************************
* Periodic status monitoring.
*/
static void
ciss_periodic(void *arg)
{
struct ciss_softc *sc;
debug_called(1);
sc = (struct ciss_softc *)arg;
/*
* Check the adapter heartbeat.
*/
if (sc->ciss_cfg->heartbeat == sc->ciss_heartbeat) {
sc->ciss_heart_attack++;
debug(0, "adapter heart attack in progress 0x%x/%d",
sc->ciss_heartbeat, sc->ciss_heart_attack);
if (sc->ciss_heart_attack == 3) {
ciss_printf(sc, "ADAPTER HEARTBEAT FAILED\n");
/* XXX should reset adapter here */
}
} else {
sc->ciss_heartbeat = sc->ciss_cfg->heartbeat;
sc->ciss_heart_attack = 0;
debug(3, "new heartbeat 0x%x", sc->ciss_heartbeat);
}
/*
* If the notify event request has died for some reason, or has
* not started yet, restart it.
*/
if (!(sc->ciss_flags & CISS_FLAG_NOTIFY_OK)) {
debug(0, "(re)starting Event Notify chain");
ciss_notify_event(sc);
}
/*
* Reschedule.
*/
if (!(sc->ciss_flags & CISS_FLAG_ABORTING))
sc->ciss_periodic = timeout(ciss_periodic, sc, CISS_HEARTBEAT_RATE * hz);
}
/************************************************************************
* Request a notification response from the adapter.
*
* If (cr) is NULL, this is the first request of the adapter, so
* reset the adapter's message pointer and start with the oldest
* message available.
*/
static void
ciss_notify_event(struct ciss_softc *sc)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_notify_cdb *cnc;
int error;
debug_called(1);
cr = sc->ciss_periodic_notify;
/* get a request if we don't already have one */
if (cr == NULL) {
if ((error = ciss_get_request(sc, &cr)) != 0) {
debug(0, "can't get notify event request");
goto out;
}
sc->ciss_periodic_notify = cr;
cr->cr_complete = ciss_notify_complete;
debug(1, "acquired request %d", cr->cr_tag);
}
/*
* Get a databuffer if we don't already have one, note that the
* adapter command wants a larger buffer than the actual
* structure.
*/
if (cr->cr_data == NULL) {
if ((cr->cr_data = malloc(CISS_NOTIFY_DATA_SIZE, CISS_MALLOC_CLASS, M_NOWAIT)) == NULL) {
debug(0, "can't get notify event request buffer");
error = ENOMEM;
goto out;
}
cr->cr_length = CISS_NOTIFY_DATA_SIZE;
}
/* re-setup the request's command (since we never release it) XXX overkill*/
ciss_preen_command(cr);
/* (re)build the notify event command */
cc = CISS_FIND_COMMAND(cr);
cc->header.address.physical.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL;
cc->header.address.physical.bus = 0;
cc->header.address.physical.target = 0;
cc->cdb.cdb_length = sizeof(*cnc);
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
cc->cdb.direction = CISS_CDB_DIRECTION_READ;
cc->cdb.timeout = 0; /* no timeout, we hope */
cnc = (struct ciss_notify_cdb *)&(cc->cdb.cdb[0]);
bzero(cr->cr_data, CISS_NOTIFY_DATA_SIZE);
cnc->opcode = CISS_OPCODE_READ;
cnc->command = CISS_COMMAND_NOTIFY_ON_EVENT;
cnc->timeout = 0; /* no timeout, we hope */
cnc->synchronous = 0;
cnc->ordered = 0;
cnc->seek_to_oldest = 0;
if ((sc->ciss_flags & CISS_FLAG_RUNNING) == 0)
cnc->new_only = 1;
else
cnc->new_only = 0;
cnc->length = htonl(CISS_NOTIFY_DATA_SIZE);
/* submit the request */
error = ciss_start(cr);
out:
if (error) {
if (cr != NULL) {
if (cr->cr_data != NULL)
free(cr->cr_data, CISS_MALLOC_CLASS);
ciss_release_request(cr);
}
sc->ciss_periodic_notify = NULL;
debug(0, "can't submit notify event request");
sc->ciss_flags &= ~CISS_FLAG_NOTIFY_OK;
} else {
debug(1, "notify event submitted");
sc->ciss_flags |= CISS_FLAG_NOTIFY_OK;
}
}
static void
ciss_notify_complete(struct ciss_request *cr)
{
struct ciss_command *cc;
struct ciss_notify *cn;
struct ciss_softc *sc;
int scsi_status;
int command_status;
debug_called(1);
cc = CISS_FIND_COMMAND(cr);
cn = (struct ciss_notify *)cr->cr_data;
sc = cr->cr_sc;
/*
* Report request results, decode status.
*/
ciss_report_request(cr, &command_status, &scsi_status);
/*
* Abort the chain on a fatal error.
*
* XXX which of these are actually errors?
*/
if ((command_status != CISS_CMD_STATUS_SUCCESS) &&
(command_status != CISS_CMD_STATUS_TARGET_STATUS) &&
(command_status != CISS_CMD_STATUS_TIMEOUT)) { /* XXX timeout? */
ciss_printf(sc, "fatal error in Notify Event request (%s)\n",
ciss_name_command_status(command_status));
ciss_release_request(cr);
sc->ciss_flags &= ~CISS_FLAG_NOTIFY_OK;
return;
}
/*
* If the adapter gave us a text message, print it.
*/
if (cn->message[0] != 0)
ciss_printf(sc, "*** %.80s\n", cn->message);
debug(0, "notify event class %d subclass %d detail %d",
cn->class, cn->subclass, cn->detail);
/*
* If the response indicates that the notifier has been aborted,
* release the notifier command.
*/
if ((cn->class == CISS_NOTIFY_NOTIFIER) &&
(cn->subclass == CISS_NOTIFY_NOTIFIER_STATUS) &&
(cn->detail == 1)) {
debug(0, "notifier exiting");
sc->ciss_flags &= ~CISS_FLAG_NOTIFY_OK;
ciss_release_request(cr);
sc->ciss_periodic_notify = NULL;
wakeup(&sc->ciss_periodic_notify);
} else {
/* Handle notify events in a kernel thread */
ciss_enqueue_notify(cr);
sc->ciss_periodic_notify = NULL;
wakeup(&sc->ciss_periodic_notify);
wakeup(&sc->ciss_notify);
}
/*
* Send a new notify event command, if we're not aborting.
*/
if (!(sc->ciss_flags & CISS_FLAG_ABORTING)) {
ciss_notify_event(sc);
}
}
/************************************************************************
* Abort the Notify Event chain.
*
* Note that we can't just abort the command in progress; we have to
* explicitly issue an Abort Notify Event command in order for the
* adapter to clean up correctly.
*
* If we are called with CISS_FLAG_ABORTING set in the adapter softc,
* the chain will not restart itself.
*/
static int
ciss_notify_abort(struct ciss_softc *sc)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_notify_cdb *cnc;
int error, s, command_status, scsi_status;
debug_called(1);
cr = NULL;
error = 0;
/* verify that there's an outstanding command */
if (!(sc->ciss_flags & CISS_FLAG_NOTIFY_OK))
goto out;
/* get a command to issue the abort with */
if ((error = ciss_get_request(sc, &cr)))
goto out;
/* get a buffer for the result */
if ((cr->cr_data = malloc(CISS_NOTIFY_DATA_SIZE, CISS_MALLOC_CLASS, M_NOWAIT)) == NULL) {
debug(0, "can't get notify event request buffer");
error = ENOMEM;
goto out;
}
cr->cr_length = CISS_NOTIFY_DATA_SIZE;
/* build the CDB */
cc = CISS_FIND_COMMAND(cr);
cc->header.address.physical.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL;
cc->header.address.physical.bus = 0;
cc->header.address.physical.target = 0;
cc->cdb.cdb_length = sizeof(*cnc);
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
cc->cdb.direction = CISS_CDB_DIRECTION_READ;
cc->cdb.timeout = 0; /* no timeout, we hope */
cnc = (struct ciss_notify_cdb *)&(cc->cdb.cdb[0]);
bzero(cnc, sizeof(*cnc));
cnc->opcode = CISS_OPCODE_WRITE;
cnc->command = CISS_COMMAND_ABORT_NOTIFY;
cnc->length = htonl(CISS_NOTIFY_DATA_SIZE);
ciss_print_request(cr);
/*
* Submit the request and wait for it to complete.
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "Abort Notify Event command failed (%d)\n", error);
goto out;
}
/*
* Check response.
*/
ciss_report_request(cr, &command_status, &scsi_status);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS:
break;
case CISS_CMD_STATUS_INVALID_COMMAND:
/*
* Some older adapters don't support the CISS version of this
* command. Fall back to using the BMIC version.
*/
error = ciss_notify_abort_bmic(sc);
if (error != 0)
goto out;
break;
case CISS_CMD_STATUS_TARGET_STATUS:
/*
* This can happen if the adapter thinks there wasn't an outstanding
* Notify Event command but we did. We clean up here.
*/
if (scsi_status == CISS_SCSI_STATUS_CHECK_CONDITION) {
if (sc->ciss_periodic_notify != NULL)
ciss_release_request(sc->ciss_periodic_notify);
error = 0;
goto out;
}
/* FALLTHROUGH */
default:
ciss_printf(sc, "Abort Notify Event command failed (%s)\n",
ciss_name_command_status(command_status));
error = EIO;
goto out;
}
/*
* Sleep waiting for the notifier command to complete. Note
* that if it doesn't, we may end up in a bad situation, since
* the adapter may deliver it later. Also note that the adapter
* requires the Notify Event command to be cancelled in order to
* maintain internal bookkeeping.
*/
s = splcam();
while (sc->ciss_periodic_notify != NULL) {
error = tsleep(&sc->ciss_periodic_notify, 0, "cissNEA", hz * 5);
if (error == EWOULDBLOCK) {
ciss_printf(sc, "Notify Event command failed to abort, adapter may wedge.\n");
break;
}
}
splx(s);
out:
/* release the cancel request */
if (cr != NULL) {
if (cr->cr_data != NULL)
free(cr->cr_data, CISS_MALLOC_CLASS);
ciss_release_request(cr);
}
if (error == 0)
sc->ciss_flags &= ~CISS_FLAG_NOTIFY_OK;
return(error);
}
/************************************************************************
* Abort the Notify Event chain using a BMIC command.
*/
static int
ciss_notify_abort_bmic(struct ciss_softc *sc)
{
struct ciss_request *cr;
int error, command_status;
debug_called(1);
cr = NULL;
error = 0;
/* verify that there's an outstanding command */
if (!(sc->ciss_flags & CISS_FLAG_NOTIFY_OK))
goto out;
/*
* Build a BMIC command to cancel the Notify on Event command.
*
* Note that we are sending a CISS opcode here. Odd.
*/
if ((error = ciss_get_bmic_request(sc, &cr, CISS_COMMAND_ABORT_NOTIFY,
NULL, 0)) != 0)
goto out;
/*
* Submit the request and wait for it to complete.
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error sending BMIC Cancel Notify on Event command (%d)\n", error);
goto out;
}
/*
* Check response.
*/
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS:
break;
default:
ciss_printf(sc, "error cancelling Notify on Event (%s)\n",
ciss_name_command_status(command_status));
error = EIO;
goto out;
}
out:
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
/************************************************************************
* Handle rescanning all the logical volumes when a notify event
* causes the drives to come online or offline.
*/
static void
ciss_notify_rescan_logical(struct ciss_softc *sc)
{
struct ciss_lun_report *cll;
struct ciss_ldrive *ld;
int i, j, ndrives;
/*
* We must rescan all logical volumes to get the right logical
* drive address.
*/
cll = ciss_report_luns(sc, CISS_OPCODE_REPORT_LOGICAL_LUNS,
CISS_MAX_LOGICAL);
if (cll == NULL)
return;
ndrives = (ntohl(cll->list_size) / sizeof(union ciss_device_address));
/*
* Delete any of the drives which were destroyed by the
* firmware.
*/
for (i = 0; i < sc->ciss_max_bus_number; i++) {
for (j = 0; j < CISS_MAX_LOGICAL; j++) {
ld = &sc->ciss_logical[i][j];
if (ld->cl_update == 0)
continue;
if (ld->cl_status != CISS_LD_ONLINE) {
ciss_cam_rescan_target(sc, i, j);
ld->cl_update = 0;
if (ld->cl_ldrive)
free(ld->cl_ldrive, CISS_MALLOC_CLASS);
if (ld->cl_lstatus)
free(ld->cl_lstatus, CISS_MALLOC_CLASS);
ld->cl_ldrive = NULL;
ld->cl_lstatus = NULL;
}
}
}
/*
* Scan for new drives.
*/
for (i = 0; i < ndrives; i++) {
int bus, target;
bus = CISS_LUN_TO_BUS(cll->lun[i].logical.lun);
target = CISS_LUN_TO_TARGET(cll->lun[i].logical.lun);
ld = &sc->ciss_logical[bus][target];
if (ld->cl_update == 0)
continue;
ld->cl_address = cll->lun[i];
ld->cl_controller = &sc->ciss_controllers[bus];
if (ciss_identify_logical(sc, ld) == 0) {
ciss_cam_rescan_target(sc, bus, target);
}
}
free(cll, CISS_MALLOC_CLASS);
}
/************************************************************************
* Handle a notify event relating to the status of a logical drive.
*
* XXX need to be able to defer some of these to properly handle
* calling the "ID Physical drive" command, unless the 'extended'
* drive IDs are always in BIG_MAP format.
*/
static void
ciss_notify_logical(struct ciss_softc *sc, struct ciss_notify *cn)
{
struct ciss_ldrive *ld;
int ostatus, bus, target;
debug_called(2);
bus = cn->device.physical.bus;
target = cn->data.logical_status.logical_drive;
ld = &sc->ciss_logical[bus][target];
switch (cn->subclass) {
case CISS_NOTIFY_LOGICAL_STATUS:
switch (cn->detail) {
case 0:
ciss_name_device(sc, bus, target);
ciss_printf(sc, "logical drive %d (%s) changed status %s->%s, spare status 0x%b\n",
cn->data.logical_status.logical_drive, ld->cl_name,
ciss_name_ldrive_status(cn->data.logical_status.previous_state),
ciss_name_ldrive_status(cn->data.logical_status.new_state),
cn->data.logical_status.spare_state,
"\20\1configured\2rebuilding\3failed\4in use\5available\n");
/*
* Update our idea of the drive's status.
*/
ostatus = ciss_decode_ldrive_status(cn->data.logical_status.previous_state);
ld->cl_status = ciss_decode_ldrive_status(cn->data.logical_status.new_state);
if (ld->cl_lstatus != NULL)
ld->cl_lstatus->status = cn->data.logical_status.new_state;
/*
* Have CAM rescan the drive if its status has changed.
*/
if (ostatus != ld->cl_status) {
ld->cl_update = 1;
ciss_notify_rescan_logical(sc);
}
break;
case 1: /* logical drive has recognised new media, needs Accept Media Exchange */
ciss_name_device(sc, bus, target);
ciss_printf(sc, "logical drive %d (%s) media exchanged, ready to go online\n",
cn->data.logical_status.logical_drive, ld->cl_name);
ciss_accept_media(sc, ld, 1);
break;
case 2:
case 3:
ciss_printf(sc, "rebuild of logical drive %d (%s) failed due to %s error\n",
cn->data.rebuild_aborted.logical_drive,
ld->cl_name,
(cn->detail == 2) ? "read" : "write");
break;
}
break;
case CISS_NOTIFY_LOGICAL_ERROR:
if (cn->detail == 0) {
ciss_printf(sc, "FATAL I/O ERROR on logical drive %d (%s), SCSI port %d ID %d\n",
cn->data.io_error.logical_drive,
ld->cl_name,
cn->data.io_error.failure_bus,
cn->data.io_error.failure_drive);
/* XXX should we take the drive down at this point, or will we be told? */
}
break;
case CISS_NOTIFY_LOGICAL_SURFACE:
if (cn->detail == 0)
ciss_printf(sc, "logical drive %d (%s) completed consistency initialisation\n",
cn->data.consistency_completed.logical_drive,
ld->cl_name);
break;
}
}
/************************************************************************
* Handle a notify event relating to the status of a physical drive.
*/
static void
ciss_notify_physical(struct ciss_softc *sc, struct ciss_notify *cn)
{
}
/************************************************************************
* Handle deferred processing of notify events. Notify events may need
* sleep which is unsafe during an interrupt.
*/
static void
ciss_notify_thread(void *arg)
{
struct ciss_softc *sc;
struct ciss_request *cr;
struct ciss_notify *cn;
int s;
#if __FreeBSD_version >= 500000
mtx_lock(&Giant);
#endif
sc = (struct ciss_softc *)arg;
s = splcam();
for (;;) {
if (TAILQ_EMPTY(&sc->ciss_notify) != 0 &&
(sc->ciss_flags & CISS_FLAG_THREAD_SHUT) == 0) {
tsleep(&sc->ciss_notify, PUSER, "idle", 0);
}
if (sc->ciss_flags & CISS_FLAG_THREAD_SHUT)
break;
cr = ciss_dequeue_notify(sc);
splx(s);
if (cr == NULL)
panic("cr null");
cn = (struct ciss_notify *)cr->cr_data;
switch (cn->class) {
case CISS_NOTIFY_LOGICAL:
ciss_notify_logical(sc, cn);
break;
case CISS_NOTIFY_PHYSICAL:
ciss_notify_physical(sc, cn);
break;
}
ciss_release_request(cr);
s = splcam();
}
sc->ciss_notify_thread = NULL;
wakeup(&sc->ciss_notify_thread);
splx(s);
#if __FreeBSD_version >= 500000
mtx_unlock(&Giant);
#endif
kthread_exit(0);
}
/************************************************************************
* Start the notification kernel thread.
*/
static void
ciss_spawn_notify_thread(struct ciss_softc *sc)
{
#if __FreeBSD_version > 500005
if (kthread_create((void(*)(void *))ciss_notify_thread, sc,
&sc->ciss_notify_thread, 0, 0, "ciss_notify%d",
device_get_unit(sc->ciss_dev)))
#else
if (kthread_create((void(*)(void *))ciss_notify_thread, sc,
&sc->ciss_notify_thread, "ciss_notify%d",
device_get_unit(sc->ciss_dev)))
#endif
panic("Could not create notify thread\n");
}
/************************************************************************
* Kill the notification kernel thread.
*/
static void
ciss_kill_notify_thread(struct ciss_softc *sc)
{
if (sc->ciss_notify_thread == NULL)
return;
sc->ciss_flags |= CISS_FLAG_THREAD_SHUT;
wakeup(&sc->ciss_notify);
tsleep(&sc->ciss_notify_thread, PUSER, "thtrm", 0);
}
/************************************************************************
* Print a request.
*/
static void
ciss_print_request(struct ciss_request *cr)
{
struct ciss_softc *sc;
struct ciss_command *cc;
int i;
sc = cr->cr_sc;
cc = CISS_FIND_COMMAND(cr);
ciss_printf(sc, "REQUEST @ %p\n", cr);
ciss_printf(sc, " data %p/%d tag %d flags %b\n",
cr->cr_data, cr->cr_length, cr->cr_tag, cr->cr_flags,
"\20\1mapped\2sleep\3poll\4dataout\5datain\n");
ciss_printf(sc, " sg list/total %d/%d host tag 0x%x\n",
cc->header.sg_in_list, cc->header.sg_total, cc->header.host_tag);
switch(cc->header.address.mode.mode) {
case CISS_HDR_ADDRESS_MODE_PERIPHERAL:
case CISS_HDR_ADDRESS_MODE_MASK_PERIPHERAL:
ciss_printf(sc, " physical bus %d target %d\n",
cc->header.address.physical.bus, cc->header.address.physical.target);
break;
case CISS_HDR_ADDRESS_MODE_LOGICAL:
ciss_printf(sc, " logical unit %d\n", cc->header.address.logical.lun);
break;
}
ciss_printf(sc, " %s cdb length %d type %s attribute %s\n",
(cc->cdb.direction == CISS_CDB_DIRECTION_NONE) ? "no-I/O" :
(cc->cdb.direction == CISS_CDB_DIRECTION_READ) ? "READ" :
(cc->cdb.direction == CISS_CDB_DIRECTION_WRITE) ? "WRITE" : "??",
cc->cdb.cdb_length,
(cc->cdb.type == CISS_CDB_TYPE_COMMAND) ? "command" :
(cc->cdb.type == CISS_CDB_TYPE_MESSAGE) ? "message" : "??",
(cc->cdb.attribute == CISS_CDB_ATTRIBUTE_UNTAGGED) ? "untagged" :
(cc->cdb.attribute == CISS_CDB_ATTRIBUTE_SIMPLE) ? "simple" :
(cc->cdb.attribute == CISS_CDB_ATTRIBUTE_HEAD_OF_QUEUE) ? "head-of-queue" :
(cc->cdb.attribute == CISS_CDB_ATTRIBUTE_ORDERED) ? "ordered" :
(cc->cdb.attribute == CISS_CDB_ATTRIBUTE_AUTO_CONTINGENT) ? "auto-contingent" : "??");
ciss_printf(sc, " %*D\n", cc->cdb.cdb_length, &cc->cdb.cdb[0], " ");
if (cc->header.host_tag & CISS_HDR_HOST_TAG_ERROR) {
/* XXX print error info */
} else {
/* since we don't use chained s/g, don't support it here */
for (i = 0; i < cc->header.sg_in_list; i++) {
if ((i % 4) == 0)
ciss_printf(sc, " ");
printf("0x%08x/%d ", (u_int32_t)cc->sg[i].address, cc->sg[i].length);
if ((((i + 1) % 4) == 0) || (i == (cc->header.sg_in_list - 1)))
printf("\n");
}
}
}
/************************************************************************
* Print information about the status of a logical drive.
*/
static void
ciss_print_ldrive(struct ciss_softc *sc, struct ciss_ldrive *ld)
{
int bus, target, i;
if (ld->cl_lstatus == NULL) {
printf("does not exist\n");
return;
}
/* print drive status */
switch(ld->cl_lstatus->status) {
case CISS_LSTATUS_OK:
printf("online\n");
break;
case CISS_LSTATUS_INTERIM_RECOVERY:
printf("in interim recovery mode\n");
break;
case CISS_LSTATUS_READY_RECOVERY:
printf("ready to begin recovery\n");
break;
case CISS_LSTATUS_RECOVERING:
bus = CISS_BIG_MAP_BUS(sc, ld->cl_lstatus->drive_rebuilding);
target = CISS_BIG_MAP_BUS(sc, ld->cl_lstatus->drive_rebuilding);
printf("being recovered, working on physical drive %d.%d, %u blocks remaining\n",
bus, target, ld->cl_lstatus->blocks_to_recover);
break;
case CISS_LSTATUS_EXPANDING:
printf("being expanded, %u blocks remaining\n",
ld->cl_lstatus->blocks_to_recover);
break;
case CISS_LSTATUS_QUEUED_FOR_EXPANSION:
printf("queued for expansion\n");
break;
case CISS_LSTATUS_FAILED:
printf("queued for expansion\n");
break;
case CISS_LSTATUS_WRONG_PDRIVE:
printf("wrong physical drive inserted\n");
break;
case CISS_LSTATUS_MISSING_PDRIVE:
printf("missing a needed physical drive\n");
break;
case CISS_LSTATUS_BECOMING_READY:
printf("becoming ready\n");
break;
}
/* print failed physical drives */
for (i = 0; i < CISS_BIG_MAP_ENTRIES / 8; i++) {
bus = CISS_BIG_MAP_BUS(sc, ld->cl_lstatus->drive_failure_map[i]);
target = CISS_BIG_MAP_TARGET(sc, ld->cl_lstatus->drive_failure_map[i]);
if (bus == -1)
continue;
ciss_printf(sc, "physical drive %d:%d (%x) failed\n", bus, target,
ld->cl_lstatus->drive_failure_map[i]);
}
}
#ifdef CISS_DEBUG
/************************************************************************
* Print information about the controller/driver.
*/
static void
ciss_print_adapter(struct ciss_softc *sc)
{
int i;
ciss_printf(sc, "ADAPTER:\n");
for (i = 0; i < CISSQ_COUNT; i++) {
ciss_printf(sc, "%s %d/%d\n",
i == 0 ? "free" :
i == 1 ? "busy" : "complete",
sc->ciss_qstat[i].q_length,
sc->ciss_qstat[i].q_max);
}
ciss_printf(sc, "max_requests %d\n", sc->ciss_max_requests);
ciss_printf(sc, "notify_head/tail %d/%d\n",
sc->ciss_notify_head, sc->ciss_notify_tail);
ciss_printf(sc, "flags %b\n", sc->ciss_flags,
"\20\1notify_ok\2control_open\3aborting\4running\21fake_synch\22bmic_abort\n");
for (i = 0; i < CISS_MAX_LOGICAL; i++) {
ciss_printf(sc, "LOGICAL DRIVE %d: ", i);
ciss_print_ldrive(sc, sc->ciss_logical + i);
}
for (i = 1; i < sc->ciss_max_requests; i++)
ciss_print_request(sc->ciss_request + i);
}
/* DDB hook */
static void
ciss_print0(void)
{
struct ciss_softc *sc;
sc = devclass_get_softc(devclass_find("ciss"), 0);
if (sc == NULL) {
printf("no ciss controllers\n");
} else {
ciss_print_adapter(sc);
}
}
#endif
/************************************************************************
* Return a name for a logical drive status value.
*/
static const char *
ciss_name_ldrive_status(int status)
{
switch (status) {
case CISS_LSTATUS_OK:
return("OK");
case CISS_LSTATUS_FAILED:
return("failed");
case CISS_LSTATUS_NOT_CONFIGURED:
return("not configured");
case CISS_LSTATUS_INTERIM_RECOVERY:
return("interim recovery");
case CISS_LSTATUS_READY_RECOVERY:
return("ready for recovery");
case CISS_LSTATUS_RECOVERING:
return("recovering");
case CISS_LSTATUS_WRONG_PDRIVE:
return("wrong physical drive inserted");
case CISS_LSTATUS_MISSING_PDRIVE:
return("missing physical drive");
case CISS_LSTATUS_EXPANDING:
return("expanding");
case CISS_LSTATUS_BECOMING_READY:
return("becoming ready");
case CISS_LSTATUS_QUEUED_FOR_EXPANSION:
return("queued for expansion");
}
return("unknown status");
}
/************************************************************************
* Return an online/offline/nonexistent value for a logical drive
* status value.
*/
static int
ciss_decode_ldrive_status(int status)
{
switch(status) {
case CISS_LSTATUS_NOT_CONFIGURED:
return(CISS_LD_NONEXISTENT);
case CISS_LSTATUS_OK:
case CISS_LSTATUS_INTERIM_RECOVERY:
case CISS_LSTATUS_READY_RECOVERY:
case CISS_LSTATUS_RECOVERING:
case CISS_LSTATUS_EXPANDING:
case CISS_LSTATUS_QUEUED_FOR_EXPANSION:
return(CISS_LD_ONLINE);
case CISS_LSTATUS_FAILED:
case CISS_LSTATUS_WRONG_PDRIVE:
case CISS_LSTATUS_MISSING_PDRIVE:
case CISS_LSTATUS_BECOMING_READY:
default:
return(CISS_LD_OFFLINE);
}
}
/************************************************************************
* Return a name for a logical drive's organisation.
*/
static const char *
ciss_name_ldrive_org(int org)
{
switch(org) {
case CISS_LDRIVE_RAID0:
return("RAID 0");
case CISS_LDRIVE_RAID1:
return("RAID 1");
case CISS_LDRIVE_RAID4:
return("RAID 4");
case CISS_LDRIVE_RAID5:
return("RAID 5");
case CISS_LDRIVE_RAID51:
return("RAID 5+1");
case CISS_LDRIVE_RAIDADG:
return("RAID ADG");
}
return("unkown");
}
/************************************************************************
* Return a name for a command status value.
*/
static const char *
ciss_name_command_status(int status)
{
switch(status) {
case CISS_CMD_STATUS_SUCCESS:
return("success");
case CISS_CMD_STATUS_TARGET_STATUS:
return("target status");
case CISS_CMD_STATUS_DATA_UNDERRUN:
return("data underrun");
case CISS_CMD_STATUS_DATA_OVERRUN:
return("data overrun");
case CISS_CMD_STATUS_INVALID_COMMAND:
return("invalid command");
case CISS_CMD_STATUS_PROTOCOL_ERROR:
return("protocol error");
case CISS_CMD_STATUS_HARDWARE_ERROR:
return("hardware error");
case CISS_CMD_STATUS_CONNECTION_LOST:
return("connection lost");
case CISS_CMD_STATUS_ABORTED:
return("aborted");
case CISS_CMD_STATUS_ABORT_FAILED:
return("abort failed");
case CISS_CMD_STATUS_UNSOLICITED_ABORT:
return("unsolicited abort");
case CISS_CMD_STATUS_TIMEOUT:
return("timeout");
case CISS_CMD_STATUS_UNABORTABLE:
return("unabortable");
}
return("unknown status");
}
/************************************************************************
* Handle an open on the control device.
*/
static int
ciss_open(dev_t dev, int flags, int fmt, d_thread_t *p)
{
struct ciss_softc *sc;
debug_called(1);
sc = (struct ciss_softc *)dev->si_drv1;
/* we might want to veto if someone already has us open */
sc->ciss_flags |= CISS_FLAG_CONTROL_OPEN;
return(0);
}
/************************************************************************
* Handle the last close on the control device.
*/
static int
ciss_close(dev_t dev, int flags, int fmt, d_thread_t *p)
{
struct ciss_softc *sc;
debug_called(1);
sc = (struct ciss_softc *)dev->si_drv1;
sc->ciss_flags &= ~CISS_FLAG_CONTROL_OPEN;
return (0);
}
/********************************************************************************
* Handle adapter-specific control operations.
*
* Note that the API here is compatible with the Linux driver, in order to
* simplify the porting of Compaq's userland tools.
*/
static int
ciss_ioctl(dev_t dev, u_long cmd, caddr_t addr, int32_t flag, d_thread_t *p)
{
struct ciss_softc *sc;
int error;
debug_called(1);
sc = (struct ciss_softc *)dev->si_drv1;
error = 0;
switch(cmd) {
case CCISS_GETPCIINFO:
{
cciss_pci_info_struct *pis = (cciss_pci_info_struct *)addr;
pis->bus = pci_get_bus(sc->ciss_dev);
pis->dev_fn = pci_get_slot(sc->ciss_dev);
pis->board_id = pci_get_devid(sc->ciss_dev);
break;
}
case CCISS_GETINTINFO:
{
cciss_coalint_struct *cis = (cciss_coalint_struct *)addr;
cis->delay = sc->ciss_cfg->interrupt_coalesce_delay;
cis->count = sc->ciss_cfg->interrupt_coalesce_count;
break;
}
case CCISS_SETINTINFO:
{
cciss_coalint_struct *cis = (cciss_coalint_struct *)addr;
if ((cis->delay == 0) && (cis->count == 0)) {
error = EINVAL;
break;
}
/*
* XXX apparently this is only safe if the controller is idle,
* we should suspend it before doing this.
*/
sc->ciss_cfg->interrupt_coalesce_delay = cis->delay;
sc->ciss_cfg->interrupt_coalesce_count = cis->count;
if (ciss_update_config(sc))
error = EIO;
/* XXX resume the controller here */
break;
}
case CCISS_GETNODENAME:
bcopy(sc->ciss_cfg->server_name, (NodeName_type *)addr,
sizeof(NodeName_type));
break;
case CCISS_SETNODENAME:
bcopy((NodeName_type *)addr, sc->ciss_cfg->server_name,
sizeof(NodeName_type));
if (ciss_update_config(sc))
error = EIO;
break;
case CCISS_GETHEARTBEAT:
*(Heartbeat_type *)addr = sc->ciss_cfg->heartbeat;
break;
case CCISS_GETBUSTYPES:
*(BusTypes_type *)addr = sc->ciss_cfg->bus_types;
break;
case CCISS_GETFIRMVER:
bcopy(sc->ciss_id->running_firmware_revision, (FirmwareVer_type *)addr,
sizeof(FirmwareVer_type));
break;
case CCISS_GETDRIVERVER:
*(DriverVer_type *)addr = CISS_DRIVER_VERSION;
break;
case CCISS_REVALIDVOLS:
/*
* This is a bit ugly; to do it "right" we really need
* to find any disks that have changed, kick CAM off them,
* then rescan only these disks. It'd be nice if they
* a) told us which disk(s) they were going to play with,
* and b) which ones had arrived. 8(
*/
break;
case CCISS_PASSTHRU:
error = ciss_user_command(sc, (IOCTL_Command_struct *)addr);
break;
default:
debug(0, "unknown ioctl 0x%lx", cmd);
debug(1, "CCISS_GETPCIINFO: 0x%lx", CCISS_GETPCIINFO);
debug(1, "CCISS_GETINTINFO: 0x%lx", CCISS_GETINTINFO);
debug(1, "CCISS_SETINTINFO: 0x%lx", CCISS_SETINTINFO);
debug(1, "CCISS_GETNODENAME: 0x%lx", CCISS_GETNODENAME);
debug(1, "CCISS_SETNODENAME: 0x%lx", CCISS_SETNODENAME);
debug(1, "CCISS_GETHEARTBEAT: 0x%lx", CCISS_GETHEARTBEAT);
debug(1, "CCISS_GETBUSTYPES: 0x%lx", CCISS_GETBUSTYPES);
debug(1, "CCISS_GETFIRMVER: 0x%lx", CCISS_GETFIRMVER);
debug(1, "CCISS_GETDRIVERVER: 0x%lx", CCISS_GETDRIVERVER);
debug(1, "CCISS_REVALIDVOLS: 0x%lx", CCISS_REVALIDVOLS);
debug(1, "CCISS_PASSTHRU: 0x%lx", CCISS_PASSTHRU);
error = ENOIOCTL;
break;
}
return(error);
}